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Abstract

In the evolving e-commerce landscape, accu-
rate product attribute-value extraction is crucial
for enhancing user experience and increasing
sales. This paper introduces GAVEL, a genera-
tive approach leveraging large language models
(LLMs) to augment training data for attribute
extraction from diverse textual sources. Our
method extracts over 1,000 unique attributes
across 2,000 product categories in multiple
Southeast Asian languages, including Thai,
Vietnamese, and Indonesian. Rigorous eval-
uations show significant improvements in accu-
racy and coverage compared to seller-provided
attributes, with enhanced recall and F1 scores.
Additionally, GAVEL reduces operational costs
by minimizing instruction token usage and im-
proves inference speed. The results of the A/B
test indicate that our model has a positive im-
pact on Gross Merchandise Value (GMV) per
page view (PV) across all three operating coun-
tries. This research highlights the potential of
generative techniques for optimizing attribute
extraction in multi-language e-commerce appli-
cations.

1 Introduction

Product attributes significantly influence product
search (Ai et al., 2019; Luo et al., 2022), recommen-
dation systems (Luo et al., 2022; Gao et al., 2023),
and buyers’ decision-making processes (Zheng
et al., 2020; Hafiz and Ali, 2019; Helfi et al., 2019).
Inadequate or erroneous information on product
pages can lead to adverse outcomes, such as a
poor shopping experience, decreased visibility, and
lower sales. For instance, Figure 1 illustrates a case
where the color ’sky blue’ is mentioned in the title,
highlights, and description; however, it contradicts
the Stock Keeping Unit (SKU) variant, which is
listed as red. Such discrepancies can confuse poten-
tial buyers and negatively impact their purchasing
decisions.

Figure 1: An example of seller-provided information,
including extracted attributes. The information consists
of (1) category, (2) images, (3) title, (4) SKU variants,
(5) highlights, (6) description, and (7) specifications.
In this case, the color ’sky blue’ appears in the title,
highlights, and description; however, it contradicts the
SKU variant’s color, which is red.

In recent years, there has been significant
research on Product Attribute-Value Extraction
(PAVE) (Shinzato et al., 2023; Zou et al., 2024b;
Zhu et al., 2020). Initial studies primarily em-
ployed sequence tagging methods using encoder-
only models like BERT (Wang et al., 2020; Zhu
et al., 2020; Chen et al., 2022; Embar et al., 2021;
Xu et al., 2019; Deng et al., 2022). However, this
approach has limitations in handling unseen and
canonicalized values (Shinzato et al., 2023). To
overcome these challenges, subsequent research
has shifted from sequence tagging to sequence-to-
sequence generation models, such as T5 and BART,
which support more flexible output formats (Shin-
zato et al., 2023; Nikolakopoulos et al., 2023; Gong
and Eldardiry, 2024; Wang et al., 2022; Roy et al.,
2022; Sabeh et al., 2024; Roy et al., 2021). Addi-
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Figure 2: An overview of the GAVEL pipeline for generative attribute-value extraction using LLMs on LLM-
augmented datasets. The GAVEL process begins with a product profile containing seller-provided information
(indicated in blue) and employs prompts to extract and predict attributes (highlighted in red) utilizing GPT-3.5 and
GPT-4. Silver data is used for training, while human evaluation is conducted to refine the final gold data for testing
purposes.

tionally, current research leverages the zero-shot
and few-shot capabilities of large-scale autoregres-
sive models, such as GPT-3.5 and GPT-4, to en-
hance attribute extraction processes (Brinkmann
et al., 2024b; Brinkmann et al., 2024a; Fang et al.,
2024). This evolution has demonstrated that ef-
fective attribute value extraction significantly im-
proves key e-commerce metrics, including Click-
Through Rate (CTR) and Add-To-Cart Rate (ATC)
(Fang et al., 2024).

Despite these advancements, existing publicly
available datasets for PAVE face several limitations.
For instance, the AE-110k dataset (Xu et al., 2019)
is confined to the Sports & Entertainment category,
offering data in the form of title-attribute-value
triplets. While MEPAVE (Zhu et al., 2020) broad-
ens its data sources to include images and descrip-
tions, it still possesses a limited number of unique
attributes. OA-Mine (Zhang et al., 2022) encom-
passes titles for 100 product types but lacks compre-
hensive information beyond the title itself. MAVE
(Yang et al., 2021) includes 1,257 categories and
various input types; however, it requires that ex-
plicit attribute values be present in the text, which
complicates the extraction of unseen and canoni-
calized values. Although ImplicitAVE (Zou et al.,
2024a) aims to address this shortcoming through
a two-round human inspection process that anno-
tates 25 attributes across five domains, it remains

limited to titles and images. Furthermore, exist-
ing datasets predominantly rely on item-level in-
formation, which may lead to inaccuracies in at-
tribute value extraction for a specific SKU variant,
as demonstrated in Figure 1.

Expanding beyond these challenges, it is crucial
to recognize the growing e-commerce landscape in
Southeast Asia, where the need for PAVE solutions
is becoming increasingly pressing. This region is
home to a rich diversity of languages, including
Thai, Vietnamese, Indonesian, and English. How-
ever, most PAVE research to date has primarily
focused on English (Brinkmann et al., 2024b; Fang
et al., 2024; Yang et al., 2023), Chinese (Zhu et al.,
2020; Deng et al., 2023), and Japanese (Shinzato
et al., 2023; Chen et al., 2022). To the best of our
knowledge, there has been no prior study explor-
ing the potential for enhancing PAVE in Southeast
Asian languages.

To tackle these challenges, we propose an ef-
ficient pipeline for augmenting training data for
generative attribute-value extraction, as depicted in
Figure 2. Our key contributions are summarized as
follows:

• We experiment with a comprehensive set of
attributes, consisting of over 1,000 unique at-
tributes across 2,000 categories.

• We incorporate successful methodologies

82



from prior research, including the utilization
of generation-based models with zero-shot ca-
pabilities, the effective incorporation of tex-
tual data from product profiles, and the predic-
tion of multiple attribute values.

• We reformulate the task to include seller-
provided attribute values within input data.
This enhancement improves output quality, as
valuable information is sometimes misallo-
cated under incorrect attribute values.

• We introduce GAVEL, a novel pipeline
for generating high-quality training data for
PAVE, enabling the training of smaller models
with shorter, more concise prompts.

2 Related Work

2.1 Attribute Value Extraction
Attribute value extraction aims to derive specific
values from product information. Traditionally,
this has involved sequence tagging techniques em-
ploying models like Long Short-Term Memory
(LSTM) or Bidirectional Encoder Representations
from Transformers (BERT) (Embar et al., 2021;
Xu et al., 2019; Wang et al., 2020). However, these
methods often struggle with unseen values. To ad-
dress these limitations, Roy et al. (2022) proposed
generative frameworks that jointly extract attributes
and values using the Text-to-Text Transfer Trans-
former (T5), demonstrating that such approaches
outperform traditional tagging for single-value sen-
tences.

Recent work has explored LLMs like GPT-3.5
and GPT-4 for attribute extraction, showing im-
proved data efficiency and robustness to unseen
values compared to traditional pretrained language
models (Brinkmann et al., 2024b). Despite these
advancements, many studies focus on English prod-
ucts, with few addressing the complexities of South-
east Asian languages (Brinkmann et al., 2024b;
Yang et al., 2023), underscoring a significant gap
in multilingual PAVE research.

2.2 Attribute Value Extraction Datasets
A variety of datasets have been created to support
PAVE research. Table 1 offers a detailed sum-
mary of existing datasets alongside our datasets.
Notably, these datasets vary significantly across
several dimensions, including product categories,
SKU counts, attribute counts, unique attributes, lan-
guages, and data sources.

OpenTag (Zheng et al., 2018) comprises 10k
SKUs, with a total of 13k attribute instances, across
three categories collected from Amazon. This
dataset includes attributes extracted from product ti-
tles, descriptions, and highlights, and is exclusively
presented in English. AE-110k (Xu et al., 2019)
is concentrated within a single Sports & Entertain-
ment category, featuring a considerably larger SKU
count of 50k, yielding 110k attribute instances. At-
tributes derive solely from product titles, with data
collected from AliExpress and created without hu-
man annotation. MEPAVE (Zhu et al., 2020) offers
a broader variety of categories, containing seven
categories with 34k SKUs and 87k attributes, with
human annotations. Attributes in this dataset are
predominantly extracted from images and descrip-
tions and are published in Chinese. MAVE (Yang
et al., 2021) includes an extensive catalog of 1.3k
categories and a substantial total of 3 million at-
tribute instances. The products are sourced from
the Amazon Review Dataset and do not include
any human annotations. OA-Mine (Zhang et al.,
2022) encompasses ten distinct categories, com-
prising 11k attributes. This dataset focuses on at-
tributes derived from titles, descriptions, and high-
lights, all collected from Amazon in English. Only
the development and test sets are annotated by hu-
man. ImplicitAVE (Zou et al., 2024a) presents a
dataset featuring five categories and 70k attributes,
focusing on attributes sourced from title and image
data. This dataset represents an enhanced version
of MAVE, with the evaluation set re-annotated by
a team of five Ph.D. students to improve reliability.

3 Methods

3.1 Attribute Mining

Our approach to enhancing seller-provided at-
tributes utilizes three distinct prompts submitted to
GPT-3.5 (Ouyang et al., 2024) and GPT-4 (OpenAI
et al., 2024), as illustrated in Figure 3. The first
prompt verifies brand names in the title and high-
lights. The second prompt focuses on SKU-level
attributes, addressing frequent misclassifications by
providing detailed instructions for the extraction of
five common attributes. The third prompt targets
item-level attributes from titles, highlights, and de-
scriptions, requiring comprehensive instructions to
avoid the model simply replicating examples in-
stead of accurately extracting values. This prompt
includes value examples and bullet-point instruc-
tions to regulate the expected output format.
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Dataset #Cate #SKU #Attr #Unique Lang Source
OpenTag 3 10k 13k 4 en title, desc, highlights
AE-110k 1 50k 110k 4 en title
MEPAVE 7 34k 87k 26 zh image, desc
MAVE 1.3k 2.2M 3M 2.5k en title, desc, highlights
OA-Mine 10 2k 11k 10 en title, desc, highlights
ImplicitAVE 5 70k 70k 25 en title, image
Lzd-ID-train (ours) 2k 163k 739k 1.2k en, id

title, desc, highlights,
sku attributes,
specifications

Lzd-TH-train (ours) 2k 152k 648k 1.2k en, th
Lzd-VN-train (ours) 2k 152k 705k 1.2k en, vi
Lzd-ID-test (ours) 314 1k 6.3k 313 en, id
Lzd-TH-test (ours) 352 1k 5.8k 372 en, th
Lzd-VN-test (ours) 353 1k 6.3k 417 en, vi
Total (ours) 2k 470k 2.1M 1.2k en, th, id, vi

Table 1: A summary of existing datasets compared to our datasets.

3.2 Dataset Construction
The attributes mined in Section 3.1, along with
seller-provided attributes, are categorized as silver
labels. A rule-based processing algorithm resolves
conflicts by prioritizing mined attributes; if there
are no contradictions, both types are retained. Ex-
perienced e-commerce annotators from Indonesia,
Thailand, and Vietnam evaluate these silver-labeled
attributes to generate gold labels.

To optimize token efficiency during training and
inference, we compile all attribute information into
a concise prompt (see Figure 3). This prompt in-
cludes seller-provided data such as titles, highlights,
descriptions, SKU attributes, and item specifica-
tions, allowing models to predict multiple attributes
and values simultaneously.

Table 1 summarizes our three datasets, encom-
passing 2,000 categories and over two million at-
tribute instances. Each training category includes
an equal number of SKUs, while the test set con-
sists of 1,000 randomly selected and mutually ex-
clusive SKUs, ensuring diverse representation and
comprehensive evaluation of model performance.

3.3 Model Fine-tuning
In this study, we fine-tune four LLMs with com-
parable parameter counts, which are accessible
on Hugging Face1. The models include Gemma-
2-9b (Team et al., 2024), Llama-3.1-8B (Dubey
et al., 2024), Qwen2.5-7B (Yang et al., 2024), and
SeaLLMs-v3-7B (Zhang et al., 2024). Our train-
ing employs Low-Rank Adaptation (LoRA) (Hu
et al., 2022) with bf16 precision, specifically set-

1https://huggingface.co/

ting lora_target=all to facilitate comprehensive
adaptation across all layers of the models. We
split the dataset into training and validation sets,
allocating 15% for validation to ensure robust eval-
uation of model performance. The training process
utilizes a cosine learning rate scheduler and incor-
porates early stopping criteria to further optimize
performance. We set the training and evaluation
batch sizes to 2 and employ gradient accumula-
tion over 8 steps, leading to a total of 10 training
epochs, which allows for thorough learning from
the dataset. Additionally, evaluations and logging
are conducted at intervals of 500 steps to moni-
tor convergence effectively. Notably, this experi-
ment utilizes 4 PPU 810 cards provided by Alibaba
Cloud to fine-tune the models.

4 Experimental Setup

In this section, we outline the experimental frame-
work employed in this study, utilizing data sourced
from Lazada, a prominent e-commerce platform
in Southeast Asia. The information collected en-
compasses product profiles and various attributes
relevant to our analysis, establishing a comprehen-
sive basis for the subsequent investigations.

4.1 Data Sources

The product pages on Lazada contain extensive
information furnished by sellers, which includes
both textual and visual components, as illustrated in
Figure 1. SKU-level attributes refer to specific vari-
ants of a product, while item-level attributes cover
common characteristics shared across all variants.
We extract SKU-level attributes from individual
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Figure 3: Structured templates for extracting product information, including brand, SKU-level attributes, item-level
attributes, and all relevant details. The first three prompts are designed for dataset development using GPT models,
while the last prompt is intended for training and inference with internal models.

product variants, whereas item-level attributes are
derived from the product specifications. All SKUs
associated with a particular item share identical
title, highlights, description, and specifications.

It is imperative to recognize that the attributes
supplied by sellers may be the least reliable source
of information. This unreliability stems from po-
tential inaccuracies, such as incorrect categoriza-
tion of values or arbitrary selections from platform-
provided dropdown menus. In instances where an
attribute value contradicts information presented in
the title, highlights, or description, there exists a
considerable probability that the attribute value is
erroneous. Consequently, this study does not treat
seller-provided attributes as definitive ground truth;
rather, these attributes are meticulously revised for
accuracy and subsequently used as golden labels.

4.2 Large Language Models

GPT-3.5 and GPT-4, developed by OpenAI, are
advanced large language models that employ deep
learning to generate human-like text. They demon-
strate exceptional performance in zero-shot and
few-shot contexts on datasets like OA-Mine and
AE-110k (Brinkmann et al., 2024b). Following
previous research, we utilize these models to ex-
tract and verify product attributes, which are then
combined with seller-provided data to create silver
datasets for training and evaluation.

To assess the performance of various LLMs,
we selected multilingual models proficient in lan-
guages including English, Thai, Indonesian, and
Vietnamese. SeaLLMs 3 (Zhang et al., 2024) from
Alibaba’s DAMO Academy excels in Southeast
Asian languages. Qwen2.5 (Yang et al., 2024),
developed by Alibaba Cloud, offers decoder-only
models ranging from 0.5 to 72 billion parameters
with capabilities in natural language understanding,
coding, and mathematics. Gemma 2 (Team et al.,
2024) from Google DeepMind includes lightweight
models with 2 to 27 billion parameters, utilizing
architectural innovations and knowledge distilla-
tion. Llama 3.1 (Dubey et al., 2024) from Meta
AI features multilingual models competitive with
leading closed-source variants, excelling in coding,
reasoning, and mathematics.

Licensing is pivotal for compliance and intellec-
tual property respect. OpenAI’s terms for GPT-3.5
and GPT-4 restrict modifications but allow usage
for specific tasks. Our work involves generating a
small-sized model that does not directly compete
with OpenAI, aligning with their guidelines. Other
models have varying licenses: SeaLLMs 3 permits
modification under a worldwide, non-exclusive,
non-transferable agreement; Gemma 2 allows re-
production and modification within certain limits;
Qwen2.5 operates under the permissive Apache
License 2.0; and Llama 3.1’s Community License
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Agreement permits modifications with specified
conditions. These licenses provide us the flexibility
to innovate while ensuring compliance with each
organization’s guidelines.

4.3 Evaluation Metrics

We evaluate our models based on Precision (P),
Recall (R), and the F1 score (F1), consistent with
prior research (Brinkmann et al., 2024b; Yang et al.,
2021). In addition, we calculate accuracy (Acc) and
coverage (Cov) based on the first predicted value
for each attribute.

Our predictions are classified into five distinct
categories: no prediction when there is no attribute
(NN), incorrect prediction where no attribute ex-
ists (NV), no prediction despite the existence of an
attribute (VN), correct prediction that matches the
attribute (VC), and incorrect prediction that does
not align with the attribute (VW). The subscripted
numbers (e.g., VC1, NV1, etc.) denote the counts
of correct and incorrect predictions associated with
the first predicted value. The evaluation metrics are
computed as follows:

P = VC / (NV+VC+VW)
R = VC / (VN+VC+VW)

F1 = 2PR / (P+R)
Acc = VC1 / (NV1+VC1+VW1)
Cov = (NV1+VC1+VW1) / All1

Importantly, we follow standard practice by as-
sessing accuracy solely on the attributes provided
by sellers, which allows us to focus our evaluation
on the correctness of the available information with-
out penalizing for any missing attributes. This prac-
tice is also applied to outputs generated by LLMs.
In contrast, coverage accounts for both available
and missing information, providing a comprehen-
sive view of the model’s performance.

This evaluation framework enables us to assess
model performance through metrics such as pre-
cision, recall, and F1 score, while also providing
insights into attribute quality via accuracy and cov-
erage.

5 Results

This section presents performance metrics and eval-
uations of four selected LLMs across three datasets.
We benchmark the models against the seller at-
tribute values and assess their effectiveness in pre-
dicting multiple attributes, the quality of the first
predicted value, and inference speed.

5.1 Human Annotation

To assess the quality of Seller Attribute Values
(SAV) and Mined Attribute Values (MAV), we con-
ducted a human annotation evaluation focusing on
SKU-level and item-level attributes across three
distinct test datasets.

The results, presented in Table 2, show accep-
tance rates for SAV and MAV, denoted as %ASAV
and %AMAV. While SAV exhibits higher accep-
tance rates, its volume is considerably lower than
that of MAV, with accepted SAV totaling 7,710
compared to 21,742 for MAV. This gap highlights
the significant potential of MAV in identifying new
attribute values that sellers may overlook, as ap-
proximately 75% of accepted attribute values arise
from our mining pipeline, even though they are
evaluated as less accurate. These findings under-
score the complementary functions of SAV and
MAV; SAV provides reliable attributes, while MAV
enriches the dataset by introducing three times
more newly identified values.

Dataset SAV MAV %ASAV %AMAV
SKU-level attributes

ID-test 1221 512 48.16 99.22
TH-test 885 583 58.53 25.73
VN-test 735 608 35.92 74.18

Item-level attributes
ID-test 3170 6062 96.97 86.69
TH-test 1871 9473 81.88 77.56
VN-test 1950 12443 88.92 64.54
Total 9832 29681 78.42 73.25

Table 2: Results of human annotation for Seller At-
tribute Values (SAV) and Mined Attribute Values
(MAV), categorized into SKU-level and item-level at-
tributes. Acceptance rates (%ASAV and %AMAV) in-
dicate the proportion of attribute values recognized as
accurate by human annotators for both SAV and MAV.

5.2 Multiple Attribute Values Prediction

To evaluate the models’ efficacy in predicting mul-
tiple attribute values, we focus on precision, recall,
and F1 score as key performance metrics. These
metrics serve as indicators of the models’ capabili-
ties to accurately identify and extract valid attribute
values from product listings.

As illustrated in Table 3, the models exhibit vary-
ing performance across distinct datasets. For Lzd-
ID, Llama 3.1 emerges as the top performer, achiev-
ing the highest F1 score of 77.36, which indicates
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Dataset Model P R F1 Acc Cov Speed (s)
Seller attribute values 84.92 74.16 79.18 85.09 69.40 -
Gemma 2 76.29 76.19 76.24 90.61 78.44 5587

Lzd-ID Llama 3.1 77.34 77.38 77.36 91.30 78.51 642
Qwen2.5 74.33 74.49 74.41 90.34 78.88 859
SeaLLMs 3 77.68 76.87 77.27 91.27 78.96 832
Seller attribute values 67.26 44.54 53.59 67.63 50.86 -
Gemma 2 50.18 56.24 53.04 77.42 77.09 8287

Lzd-TH Llama 3.1 52.81 56.00 54.36 73.52 81.21 1226
Qwen2.5 51.38 52.47 51.92 75.54 76.77 1914
SeaLLMs 3 55.27 57.20 56.22 74.64 79.16 2098
Seller attribute values 72.26 45.07 55.52 72.17 44.00 -
Gemma 2 67.77 69.57 68.66 78.04 72.31 6251

Lzd-VN Llama 3.1 64.45 67.61 66.00 75.85 73.95 716
Qwen2.5 65.33 67.64 66.47 75.93 73.38 1017
SeaLLMs 3 65.66 67.38 66.51 77.09 72.36 1042

Table 3: Performance of four LLMs fine-tuned and evaluated on three datasets, compared against seller-provided
attribute values.

its effectiveness in this specific context. Conversely,
SeaLLMs 3 demonstrates superior performance on
Lzd-TH, suggesting a heightened suitability for
processing Thai-language attributes. Meanwhile,
Gemma 2 excels in the Lzd-VN dataset, highlight-
ing the necessity of aligning model selection with
the unique linguistic and contextual features inher-
ent in each dataset.

The models consistently outperformed seller-
provided attributes in terms of recall, highlighting
the potential for generative approaches. Although
these models may identify a broader range of poten-
tial attribute values, they often fall short of the pre-
cision achieved by sellers for attributes that encom-
pass multiple values. This observation underscores
the fundamental trade-offs between precision and
recall in automated prediction systems.

5.3 First Predicted Attribute Value
In our evaluation, we also examine the accuracy
and coverage of the first predicted attribute value
for each attribute. This perspective is crucial for
assessing how effectively the models retrieve the
most relevant attribute value when multiple options
are available.

The results shown in Table 3 reveal significant
variability in the accuracy of the first predicted
value across different models and datasets. No-
tably, Llama 3.1 achieves the highest accuracy
of 91.30% alongside a commendable coverage of
78.51% on Lzd-ID. This model consistently demon-
strates strong coverage across Lzd-TH and Lzd-VN.

Conversely, Gemma 2 excels in terms of accuracy
on Lzd-TH and Lzd-VN, underscoring its effective-
ness in these contexts.

Overall, our findings indicate that all models
enhance the attribute values provided by sellers,
reflecting improvements in both accuracy and cov-
erage. This highlights the potential of utilizing
automated models to complement seller-supplied
data, thereby enriching the attribute extraction pro-
cess across various datasets.

5.4 Inference Speed Analysis

Inference speed is a crucial consideration for de-
ploying model solutions in real-world scenarios.
In this analysis, we measure the inference time
for each model while processing data from 1,000
SKUs under specific testing conditions. The infer-
ence was conducted using a batch size of 2 and a
single PPU 810 card on Alibaba Cloud. The evalua-
tion was performed using the following parameters:
temperature=0.2, top_p=0.1, and top_k=100.

The results reveal considerable variation across
models, as indicated in Table 3. Gemma 2 ex-
hibits the longest inference time, whereas Llama
3.1 demonstrates significantly faster processing ca-
pabilities. The prolonged inference time associated
with Gemma 2 may be attributed to the incompati-
bility between Flash Attention 2 (Dao, 2024) and
Gemma 2, resulting in a marked decrease in pro-
cessing efficiency.
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5.5 Comparative Analysis of Models

The performance of the four selected LLMs varies
significantly across evaluated datasets, presenting
an opportunity to analyze their strengths and weak-
nesses in real-world applications. Llama 3.1 stands
out on Lzd-ID, achieving an F1 score of 77.36 and
an impressive accuracy of 91.30% for the first pre-
dicted value. This consistent performance indicates
its suitability for applications demanding precision
in multi-attribute extraction. In contrast, SeaLLMs
3 excels in Lzd-TH, highlighting the importance of
language and locale.

Gemma 2 displays high accuracy in specific con-
texts but struggles with inference speed, making it
less viable for real-time applications. Conversely,
Llama 3.1 maintains swift processing times without
sacrificing accuracy, making it an optimal choice
for environments requiring rapid decision-making.
Qwen2.5 delivers moderate performance across
datasets but lacks standout features, suggesting its
suitability for general applications.

Considering the trade-offs in accuracy, coverage,
and speed, Llama 3.1 is the most balanced model
for deployment. Its combination of high accuracy,
solid coverage, and efficient processing makes it
ideal for commercial applications that require re-
liable attribute extraction and the ability to handle
large data volumes swiftly.

5.6 Online Performance

An A/B experiment was conducted to evaluate the
impact of Llama 3.1 on online performance. Orders
per item page view, also known as conversion rates
(CVR), showed a 0.70% increase for ID, a 0.68%
decrease for VN, and a 1.19% increase for TH. Ad-
ditionally, orders per page view improved by 0.47%
in ID and 1.40% in TH, with VN experiencing a de-
crease of 0.79%. Gross Merchandise Value (GMV)
per page view saw substantial increases, with VN
leading at 6.73%, followed by ID at 1.61% and TH
at 1.44%. These findings underscore the ability of
LLMs to enhance user engagement and optimize
business outcomes, thereby contributing to overall
revenue growth.

6 Conclusion

In this study, we introduced an innovative approach
for attribute-value extraction by leveraging genera-
tive LLMs on augmented datasets. Our method cap-
italizes on the zero-shot capabilities of advanced
LLMs, facilitating the extraction of over 1,000

unique attributes across diverse categories with en-
hanced accuracy and speed. The empirical results
demonstrate significant improvements in the qual-
ity of attributes provided by sellers, with notable
increases in accuracy, coverage, and overall market
performance metrics. By fine-tuning smaller mod-
els, we not only reduced operational costs but also
enhanced efficiency, allowing for rapid inference
while maintaining high prediction quality. The suc-
cessful outcomes from our experiments underscore
the viability of our GAVEL pipeline for wide-scale
implementation in multilingual e-commerce plat-
forms. This research paves the way for further
exploration of generative approaches to attribute
extraction, offering organizations valuable insights
into optimizing their inventory and enhancing cus-
tomer experiences.

7 Limitations

Despite the promising results of this study, several
limitations should be noted. Firstly, while our aug-
mented datasets cover a diverse range of attributes,
performance may vary significantly across differ-
ent product categories and languages, limiting the
generalizability of our findings, particularly in re-
gions underrepresented in the training data. Future
research should aim to enhance model robustness
across a broader spectrum of inputs. Additionally,
our approach does not currently incorporate visual
data, which is vital in e-commerce. The lack of
image data may hinder comprehensive attribute ex-
traction, especially in categories where visual rep-
resentation is critical. Integrating multimodal data
in future studies could enhance extraction accuracy.
Another important limitation is the potential gener-
ation of erroneous data through LLM augmentation,
which could result in misleading product attributes,
damaging sellers’ reputations and causing customer
dissatisfaction. Implementing strategies for valida-
tion and verification of generated data is essential to
mitigate these risks. Addressing these limitations
will enable further refinement of attribute-value ex-
traction models, enhancing their applicability in
the e-commerce sector.
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