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Abstract

We explore generating factual tables from the
parametric knowledge of large language mod-
els (LLMs). While LLMs have demonstrated
impressive capabilities in recreating knowledge
bases and generating free-form text, their abil-
ity to generate structured tabular data has re-
ceived little attention. To address this gap, we
explore the table generation abilities of eight
state-of-the-art LLMs, including GPT-4o and
Llama3.1-405B, using three prompting meth-
ods: full-table, row-by-row, and cell-by-cell.
To facilitate evaluation we introduce WIKITAB-
GEN, a new benchmark consisting of 119 manu-
ally curated Wikipedia tables and their descrip-
tion. Our findings show that table generation
remains challenging, with the best performing
model (LLaMA3.1-405B) reaching only 25.4%
accuracy. We further analyze how properties
like table size, popularity, and numerical con-
tent impact performance. This study highlights
the unique challenges of LLM-based table gen-
eration and offers a foundation for future re-
search in this area. All code, data, and prompts
are publicly available.1

1 Introduction

Automated table generation has broad applications
in fields such as healthcare, finance, scientific re-
search and education (Chen et al., 2021; Johnson
et al., 2016; Berant et al., 2018) where convert-
ing unstructured factual data into structured tables
can significantly enhance decision-making, stream-
line workflows, and improve data accessibility en-
abling knowledge extraction and facilitating fur-
ther analysis through statistical and visualization
tools (Shen et al., 2021). Large language mod-
els (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; Kadavath et al., 2022; Touvron et al., 2023a)
have demonstrated remarkable performance on var-
ious natural language processing tasks, including
free-form text generation, knowledge retrieval, and

1https://github.com/analysis-bots/WikiTabGen

Table description
“Create a table with the detailed information about 
the achievements of Susen Tiedtke from 1987 to 2000”

Columns
year, competition, venue, position

(A) Full Table (B) Row-by-row

LLM Table Generation Methods
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venue
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…

position

3rd

5th
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1987

1991

…

competition

European Junior

World Championship

…

Output Table

Figure 1: An example LLM-based table generation task
along with three alternative prompting methods.

summarization. However, despite their success
in generating free-form text, LLMs face distinct
challenges when tasked with producing complex
structured data, and their ability to generate long
and factually accurate tables from their paramet-
ric knowledge remains largely unexplored (Akhtar
et al., 2024; Zhao et al., 2024).

LLMs are pre-trained on vast amounts of text,
which includes factual information presented in
both plain text and structured formats, such as
tables (Elazar et al., 2023; Fang et al., 2024).
Through this training, LLMs encode a wealth of
factual information in their parameters. While pre-
vious studies have shown that LLMs can retrieve
factual information for tasks like recreating knowl-
edge bases (KBs) (Petroni et al., 2019; AlKhamissi
et al., 2022; Cohen et al., 2023) or generating
Wikipedia-like articles (Shao et al., 2024), little
attention has been given to their ability to gener-
ate structured tables from their parametric knowl-
edge. Unlike question answering over tables or
text-to-SQL translation (Pasupat and Liang, 2015;
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Chen et al., 2021), generating tables requires mod-
els to retrieve and organize specific factual data
into structured formats, posing unique challenges.
The lack of dedicated methods for table generation
and appropriate evaluation benchmarks highlights
a particular gap in current research.

To address this gap, we introduce WIKITABGEN,
a benchmark designed to evaluate LLMs’ ability to
generate tables from their parametric knowledge.
It consists of 119 manually curated Wikipedia ta-
bles, each paired with a textual description and a
set of target columns. With an average of 1,457 to-
kens per table, WIKITABGEN features significantly
larger tables compared to previous tabular gener-
ation tasks (Parikh et al., 2020; Nan et al., 2022).
This benchmark facilitates a systematic evaluation
of how factors such as table size, numerical con-
tent, and popularity (Mallen et al., 2022) affect
table generation. We also introduce and evaluate
three prompting methods: full-table generation,
row-by-row generation and cell-by-cell generation.

Our key contributions are: (1) Formulating
the problem of generating structured tables from
LLMs’ parametric knowledge. (2) Introducing
WIKITABGEN, a benchmark consisting of diverse
tables that vary in size, structure, and content, to
evaluate table generation capabilities. (3) Imple-
menting and evaluating three prompting methods
across eight state-of-the-art LLMs, including GPT-
4 and LLaMA3.1-405B. (4) Providing a compre-
hensive analysis of the factors that impact table
generation performance.

Our experiments reveal that generating tables
from LLMs remains a challenging task, with the
highest F1 score reaching only 25.4%. We observe
that factors such as table size and numerical content
significantly affect performance. These findings
highlight the need for further research to improve
LLM-based table generation. We hope that our
benchmark and analysis will inspire future research
on generating structured data from LLMs.

2 Problem Definition

Given a short user description, our task is to gener-
ate a factually accurate table.

Following Codd (1990), a relational table T =
(R,C) is a set of rows R = {r1, r2, . . . } and a
set of columns C = {c1, c2 . . . }. A table cell,
denoted r[c], contains the value of column c in
row r. Key columns are a subset Ck ⊂ C that
uniquely define each entry (row) in T and the corre-

sponding cells do not contain null or empty values.
For example, the table in Fig. 1 has the columns
year and competition as its keys. Each table en-
try such as venue, corresponds to a unique year,
competition pair.

Given a table description d and a list of desired
table columns C, our task is to generate a corre-
sponding table T (R̂, C), where the generated rows
R̂ contain factually accurate information. An ex-
ample problem is shown in Fig. 1, where the table
description is “Achievements of Susen Tiedke from
1987 to 2000” and the target columns are: year,
competition, venue, and position. Each of our pro-
posed prompting methods (§3) can then be used
for the LLM to generate table T (R̂, C), as shown
in the bottom of the figure.

3 Prompting LLMs to Generate Tables

Given a table description and list of target columns
C, we evaluate LLM performance on generating
the corresponding table T (R̂, C). Our focus is on
extracting the knowledge stored in the LLM, with
retrieval-augmented methods (Lewis et al., 2020;
Yoran et al., 2023) being orthogonal to our study.

We implement three prompting methods to gen-
erate tables, shown in Fig. 1. First, the full table
method prompts the LLM to generate the table all
at once. However, the output table may be quite
large, with evaluation tables have 1.5K tokens on
average (§4). Therefore, we also experiment with
a modular prompting approach (Khot et al., 2023,
2022), where one LLM instance generates the table
keys, and another generates either complete rows
or individual cells. We refer to these two modular
prompting methods as row-by-row and cell-by-cell
respectively. An in-depth example of our prompt-
ing methods is provided in Fig. 2. Note that all
prompts in the figure are appended with the table
description and columns (prompt 1 in Fig. 2). Next,
we describe each of the prompts used in our three
methods. All of our prompts are listed in §A and
in our public code repository.

(a) Full-table. Given the table description and
target columns the LLM is prompted to generate
all table rows. Example prompts are prompts 1
and 2.A in Fig. 2 which are both concatenated and
provided as the input to the LLM.

(b) Row-by-row. This is a two-stage prompting
method, prompting two separate instances of the
LLM. First, we prompt the LLM for key generation
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2.B. Key generation prompt

The key columns in the table are year, competition. 
List all competition, year entities for the table. 
The response will be formatted as JSON:

[ {"year": _year, 
    "competition": _competition} ]

1. Table desc.

“Create a table with the detailed 
information about the achievements 
of Susen Tiedtke from 1987 to 2000”

2.A. Full Table prompt

Each element of the response will contain 4 fields: ['year', 'competition', 'venue', 'position']. The 
response will be formatted as JSON shown below:

[{"year": _year, "competition": _competition, "venue": _venue, "position": _position}]

3.B. Cell-by-cell (cell generation prompt)

For the table row whose key is (year = 1987, competition = European 
Junior Championships) what is the value of attribute venue?
The response will be formatted as JSON dictionary: {"venue": _venue}

3.A. Row-by-row (row generation prompt)

Columns are year, competition, venue, position. Retrieve a single row whose key is:  
(year = 1987, competition = European Junior Championships)

The response will be formatted as JSON dictionary: 

{ "year": "1987", "competition": "European Junior Championships", 
"venue": _venue, "position": _position}

venue

Birmingham

Tokyo

…

position

3rd

5th

…

year

1987

1991

…

competition

European Junior

World Championship

…

venue

Birmingham

Tokyo

…

pos.

3rd

5th

…

Figure 2: An overview of our three separate prompting methods for table generation, given a short user description
and table metadata (Fig. 1): (2.A) Full table directly generates the table given the user desc. and its columns; (2.B)
Key-generation is used in both the row-by-row and cell-by-cell methods; (3.A) Row-by-row generates a table row
given a unique key value, e.g. (1987, EU Junior Championship); (3.B) Cell-by-cell generates a single table cell
given a key value and specific target column e.g. venue → Birmingham.

i.e. to generate all values of the key columns Ck.
As key values are a unique identifier for each table
entry (§2), we then prompt a second instance of
the LLM, to generate a full table row given a key
value. Thus, for each key value r̂i[Ck] generated by
the first LLM, we generate a subsequent prompt to
retrieve the remaining row entries r̂i[C \Ck]. Over-
all, we are required to generate |R̂| + 1 prompts,
where |R̂| is the number of key values output by
the key generation LLM.

In Fig. 2, box 2.B describes the key genera-
tion prompt. Given the table description, and key
columns competition and year, the LLM gener-
ates a list of corresponding years and competi-
tions which Susen Tiedtke participated in. Next,
each key value returned by the first LLM, is used
to generate the remaining row entries. Prompt
3.A prompts the row generation LLM to populate
columns venue, position which correspond to
key ⟨“European Junior”, “1987”⟩. The generated
values being “Birmingham”, and “3rd”. A new
row-by-row prompt is then generated for the follow-
ing keys, e.g. ⟨“World Championship”, “1991”⟩.

(c) Cell-by-cell. This two-stage approach gener-
ates each table cell individually. The first stage is
identical to row-by-row, using prompt 2.B to gener-
ate all key column values. Then, we use a separate
prompt for each table cell, rather than a full row.
For each column c ∈ C \Ck we create a dedicated

prompt to generate the cell r̂i[c], based on the tar-
get column and the generated key for ri. In total,
we use |R̂| · |C \Ck|+ 1 prompts, one to generate
the keys, and |R̂| · |C \ Ck| to generate each of the
non-key cells.

Prompt 3.B in Fig. 2 describes the cell-by-cell
method. Given key ⟨“European Junior”, “1987”⟩,
the corresponding cell in column venue is gener-
ated (Birmingham). The same prompt is then used
for different keys and columns (position).

Generated Output Format. When prompting the
LLM it is instructed to return its output in JSON
format, as shown in Fig. 2. We chose JSON follow-
ing past work (Singha et al., 2023) and based on our
own results. Namely, we observed a better perfor-
mance compared to formats such as CSV and SQL
when evaluated on our held-out development set
(see §4). For the row-by-row and cell-by-cell meth-
ods, we process and merge all individual JSON
responses to construct the full output table.

4 WIKITABGEN Benchmark

To evaluate our methods (§3), we introduce a new
table generation benchmark called WIKITABGEN.
Each instance of WIKITABGEN consists of a short
manually written description d, a list of target
columns C and a corresponding table T = (R,C).
As this benchmark targets LLM table generation
based on their parametric knowledge, we followed
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                      Susen Tiedtke (former long jumper) Achievements

Year Competition Venue Position

1987
European Junior 
Championships

Birmingham, 
England

3

…. …. …. ….

1993
World Indoor 

Championships
Toronto, Canada 2

1993 World Championships Stuttgart, Germany 9

…. …. …. ….

2000 Olympic Games Sydney, Australia 5

WikiTabGen Table Meta Data:
Table Description: “Susen Tiedtke 

Achievement Between 1987 and 2000”

Key columns: “Year”, “Competition”

Non-Key Columns: “Venue”, “Position”

Numeric columns: “Position” (1 of 2)

Table size: 10 rows, 4 columns (40 cells)

Table Popularity: 504.5

Table Title:Susen Tiedtke Achievement Between 1987 and 2000”

Key columns: “Year”, 
“Competition”

Data Columns: “Venue”, 
“Position”

Numeric data columns: 
“Position” (1 of 2)

Table size: 10 rows, 4 
columns (40 cells)

Table Popularity:

Figure 3: WIKITABGEN example table and metadata.

several key principles in its construction:
• Information Coverage: evaluation tables must

contain complete information to prevent cases
where the LLM generates correct entries that are
not present in the ground-truth tables.

• Factual Consistency: tables should include static
factual data, to ensure consistent evaluation over
time as LLMs evolve (Zhang and Choi, 2021).

• Conciseness: table cells should contain concise
string, categorical or numeric information, to
avoid lengthy descriptive text that is harder to
evaluate against the ground truth.

• Diversity: the benchmark should include a di-
verse range of tables with respect to structural
properties such as size, data types (e.g., the ratio
of numeric data), and table “popularity” which
may indicate the prevalence of its content during
the LLM’s pre-training (Mallen et al., 2022).
Following these principles, we opted to use ta-

bles from Wikipedia, as our evaluation benchmark.
Wikipedia is often used to assess LLMs’ closed-
book performance because it contains factual and
objective information (Kwiatkowski et al., 2019).
unlike certain domain-specific datasets (Yu et al.,
2018). Additionally, since Wikipedia is part of
LLMs’ pre-training data (Brown et al., 2020; Tou-
vron et al., 2023a), it is ideal for evaluating how
well these models can generate tabular data.

To construct the benchmark, we iterate over the
Wikipedia tables provided by Bhagavatula et al.
(2015).2 We first discarded all non-relational tables
(those with composite headers, nested tables, or
inverted tables) and excluded tables that were too
small (|R| < 10 or |C| < 2).

Next, we manually selected 119 random tables
with diverse number of columns, rows and por-
tion of numeric values (numbers and dates). To
ensure evaluation coverage we removed columns
with partial entries. In addition, columns contain-
ing long texts were omitted to ensure a concise

2Creative Commons Attribution 4.0 International License.

evaluation. Each table was manually annotated
with a short, natural language description, as origi-
nal captions were often ambiguous or not descrip-
tive. Additionally, for tables that could change
over time (e.g. new NBA championship teams),
we ensured temporal specificity, as suggested by
Zhang and Choi (2021), e.g. “George Clooney
Films released between 1983 and 2013”

As shown in Fig. 3, each table in WIKITABGEN

is provided with additional metadata, consisting of
its: text description; table size (number of columns,
rows and cells); key-columns; numeric columns
(containing numbers or dates); and table popularity.
Inspired by Mallen et al. (2022), we define table
popularity as the average number of monthly views
to the Wikipedia page containing the said table. To
measure pages views we use the Wikipedia API.3

Overall, WIKITABGEN consists of 119 exam-
ples, with 100 used for evaluation (§5) and the re-
maining 19 serving as a held-out development set
for method implementation. In Fig. 4 shows the dis-
tribution of three key properties in WIKITABGEN:
size, numeric column ratio and popularity. On av-
erage, the evaluation tables have 77.5 rows, 6.9
columns and 453 cells, with an average length of
1,497 tokens. The average proportion of numeric
columns per table is 62% of columns, showcas-
ing the prevalence of numerical data in our tables.
The average number of monthly views per table is
8,449. In §6 we further explore the effects of these
properties on table generation performance.

5 Experimental Setting

We describe our experimental setting for evaluating
the table generation capabilities of LLMs. All mod-
els were evaluated on the WIKITABGEN bench-
mark. Next, we list the LLMs, prompts and evalu-
ation methods used for table generation. Last, we
detail our different experimental scenarios.

5.1 Language Models and Prompts

In our experiments we evaluate 8 popular LLMs:
three closed-weights models by OpenAI (Achiam
et al., 2023): GPT-4o, GPT-4-Turbo, GPT3.5; four
open-weights LLMs by MetaAI (Touvron et al.,
2023b): Llama3.1-405B, Llama3.1-70B, Llama2-
70B, and Llama2-13B; and Gemma2-27B, an open-
weights LLM by Google (Riviere et al., 2024).

The same prompting methods described in §3
were used across all LLMs, whereas prompt-

3https://api.wikimedia.org
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Figure 4: WIKITABGEN properties distribution: number of cells, ratio of numeric columns, and table popularity.

engineering was done specifically for each model,
using the held-out development set as described in
§4. For all LLMs, we set the generation tempera-
ture to zero.

5.2 Evaluation Methods

Since the order of the rows and columns in the
generated table may not match the ground truth,
we use the following two-step process to evaluate
the generation accuracy: We align rows by key
attributes, then match non-key cells.

In more detail, given output table T̂ (R̂, C) and
ground-truth table T (R,C), we first align the rows
R̂ to their corresponding rows in R by match-
ing their respective keys, namely r̂ ; r ⇐⇒
r̂[Ck] = r[Ck]. For rows with multiple key
columns, all values must be identical.

We then use two methods to evaluate the accu-
racy of cell content: (1) exact matching, in which
we check for exact match for string content, but
allow for a ±0.1% error for numeric content (in §B,
we describe how we compare date values and han-
dle null, missing and duplicate cells). (2) semantic
matching, in which we first apply text-embedding
on the generated and gold cell tokens, then com-
pute the cosine similarity between them. We chose
a threshold of 0.5 as our criteria for determining
whether the two cells are semantically aligned.

For both matching methods we then calculate
Table Precision as # Correct Cells

# Generated Cells , and Table Recall
as # Correct Cells

# Ground-Truth Cells and corresponding F1 score.

For our analysis in §6, we also consider the pre-
cision, recall, and F1 scores separately for keys and
non-keys. The keys scores are calculated based on
the number of matching keys, where for each row
all the cells of Ck must match. For non-key cell
scores we consider only cells inC\Ck. We provide
the full formulas in Appendix B.

5.3 Table Generation Scenarios

In addition to the table generation scenario de-
scribed in §2, where the generation request con-
tains only the table description and list of columns,
we considered two alternative scenarios where ad-
ditional information is provided to the LLM:

Table Row Example. In this scenario, in addi-
tion to the description and list of columns, we also
provide the LLM with an example row r[C] from
the target table. We examine if such an example
improves the LLM’s performance in generating the
rest of the table. We tested this scenario on all
prompting methods (§3) by concatenating the first
row of the target table to the table description.

Oracle Keys. This ablation provides the LLM
the ground-truth set of keys cells R[Ck] and mea-
sures the model’s performance in generating the
remaining cells. This scenario is particularly rel-
evant for applications where the keys are known
in advance, and the task involves filling in the as-
sociated data. We conducted this experiment for
both the row-by-row and cell-by-cell prompting
methods by skipping the keys generation prompt
(prompt 2.B in Fig. 2), and providing the ground-
truth keys instead.

6 Results and Analysis

Following, we summarize results obtained by the
8 LLMs, 3 prompting methods and two evalua-
tion metrics. We then analyze the generation cost
and accuracy trade-offs of the prompting methods.
Next, we discuss the table generation performance
in our additional scenarios: example row and or-
acle keys, and finally, examine the effect of table
properties on the LLM generation performance.

6.1 Main Results

Tab. 1 provides a comparison of the overall F1
scores for the eight LLMs highlighting the best per-
forming prompting method for each model (using
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LLM Method Overall F1 (%)

Exact Semantic

LLaMa3.1-405B Full table 23.4 25.4
GPT-4o Row-by-row 20.8 23.1
LLaMa3.1-70B Full table 20.0 22.1
GPT4-Turbo Row-by-row 18.9 21.6
GPT3.5-Turbo Full table 16.1 18.0
LLaMa2-70b Row-by-row 9.4 10.5
Gemma2-27B Row-by-row 7.6 8.4
LLaMa2-13b Full table 7.5 8.4

Table 1: Ranking of 8 different LLMs based on their
overall F1 score (for both exact and semantic matching
of tabe cells). For each LLM we only list only its best
performing method.

both the exact and semantic evaluation). The top-
performing model is LLaMa3.1-405B (full-table),
achieving 23.4% and 25.4% F1 using the exact and
semantic evaluation respectively.

We note that across all models, the semantic and
exact scores are highly correlated, (semantic match-
ing typically being approximately 10% higher than
the exact score). We focus through the rest of this
section on the semantic evaluation, and the top-4
performing models.

Next, Tab. 2 provides a breakdown of the per-
formance results of the top-4 models. We list the
precision, recall, and F1 scores for keys, non-keys,
and the full tables (averaged across all tables), ob-
tained for each model and prompting method.

For all LLMs, we observe that the row-by-row
and cell-by-cell methods significantly improve the
keys generation performance (see keys F1 scores
in Tab. 2). Interestingly, for the two LLaMa mod-
els best performance is obtained with the full-table
method, whereas for the GPT models row-by-row
prompting obtained better results. Also, observe
that the key generation performance is about 3X
better than the non-keys, for all models. This
demonstrate the inherent difficulty of current LLMs
in accurately retrieving the “data” for tabular enti-
ties (as identified by the key attributes).

6.2 Prompting Cost Tradeoff

We analyze the performance of our prompting
methods as a function of their accuracy and cost.
As the row-by-row and cell-by-cell methods are
suggested to handle larger tables. In Fig. 5 we
examine their performance compared to the full-
table method, focusing on tables with 100 or more
cells on the best performing model, LLaMa3.1-

101-250 251-500 501-1000 1000+
Number of Table Cells

0.05

0.10

0.15

0.20

0.25

0.30

F1
-S

co
re

Full Table
Row by Row
Cell by Cell

Figure 5: The performance of each prompting method
for LLaMa3.1-405B with respect to the table size.

Figure 6: Cost analysis of our prompting methods.

405B. For medium-sized tables (100-250 cells),
full-table still outperforms row-by-row. However,
as the number of cells increases further, row-by-
row outperforms full-table.

Next, to evaluate the cost of the prompting meth-
ods, we examine the average number of input and
output tokens used for generating tables, as de-
scribed in Fig. 6. While the output number of
tokens is roughly similar for all approaches, see
that the two-stage methods (row-by-row and cell-
by-cell) have a significantly larger input due to the
repeated use of distinct row and cell generation
prompts (prompts 3.A, 3.B in Fig. 2).

6.3 Additional Generation Scenarios

We measure the effect of providing additional in-
formation during table generation: (1) an example
row, (2) the ground-truth table keys.

Table Row Example. Tab. 3 lists the perfor-
mance results when including an example row from
the target table4. Cell-by-cell scores were omitted
due to higher costs and inferior performance, as
discussed in §6.2. We note that performance con-
sistently improves when the models are given an
example first row, except for GPT4-o (row-by-row),
which performs slightly better given no example.

4As we omit the example row from the F1 calculations our
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LLM Method Keys Non-Keys Overall

Recall Precision F1 Recall Precision F1 Recall Precision F1

GPT4-Turbo Full table 43.4% 66.1% 46.8% 12.1% 20.6% 13.3% 18.0% 28.4% 19.4%
Row-by-row 53.9% 57.6% 53.2% 14.9% 18.5% 15.3% 21.4% 25.0% 21.6%
Cell-by-cell 53.9% 57.6% 53.2% 13.5% 17.0% 13.8% 20.1% 23.6% 20.2%

GPT-4o Full table 35.8% 66.0% 40.3% 11.1% 23.6% 12.9% 15.7% 30.8% 17.9%
Row-by-row 53.9% 60.8% 53.5% 16.3% 21.3% 16.8% 22.8% 28.0% 23.1%
Cell-by-cell 53.9% 60.7% 53.5% 15.8% 20.6% 16.3% 22.3% 27.3% 22.5%

LLaMa3.1-70B Full table 46.1% 63.8% 49.9% 14.3% 21.4% 16.0% 20.1% 28.6% 22.1%
Row-by-row 50.2% 55.5% 50.0% 14.3% 16.6% 14.3% 20.6% 23.3% 20.5%
Cell-by-cell 50.2% 55.3% 50.0% 13.0% 14.8% 13.0% 19.4% 21.8% 19.4%

LLaMa3.1-405B Full table 44.1% 68.6% 48.8% 17.5% 29.0% 19.8% 22.7% 36.0% 25.4%
Row-by-row 50.5% 61.5% 51.7% 15.1% 20.4% 15.9% 21.2% 27.4% 22.1%
Cell-by-cell 50.4% 61.4% 51.6% 11.8% 15.5% 12.3% 18.7% 23.7% 19.3%

Table 2: Table generation performance metrics for the different models and prompting methods.

LLM Method Keys F1 (%) Non-Keys F1 (%) Overall F1 (%)

No-Example Example No-Example Example No-Example Example

GPT4-Turbo Full table 46.3 51.9 13.0 17.4 19.2 23.8
Row-by-row 53.0 54.1 15.1 16.4 21.3 22.5

GPT-4o Full table 39.7 47.1 12.6 16.3 17.7 22.0
Row-by-row 53.3 53.3 16.7 16.5 22.9 22.8

LLaMa3.1-70B Full table 49.4 51.6 15.5 18.2 21.6 24.2
Row-by-row 49.6 51.6 14.0 16.6 20.2 22.5

LLaMa3.1-405B Full table 47.9 50.7 19.2 25.2 24.7 29.8
Row-by-row 51.0 51.9 15.5 19.9 21.6 25.6

Table 3: Performance comparison with and without an example row, using full table and row-by-row methods.

LLM Non-Keys F1 (%) Overall F1 (%)

Base. Orac. Base. Orac.

GPT4-Turbo 11.7 22.9 (+11.2) 18.9 39.2 (+20.3)
GPT-4o 13.8 26.1 (+12.3) 20.8 41.7 (+20.9)
LLaMa3.1-70B 12.2 25.6 (+13.4) 19.0 41.4 (+22.4)
LLaMa3.1-405B 14.1 30.9 (+16.8) 20.7 45.5 (+24.8)

Table 4: Performance comparison of the row-by-row
method with and without oracle keys.

Oracle Keys. Tab. 4 describes the performance
of all LLMs, using the row-by-row method, when
given the ground-truth key values. As expected,
the overall F1 scores are significantly higher when
using oracle keys, because now R̂[Ck] = R[Ck].
We observe an additional improvement in the non-
keys F1, which is expected as more table rows were
aligned to the target table (given the keys), and thus
more cells were successfully matched.

6.4 Table Properties Effect on Performance

As noted in §4, we systematically measure the ef-
fect of table properties such as the size, numeric

results slightly differ from Tab. 2.

data and table popularity affect the LLM generation
performance.

Fig. 7 displays the table F1 scores as a function
of the number of table cells, percentage of numer-
ical data columns (number or date cells) and the
table popularity score. These results are provided
for all four LLMs, using the full-table generation
method. As our aim is to measure the effect each
property has on the LLM (not to compare different
methods). A further breakdown of the properties’
effect on the keys and non-keys F1 scores is pro-
vided in Appendix §C.

As shown in Fig. 7a, the larger the table, the
lower the F1 scores are for all LLMs. In §6.2 we
observed this trend to be less apparent for the row-
by-row and cell-by-cell methods.

Fig. 7b measures the effect the percentage of
columns containing numbers or dates has on per-
formance. We observe a general decreasing trend
in F1 as the portion of numerical content is higher.
Fig. 7c displays the positive effect of table popular-
ity on performance. This potentially stems from the
prevalence of more popular Wikipedia pages (or
related entities) in the LLMs’ training data. Unsur-
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Figure 7: The effect of table size, the ratio of numeric columns, and table popularity on the generation performance
(F1 score). The results are of the 4 top performing LLMs and using the full-table prompting method.

prising, the less common the tabular information
is, the more difficult it is for the LLM to generate.
We attribute the slight decrease in F1 on the top
popular tables to an artifact of the data in which
these tables include census related data which the
LLM have difficulty to generate.

From this analysis, we conclude that generat-
ing tables from LLMs’ parametric knowledge is
more challenging when the tables are larger, when
they contain a higher portion of numerical data and
when its content concerns less popular topics.

7 Related Work

Machine reasoning on table using pre-trained
LLMs has largely been explored in the context
of data augmentation (Borisov et al., 2022; Zhang
et al., 2023) to improve the performance on down-
stream tasks. The focus has largely been on tasks
where a table is provided as input to the model
namely: QA over tables (Chen et al., 2020, 2022;
Seedat et al., 2023), text-to-SQL translation (Deng
et al., 2021; Wolfson et al., 2022), table editing
(Li et al., 2023; Sui et al., 2023) and table-to-text
generation (Parikh et al., 2020). Conversely, our
approach receives only a user query and schema as
input, and is tasked with generating an entire table.

Closest to ours are the recent table generation
datasets by Pal et al. (2023); Akhtar et al. (2024);
Tang et al. (2024). In these works the LLM is pro-
vided with a user query (in text or SQL) and is
tasked with generating a table, as the query answer.
Pal et al. (2023) evaluate on tables from the Spider
dataset (Yu et al., 2018), which contains domain-
specific information that is less likely to be stored
in the parametric knowledge of LLMs. In Tang
et al. (2024) the authors evaluate table generation
from long-form text describing NBA games, taken

from the RotoWire dataset (Wiseman et al., 2017).
In their setting the generated table content is al-
ready present as part of the user query, where the
LLM challenge is to re-structure the user input as
a table. By contrast, our setting requires the LLM
to generate information that does not explicitly ap-
pear in the user input query (Fig. 1). Similar to
us, Akhtar et al. (2024) rely on Wikipedia however,
they automatically construct new tables which are
relatively small (average of 6.7 rows, 4 columns).
By comparison our evaluation is on larger tables
with the median number of rows being 48 (average
of 77.5 rows, 6.9 columns). This emphasizes our
focus on extracting long-form tabular data from
LLMs, thereby extending past attempts on KBs
and text (Cohen et al., 2023; Mallen et al., 2022;
Carlini et al., 2022).

Our key generation phase in §3 is an instance of a
list question answering problem. The challenge of
list QA in LLMs has been explored in recent works
(Amouyal et al., 2022; Malaviya et al., 2023). How-
ever, we further expand this challenge by focusing
on generating the entire table.

8 Conclusion

This paper explores the capability of state-of-the-
art LLMs to generate entire tables, by relying ex-
clusively on their parametric knowledge. We intro-
duced three prompt-based table generation meth-
ods and evaluated them on our newly constructed
benchmark, WIKITABGEN. Our results underscore
the challenge table generation poses to LLMs. We
hope that WIKITABGEN and our comprehensive
analysis will provide a concrete framework for fu-
ture research on table generation using LLMs.
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9 Limitations

We now list the limitations to our work.
Our first limitation is the size of the WIKITAB-

GEN evaluation benchmark, which contains 119
tables. We attribute this constraint to the intensity
of the manual processing required to ensure the
tables’ factual correctness and robustness as well
as to the high generation costs of running state-
of-the-art LLMs on large tables §6.2. As noted
in §4, the tables in WIKITABGEN contain close
to 1,500 tokens on average, evaluating them using
commercial, state-of-the-art LLMs is non-trivial.

Second, all tables in WIKITABGEN are based on
Wikipedia articles. This choice was made to ensure
that the underlying information exists in common
LLMs training data. However, we did not examine
the performance on tables generated from other
sources, such as news articles or tables that require
multi-source integration.
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A Table Generation Prompts

In this section we provide the prompt templates
used in each of our table generation methods.
Figs. 8-11 present our prompt templates used for:
full table generation method, keys generation, row-
by-row, and cell-by-cell method.

B Evaluation Method Details

B.1 Precision-Matching of Cell Values
We next describe our precision matching for
cell values in more detail, given an output table
T̂ (R̂, C) and ground-truth table T (R,C).

As described in §5.2, we use exact value com-
parison of cell textual content and allow a ±0.1%
error for numeric values. Before comparing tex-
tual cells, we first convert them to lower case, and
remove non alphanumeric symbols and spaces.

As for date values, we first parse and convert
cells with date values to a Python Date object, and
then compare the canonical dates. This is to avoid
cases where cells are deemed as a non-match due to
differences in the date format. For example, in our
evaluation process, two date values representing
the same date, such as "2014-05-16" and "16th,
May, 2014", will be considered the same.

We further treat “none”, “n/a” ,“nan” and empty
cells as identical in terms of value matching.

B.2 Precision and Recall Computation for
Tables

For a given output table T̂ (R̂, C) and ground-truth
table T (R,C), we first align the rows R̂ to their
corresponding rows in R by matching their respec-
tive keys, namely r̂ ; r ⇐⇒ r̂[Ck] = r[Ck].
For rows with composite keys, all key values must
be identical, i.e., ∀ck ∈ Ckr̂[ck] = r[ck].

Recall that a correct cell in T (R̂, C) is a cell
r̂[c] such that r̂[c] ≈ r[c] ∧ r̂ ; r. Namely, row
r̂ is aligned with a row r in the ground-truth table,
and their corresponding cell values in column c is
matching (using either the precision or semantic
matching definition).

We next provide the precision and recall formu-
las we used for keys, non-keys, and tables.

For keys, we compare R̂[Ck] and R[Ck] as fol-
lows. Let the number of matching keys ϕ = |{r ∈
R̂,∀ck ∈ Ck r̂[ck] = r[ck]}| Then keys precision
is calculated by ϕ

|R̂| and keys recall is given by ϕ
|R| .

For non-keys, we compare R̂[C \Ck] and R[C \
Ck]. After aligning R̂ and R, we compute the num-
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Full-table generation template:
You are a retriever of facts. List all {table description}. The response will be formatted as JSON shown below. Each
element of the response will contain {num columns} fields: {column1, column2, ...}
Do not output any additional text that is not in JSON format.
RESPONSE FORMAT: [{ column1: value1, column2: value2, ... }]

Full-table generation (populated example):
You are a retriever of facts. List all achievements of Susen Tiedtke from 1987 to 2000. The response will be formatted as
JSON shown below. Each element of the response will contain 4 fields: [’year’, ’competition’, ’venue’, ’position’]. Do not
output any additional text that is not in JSON format.
RESPONSE FORMAT: [{ “year”: _year, “competition”: _competition, “venue”: _venue, “position”: _position }]

Figure 8: Full-table generation prompt.

Keys generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. The key
columns in the table are {key1, (key2, ...)}. List all {key1, (key2, ...)} entities for the table. The response will be
formatted as JSON list shown below.
RESPONSE FORMAT: [{ key: value1, key2: value2, ... }]

Keys generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke
from 1987 to 2000. The key columns in the table are competition, year. List all competition, year entities for the table. The
response will be formatted as JSON list shown below.
RESPONSE FORMAT: [{ “competition”: _competition, “year”: _year }]

Figure 9: Key columns generation prompt.

ber of correct keys, denoted by ψ = |{(r, c), r ∈
R̂ ∧ c ∈ C \Ck ∧ r ; r̂ ∧ r̂[c] = r[c]}|. Then the
non-keys precision is calculated by ψ

|R̂[C\Ck]|
and

non-keys recall is calculated by ψ
|R[C\Ck]| .

Last, for the table precision and recall, we per-
form a similar evaluation, now defining the number
of correct cells, denoted by τ , as all correct cells
in the table. Namely, τ = |{(r, c), r ∈ R̂ ∧ c ∈
C ∧ r ; r̂∧ r̂[c] ≈ r[c]}|, then the table precision
is simply calculated by τ

|R̂[C]| and table recall is
calculated by τ

|R[C]| .

C Table Properties Effect on Performance

In §6.4 we examine how the table properties such
as the size, amount of numeric data, and table popu-
larity affect the generation performance. In Fig. 12
we present the effect of these three properties on
both the keys F1, non-keys F1, and full table F1.
We can see, for instance, that the table size neg-
atively affects both the keys F1 and the non-keys
F1 scores (see Fig. 12 (a) and Fig. 12 (b)), and the
ratio of numeric columns has a negative effect, as
expected, only the non-keys F1 (see Fig. 12 (e)).
The table popularity also have a strong effect on
both the keys F1 and the non-keys F1 (Fig. 12 (g)
and Fig. 12 (h)).
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Row generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. Columns
in the table are {columns}. The key columns in the table are {key1, (key2, ...)}. Retrieve a single row whose key is
({key = value}). The response will be formatted as JSON dictionary shown below. Pay special attention to wrap all values
in double quotes!
RESPONSE FORMAT: [{ column1: value1, column2: value2, ... }]

Row generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke from
1987 to 2000. Columns in the table are year, competition, venue, position. The key columns in the table are competition,
year. Retrieve a single row whose key is (year = 1987, competition = World Championships). The response will be formatted
as JSON dictionary shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { “year”: 1987, “competition”: World Championships, “venue”: _venue, “position”: _position }

Figure 10: Row-by-row (row generation) prompt.

Cell generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. Columns
in the table are {column1, column2, ...}. The key columns in the table are {key1, (key2, ...)}. For the table row whose
key is is ({key = value}) what is the value of attribute {column}. The response will be formatted as JSON dictionary
shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { column: value }

Cell generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke from
1987 to 2000. Columns in the table are year, competition, venue, position. The key columns in the table are competition,
year. For the table row whose key is (year = 1987, competition = World Championships) what is the value of attribute venue.
The response will be formatted as JSON dictionary shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { “venue”: _venue }

Figure 11: Cell-by-cell (cell generation) prompt.
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Figure 12: The effect of table size, the ratio of numeric columns, and table popularity on the generation performance
of the full-table method, with four different LLMs. Additional breakdown of generation performance based on cells
in key columns versus non-key columns.
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