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Abstract
Retrieval-Augmented Generation (RAG) en-
hances Large Language Models (LLMs) by in-
tegrating external document retrieval to provide
domain-specific or up-to-date knowledge. The
effectiveness of RAG depends on the relevance
of retrieved documents, which is influenced by
the semantic alignment of embeddings with the
domain’s specialized content. Although full
fine-tuning can align language models to spe-
cific domains, it is computationally intensive
and demands substantial data. This paper in-
troduces Hierarchical Embedding Alignment
Loss (HEAL), a novel method that leverages
hierarchical fuzzy clustering with matrix factor-
ization within contrastive learning to efficiently
align LLM embeddings with domain-specific
content. HEAL computes level/depth-wise con-
trastive losses and incorporates hierarchical
penalties to align embeddings with the under-
lying relationships in label hierarchies. This
approach enhances retrieval relevance and doc-
ument classification, effectively reducing hallu-
cinations in LLM outputs. In our experiments,
we benchmark and evaluate HEAL across di-
verse domains, including Healthcare, Material
Science, Cyber-security, and Applied Maths.

1 Introduction

Large Language Models (LLMs), such as GPT-4
(OpenAI, 2023), have demonstrated exceptional
capabilities in natural language understanding and
generation. However, LLMs are prone to hallucina-
tions, generating plausible but incorrect or nonsen-
sical content (Ji et al., 2023). Retrieval-Augmented
Generation (RAG) frameworks (Lewis et al., 2020)
mitigate this issue by integrating external knowl-
edge through document retrieval, enhancing the
factual accuracy of LLM outputs. A critical compo-
nent of RAG systems is the embedding model used

for document retrieval. Standard embedding mod-
els, however, often fail to capture the hierarchical
and semantic relationships within domain-specific
corpora, leading to suboptimal retrieval and, con-
sequently, increased hallucinations. This issue is
particularly pronounced in domains with increased
specificity such as Healthcare, Legal sytem, and
Scientific research.

Corpus of documents for a specialized domain
inherently exhibit a high degree of semantic co-
herence, presenting an opportunity to align embed-
ding models for retrieving the most contextually
relevant information. Hierarchical Non-negative
Matrix Factorization (HNMF) (Eren et al., 2023) is
a powerful technique for semantically categorizing
documents into clusters that exhibit thematic co-
herence. By grouping documents into hierarchical
clusters of supertopics and subtopics, HNMF pro-
vides a rich semantic categorization of the corpus,
enabling a deeper understanding of document rela-
tionships. Leveraging this semantic knowledge in
the form of hierarchical cluster labels, we can align
embedding models to preserve hierarchical infor-
mation within the embedding space. This align-
ment enhances the embeddings to capture both
coarse-grained and fine-grained document similar-
ities, improving contextual relevance in retrieval
tasks and enabling better downstream capabilities.

To tackle the challenges of hallucination and sub-
optimal retrieval in RAG systems, we introduce
the Hierarchical Embedding Alignment Loss
(HEAL), a refined extension of the Hierarchical
Multi-label Contrastive Loss (Zhang et al., 2022).
HEAL leverages an improved hierarchical weight-
ing scheme to align embeddings more effectively
with the underlying hierarchical structure. By in-
corporating hierarchical label structures, HEAL
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fine-tunes embedding models to align with docu-
ment clusters derived from HNMF. The method
computes contrastive losses at each hierarchical
level, combining them with depth-specific penal-
ties to emphasize distinctions at higher levels of
the hierarchy.

2 Related Work

Contrastive learning has become a cornerstone of
representation learning, particularly in computer
vision and natural language processing. Methods
like SimCLR (Chen et al., 2020) and MoCo (He
et al., 2020) have achieved state-of-the-art perfor-
mance in unsupervised settings by learning repre-
sentations that are invariant to data augmentations.
In supervised contrastive learning, Khosla et al.
(2020) extended the contrastive loss to utilize label
information, improving performance on classifica-
tion tasks. Similarly, the SciNCL framework em-
ploys neighborhood contrastive learning to capture
continuous similarity among scientific documents,
leveraging citation graph embeddings to sample
both positive and negative examples (Ostendorff
et al., 2022). However, these methods generally
assume flat label structures and do not exploit hier-
archical relationships.

Hierarchical classification has been studied ex-
tensively, with approaches such as hierarchical
softmax (Goodman, 2001) and hierarchical cross-
entropy loss (Deng et al., 2014). These methods
aim to leverage hierarchical label structures to im-
prove classification efficiency and accuracy. In
the context of representation learning, Deng et al.
(2011) introduced hierarchical semantic embed-
ding, aligning image embeddings with WordNet
hierarchies. More recent works, such as Bertinetto
et al. (2020), have explored hierarchical proto-
types to capture hierarchical relationships. Zhang
et al. (2022) propose a hierarchical multi-label
contrastive learning framework that preserves hi-
erarchical label relationships through hierarchy-
preserving losses. Their method excels in scenarios
with hierarchical multi-label annotations, such as
biological or product classifications. In contrast,
our approach focuses on enhancing information
retrieval to mitigate hallucinations.

RAG frameworks combine retrieval models with
generative models to enhance the factual accuracy
of language generation (Lewis et al., 2020). These
systems rely heavily on the quality of the embed-
dings used for retrieval. Prior work has focused on

improving retrieval through better indexing and re-
trieval algorithms (Karpukhin et al., 2020), but less
attention has been given to aligning embeddings
with hierarchical document structures.

3 Method

In this section, we propose an embedding align-
ment framework comprising hierarchical label ex-
traction with HNMF, embedding alignment using
HEAL, and retrieval with aligned embeddings as
outlined in Figure 1.

3.1 Hierarchical Document Clustering with
HNMFk.

Hierarchical Non-negative Matrix Factorization
with automatic latent feature estimation (HN-
MFk) Eren et al. (2023) is an advanced technique
for uncovering hierarchical patterns within doc-
ument collections. It builds on traditional Non-
negative Matrix Factorization (NMF) Vangara et al.
(2021) by dynamically and automatically deter-
mining the optimal number of latent features at
each level. Effective contrastive learning relies
on well-separated document cluster labels to align
embeddings effectively. HNMFk’s ability to au-
tomatically balance stability and accuracy using a
bootstrap approach enhances the quality of cluster-
ing results. In this work, we utilize the publicly
available HNMFk implementation from the TELF
library 1.

Given a Term Frequency-Inverse Document Fre-
quency (TF-IDF) matrix X ∈ Rn×m, where n rep-
resents the vocabulary size and m denotes the num-
ber of documents, HNMFk performs a sequence of
matrix factorizations across hierarchical levels to
capture the nested structure of topics. At each level
l, the factorization is expressed as X ≈W(l)H(l),
where W(l) ∈ Rn×kl is the basis matrix represent-
ing latent topics, and H(l) ∈ Rkl×m is the coeffi-
cient matrix quantifying the contribution of each
topic to the composition of documents. Here, kl is
the number of topics at level l, which is determined
automatically through stability analysis (Vangara
et al., 2021). This analysis involves bootstrapping
the data to create resampled versions of the TF-IDF
matrix, applying NMF across a range of k values,
and evaluating the stability of clusters across the
resampled datasets. The optimal kl is selected as
the value that produces the most consistent cluster-
ing results, indicating a robust underlying structure

1TELF is available at https://github.com/lanl/T-ELF
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Figure 1: Overview of the HEAL-Based Embedding Model Alignment and Retrieval. The left side illustrates
hierarchical label generation using HNMF, where documents corresponding to a cluster from each preceding depth
are converted into TFIDF matrices and further decomposed to extract sub-clusters. The TSNE visualizations
highlighting cluster memberships in document embeddings. The right side depicts fine-tuning of the SciNCL model
using HEAL loss on generated embeddings and HNMF derived labels. Once trained, the aligned model computes a
vector store from the corpus, enabling retrieval of the nearest p documents for a given query embedding.

in the data.
To construct hierarchical labels for each docu-

ment, the coefficient matrix H(l) is used to deter-
mine topic assignments. For each level l, the topic
for document i is identified by selecting the index
of the maximum value in the corresponding column
of H(l), expressed as y(l)i = argmaxk H

(l)
k,i. The

hierarchical label for document i is then formed by
aggregating the topic assignments across all levels,
resulting in yi = (y

(0)
i , y

(2)
i , . . . , y

(L−1)
i ). Here, L

is the total number of hierarchical levels, or hierar-
chical depth that is the number of NMFk operations
from the first one to the leaf. yli is the label of sam-
ple i at level l, with l = 0 corresponding to the
shallowest(most general or root node) level and
l = L− 1 to the deepest (most fine-grained, or leaf
node) level.

3.2 Hierarchical Multilevel Contrastive Loss
(HEAL)

Upon the unsupervised data decomposition with
HNMFk, the datasets have clusters with hierarchi-
cal structures. To incorporate such structures, we
propose the HEAL, which extends supervised con-
trastive loss (Khosla et al., 2020) by introducing
level-wise contrastive losses and aggregating them

with level-specific penalties.

3.2.1 Level-wise Contrastive Loss
For a batch of N samples {(xi,yi)}Ni=1, where
xi ∈ Rd is the input and yi ∈ RL is the hierarchi-
cal cluster label, we obtain normalized embeddings
{hi}Ni=1 using an encoder network fθ(·):

hi =
fθ(xi)

∥fθ(xi)∥2
, hi ∈ Rd. (1)

For a given level l, the set of positive samples
for sample i is:

P (i, l) = {p | yl
p = yl

i, p ̸= i}. (2)

The contrastive loss at level l for sample i is:

Li,l =
−1
|P (i, l)|

∑

p∈P (i,l)

log
exp

(
h⊤
i hp/τ

)
∑N

a=1 exp
(
h⊤
i ha/τ

) .

(3)
If P (i, l) is empty (i.e., no positive samples at

level l for i), Li,l is excluded from the total loss.

3.2.2 Aggregating Level-wise Losses with
Penalties

To prioritize discrepancies at shallower levels, we
assign penalties λl to each level l, where shallower
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levels have higher penalties. The penalties are de-
fined as:

λl =
2L−l−1

∑L−1
k=0 2

k
=

2L−l−1

2L − 1
. (4)

The penalties λl satisfy:

1. λl > λl+1 for l = 0, 1, ..., L−2, i.e., penalties
decrease for deeper levels.

2.
∑L−1

l=0 λl = 1, i.e., the penalties are normal-
ized.

The total HEAL loss is then:

LHEAL =
1

N

L−1∑

l=0

λl

N∑

i=1

Li,l. (5)

Algorithm 1 Computation of HEAL Loss

Require: Mini-batch {(xi,yi)}Ni=1, temperature
τ , number of levels L

1: Compute embeddings: hi =
fθ(xi)/∥fθ(xi)∥2

2: Initialize total loss: LHEAL ← 0
3: for l = 0 to L− 1 do
4: Compute penalty λl using Eq. (4)
5: for i = 1 to N do
6: Determine positive set P (i, l) using

Eq. (2)
7: if |P (i, l)| > 0 then
8: Compute Li,l using Eq. (3)
9: Update total loss: LHEAL ← LHEAL +

λlLi,l
10: end if
11: end for
12: end for
13: return LHEAL

Algorithm 1 outlines the computation of LHEAL
for a mini-batch.

3.3 Fine-tuning Embedding Models with
HEAL for RAG

To enhance retrieval performance in RAG systems,
we fine-tune the embedding model to align with
the hierarchical structure of the document corpus.
Given a specialized document corpus, we first ap-
ply HNMFk (as described in Section 3.1) to the
corresponding TF-IDF matrix X producing hierar-
chical cluster labels yi = (y

(0)
i , y

(2)
i , . . . , y

(L−1)
i )

for each document i. Next, we generate embed-
dings from each document xi using a pretrained
embedding model fθ(.). The embedding model is
initialized with pre-trained weights and produces
normalized embeddings hi ∈ Rd for document i.
To align embeddings with the hierarchical structure,
we optimize the HEAL presented in 3.3.

The embedding model is trained by minimizing
LHEAL using gradient-based optimization:

θ∗ = argmin
θ
LHEAL,

where θ are the parameters of the embedding model
fθ(·).

After fine-tuning, the updated embeddings hi =
fθ∗(xi) are used to replace the initial embeddings
in the vector store. During inference, a query q
is embedded using fθ∗(·) as hq = fθ∗(q), and re-
trieves top p documents based on cosine similarity:

Similarity(q,xi) =
h⊤
q hi

∥hq∥∥hi∥
.

To maximize retrieval performance in RAG sys-
tems, it is essential to align the query embeddings
with the hierarchically aligned document embed-
dings. Since queries are typically shorter and may
not capture the full semantic richness of the docu-
ments, we need to semantically align queries and
documents in the embedding space. To achieve
this, we generate question-answer (Q&A) pairs
using a language model (e.g., LLaMA-3.1 70B)
for each document and leverage HEAL to jointly
align both query and document embeddings during
training. For each document xi, we generate a set
of queries {qi,k}Ki

k=1, where Ki is the number of
queries generated for document i. Each query qi,k

is associated with the same hierarchical labels yi

as its source document xi, since it is derived from
the content of xi.We extend the HEAL framework
to include both documents and queries by defining
a unified set of samples:

S = {x1, . . . ,xN}∪{qi,k | i = 1, . . . , N ; k = 1, . . . ,Ki}.
Each sample sj ∈ S has an associated hierarchi-

cal label yj , where:

yj =

{
yi, if sj = xi (document)
yi, if sj = qi,k (query generated from document xi).

(6)
Based on this dataset, the HEAL is leveraged to

finetune the embedding model .
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4 Experiments

4.1 Datasets
We evaluate our method on datasets specifically
constructed from scientific publications in the do-
mains of Material Science, Medicine, Tensor De-
composition, and Cybersecurity. To construct our
datasets, we leveraged the Bibliographic Utility
Network Information Expansion (BUNIE) method,
a machine learning-based approach that integrates
subject-matter expertise in a human-in-the-loop
framework (Solovyev et al., 2023). For complete-
ness, we briefly summarize the BUNIE approach in
this paper. BUNIE begins with a small core corpus
of documents selected by subject-matter experts
(SMEs). From this starting point, it constructs a
citation network to identify additional relevant doc-
uments, leveraging BERT based text embeddings to
assess semantic similarity. Through iterative cycles
of dataset expansion and pruning—guided by em-
bedding visualization, topic modeling, and expert
feedback—the method ensures the corpus is both
comprehensive and domain-specific. We apply this
procedure to each scientific domain with guidance
from SMEs, who provide target keywords/phrases
and/or a core set of papers relevant to the sub-topic
of interest within the domain. Using this knowl-
edge base, we employ BUNIE to expand the dataset
from the initial core papers to a larger collection of
domain-specific documents.

1. Material Science: A collection of 46,862 sci-
entific articles, which explore 73 Transition
Metal Dichalcogenides (TMD) compounds,
combining transition-metal and chalcogen
atoms (S, Se, or Te). With a layered structure
similar to graphite, TMDs excel as solid lubri-
cants and exhibit unique quantum phases like
superconductivity and charge density waves.
Their atomically thin layers offer tunable prop-
erties, with applications in spintronics, opto-
electronics, energy harvesting, batteries, and
flexible electronics.

2. Healthcare: A collection of 9,639 scientific
articles, which examine Pulmonary Hyper-
tension (PH) disease - a rare condition caus-
ing elevated pulmonary arterial pressure, right
heart strain, and reduced oxygen delivery. The
WHO classifies PH into five groups based on
causes, including pulmonary arterial hyperten-
sion (PAH), which has a prevalence of 15-25
cases per million in the U.S. Treatments such

as endothelin receptor antagonists and prosta-
cyclin analogs aim to improve symptoms, but
prognosis varies, with untreated PAH having
a median survival of less than three years.

3. Applied Mathematics: A collection of 4,624
scientific articles, which explore tensor net-
work techniques, such as Tensor-Train (TT)
decomposition, which recently emerged as a
powerful mathematical tool for solving large-
scale Partial Differential Equations (PDEs).
Tensor network PDE solvers efficiently man-
age high-dimensional data by mitigating the
curse of dimensionality, drastically reducing
computational costs and memory usage while
maintaining high solution accuracy. These ad-
vancements hold significant promise for break-
throughs in scientific computing, including
material science, climate modeling, and engi-
neering design optimization.

4. Cyber-security: We created a dataset of
8,790 scientific publications focusing on the
application of tensor decomposition meth-
ods in cybersecurity and ML techniques for
malware analysis. This dataset serves as a
knowledge base covering topics for cyber-
security such as ML-based anomaly detection,
malware classification, novel malware detec-
tion, uncertainty quantification, real-world
malware analysis challenges, tensor-based
anomaly detection, malware characterization,
and user behavior analysis.

4.2 Experimental Setup

For training, we used the Adam optimizer with
a learning rate of 10−5, a batch size of 128, and
early stopping based on validation performance
with a patience of 5 epochs. The experiments
were conducted on a high-performance computing
cluster, with each node equipped with 4 NVIDIA
GH200 GPUs. Document metadata, comprising
the title and abstract combined, were used as input.
Hierarchical labels were generated using HNMF
with dataset-specific factorization depths: Material
Science (depth 3), Healthcare (depth 4), Applied
Mathematics (depth 3), and Cybersecurity (depth
3). HEAL loss was applied with a temperature
parameter of 0.07. The embedding base model,
SciNCL (Ostendorff et al., 2022), was chosen for
its robust contrastive pretraining on scientific docu-
ments, serving as a strong baseline for fine-tuning.
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The data was split into 60% training, 20% valida-
tion, and 20% test sets, with early stopping moni-
tored on the validation set. Evaluation metrics were
reported on the test set, while Q&A retrieval analy-
sis used the entire dataset (train + validation + test)
for constructing the vector store.

The efficacy of the RAG system was evaluated
at two levels. First, we characterized the embed-
dings on document-level tasks, including hierarchi-
cal classification, retrieval, and hallucination mea-
surement. For hierarchical classification, we used
a hierarchical classifier applying random forests
to each node (Miranda et al., 2023). The clas-
sifier is trained on embeddings corresponding to
train dataset and evaluated against the test set. We
perform this for embeddings derived from aligned
and unaligned embedding model. Retrieval per-
formance was assessed by measuring whether re-
trieved documents belonged to the same hierarchi-
cal class as the query document. Hallucination
likelihood was evaluated based on the retrieval of
incorrect documents for a given query. Second, we
evaluated the performance of the embedding model
within a RAG framework. To support retrieval and
hallucination analysis, we used the LLaMA-3.1
70B model to generate 10 Q&A pairs per docu-
ment using abstracts as input, providing a robust
test for embedding alignment and retrieval capabili-
ties. Next, we leveraged the questions as queries to
the embedding model to retrieve the best metadata
and assessed whether the model retrieved the exact
document that generated the query during Q&A
analysis, as well as the rank of the returned docu-
ment within the top 10 results. Furthermore, the
retrieved documents were augmented with LLaMA-
3.1 70B LLM to generate responses, with halluci-
nations evaluated based on response accuracy and
relevance.

Given the specialized nature of our dataset
and the requirement for hierarchical labels, fine-
tuning is essential. Comparing our method to ap-
proaches that do not leverage hierarchical labels
is inequitable, as they are inherently less effective
for this task. Our approach simplifies training by
eliminating HEAL loss hyperparameter tuning, un-
like HiMulCon (Zhang et al., 2022), which requires
extensive tuning of penalty parameters for optimal
results. While HiMulCon focuses on root-level
classification in vision datasets, our method aligns
embeddings across all hierarchical depths. We op-
timize hierarchical metrics such as classification,
retrieval, and hallucination indirectly through the

HEAL loss, ensuring a robust alignment with the
hierarchical structure.

For these reasons, we evaluate the performance
of HEAL using the baseline model SciNCL, both
without and with hierarchical alignment on our
diverse specialized datasets. We evaluate perfor-
mance using hierarchical metrics to capture nu-
ances of hierarchical label structures in retrieval,
classification, and hallucination assessments as pre-
sented in Appendix Table 2 .

4.3 Results
Table 1 summarizes the performance metrics for
three datasets (Healthcare, Materials, Applied
Mathematics, and Cybersecurity) across three
tasks: classification, retrieval, and hallucination
evaluation. The aligned model corresponds to the
embedding model trained using the HEAL loss,
whereas the non-aligned model corresponds to the
original embedding model without HEAL-based
training. The metrics are reported for both non-
aligned and aligned SciNCL embeddings, demon-
strating the significant impact of HEAL on improv-
ing performance. Figure 2 illustrates hierarchi-
cal embedding alignment achieved through HEAL
training, resulting in well-separated super and sub-
clusters for the Materials and Healthcare datasets
which enhances the performance of downstream
tasks. The density contours, computed via Kernel
Density Estimation (KDE), highlight the under-
lying clustering structure by depicting regions of
high and low embedding concentration. In subplots
(a) and (c), the embeddings before model align-
ment appear more dispersed, indicating weaker
intra-cluster cohesion and greater overlap between
different data regions. However, in subplots (b)
and (d), after model alignment, the contours be-
come more compact and well-separated, signifying
improved structural coherence and enhanced dis-
criminability of the learned representations. This
transformation suggests that alignment enhances
the model’s ability to encode meaningful relation-
ships, ultimately improving feature organization
and representation learning within the embedding
space. The increased cluster compactness and sepa-
ration indicate a more refined, task-specific feature
space, which is crucial for downstream applications
such as classification and retrieval.

First, we evaluate the performance on document-
level tasks using hierarchical labels. Specifically,
we assess the ability of the hierarchical classifier to
predict hierarchical labels in the classification task.
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(d) Healthcare dataset after model alignment

Figure 2: Embedding visualizations for the Material and Healthcare datasets, projected using t-SNE for dimen-
sionality reduction. The density contours represent the kernel density estimation (KDE) of the embeddings in the
2D space, highlighting the clustering structure. Subplots show the Material dataset, (a) before and (b) after model
alignment, and the Healthcare dataset, (c) before and (d) after model alignment. The contours reveal changes in the
density distribution of embeddings, emphasizing the effect of alignment on cluster organization and separability.

Table 1: Performance Metrics Across Datasets (Healthcare, Materials, Cyber, Applied Mathematics) for Aligned
and Non-aligned Embeddings for k = 10

Task *Metric Healthcare Materials Cyber Applied Mathematics
Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned

Classification F1 Score 0.5164 0.6588 0.6469 0.990 0.7130 0.8151 0.7541 0.8048
Precision 0.5134 0.6590 0.6453 0.990 0.6975 0.8121 0.7415 0.8112
Recall 0.5194 0.6586 0.6485 0.990 0.7293 0.8180 0.7672 0.7985

Retrieval Precision@k 0.3103 0.4983 0.4787 0.9707 0.6397 0.7518 0.6576 0.7636
Recall@k 0.0164 0.0290 0.0058 0.0116 0.0112 0.0133 0.0182 0.0212
MRR 1.6259 2.2525 1.6541 2.9972 2.7538 3.1482 2.9065 3.2245
nDCG@k 0.3752 0.5908 0.4982 0.990 0.6781 0.7908 0.7187 0.8280

Hallucination FPR@k 0.9386 0.8771 0.8534 0.0878 0.7968 0.6236 0.8191 0.6529
Severity 0.7306 0.5533 0.6041 0.0644 0.4402 0.3654 0.4119 0.3353

Additionally, we quantify the retrieval of docu-
ments from the same hierarchical category based on
a query document to characterize retrieval accuracy
and evaluate hallucinations. The results presented
in table 1 demonstrate that HEAL significantly im-
proves hierarchical classification metrics across all
datasets. For the Healthcare dataset, the Hierarchi-
cal F1 Score improves from 0.5164 to 0.6588, re-
flecting a more accurate representation of hierarchi-

cal labels. Similarly, the Materials dataset achieves
near perfect classification metrics (F1 Score, Pre-
cision, Recall = 0.99) with aligned embeddings,
while the most challenging Healthcare dataset (4
depth cluster label) sees improvements in F1 Score
from 0.5164 to 0.6588. In retrieval tasks, HEAL
aligned embeddings consistently outperform non-
aligned embeddings across all metrics. For the
Healthcare dataset, Hierarchical MRR improves
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from 1.6259 to 2.2525, and nDCG@k increases
from 0.3752 to 0.5908 where k = 10, indicat-
ing better ranking and retrieval relevance. The
Materials dataset achieves a dramatic increase in
retrieval precision, with Precision@k rising from
0.4787 to 0.9707, while nDCG@k reaches 0.99,
showcasing near-perfect retrieval performance. For
the Cyber dataset, aligned embeddings yield an
MRR improvement from 2.7538 to 3.1482 and a
corresponding nDCG@k increase from 0.6781 to
0.7908. Hallucination metrics further underscore
the superiority of HEAL. Aligned embeddings re-
duce hallucination rates significantly across all
datasets. For the Healthcare dataset, FPR@k drops
from 0.9386 to 0.8771, and severity decreases from
0.7306 to 0.5533, indicating fewer irrelevant or
misleading retrievals. The Materials dataset shows
the most striking improvement, with FPR@k re-
duced from 0.8534 to 0.0878 and severity declining
from 0.6041 to 0.0644, nearly eliminating halluci-
nation tendencies. For the Cyber dataset, aligned
embeddings lower FPR@k from 0.7968 to 0.6236
and severity from 0.4402 to 0.3654.

Next, we evaluate the performance of aligned
RAG in retrieving the correct documents for gener-
ated queries to augment the LLM and minimize hal-
lucinations. From each test dataset, we randomly
sampled 100 documents and generated 10 Q&A
pairs per document using the LLAMA-3.1 70B
model, resulting in a total of 1,000 Q&A pairs for
each dataset. Each Q&A pair was tagged with the
corresponding document from which it was gener-
ated. The prompt used for Q&A generation was as
follows: “First, provide a concise summary of the
following abstract that emphasizes its key concepts
and hierarchical relationships. Then, based on
this summary, generate 10 unique, nuanced Q&A
pairs. Focus on creating questions that delve into
specialized details of the hierarchical concepts dis-
cussed.” The generated queries were used to fetch
documents via both aligned and unaligned models.
We assessed the ability of each model to correctly
retrieve the original document and evaluated the
rank/order of retrieval. On average, the unaligned
model achieved an MRR of 0.273 and a Recall@10
of 0.415. These metrics represent regular retrieval
scores, not hierarchical scores. In contrast, the
aligned model significantly improved performance,
achieving an MRR of 0.514 and a Recall@10 of
0.731, demonstrating its superior ability to retrieve
the correct set of documents. Furthermore, when
integrating RAG with LLAMA-3.1 70B for gener-

ating answers from the queries and retrieved doc-
uments, the unaligned model produced a ROUGE
score of 0.42, while the aligned model achieved
a ROUGE score of 0.68. This highlights the im-
pact of alignment on improving the quality and
relevance of generated responses.

5 Conclusion

In this work, we introduced HEAL, a novel frame-
work for aligning embeddings in RAG systems
through hierarchical fuzzy clustering and matrix
factorization, integrated within a contrastive learn-
ing paradigm. HEAL effectively computes level-
specific contrastive losses and applies hierarchical
penalties to align embeddings with domain-specific
structures, enhancing both retrieval relevance and
classification performance. Experimental results
across diverse domains — Healthcare, Materials
Science, Cybersecurity, and Applied Mathematics
— demonstrate HEAL’s capability to significantly
improve retrieval accuracy and mitigate hallucina-
tions in LLM-based systems. By bridging hierar-
chical semantics with contrastive alignment, HEAL
establishes itself as a versatile and robust tool for
advancing RAG methodologies, enabling more pre-
cise, reliable, and domain-adaptive applications of
large language models.
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A.1 Evaluation Metrics
Table 2 provides a comprehensive overview of the
metrics utilized to quantify different downstream
tasks such as hierarchical classification and hierar-
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Metric Formula Description
Hierarchical Relevance(q, r) = Average label match
Relevance 1

L

∑L−1
l=0 δ(ylq, y

l
r) across hierarchy levels

Fraction of
Hierarchical 1

k

∑k
i=1 Relevance(q, ri) hierarchically relevant

Precision@k documents among top k.
Fraction of

Hierarchical
∑k

i=1 Relevance(q,ri)∑
r∈Relevant(q) Relevance(q,r) hierarchically relevant

Recall@k documents retrieved.
Discounted gain based

Hierarchical
∑k

i=1
2Relevance(q,ri)−1

log2(i+1)

∑k
i=1

2IdealRelevance(q,ri)−1
log2(i+1)

on hierarchical relevance.

nDCG@k
Balance between

Hierarchical 2·Precision·Recall
Precision+Recall hierarchical precision

F1 Score and recall.
Measures retrieval

Hierarchical 1−
∑k

i=1 Relevance(q,ri)
k of irrelevant documents

Severity in hierarchical setting.
Hierarchical Fraction of
False Positive Irrelevant hierarchical documents in top k

k irrelevant hierarchical
Rate@k documents among top k.

Table 2: Hierarchical Metrics for classification, retrieval and hallucination
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