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Abstract

Recent developments in Multimodal Large Lan-
guage Models (MLLMs) have provided novel
insights into Speech Emotion Recognition
(SER). However, combining high-dimensional
speech signals with textual tokens can lead to a
rapid growth in input tokens, increasing compu-
tational costs and inference times. This “token
overload” also risks shadowing essential tex-
tual cues, affecting the reasoning capabilities
of the language model and diluting emotional
information crucial to accurate SER.

In this paper, we explore different token drop
methods that mitigate excessive token counts
while preserving both emotional nuances and
the core linguistic capabilities of the model.
Specifically, we compare various efficient pool-
ing approaches to produce a compact repre-
sentation. Our preliminary findings suggest
that these techniques can reduce computational
costs without decreasing SER accuracy.

1 Introduction

Speech Emotion Recognition (SER) has garnered
growing interest due to its potential in various ap-
plications, including human-computer interaction,
mental healthcare, and education. Although single-
modality methods, such as text-based emotion anal-
ysis or audio emotion recognition, have proven
effective (Maruf et al., 2024; George and Ilyas,
2024), emotional data in real-world scenarios of-
ten integrate multiple modalities. This has led to
increased interest in the use of Multimodal Large
Language Models (MLLMs) to exploit knowledge
from different data sources and improve emotional
reasoning (Chandraumakantham et al., 2024).

Recent advances in MLLMs have demonstrated
remarkable performance in audio analysis (Chu
et al., 2023). However, there are challenges to ap-
plying MLLMs to SER. One of the key obstacles is
the rapid increase in the number of multimodal to-
kens, which drastically expands the size of the input

of the model. These multimodal token embeddings
can increase computational costs (Ju et al., 2023),
prolong inference times, and potentially shade text
tokens during the model’s attention process (Zhang
et al., 2024), thus reducing overall performance.

To address these limitations, researchers have
begun exploring token drop strategies (Li et al.,
2023a; Zhang et al., 2023b; Rekesh et al., 2023;
Gaido et al., 2021; Li et al., 2023b; Yao et al., 2024;
Fathullah et al., 2023; Liu et al., 2024; Arif et al.,
2024), with the aim of ensuring a more balanced
and efficient integration of audio and textual infor-
mation within MLLMs.

This article builds upon these efforts by recogniz-
ing that some existing approaches in the literature
may become complex due to the large number of
parameters or the complexity of the training. In
this work, we explore simple pooling methods that
help to control the excessive growth of acoustic
tokens. By reducing the token overload on the lan-
guage model, we can preserve its core linguistic
capabilities while enhancing its ability to recognize
audio-based emotions, crucial for dialogue systems
that must handle both textual and emotional cues
effectively. We evaluated how these pooling strate-
gies affect computational costs, inference speed,
and prediction accuracy, showing new insights into
optimizing MLLMs for SER, improving dialogue
systems, and enhancing human-computer interac-
tions.

2 Related Work

SER has evolved with the appearance of multi-
modal approaches and Large Language Models
(LLMs) that incorporate audio inputs. Early re-
search often focused on single-modality solutions,
either through acoustic features or text-based anal-
ysis, to detect emotions. However, these methods
struggled to generalize in different contexts and
linguistic styles, motivating the development of
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multimodal systems that merge information from
speech, text, and sometimes visual cues (Lian et al.,
2023). Recent work has shown that integrating text
and audio using MLLMs can produce more robust
and nuanced emotion predictions (Deshmukh et al.,
2024; Tang et al., 2024a).

Afterwards, a series of MLLMs have emerged,
extending the capabilities of LLMs to handle dif-
ferent input types (Chu et al., 2023; Tang et al.,
2024b). These architectures have shown promis-
ing results on tasks ranging from automatic speech
recognition to generic audio understanding (Gong
et al., 2023; Zhang et al., 2023a). However, many
existing MLLMs either rely on supervised training
of additional transformer modules or require ex-
tensive fine-tuning on specific downstream tasks,
making them computationally expensive and less
flexible for broader SER applications.

Despite progress in audio-based LLMs, a key
challenge remains: the rapid increase in to-
ken counts (token overload) when merging high-
dimensional audio and textual representations. To-
ken overload can degrade model performance, in-
crease computational costs, and slow down infer-
ence, problems especially salient in real-time or
large-scale deployments (Li et al., 2023b; Shang
et al., 2024). To handle this, a variety of token
dropping methods have been proposed. Simple sta-
tistical techniques, such as mean pooling, can com-
press feature representations at minimal cost. Also,
concatenation-based strategies can combine tokens
in pairs or in groups to reduce the sequence length
(Fathullah et al., 2023). More complex methods
employ n-dimensional convolutions (Zhang et al.,
2023b), lightweight Q-Formers (Li et al., 2023a),
or architectures such as Fast Conformer (Rekesh
et al., 2023) and Connectionist Temporal Classifi-
cation (CTC) (Gaido et al., 2021) to remove redun-
dant information. Further advancements have been
explored in vision frameworks, such as Liu et al.
(2024); Arif et al. (2024); Shang et al. (2024) that
dynamically prune tokens based on attention scores
or local content similarity. Although originally pro-
posed for image or video tasks, these strategies
offer valuable insights for audio-based MLLMs.

In this paper, we focus on evaluating simple and
efficient token dropping methods for SER tasks
using MLLMs. Rather than relying on complex ar-
chitectures or parameter-heavy models, we explore
straightforward pooling techniques to optimize the
token efficiency of multimodal inputs. Our ap-
proach aims to reduce computational costs and

Figure 1: MLLM architecture for SER with a length
adapter.

inference times while maintaining the ability of
the model to capture emotional nuances. By in-
tegrating simplified token reduction modules into
a multilingual SER pipeline, we demonstrate that
efficient length adaptation techniques can achieve
competitive performance.

3 Methods

To address the challenges of SER within mul-
tilingual and multimodal contexts, we propose
a methodology that integrates high-dimensional
speech and text signals into a unified framework.
Our approach combines an audio encoder based on
transformers, a linear projection layer, and an LLM,
creating a multimodal architecture (see Figure 1 for
a detailed diagram of the model architecture).

We employ the Whisper-large-v3 encoder (Rad-
ford et al., 2022), a state-of-the-art model known
for its ability to extract rich phonetic features from
audio log-mel spectrograms (Gong et al., 2023;
Zhang et al., 2023a). The encoded audio represen-
tations are then processed through a linear projec-
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tor, which changes their dimensionality to align
with the embedding space of the LLM (Chu et al.,
2023). For the text component, we use Gemma-
2-2B-it (et al., 2024), an LLM designed to handle
diverse linguistic contexts and capable of reasoning
over multilingual inputs.

We address the token overload challenge by in-
corporating length adaptation strategies that com-
press high-dimensional audio embeddings into
more compact representations. These strategies
range from simple statistical pooling methods, such
as Mean pooling, to more complex approaches like
Convolutional (Conv) compression (Zhang et al.,
2023b), Concatenation (Concat) (Fathullah et al.,
2023), and attention mechanisms (Vaswani et al.,
2023).

We begin with Mean pooling, which aggregates
embeddings by straightforward averaging. We then
employ Conv, using convolutional filters to extract
salient features, and a Concat approach that pairs
tokens, effectively halving the sequence length
while doubling the dimensionality.

We explore attention-based methods starting
with Attn-Mean, which averages the output of the
attention layer, and Attn-Q-Mean, which introduces
a global query vector. Specifically, instead of de-
riving the query from each input token, we first
perform a mean pooling across the entire sequence
of input embeddings X P RLˆD (see Equation 1).

Q “

´ 1

L

L
ÿ

i“1

xi

¯

Wq, (1)

where xi is the i ´ th token embedding in X ,
and Wq P RDˆdk projects the averaged embedding
into the query space. The keys K and values V are
computed using standard linear projections from X .
The final compact representation is obtained via a
standard scaled dot product attention mechanism
that uses Q, K, and V (Vaswani et al., 2023).

To evaluate our framework, we first develop text-
only baseline models. We employ transcriptions
generated with Whisper-large-v3 from speech in-
put, and we use a frozen Gemma-2-2b-it to predict
emotions only based on textual information. Build-
ing on these baselines, we integrate audio features
into the pipeline, in which audio embeddings are
combined with text tokens. We train only the linear
projector and the length adapter layers, ensuring
that the LLM retains its original capabilities.

Performance was measured using the F1 macro
score and Weighted Accuracy (WA) to account for

class imbalances. For each evaluation, we deployed
a 5-fold cross-validation strategy and report the
mean F1 macro and WA, along with their standard
deviations.

We emphasize multilingual SER, using datasets
in Spanish, German, and French to validate the
generalization of our approach using datasets from
MEACorpus, EmoDB, and Oreau (Pan et al., 2024;
Burkhardt et al., 2005; Kerkeni et al., 2020). The
three datasets contain emotion labels for Fear, Sad,
Happy, Angry, Disgust, and Neutral, EmoDB also
includes Boredom, while Oreau Surprise. The
MEACorpus dataset suffers from imbalanced class
distributions, which present additional challenges
for robust modeling, although both EmoDB and
Oreau have more balanced class distributions. Fur-
thermore, the data in MEACorpus are derived
from natural YouTube videos, reflecting real-world,
spontaneous emotions, while EmoDB and Oreau
datasets consist of acted recordings, which pro-
vide more controlled but less naturalistic emotional
expressions. Our design also prioritizes computa-
tional efficiency, enabling faster inference times
without compromising accuracy, an essential factor
for the deployment of real-world dialogue systems.

4 Experiments

Our preliminary experiments focus on selecting the
optimal components for the MLLM architecture,
tuning hyperparameters 1, and refining a prompt for
the LLM 2. Whisper-large-v3 was selected as audio
encoder, while a linear projector was chosen for its
effectiveness (Chu et al., 2023) and simplicity in
aligning audio embeddings with the input require-
ments of the LLM. Gemma-2-2B-it was chosen as
the LLM due to its remarkable performance in han-
dling multimodal inputs and reasoning in both text
and audio (et al., 2024).

To establish SER baselines, we first evaluated a
text-only model, where the LLM remained frozen
and predictions were made solely from the tran-
scriptions of the speech input. This text-only base-
line achieved an average F1 macro score of 0.23
and a WA of 0.29 across the three datasets.

The integration of audio and text modalities was
evaluated through MLLMs, testing variations in
length adaptation strategies. Detailed results for
each dataset can be found in Table 1, while the over-
all averages are summarized in Table 2. In the ini-

1The hyperparameters used can be found in Annex A.
2The prompt used can be found in Annex B.
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Adapter MEACorpus (ES) EmoDB (DE) Oreau (FR)
WA F1 macro WA F1 macro WA F1 macro

None 0.72 ˘ 0.01 0.62 ˘ 0.04 0.39 ˘ 0.05 0.36 ˘ 0.06 0.69 ˘ 0.07 0.69 ˘ 0.07
Mean 0.74 ˘ 0.01 0.64 ˘ 0.03 0.60 ˘ 0.06 0.53 ˘ 0.05 0.79 ˘ 0.04 0.78 ˘ 0.05

Concat 0.72 ˘ 0.01 0.57 ˘ 0.02 0.41 ˘ 0.02 0.40 ˘ 0.03 0.92 ˘ 0.32 0.73 ˘ 0.02
Conv 0.73 ˘ 0.02 0.63 ˘ 0.06 0.47 ˘ 0.05 0.42 ˘ 0.07 0.84 ˘ 0.03 0.84 ˘ 0.02

Atten-Mean 0.76 ˘ 0.01 0.69 ˘ 0.04 0.55 ˘ 0.08 0.50 ˘ 0.07 0.83 ˘ 0.03 0.82 ˘ 0.03
Attn-Q-Mean 0.75 ˘ 0.01 0.67 ˘ 0.03 0.53 ˘ 0.02 0.47 ˘ 0.02 0.82 ˘ 0.05 0.81 ˘ 0.06

Table 1: Average WA and F1 macro scores across the 5-folds and its standard deviation are presented in columns
under each dataset. The row labeled "None" corresponds to the model without a length adapter.

Adapter Trainable Params Speed-up Acoustic Tokens Mean WA Mean F1 macro
None 0 0% - 170 - 0.60 ˘ 0.03 0.56 ˘ 0.06
Mean 1.2M 21% Ò 1 Ó 0.70 ˘ 0.02 0.65 ˘ 0.04

Concat 1.8M 16% Ò 85 Ó 0.68 ˘ 0.02 0.56 ˘ 0.02
Conv 1.5M 3% Ò 85 Ó 0.68 ˘ 0.03 0.63 ˘ 0.05

Atten-Mean 1.6M 22% Ò 1 Ó 0.71 ˘ 0.03 0.67 ˘ 0.05
Attn-Q-Mean 1.7M 26% Ò 1 Ó 0.70 ˘ 0.02 0.65 ˘ 0.03

Table 2: WA and F1 macro averaged across datasets, along with the trainable parameters (Trainable Params), the
decrease of inference time (Speed-up) with respect to the alternative without length adapter (which achieves 18
iterations per second on a single A100 GPU), and the number of acoustic tokens.

tial configuration, labeled "None", the projected au-
dio embeddings were directly fed into the language
model without any token dropping. While this ap-
proach preserved the complete acoustic fidelity, it
also introduced a token overload, resulting in an av-
erage of 170 acoustic tokens per sample across the
three datasets. Although it achieved a mean WA
of 0.60 and an F1 macro of 0.56, exceeding the
text only baseline, this increased token count sub-
stantially increased the computational cost, with
inference times up to 26% higher compared to the
text only model.

To address this, we implemented various
length adaptation techniques to compress high-
dimensional audio embeddings. First, simple pool-
ing methods, such as Mean pooling, improved per-
formance to a mean WA of 0.70 and an F1 macro
of 0.65. Next, Conv and Concat both achieved
WA scores of 0.68, with macro F1 scores of 0.63
and 0.56, respectively. Finally, attention-based
approaches (Attn-Mean and Attn-Q-Mean) further
boosted overall performance. Attn-Mean achieved
the highest metrics, while Attn-Q-Mean also per-
formed strongly.

Table 2 also details computational trade-offs,
including inference speed-ups relative to the no-
adapter baseline (None). Mean, Attn-Mean, and
Attn-Q-Mean all compress the acoustic representa-

tion to a single token, achieving speed-ups of 21%,
22%, and 26%, respectively. In contrast, Concat
and Conv halve the number of tokens, resulting
in speed-ups of 16% and 3%. In particular, Attn-
Mean strikes an optimal balance between accuracy
and efficiency, securing the highest F1 macro and
WA scores while still offering a 22% speed-up.

5 Conclusion

Our experiments confirm that integrating audio and
text in MLLMs significantly enhances SER, sur-
passing text-only approaches in both WA and F1
macro metrics. However, directly merging audio
embeddings can lead to "token overload", increas-
ing computational demands and slowing down in-
ference. By incorporating simple length adapters,
we achieved significant inference speed-ups (from
22% to 26%) compared to the baseline, while
retaining or improving SER accuracy. Notably,
we only fine-tuned a lightweight projector layer,
thereby preserving the language reasoning capabil-
ities of the LLM.

In future work, we will explore more advanced
token compression strategies and extend our experi-
ments to a broader range of tasks and datasets, aim-
ing for higher scalability and robust performance
across diverse multimodal dialogue systems.
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Eps 1e ´ 5
Weight decay 0
Attention hidden dimension 1280
Attention heads 1
Linear projector dimensions r1280, 2304s

Table 3: Table of hyperparameters used in the MLLM
training.

B Prompt for the MLLM

"user: Transcription: {transcription} \n
Audio: {audio} \n
What is the emotion of the speaker?
The possible emotions are: {emotions}. \n
assistanSt: The emotion of the audio is:"
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