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Abstract

Voice Activity Projection (VAP) models pre-
dict upcoming voice activities on a continu-
ous timescale, enabling more nuanced turn-
taking behaviors in spoken dialogue systems.
Although previous studies have shown robust
performance with audio-based VAP, the poten-
tial of incorporating additional physiological
information, such as respiration, remains rel-
atively unexplored. In this paper, we investi-
gate whether respiratory information can en-
hance VAP performance in turn-taking. To this
end, we collected Japanese dialogue data with
synchronized audio and respiratory waveforms,
and then we integrated the respiratory informa-
tion into the VAP model. Our results showed
that the VAP model combining audio and respi-
ratory information had better performance than
the audio-only model. This finding underscores
the potential for improving the turn-taking per-
formance of VAP by incorporating respiration.

1 Introduction

In conversational systems designed for emotional
support and customer assistance, it is crucial for
the user and the system to engage in smooth and
natural dialogues. A key factor in achieving such
smooth communication is effective turn-taking,
wherein each participant can seamlessly begin and
end speaking without awkward interruptions or pro-
longed silences. In this context, there has been a
growing body of research aimed at predicting turn-
taking behaviors in spoken dialogue between the
user and the system (Skantze, 2017; Roddy et al.,
2018).

Recently, Voice Activity Projection (VAP) has
been proposed as a method for more natural turn-
taking in spoken dialogue (Ekstedt and Skantze,
2022). VAP dynamically models voice activities
in dyadic interactions by processing the raw au-
dio signals from both speakers, predicting future
voice activity in a series of short time windows (at

window lengths of 200 ms, 400 ms, 600 ms, and
800 ms within a 2-second horizon). This approach
yields a 256-class prediction representing binary
voice activity in each of the four time windows
for each speaker. In addition, VAP defines four
evaluation tasks, SHIFT/HOLD, SHORT/LONG,
SHIFT-prediction, and Backchannel-prediction,
to assess how effectively the model can pre-
dict turn-shifts and backchannels. Specifically,
SHIFT/HOLD tests the model’s ability to pre-
dict which speaker will take the next turn during
mutual silence; SHORT/LONG tests the ability
to predict at its onset whether a speaker’s utter-
ance will be a short backchannel or a longer utter-
ance; SHIFT-prediction tests the ability to predict
whether a turn-shift will occur during active speech;
Backchannel-prediction tests the ability to predict
future backchannels. Various extensions of VAP
have been explored, including the incorporation of
prosodic information, gaze, and gestures (Onishi
et al., 2023), the extension of multilingual data (In-
oue et al., 2024a), and real-time predictions (Inoue
et al., 2024b).

In this work, we aim to further enhance VAP
by integrating respiratory information, which is a
nonverbal cue closely tied to speech production.
Prior research about respiration has observed the
synchronization of respiratory patterns during turn-
taking (Rochet-Capellan and Fuchs, 2014), as well
as behaviors such as speakers taking a quick breath
when they wish to continue speaking and next
speakers inhaling when the previous speaker fin-
ishes speaking (Rochet-Capellan and Fuchs, 2014;
Torreira et al., 2015; Ishii et al., 2016). These obser-
vations have motivated attempts to predict turn con-
tinuations, endings, and next-speaker transitions
using respiratory signals (Ishii et al., 2016; Włodar-
czak and Heldner, 2019). In human-system spoken
dialogues, respiration has also been investigated to
predict a user’s speech onset (Włodarczak et al.,
2017; Obi and Funakoshi, 2023), indicating that
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respiratory information can facilitate smoother turn
management.

We focus on the turn-taking performance of
VAP and investigate how integrating respira-
tory information affects the model’s performance
in SHIFT/HOLD, SHORT/LONG, and SHIFT-
prediction tasks. We collected Japanese dialogue
data containing both audio and respiratory wave-
forms, and then we integrated the respiratory infor-
mation into the VAP model. Our results showed
that the VAP model combining audio and respira-
tory information had better performance than the
audio-only model. This finding underscores the
usefulness of respiratory information for VAP turn-
taking tasks.

2 Data Collection

Because no publicly available dataset for integrat-
ing respiration into VAP was available, we col-
lected spoken dialogue data.

2.1 Participants

Thirty-six pairs (72 in total; 32 male and 40 female;
ranging in age from 20 to 60) who are native speak-
ers of Japanese were recruited through an agency.
Written informed consent was obtained from each
participant before data collection. The data collec-
tion was pre-approved by the authors’ institutional
ethical committee.

2.2 Equipment

We employed two main components for data
recording.
Audio Recorder: The audio data were recorded
using a Kinect v2 microphone made by Microsoft.
Respiration Sensor: The respiratory waveforms
were recorded using a device that combines a
Biopac TSD201 sensor and a homemade signal am-
plifier. We used two identical units of this device
to record data from two participants in parallel.

2.3 Recording

Because VAP uses separate speaker inputs, we
recorded audio and respiration data for each partic-
ipant in each pair separately. During each record-
ing session, both audio and respiratory waveforms
were captured with millisecond-level synchroniza-
tion by our own recording software, which also
logged the start time in milliseconds. This mecha-
nism allowed us to align the data between the two
participants in each pair.

Audio Recording: The audio was recorded at 16
kHz with 16-bit PCM (pulse code modulation) en-
coding.
Respiration Recording: Expansion and contrac-
tion of the torso during respiration were recorded
using sensor belts around the thorax. The respira-
tion stream was sampled at approximately 90 Hz
and stored with corresponding timestamps.

2.4 Procedure

The two participants of each pair were placed in
hard-wired soundproof rooms individually and in-
teracted remotely. First, they attached the respi-
ration sensor belts around their thoraxes and sat
in front of a screen displaying the other partici-
pant. They were then given a discussion topic (e.g.,
choosing items for survival in a desert) and engaged
in a 15-minute discussion. If any time remained
after finishing the discussion, they were allowed
to talk freely. After a short break, they performed
another 15-minute dialogue session on a different
discussion topic. We adopted this two-session de-
sign to minimize participant fatigue and ensure
sufficient dialogue content.

3 Experiments

We investigated whether respiratory information
can help improve VAP performance in turn-taking.

3.1 Preprocessing

Data Alignment: Because each participant’s data
was recorded separately, we aligned the start times
of the paired recordings based on the later start
time. Specifically, we cut the beginning of the
earlier recording to match the start of the later one.
Audio Data: We normalized audio waveforms by
amplitude and detected voice activities using Silero-
VAD1. After that, using the VAP dataset creation
scripts2, we created audio splits and corresponding
voice activity labels.
Respiratory Waveform: We first removed drift to
mitigate environmental noise. Because the respira-
tion stream was not sampled at perfectly uniform
intervals, we applied cubic spline interpolation to
resample at 90 Hz. We applied a low-pass filter to
remove frequencies above 1 Hz (reflecting the typi-
cal human respiratory rate of 0.15–0.40 Hz (Beda
et al., 2007)). Finally, because amplitude ranges
varied across the two devices, we applied z-score

1https://github.com/snakers4/silero-vad
2https://github.com/ErikEkstedt/VoiceActivityProjection
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normalization to the waveforms. After preprocess-
ing, participants’ respiratory rates ranged from 11.8
to 24.3 breaths per minute (BPM), with an average
of 16.9 BPM (SD = 2.43).
Data Splitting: For model training and evaluation,
we split the data into 80%/15%/5% for training,
validation, and test sets, respectively. To properly
evaluate the model performance, we split the sets
so that they did not contain the same participant
pairs.

3.2 VAP Model
We used the public VAP model2. The model con-
sists of four main components:
Contrast Predictive Coding (CPC) Encoder: A
5-layer CNN followed by a 1-layer GRU, pre-
trained on the LibriSpeech Dataset (Panayotov
et al., 2015). This encoder is frozen during training.
Self-attention Transformer: A single Trans-
former layer with 256 dimensions to model each
speaker’s audio stream separately.
Cross-attention Transformer: Three Transformer
layers with 256 dimensions that perform cross-
attention between both speakers’ encoded audio
streams.
Linear layer: Two separate linear layers for mul-
titask learning output probabilities for a 256-class
VAP state pvap(y) and per-speaker VAD pvad(s).

The model losses are defined as L = Lvap +
Lvad, where

Lvap =− log pvap(y),

Lvad =−
2∑

s=1

[
vs log pvad(s)

+ (1− vs) log
(
1− pvad(s)

)]
,

y ∈ {1, . . . , 256} is the reference VAP index,
and vs ∈ {0, 1} indicates whether participant s
is speaking. For brevity, the time frame indexing
is omitted, but these calculations apply to all input
frames.

3.3 Evaluation
We focused on three VAP tasks for evaluating
turn-taking: SHIFT/HOLD, SHORT/LONG, and
SHIFT-prediction. We set the input signal segment
to 20 seconds, following the findings in (Inoue
et al., 2024b), which reported high performance
for Japanese with a 20-second segment. To eval-
uate model performance, we used weighted F1-
scores based on the original VAP study (Ekstedt

Table 1: Means and variances of weighted F1-scores for
turn-taking performance of VAP in evaluation settings.
Values marked with ∗ are significantly higher (p < 0.01)
than the corresponding audio-only baseline based on
bootstrap tests.

Evaluation SHIFT/ SHORT/ SHIFT-
setting HOLD LONG prediction

Audio-only 0.608 0.794 0.635
(0.000) (0.000) (0.001)

Resp-only 0.514 0.574 0.455
(0.001) (0.000) (0.001)

Combination 0.635∗ 0.796 0.648∗
(0.001) (0.000) (0.002)

and Skantze, 2022). The training was repeated with
random seeds from 1 to 10.

We evaluated the model’s performance in three
settings:
Audio Only: For the baseline audio-only VAP
model, we used the original training configura-
tion, including a batch size of 8, a learning rate
of 3.63× 10−4, a weight decay of 0.001, and the
AdamW optimizer. We trained for 20 epochs and
used the model checkpoint that yielded the lowest
validation loss for testing.
Respiration Only: We replaced the encoder with
a similarly structured one modified to handle respi-
ratory waveforms. Unlike the CPC encoder (which
was frozen for audio), we trained the respiratory en-
coder along with the other layers. We increased the
total epochs to 30 based on validation loss trends,
keeping all other hyperparameters the same.
Combination: To explore a straightforward way
of combining respiratory information with audio,
we used separate encoders and attention transform-
ers for each modality. We then concatenated the
outputs from each cross-attention before passing
them to the linear layers. Training settings were
identical to the audio-only.

4 Results

The experimental results are shown in Table 1.
As shown in Table 1, the highest performance
was achieved when voice and respiratory wave-
forms were used together. The combination model
achieved significantly higher SHIFT/HOLD and
SHIFT-prediction F1-scores (p < 0.01) than the
audio-only baseline, using bootstrap resampling
methods3.

3https://github.com/fpgdubost/bstrap
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5 Discussion

Our results showed that combining respiratory
information with audio improves VAP perfor-
mance in turn-taking, especially SHIFT/HOLD and
SHIFT-prediction tasks (Table 1). This enhance-
ment likely arises because respiratory information
provides additional cues about a speaker’s readi-
ness or intention to speak, helping reduce uncer-
tainty around turn boundaries. This finding indi-
cates that respiration is valuable supplementary
information for VAP turn-taking prediction.

6 Limitations and Future Work

Although our experiments demonstrated the poten-
tial benefits of integrating respiratory information
into VAP, several limitations remain.

First, the amount of data used in this study was
relatively small, and participants took part in re-
mote dialogues. To further validate the effective-
ness of respiratory information for VAP, we plan
to collect additional data in more diverse conversa-
tional settings.

Second, we used contact-based respiration sen-
sors to record respiratory waveforms. However, for
real-world spoken dialogue systems, it is preferable
to measure a user’s respiration in a non-contact
manner. By combining our approach with non-
contact respiratory estimation methods (Obi and
Funakoshi, 2023; Matheus et al., 2023), which
capture users’ respiratory information using only
an RGB camera, we can eliminate the need for
wearable sensors. We will adopt this combined
approach to implement VAP with integrated respi-
ration in real-world dialogues.

Third, the method of combining audio and res-
piratory information in our model was quite sim-
plistic, relying on a straightforward concatenation
of features. By improving the model architecture
or employing more advanced fusion strategies, it
may be possible to more accurately integrate voice
and respiratory signals. We will explore these more
sophisticated approaches to better leverage respira-
tory information for VAP.

Finally, although the original VAP in-
cludes Backchannel-prediction, we focused
on SHIFT/HOLD, SHORT/LONG, and
SHIFT-prediction in this study. Evaluating
the effectiveness of respiratory information on
Backchannel-prediction remains an important
direction for future work and may further clarify
the potential of respiratory information.

7 Conclusion

In this work, we explored how respiratory informa-
tion can be combined with audio to improve Voice
Activity Projection (VAP). We collected Japanese
dialogue data with synchronized audio and res-
piratory waveforms to investigate the efficacy of
combining this information for VAP. Our results
indicate that combining audio and respiratory in-
formation can improve VAP performance in turn-
taking. This finding underscores the potential value
of leveraging respiratory information to enhance
the turn-taking performance of VAP.

We will explore more sophisticated fusion mech-
anisms that might better integrate respiratory infor-
mation into VAP.
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