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Abstract

Virtual Reality (VR) training provides safe,
cost-effective engagement with lifelike sce-
narios but lacks intuitive communication be-
tween users and the virtual environment. This
study investigates the use of Large Language
Models (LLMs) as conversational tutors in VR
health and safety training, examining the im-
pact of game context and state variables on
LLM-generated answers in zero- and few-shot
settings. Results demonstrate that incorporat-
ing both game context and state information
significantly improves answer accuracy, with
human evaluations showing gains of up to 0.26
points in zero-shot and 0.18 points in few-shot
settings on a 0-1 scale.

1 Introduction

VR is a powerful tool for fields such as healthcare
and emergency response training, offering hands-
on learning without real-world risks. However,
current systems rely on joystick inputs, static mes-
sages, or pre-programmed responses, limiting en-
gagement and personalized feedback essential for
skill development. LLMs offer a promising solu-
tion to these interaction barriers by enabling human-
like dialogue and more natural, context-aware in-
teractions. Despite their potential, their role as
conversational tutors in VR training is largely un-
explored.

This work presents the first use of LLMs as vir-
tual tutors in emergency response VR training, ad-
dressing interaction gaps with dynamic, context-
aware communication. By integrating game con-
text and state variables, it enhances LLM response
accuracy and relevance, achieving significant qual-
ity improvements. Contributions include advancing
conversational AI in VR training and demonstrat-
ing the importance of contextual information for
LLM performance, paving the way for more inter-
active and effective training in critical scenarios
like emergency response and health and safety.

Figure 1: Diagram of the proposed approach

The paper is structured as follows: Section 2
reviews related work and highlights gaps addressed
in this study. Section 3 introduces the use case, and
Section 4 details the proposed approach. Section
5 outlines the experimental setup, followed by re-
sults and analysis in Section 6. Finally, Section 7
concludes with key findings and future directions.

2 Related work

LLMs as chatbots LLMs derive from research
in language modeling, originally statistical n-gram
models (Shannon, 1948), passing to neural LMs
(Bengio et al., 2000) which later incorporate the
attention mechanism (Bahdanau et al., 2014) and
finally today’s Transformer architecture (Vaswani
et al., 2017). Their success lies in pre-training on
vast amounts of data, where they develop a nuanced
ability in natural language and retrieving real-world
facts, (Brown et al., 2020a) and instruction-tuning
(Wei et al., 2022; Mishra et al., 2022), where they
learn to follow instructions to engage with humans
as chatbots.

Although they generate fluent text, LLMs need
further training to be used in specific scenarios. For
instance, transfer learning consists of fine-tuning a
model on annotated in-domain data. As this anno-
tated data is often limited, one can instead enrich
input prompts with relevant context via In-Context
Learning (Brown et al., 2020b). In this work, we
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leverage this technique to improve the LLM’s abil-
ity to utilize contextual information effectively.

LLMs in Virtual Reality The impressive per-
formance of LLMs (Zhao et al., 2024; Grattafiori
et al., 2024) has recently motivated the integration
of LLMs in VR tools, in order to allow seamless
communication between the user and the virtual en-
vironment in various domains including education,
healthcare, and manufacturing. For example, VR-
GPT (Konenkov et al., 2024) incorporate a Vision-
Language Model (VLM) to enhance user experi-
ence in healthcare and educational domains, help-
ing users complete complex tasks. Li et al. (2024)
develop a GPT-powered VR chatbot for job train-
ing scenarios with autistic trainees and disability-
focused job coaches. However, prior work has
not yet examined how to model contextual infor-
mation to dynamically enhance interaction quality
and task relevance, as we address in this study for
emergency response VR training.

LLMs as Tutors Beyond VR, LLMs have been
explored as intelligent tutoring systems in educa-
tion, aiming to enhance pedagogical practices by
generating human-like responses, assisting with
question generation, and enabling automated grad-
ing (García-Méndez et al., 2024). Advanced frame-
works, such as GenMentor (Wang et al., 2025),
further refine learning by identifying skill gaps and
tailoring instructions to individual learner profiles.
However, their potential as tutoring agents in gam-
ing remains largely unexplored (Gallotta et al.,
2024). To address this gap, this work investigates
how LLMs can assist player needs by dynamically
adapting to the game environment.

Evaluation of LLMs As human evaluation is
long and costly, researchers often rely on automatic
evaluation metrics as a proxy. On the one hand, au-
tomatic metrics compare generated content with
some reference text, such as n-gram overlap met-
rics (Papineni et al., 2002; Lin, 2004) or semantic
similarity-based approaches (Zhang et al., 2020;
Sellam et al., 2020). However, they are limited, as
they only capture surface-level features and strug-
gle to differentiate similar texts. On the other hand,
LLM-based evaluation (Liu et al., 2023; Kim et al.,
2024) leverages LLMs to evaluate the quality of
generated text without reference texts. While they
generate human-like assessments, their reasoning
often contains hallucinations. In this paper, we
avoid the pitfalls of these individual approaches

by both automatic metrics and LLM judges and
then measure how these automatic metrics corre-
late with human evaluation.

3 Use Case

The addressed use case involves immersive VR
training for fire extinguishing. This allows users
to practice techniques safely, cost-effectively, and
sustainably while improving skill retention.

The game guides the user through a sequence
of 7 procedural steps, ranging from checking the
fire extinguisher’s pressure gauge to performing a
test shot, approaching and attacking the fire, and, fi-
nally, stepping back to observe the results. The
game context includes detailed descriptions for
each step, emphasizing their importance and pro-
viding additional insights. It also outlines key sim-
ulation errors caused by extinguisher and fire type
incompatibility, along with navigation aids.

The game also incorporates 19 state variables
that represent environmental factors, such as extin-
guisher type, fire class, and user proximity, along
with user actions like checking the pressure gauge,
performing a test shot, and attacking the fire, all
of which evolve as the game progresses. An ex-
cerpt of the Game Context and the State Variables
is provided in Appendix A.

4 Proposed Approach

As shown in Figure 1, the proposed approach mod-
els the game context and state variables that define
and execute the VR training scenario, using the
LLM as an interactive conversational tutor. The
LLM prompt incorporates the following key infor-
mation:

• System Instructions: defining the LLM’s
role and outlining the game context and state
variable information needed for effective op-
eration.

• Game Context: describing the steps, ele-
ments, choices, and details of the exercise to
help the LLM understand the user’s expected
actions.

• State Variables: a dynamic set of variables
that evolve to represent environmental factors,
user actions, and their impact on the scene.

The LLM can process this information in a zero-
shot manner but may benefit from few-shot exam-
ples to improve accuracy.
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When the conversational tutor intervenes, the
above information is passed to the LLM along with
the user’s request, allowing it to guide the user
through the VR exercise. To adapt the system to
a different VR training scenario, only the game
context and state variables would need updating.

5 Experiments

To evaluate the impact of game context and state
variables in the proposed approach, we have con-
ducted an ablation study using three distinct prompt
configurations with varying amounts of informa-
tion across five different open-source Llama family
LLM models. The evaluation has been performed
under both zero-shot and few-shot setups, with per-
formance assessed through automatic metrics and
human evaluation.

5.1 Models
To assess the impact of model size and version on
the experimental results, we evaluate five Instruct
Llama models: Llama-3.3-70B, Llama-3.1-70B,
Llama-3.1-8B, Llama-3.2-3B, and Llama-3.2-1B.

5.2 Prompt configurations
The models were evaluated using three distinct
prompt configurations (see Appendix B):

1. Vanilla Prompt: this prompt instructs the
model as a trainer guiding the user through a
VR exercise using only system instructions.

2. Game Context (GC) Prompt: built upon
the Vanilla Prompt, this version incorporates
the detailed description of the game scenario
contained in the game context.

3. Game Context + State Variables (GC +
SV) Prompt: extending the Game Context
Prompt, this version adds a JSON representa-
tion of the current scenario, offering a struc-
tured description of the state variables at each
point in the interaction. This prompt repre-
sents the proposed approach, incorporating
the most comprehensive context information.

5.3 Test set
To conduct our experiments, the VR training use
case development team compiled a gold standard
test set. The test set is 63 question-answer pairs,
featuring potential user questions, ideal system re-
sponses, and state variable representations of the
scenes. Using a k-fold validation approach, we

divide the test set into 9 folds, each containing 7
samples. This setup has allowed for 9 iterations per
configuration, with data from 8 folds used for test-
ing in each iteration, and the remaining fold serving
as "training" examples for the few-shot settings.

5.4 Automatic evaluation

We evaluate the models on three metric types:
phrase-based (ROUGE-L F1 (Lin, 2004) and
BLEU (Papineni et al., 2002), for n-gram over-
lap and precision), embedding-based (BERTScore
Recall (Zhang et al., 2020), for semantic similar-
ity), and hybrid (BLEURT (Sellam et al., 2020)
and G-Eval (Liu et al., 2023), for human-labeled
preferences and correctness).

5.5 Human evaluation

Human evaluation was conducted by three devel-
opers from the VR training use case development
team, who also contributed to compiling the gold
standard test set. This evaluation focuses solely on
the outputs of the best-performing model, Llama-
3.3-70B. For each question and prompt configura-
tion, 8 responses are generated in both zero-shot
and few-shot modes, corresponding to the number
of folds that exclude the given question. From these
responses, we randomly select 3 per prompt con-
figuration for manual evaluation. To assess inter-
annotation agreement, 37.5% of the responses were
consistently assigned to all annotators, resulting in
a Fleiss’ kappa score of 0.7441, which indicates
substantial agreement.

Annotators had to label each response generated
by the model with one of the following tags: "In-
correct" if the answer does not help the user or
contains incorrect information, "Partially Correct"
if it is helpful but lacks some information, and
"Correct" if it helps the user and contains accurate
information.

6 Results

Table 1 presents the automatic metric values for
Llama-3.3-70B, the best-performing model, across
zero-shot and few-shot settings with the different
prompt configurations. The highest metric values
are achieved when the prompt combines game con-
text and state variable information, particularly in
the few-shot setting.

For the remaining models, G-Eval is the most
consistent metric across model sizes and versions.
Figure 2 shows zero-shot G-Eval results for all
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BLEU ROUGE-L F1 BERTScore R BLEURT G-Eval

Zero Shot

Vanilla 0.35 ± 0.07 9.58 ± 0.26 61.38 ± 0.27 48.18 ± 0.27 14.05 ± 0.79
GC 0.74 ± 0.10 11.90 ± 0.26 64.09 ± 0.61 48.78 ± 0.42 38.99 ± 1.55
GC + SV 0.70 ± 0.09 14.64 ± 1.04 65.51 ± 0.58 50.52 ± 0.43 39.43 ± 1.82

Few Shot

Vanilla 0.61 ± 0.14 12.64 ± 0.64 63.76 ± 1.25 47.38 ± 1.02 32.22 ± 2.90
GC 1.20 ± 0.29 13.76 ± 0.55 65.25 ± 0.84 48.84 ± 1.12 33.69 ± 2.16
GC + SV 1.19 ± 0.11 16.71 ± 1.42 66.77 ± 0.88 50.72 ± 0.73 43.83 ± 2.45

Table 1: Performance (Mean ± StdDev) of Llama-3.3-70B across Zero- and Few-Shot settings for the different
prompt configurations. In bold, highest values per metric (including StdDev).

Figure 2: Zero-Shot G-Eval result across all models
and prompt configurations

Figure 3: Zero-Shot vs. Few-Shot G-Eval results using
the GC + SV Prompt

models and prompts. It is clear that the GC + SV
Prompt consistently outperforms the other configu-
rations across all models. Furthermore, the G-Eval
metric shows a clear upward trend across all models
as the prompts progress from the Vanilla Prompt to
the GC Prompt and finally to the GC + SV Prompt,
highlighting the positive impact of incorporating
more information into the prompt on performance.

Focusing on the GC + SV Prompt, Figure 3
reveals that few-shot prompting enhances perfor-

mance for larger models but offers no benefit for
smaller models. This disparity likely stems from
the complexity of the few-shot examples, which
include game state variables represented in JSON
format for each case. Accurately interpreting this
detailed information appears to be a capability that
only the larger models can effectively manage.

Finally, the human evaluation results in Table
2 confirm that the GC + SV Prompt configura-
tion yields the best performance in both zero-shot
and few-shot settings, with improvements of up to
0.26 and 0.18 points on a 0-1 scale, respectively.
Moreover, results exhibit strong alignment with
automatic metrics, as indicated by Spearman cor-
relation values ranging from 0.714 (BLEU) to 1.0
(BERTScore Recall), with ROUGE-L, BLEURT,
and G-Eval achieving a correlation of 0.943. How-
ever, even with the optimal configuration, around
half of the responses are still labeled as "Incorrect,"
primarily due to the model’s inability to fully ac-
count for contextual variables. This highlights the
need for further advancements in modeling state
variables to ensure their more effective integration
into the LLM’s response generation process.

7 Conclusions and Future Work

This paper explores using LLMs as conversational
tutors in VR health and safety training, leveraging
game context and state variables as key contex-
tual information. Experiments show the best re-
sults when combining these contextual elements in
few-shot settings with large models. However, fur-
ther improvements are necessary in modeling state
variables to enhance their integration into LLM re-
sponses. Future work will refine the integration of
state variables, explore other VR training applica-
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Prompt Correct Partially Correct Incorrect

Zero Shot

Vanilla 7.2% 9% 83.8%
GC 28.1% 12% 59.9%
GC + SV 33.1% 14.4% 52.5%

Few Shot

Vanilla 15.3% 13.6% 71.1%
GC 28.2% 16.2% 55.6%
GC + SV 33.2% 16.2% 50.6%

Table 2: Human Evaluation results of Llama-3.3-70B
across prompt configurations.

tions, and investigate using prior conversation turns
as additional context.
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A Game Context and State Variables

This appendix provides an illustrative sample of
the game context and state variable structure.

Figure 4: Image of the VR training game for fire
extinguishing

A.1 Game Context Excerpt

A.1.1 Procedural Steps
The simulation procedure is structured in sequential
procedural steps. Each step includes detailed rea-
sons for its importance and potential consequences
if not followed. Below is the original text prompt
and Step 2.1 provided as a sample:
Below are the steps of the procedure included in

the simulation with their respective reasons
that explain why the action is correct if
performed and incorrect if not performed. Each
step ID is coded as ID:STAGE.STEP (e.g. ID:2.1
means stage 2, step 1).

ID:2.1

- Step: Take the fire extinguisher and check the
pressure gauge

- Reason why it should be done: By checking the
pressure gauge we will know if the
extinguisher has enough pressure for the
contents to be expelled.

- Reason why you shouldn 't forget to do it: If you
don 't pick up the fire extinguisher , you
won 't be able to do the rest of the exercise.
If we do not look at the pressure gauge , it
may happen that we lose time in performing
all the rest of the steps and that , when
using the extinguisher , it does not work due
to lack of pressure.

- Additional information: Before taking the
extinguisher , check that it is suitable for
the type of fire. Not all fire extinguishers
have a pressure gauge. If the gauge needle is
not in the green zone , either due to too much
or too little pressure , the fire extinguisher
should not be used.

A.1.2 Extinguisher and Fire Type
Incompatibility Errors

Errors related to selecting an incorrect extinguisher
for a fire class are also provided. Below are the
instructions and an excerpt showing fire Class A:

These errors check if, for a given fire class , the
extinguisher type is correct.

If the user has picked or is about to pick a type
of extinguisher that is not correct for the
current fire class , you must tell them.
Please , pay attention to which fire class can
be put off with which extinguisher. It is very
important to give the user accurate
information. If for a given fire class a type
of extinguisher is marked as an incorrect
action , discourage the user from using it!

{
"class A": {

"ABC": {
"correct ": true ,
"explanation ": "The extinguishing agent melts

over the elements ."
},
"Water": {

"correct ": true ,
"explanation ": "It performs a cooling action ."

},
"WaterSprayAFFF ": {

"correct ": true ,
"explanation ": "It cools and suffocates ."

},
"AFFF": {

"correct ": true ,
"explanation ": "It cools and suffocates ."

},
"CO2": {

"correct ": false ,
"explanation ": "CO2 extinguishers are

primarily for Class B fires. While it
may extinguish a Class A fire in theory ,
it is not ideal and is marked as
incorrect in the simulation ."

},
"CombustibleMetals ": {

"correct ": false ,
"explanation ": "This extinguisher is not

suitable for Class A fires."
}

}
}

A.1.3 Common Errors

Common error descriptions are included in the
game context with the corresponding action that
leads to them and the reason why they are problem-
atic.

Errors:

- Failure to check the fire extinguisher pressure
gauge before use

Action that leads to error: In cases where the
fire extinguisher has a pressure gauge , when
picking the extinguisher up, not looking at
the pressure gauge to check if it has
pressure.

Why it's wrong: If the extinguisher doesn 't have
pressure , you won 't be able to fire the
extinguishing agent effectively and you
won 't be able to put out the fire. It 's a
good idea to look at the pressure gauge when
picking it up so you don 't waste too much
time. In addition , approaching the fire
without knowing if the extinguisher is in
good condition can trigger a serious
accident.

- Not shaking the fire extinguisher
Action that leads to error: If the extinguisher

is made out of ABC powder or metals , not
shaking it before using it.

Why it's wrong: Failure to shake the extinguisher
causes the extinguisher product to not mix
properly and it may lose effectiveness.
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A.1.4 Navigation Aids
Finally, the system provides guidance to help users
complete the exercise when they appear to be strug-
gling. Below is an example scenario:
Aids to navigation:
Scenario 1
- Situation: The user does not remember how to move

using teleport.
- How to detect it: At the beginning of the

exercise , the user has not yet scrolled once
and pressed the A, B, X, or Y buttons several
times.

- What to tell the user: To move , you must press or
move the joystick of your controller.

A.2 State Variables Excerpt
Table 3 lists all the state variables used in the sim-
ulation, along with their nature and their default
values:

Variable Nature Default Val.
Check extinguisher pressure gauge Action No

Perform test shot Action No
Attack fire with zigzag movements Action No

Extinguish the fire Action No
Use correct extinguishing agent Action No

Shake the extinguisher Action No
Remove security pin Action No

Available extinguishing agents Context Water
Fire type Context Class A

Fire extinguisher has been
taken by the user

Context No

Extinguisher hose has been
taken by the user

Context No

Distance of user from fire Context 5
Is the fire in the operator’s line of sight Context Yes

Angular difference between
user’s orientation and fire position

Context 90

Fire with electrical component Context Yes
Fire percentage Context 0.5

Type of extinguisher on hand Context None
Scene Context Office

Distance of user from fire extinguisher Context 5

Table 3: List of State Variables along with their nature
and default value.
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B Prompts

B.1 Vanilla Prompt

Figure 5: Vanilla Prompt

B.2 Game Context Prompt

Figure 6: Game Context Prompt
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B.3 Game Context + State Variables Prompt

Figure 7: Game Context + State Variables Prompt


	Introduction
	Related work
	Use Case
	Proposed Approach
	Experiments
	Models
	Prompt configurations
	Test set
	Automatic evaluation
	Human evaluation

	Results
	Conclusions and Future Work
	Acknowledgments
	Game Context and State Variables
	Game Context Excerpt
	Procedural Steps
	Extinguisher and Fire Type Incompatibility Errors
	Common Errors
	Navigation Aids

	State Variables Excerpt

	Prompts
	Vanilla Prompt
	Game Context Prompt
	Game Context + State Variables Prompt


