
Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology, pages 176–182
May 27–30, 2025. ©2025 Association for Computational Linguistics

176

ScriptBoard: Designing modern spoken dialogue systems through visual
programming

Divesh Lala, Mikey Elmers, Koji Inoue, Zi Haur Pang, Keiko Ochi, Tatsuya Kawahara
Kyoto University Graduate School of Informatics

Japan
lala@sap.ist.kyoto-u.ac.jp

Abstract

Implementation of spoken dialogue systems
can be time-consuming, in particular for people
who are not familiar with managing dialogue
states and turn-taking in real-time. A GUI-
based system where the user can quickly un-
derstand the dialogue flow allows rapid proto-
typing of experimental and real-world systems.
In this demonstration we present ScriptBoard,
a tool for creating dialogue scenarios which
is independent of any specific robot platform.
ScriptBoard has been designed with multi-party
scenarios in mind and makes use of large lan-
guage models to both generate dialogue and
make decisions about the dialogue flow. This
program promotes both flexibility and repro-
ducibility in spoken dialogue research and pro-
vides everyone the opportunity to design and
test their own dialogue scenarios.

1 Introduction

In spoken dialogue system (SDS) research the
methodology or tools used to create interactions
is often not fully described. A common approach
is to use finite state machines, but these may grow
unwieldy with more complex interactions because
of the large number of states. Behavior trees are
another approach that is used for AI in video games
(Colledanchise and Ögren, 2018), but program-
ming these may require a steeper learning curve.

Researchers who are unfamiliar with implement-
ing SDSs often need time to learn how to manage
aspects such as turn-taking and handling dialogue
states in real-time systems, where human and robot
turns are not neatly separated and system interrup-
tions can be frequent. With no existing standards
for the design of SDSs, researchers need to cre-
ate even simple interactions from scratch. Further-
more, it is often difficult for these interactions to be
reused and modified by others if they are written
exclusively using code with no graphical interface.

We propose that due to the above issues a GUI

should be used to assist in quickly designing repli-
cable spoken dialogue interactions. There are sev-
eral visual programming approaches which have
been used in the literature, but these were devel-
oped before the rise of two research fields in SDSs
- large language models (LLMs) and multi-party
interactions. An updated approach would need to
accommodate these aspects in the system. LLMs
drastically reduce the number of dialogue genera-
tion states needed in a visual programming inter-
face since one LLM node can handle both natural
language understanding (NLU) and response gen-
eration. Therefore the graphical design of complex
interactions becomes more viable for novice users.

In this demonstration we present ScriptBoard
(Script Builder Offering Assistance with Robot
Dialogue), a visual programming system which can
be used to quickly develop SDSs. ScriptBoard has
the ability to handle multiple human participants,
integrates prompt-based LLMs into the dialogue
flow, and handles spoken dialogue features such
as silence and barge-in. Our program allows re-
searchers to create spoken dialogue scenarios for
both real-world implementation and experiments.

The system is written in Python using the PyQT
package for the graphical interface. In this work
we define the “user” as a person who designs the di-
alogue scenario and the “participant” as the person
who is actually involved in the interaction.

2 Related Work

Similar visual systems to manage robot interactions
have been implemented in previous works (Nakano
and Komatani, 2024; Groß et al., 2023; Michael,
2020; Koller et al., 2018; Lison and Kennington,
2016; Glas et al., 2016; Pot et al., 2009). These
often make use of a state-machine design in which
the states of an interaction are set by the user and
tracked during the interaction. State transitions in
spoken dialogue systems are often triggered by au-



177

tomatic speech recognition (ASR) results, however
this may not be appropriate for scenarios such as
conversation where deciding when to speak (i.e.
turn-taking) is crucial for smooth interactions.

Another issue is systems which are tightly cou-
pled with a specific robot platform. For example,
IrisTK is used to design interactions for Furhat
(Skantze and Al Moubayed, 2012) and Chore-
ographe (Pot et al., 2009) is used for the NAO
robot. It would be preferable if users were able to
reproduce interactions with different robots, partic-
ularly for comparative evaluation. Existing systems
are also usually made with the assumption of one-
to-one interaction. IrisTK is made for multi-party
interaction, however this is based on XML code
and may be somewhat difficult for novice users.
This issue of usability is also critical. Some sys-
tems such as Interaction Composer (Glas et al.,
2016) and DialogOS (Koller et al., 2018) focus
on making the interface understandable to novice
users while more powerful systems such as RISE
(Groß et al., 2023) are targeted towards researchers
and may require more expert knowledge.

Recent technological advances mean that even
novice users can use LLMs to generate dialogue
without needing any low level programming as they
can use prompt-based inputs to direct the system. A
tool which could assist users to design SDS scenar-
ios in this way would be ideal for rapid prototyping
and testing. Frameworks such as Retico (Michael,
2020) and DialBB (Nakano and Komatani, 2024)
integrate LLMs into their systems although they are
less focused on visual programming. Scriptboard
allows users to do everything within the GUI.

3 System Architecture

ScriptBoard is not a spoken dialogue system itself,
but communicates with an external controller using
TCP/IP messaging. The external controller handles
speech recognition input from the user and turn-
taking and sends this information to ScriptBoard.
This information is then processed using the sce-
nario created in the GUI by the user of ScriptBoard
to decide the robot’s behavior. ScriptBoard mes-
sages are then parsed by the controller and used for
behavior generation.

Natural language processing and dialogue gen-
eration can be done through simple keyword com-
parators, but ScriptBoard allows users to use LLMs
in their scenarios. This approach simplifies the
creation of interaction scenarios because the user

can hand off complex tasks to the LLM rather
than handcrafting individual dialogue states for the
robot.

Figure 1: ScriptBoard architecture. Communica-
tion with the external controller is done through an
environment-independent messaging system.

Figure 1 shows this general architecture of
ScriptBoard. Communication with the controller
is done only through messaging, meaning it can
interface with any compatible external system and
is independent of any robot or agent, speech recog-
nition or text-to-speech (TTS) system.

4 User Interface

The user interface of ScriptBoard is based on the
paradigm of dialogue states which has been used in
previous visual programming systems (Glas et al.,
2016). It uses a drag-and-drop mechanism in which
the user can place states (also known as nodes) on
the canvas. For a node, the leftmost connector rep-
resents an inbound connection to the node, while
connectors on the right represent transitions out of
the node. Users connect these by dragging lines to
other nodes to visually represent the dialogue flow.

We use Figure 2 as a reference interaction for



178

Figure 2: The GUI of ScriptBoard showing a simple interaction in a multi-party setting where the system greets
each participant one at a time using LLM outputs.

this work. The toolbar at the top of the GUI con-
tains various nodes for the scenario. We create
this interaction by connecting the following nodes
which we will describe in more detail.

Human turn node which processes speech
from the participant

Sets the target participant

Generates dialogue for the robot (handcrafted)

Generates dialogue for the robot using a Chat-
GPT response

Controls dialogue flow based on output from
ChatGPT

In the interaction in Figure 2, the system detects
who responds first and then asks how they are. The
first dialogue is automatically generated by Chat-
GPT. The system then asks the next participant the
same question, but in this case the ChatGPT output
is simply the predicted emotion of the participant’s
preceding utterance. This output (happy, sad, angry
or other) is then used as a condition to the corre-
sponding handcrafted dialogue. We now describe
the details of these nodes.

4.1 Setting the environment
Before a scenario can be executed the user must set
the environment of the interaction by specifying the
number of participants and their user identification
numbers. Every ASR result received must be as-
sociated with a corresponding ID. One participant
may also be assigned as the “target” participant and
this can be changed during the interaction.

This feature is necessary for handling multi-
party interaction. ScriptBoard users can decide
which participant(s) the robot should listen to and
choose dialogue flows depending on who is speak-
ing. It allows users to set roles related to each par-
ticipant in advance and track them over the course
of the interaction.

In addition, the user may set a number of vari-
ables to track during the interaction which can be
modified. These variables are used as conditions to
change the dialogue flow and are strictly enforced
as either string, integer, float or boolean types.

Click to set information about the participants
in the interaction

Click to set variables tracked during the inter-
action

4.2 Human turn nodes
ScriptBoard is driven by conversational turn states.
There are four basic states which occur in a basic



179

cycle: human turn, offer to robot, robot turn and of-
fer to human. The decision on the turn-taking state
is made by the external controller, which sends turn
update messages to ScriptBoard.

The human turn node is entered during the hu-
man turn state, and waits for user utterances. The
node adds any incoming ASR result to the dialogue
history of the relevant participant. ASR results
need to be tagged with the corresponding ID num-
ber so that this dialogue history is accurate.

The system waits for an ASR result and/or the
end of a participant’s turn, which is notified by the
external controller. Users can set conditions for
either, such as whether the string contains a word,
starts with or ends with a certain string(s) or is over
a certain length. Conditions for a participant’s ut-
terance are checked as soon as an ASR result is
received, while conditions for a participant’s turn
are checked as soon as the turn state changes to of-
fer to robot, or in the case of multiple participants,
the human turn state changes to a different partici-
pant. The user can also define whether a condition
is for a particular participant, or a defined target or
non-target participant or both.

Multiple conditions can be set for a human node
which are checked sequentially. Each of these will
generate a connector allowing them to be connected
to other nodes. Figure 3 shows the two conditions
used for the first (leftmost) human turn node in
Figure 2. The first condition is if the target par-
ticipant’s turn is more than 10 words. The next
condition consists of two sub-conditions - the non-
target’s utterance contains the word “hello” and
is more than 10 words. Figure 2 shows that this
second condition branches to a node which sets the
participant with ID 2 as the new target.

Figure 3: Human state window displaying the two con-
ditions in Figure 2’s scenario.

4.3 Robot nodes and LLM integration

Robot nodes specify dialogue to be generated by
the system. The user can handcraft the dialogue
themselves and specify speech tags and gaze which

send extra information which may be used by the
external robot controller. The interaction in Figure
2, shows examples of this node when the robot says
“Hello there” and “How are you today?”.

The approach described above of checking and
comparing keywords and then manually generat-
ing a response is somewhat naive and impracti-
cal for many situations. Nowadays state-of-the-art
LLMs are able to do both NLU and response gen-
eration tasks which greatly reduces the amount of
effort needed to build an effective dialogue system.
ScriptBoard integrates LLMs directly into the GUI
through the use of a robot GPT node which uses
the ChatGPT API.

With this node the user may opt to use ChatGPT
to generate the response using prompts. Script-
Board must be connected to an external ChatGPT
program which can use the API. This program is in-
cluded in the ScriptBoard package. The user types
in their prompt directly and ScriptBoard will send
the prompt and generate the response received from
ChatGPT. Dialogue history can also be appended
to augment the prompt. The user can also define
how many turns and which participant’s dialogue
should be used from the dialogue history. In Figure
2, the robot GPT node labeled “Respond with emo-
tion” will generate a ChatGPT response. It uses the
prompt “Generate an empathetic response to the
following utterance” and specifies the most recent
turn of the target participant.

The robot node will wait until the robot has said
its utterance (either handcrafted or generated) be-
fore exiting to the next node. This notification is
received by a message from the external controller.
Therefore it is necessary for the controller to know
exactly when the robot has stopped its speech.

4.4 Dialogue flow management
To manage dialogue for more complex interactions,
the user may wish to adapt the dialogue flow de-
pending on conditions which are not related to par-
ticipants’ ASR results. ScriptBoard allows this
control depending on variables or LLM output.

The variables specified in the initial setup of the
interaction can be used to check for conditions and
control dialogue flow. ScriptBoard contains a node
which can be used to directly set the value of a
variable during an interaction. For example, an age
variable might be used to store the participant’s age
after being prompted by the system. Another node
is then used to control the dialogue flow depend-
ing on this value. This node can then be used to



180

produce different dialogue depending on age.
A similar method can be used to set variables

based on results from LLMs. The user can specify
prompts to generate a value rather than dialogue
and store this in a variable. Assume that there
is a variable named emotion to store the emotion
of the participant. The user firstly chooses the
node which stores the ChatGPT result in emotion.
They can then use a prompt such as “Output the
sentiment of the following utterance. The possible
sentiments are happy, sad, or angry”. When this
node is reached, the output of ChatGPT is stored
in emotion and then the variable decision node can
be used to control the flow depending on the value.

Another method is available where the output of
ChatGPT is directly used without needing a vari-
able. In this case the user can specify prompting as
usual, but they can also control the dialogue flow
depending on ChatGPT’s output. Figure 4 shows
an example of this when the robot asks the sec-
ond participant how they are. In this case, once
the prompt is processed, the user specifies which
conditions should be checked against ChatGPT’s
output, expecting either “happy”, “sad” or “angry”.
Four conditions are created (one is an “else” condi-
tion) and these can be connected to other nodes to
control dialogue flow.

Figure 4: Robot GPT window showing the specified
conditions for Predict Emotion.

5 Additional Features

For more complex SDSs, ScriptBoard has several
other unique features for helping users customize
their own scenarios.

5.1 Silence and barge-in
The system also contains features which handle
phenomena that are specific to spoken dialogue sys-
tems. The first of these is silence. Silence messages
are sent from the external controller. In the human
turn state, the user can specify a condition which
is triggered on silence for a specified time period.
Use cases for this condition include prompting the
user to speak or to end the interaction.

The system also has functionality to handle
barge-in, the interruption of a system utterance

from the user. This is again triggered from the ex-
ternal controller which sends a message whenever
barge-in is detected. Note that the actual barge-in
model and interruption of the system’s TTS is han-
dled by the external controller, not by ScriptBoard.
Our system simply allows the user to define the
dialogue flow which occurs when barge-in occurs.

5.2 Extendability
Although we use ChatGPT as the default LLM in
this work, ScriptBoard also allows researchers to
integrate their own models into the dialogue sce-
nario through TCP connections. The input utter-
ances for a model can be specified and resulting
dialogue used in the interaction. This allows for
quick prototyping and evaluation of SDSs.

In addition to LLMs, other types of conversa-
tional models can be triggered by ScriptBoard,
by customizing message protocols. In our work
we have successfully executed backchannelling
and laughter models for a robot through this pro-
cess. ScriptBoard also allows users to use a node
to launch their own customized Python functions,
making it a useful tool for proficient programmers.

6 System Usage

Once the user has created their dialogue scenario
and it is connected to the external controller, they
can simply push the “Play” button in the top tool-
bar to start the interaction. The user can view the
dialogue history and the variables in the scenario
through a monitoring window. The GUI also fo-
cuses the viewpoint on the current node to let the
user know exactly where they are in the scenario,
allowing them to visually track its progress. This
is useful for debugging the logic of the scenario or
identifying areas of improvement.

The scenario should run autonomously until
there are no more connected nodes, but it is possi-
ble for an interaction to run in a loop. ScriptBoard
can be for a diverse number of systems and robots.
We describe one such implementation in a multi-
party setting.

6.1 Multi-party attentive listening
This scenario was conducted in a public exhibition
using a CommU robot1. It required two partici-
pants and a robot who would engage in an atten-
tive listening dialogue. A microphone array sepa-
rated each participant’s voice so speech recognition

1https://resou.osaka-u.ac.jp/en/research/2015/
20150120_2

https://resou.osaka-u.ac.jp/en/research/2015/20150120_2
https://resou.osaka-u.ac.jp/en/research/2015/20150120_2


181

could be performed on multiple channels simulta-
neously (Ishikawa et al., 2024). There were three
parts to this scenario as shown in Figure 5:

1. Introduction in which robot greets both partic-
ipants and explains attentive listening.

2. Attentive listening dialogue where robot lis-
tens to each participant one at a time for one
minute.

3. A tongue twister game to demonstrate how the
robot can listen to two people at once. Partici-
pants said a designated tongue twister together
and the robot played back their separated au-
dio then announced a winner.

Figure 5: Overview of attentive listening scenario. The
robot first acts as an explainer then as an attentive lis-
tener before participants play a simultaneous speaking
game.

The first part required that the robot act as an
explainer by gazing between both participants and
acknowledging them as part of the scenario. Script-
Board was used to receive confirmation utterances
from both participants. It could also set each par-
ticipant as a gaze target by simply including this
information with the robot’s utterance.

For the second part we used ScriptBoard to have
the robot act as an attentive listener. Responses
were generated using a prompt which generated
attentive listening style responses. We used a timer
which would end the dialogue after a set amount
of time. A backchannel model was called so that it
would run during attentive listening.

For the tongue twister game the robot had to re-
ceive both participants’ ASR simultaneously, use
it to decide the winner of the game and also play
back their separated audio channel. ScriptBoard
processes ASR from both participants and this was
made simple through designing the scenario’s envi-
ronment. Playback and deciding the winner could
also be achieved through customized functions.

6.2 Other usages
The above scenario describes a mostly chatting-
based interaction. However ScriptBoard is not lim-
ited to these types of interactions and should also

be able to reliably handle task-based interactions
by using LLMs and an appropriate prompt. Further-
more, because ScriptBoard is driven by turn-taking,
these are abstracted from the type of interaction and
so can be used in any spoken dialogue scenario.

As an example of the above, we have also used
ScriptBoard to control a job interview task in En-
glish with an android robot (Pang et al., 2024). Al-
though this task requires a different style of talk and
a slightly longer time between turns, ScriptBoard
was able to manage this interaction in a mostly
linear dialogue flow.

ScriptBoard can even be used without needing
any robot (such as a voice assistant) since it only
outputs messages containing a response. Any con-
nected system can receive this message and decide
how it should be executed.

6.3 Reproducibility

SDS literature often describes human-robot con-
versational systems used in experiments and field-
work, but it is difficult for others to use the system
or create the same scenario without the available
source code. ScriptBoard scenarios are saved as
a JSON file to make them reproducible. Another
ScriptBoard user can then easily load and test this
scenario in their own environment.

Furthermore, scenarios written in ScriptBoard
can be easily applied to other robots. In the job
interview system described above, we used two
different robots (Pang et al., 2025) each running
the same ScriptBoard scenario, demonstrating how
the same dialogue logic can be used in different
robots. This would allow researchers to share their
dialogue system and allow others to test in their
own particular robot.

7 Conclusion

We demonstrate the ScriptBoard system, which we
use to design and implement spoken dialogue sys-
tems using visual programming. ScriptBoard uses
turn states as a basis for dialogue management and
incorporates recent advances in LLM technology
and multi-party scenarios. It is independent of any
agent or robot and we have used it in different types
of scenarios to demonstrate its capabilities.

Acknowledgments

This work was supported by JST Moonshot R&D
Goal 1 Avatar Symbiotic Society Project (JP-
MJPS2011).



182

References
Michele Colledanchise and Petter Ögren. 2018. Behav-

ior trees in robotics and AI: An introduction. CRC
Press.

Dylan F. Glas, Takayuki Kanda, and Hiroshi Ishiguro.
2016. Human-robot interaction design using inter-
action composer: Eight years of lessons learned. In
The Eleventh ACM/IEEE International Conference
on Human Robot Interaction, HRI ’16, page 303–310.
IEEE Press.

André Groß, Christian Schütze, Mara Brandt, Britta
Wrede, and Birte Richter. 2023. Rise: an open-
source architecture for interdisciplinary and repro-
ducible human–robot interaction research. Frontiers
in Robotics and AI, 10.

Yuto Ishikawa, Kohei Konaka, Tomohiko Nakamura,
Norihiro Takamune, and Hiroshi Saruwatari. 2024.
Real-time speech extraction using spatially regular-
ized independent low-rank matrix analysis and rank-
constrained spatial covariance matrix estimation. In
2024 IEEE International Conference on Acoustics,
Speech, and Signal Processing Workshops (ICAS-
SPW), pages 730–734.

Alexander Koller, Timo Baumann, and Arne Köhn.
2018. Dialogos: Simple and extensible dialogue
modeling. In Interspeech 2018, pages 167–168.

Pierre Lison and Casey Kennington. 2016. OpenDial: A
toolkit for developing spoken dialogue systems with
probabilistic rules. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 67–72, Berlin, Germany.
Association for Computational Linguistics.

Thilo Michael. 2020. Retico: An incremental frame-
work for spoken dialogue systems. In Proceedings
of the 21th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 49–52, 1st
virtual meeting. Association for Computational Lin-
guistics.

Mikio Nakano and Kazunori Komatani. 2024. DialBB:
A dialogue system development framework as an edu-
cational material. In Proceedings of the 25th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 664–668, Kyoto, Japan. Associ-
ation for Computational Linguistics.

Zi Haur Pang, Yahui Fu, Divesh Lala, Mikey Elmers,
Koji Inoue, and Tatsuya Kawahara. 2024. Human-
like embodied AI interviewer: Employing android
ERICA in real international conference. In COLING.
(to appear).

Zi Haur Pang, Yahui Fu, Divesh Lala, Mikey Elmers,
Koji Inoue, and Tatsuya Kawahara. 2025. Does the
appearance of autonomous conversational robots af-
fect user spoken behaviors in real-world conference
interactions? Preprint, arXiv:2503.13625.

E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier. 2009.
Choregraphe: a graphical tool for humanoid robot

programming. In RO-MAN 2009 - The 18th IEEE
International Symposium on Robot and Human Inter-
active Communication, pages 46–51.

Gabriel Skantze and Samer Al Moubayed. 2012. Iristk:
a statechart-based toolkit for multi-party face-to-face
interaction. In Proceedings of the 14th ACM Interna-
tional Conference on Multimodal Interaction, ICMI
’12, page 69–76, New York, NY, USA. Association
for Computing Machinery.

https://doi.org/10.3389/frobt.2023.1245501
https://doi.org/10.3389/frobt.2023.1245501
https://doi.org/10.3389/frobt.2023.1245501
https://doi.org/10.1109/ICASSPW62465.2024.10627448
https://doi.org/10.1109/ICASSPW62465.2024.10627448
https://doi.org/10.1109/ICASSPW62465.2024.10627448
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/2020.sigdial-1.6
https://doi.org/10.18653/v1/2020.sigdial-1.6
https://doi.org/10.18653/v1/2024.sigdial-1.56
https://doi.org/10.18653/v1/2024.sigdial-1.56
https://doi.org/10.18653/v1/2024.sigdial-1.56
https://arxiv.org/abs/2503.13625
https://arxiv.org/abs/2503.13625
https://arxiv.org/abs/2503.13625
https://arxiv.org/abs/2503.13625
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1145/2388676.2388698
https://doi.org/10.1145/2388676.2388698
https://doi.org/10.1145/2388676.2388698

	Introduction
	Related Work
	System Architecture
	User Interface
	Setting the environment
	Human turn nodes
	Robot nodes and LLM integration
	Dialogue flow management

	Additional Features
	Silence and barge-in
	Extendability

	System Usage
	Multi-party attentive listening
	Other usages
	Reproducibility

	Conclusion

