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Abstract 

In Retrieval-Augmented Generation 

(RAG) systems efficient information 

retrieval is crucial for enhancing user 

experience and satisfaction, as response 

times and computational demands 

significantly impact performance. RAG 

can be unnecessarily resource-intensive for 

frequently asked questions (FAQs) and 

simple questions. In this paper we introduce 

an approach in which we categorize user 

questions into simple queries that do not 

require RAG processing. Evaluation results 

show that our proposal reduces latency and 

improves response efficiency compared to 

systems relying solely on RAG. 

1 Introduction 

Since the launch of ChatGPT in November 2022, 

conversational systems powered by Large 

Language Models (LLMs) have gained widespread 

adoption, allowing users to ask questions with the 

expectation of receiving accurate, factual answers 

(McTear and Ashurkina 2024; Mohamadi et al. 

2023; Skjuve et al. 2024).  

However, the responses of LLMs are not always 

accurate or even up-to-date. Although LLMs are 

trained on vast datasets, they may lack access to 

domain specific information, such as data from a 

company’s internal database. The knowledge of an 

LLM is limited to the training data's cut-off date, 

resulting in potential obsolescence. Moreover, 

unlike traditional retrieval systems, where 

knowledge is stored explicitly in structures such as 

knowledge graphs, LLMs encode knowledge 

implicitly within their model parameters, making 

information retrieval less transparent and 

potentially less reliable (Yang et al. 2024; Zhu et al. 

2024). 

Retrieval-Augmented Generation (RAG) has 

been developed as a method to address these 

limitations by combining the generative 

capabilities of LLMs with real-time information 

retrieval from external sources (Lewis et al. 2021). 

In RAG, external documents are embedded into 

vector representations and stored in a specialized 

vector database. When a user submits a query, it is 

similarly vectorized and used to retrieve relevant 

documents. These documents are then integrated 

with the query and sent to the LLM for inference, 

ensuring that the generated response is based 

exclusively on the retrieved information. This 

hybrid approach enables RAG systems to deliver 

accurate, up-to-date, and context-specific answers 

(Gao et al. 2023; Huang and Huang, 2024). 

The effectiveness of RAG systems has been 

demonstrated across various domains. Kharitonova 

et al. (2024) evaluated a RAG-based question-

answering system for mental health support by 

embedding documents containing clinical practice 

guidelines. Their results highlighted the system’s 

ability to deliver answers that were coherent, 

accurate, and supported by scientific evidence. 

Similarly, Olawore et al. (2025) described a RAG-

based system designed to provide information 

about university fees, departments, facilities and 

other administrative details. Their findings showed 

that the system retrieved relevant and accurate 

information more effectively than standalone 

LLMs. Furthermore, the system enabled 

transparency and accountability by allowing users 

to trace each response back to its original source 

within the university dataset. 

One significant drawback of RAG is that it is 

computationally expensive, particularly at the 

retrieval and inference stages. Processing 

frequently asked questions through the entire RAG 

workflow is both inefficient and costly. A more 

effective approach involves using a semantic 

cache, capable of handling variations and 

paraphrases of queries while returning consistent 

responses. On receiving a new request, the system 
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first checks if a similar request has been processed 

previously. If so, it retrieves the stored response 

from the cache, bypassing the need to re-execute 

the complete RAG workflow (Alake et al. 2024; 

Mortro 2025; Siriwardhana et al. 2023). This 

approach reduces redundant computations and can 

also minimize end-to-end latency. For instance, Jin 

et al. (2024) introduced and evaluated a cache-

based system called RAGCache across various 

models and workloads, demonstrating a 4x 

reduction in time to first token generation.  

Zhao et al. (2024) proposed a four-level query 

classification system based on data requirements 

and reasoning complexity, encompassing explicit 

fact queries, implicit fact queries, and interpretable 

and hidden rationale queries. They introduce 

different methods for integrating external data with 

queries at each classification level. Explicit fact 

queries can be answered directly using the 

provided data, while the other types of queries 

require additional processing and access to external 

resources. 

In this paper, we argue that explicit fact queries 

can be treated similarly to frequently asked 

questions, thereby bypassing the RAG workflow. 

On receiving a new query, the system first 

determines if the query has been asked before. If it 

has, the stored response is retrieved. If not, the 

system checks whether the query qualifies as an 

explicit fact query and retrieves the corresponding 

answer. For other query types, the RAG workflow 

is invoked. Additionally, queries of any type that 

are asked and resolved a certain number of times 

can also be added to the semantic cache for 

frequently asked questions. Our approach 

significantly reduces computational costs and 

latency in question-answering systems. In the 

following sections, we present a preliminary 

investigation into these concepts, offer 

experimental results addressing latency reduction, 

and conclude with recommendations for future 

work. 

2 Methodology 

Our proposal approach enhances RAG chatbot 

capabilities through question classification and a 

routing mechanism, optimized to process queries 

of varying complexity. The main objective is to 

significantly improve computational efficiency and 

latency compared to traditional RAG-based 

conversational agents that uniformly process all 

queries through the entire pipeline. At the core of 

this system lies a classifier that determines whether 

to bypass the retrieval stage for straightforward 

queries or engage the full retrieval pipeline for 

complex questions requiring additional factual 

support.  

As Figure 1 shows, the proposed hybrid 

architecture comprises three distinct stages: 

classification, retrieval, and generation. In the 

classification stage, incoming queries are analysed 

to determine their complexity and information 

requirements. Simple queries that can be addressed 

directly proceed immediately to the generation 

stage, while complex queries that necessitate 

additional context are routed through the retrieval 

pipeline. This selective engagement of the retrieval 

mechanism represents a key optimization in our 

design, substantially reducing the computational 

overhead associated with unnecessary document 

retrieval and processing. 

2.1 Data Preparation 

The dataset is a curated dataset 𝑄𝑃 comprising 

predefined key-value pairs of 100 questions and 

answers together with an unstructured dataset for 

the RAG pipeline. The unstructured data contains 

information about courses at the Faculty of 

Computing, Engineering, and the Built 

Environment (CEBE) at Ulster University. The 

key-value pairs consists of questions and answers 

related to CEBE, which were generated using an 

LLM and manually selected based on their 

semantic simplicity and brevity, ensuring they 

address straightforward queries efficiently. The 

selection process employs metrics such as semantic 

complexity and query length to classify a question 

as "simple". Each pair in 𝑄𝑃 undergoes pre-

Figure 1: Optimized RAG chatbot architecture, 

classifying queries as simple (predefined responses) 

or complex (retrieval and LLM-generated responses). 
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processing to standardize formats and optimize 

retrieval: 

𝑄𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝑄𝑃)

This standardized dataset serves as a 

lightweight response mechanism for simple 

queries, bypassing the computational overhead 

associated with RAG-based inference. 

2.2 Question Classification Framework 

Users interact with the system through a chatbot 
interface. During query processing, each incoming 

user query 𝑄 undergoes an initial complexity 

assessment to determine its appropriate response 

strategy. The classification mechanism evaluates 𝑄 

across multiple dimensions, such as semantic 

complexity, query length, and contextual 

requirements. 

𝐶(𝑄) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝑄 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

A machine learning-based classification model, 

trained on an annotated dataset of questions using 

logistic regression, serves as the backbone of this 

routing system. The model differentiates between 

simple questions, which can be directly resolved 

using predefined answers, and complex questions 

that necessitate retrieval and generative reasoning 

steps. For simple queries, the predefined response 

is retrieved. 

For complex queries, the model invokes the 

RAG pipeline to produce an informed response. 

This dual-response strategy reduces computational 

overhead by leveraging predefined answers when 

possible, while ensuring nuanced processing for 

more intricate queries. The dynamic classification 

and routing approach ensures optimal performance 

and adaptability in handling a diverse range of user 

queries. 

2.3 State Management 

To ensure optimal system performance and 

mitigate latency across the hybrid architecture, the 

predefined key-value question-answer pairs are 

designed to enhance computational efficiency. 

When a query 𝑄 arrives, it is first transformed into 

a vectorized embedding (𝑄), which is stored in the 

system state: 

𝐸(𝑄) = 𝐸𝑚𝑏𝑒𝑑 (𝑄) 

The classification model processes (𝑄) to 

predict the query type, determining whether it 

aligns with predefined responses or requires 

retrieval-augmented generation (RAG). If the 

classifier identifies 𝑄 as likely resolvable via the 

predefined dataset, the system searches for a 

semantically similar question within the stored 

embeddings (𝐷). The best-ranked candidate is 

retrieved and evaluated against a predefined 

similarity threshold 𝜏: 

𝑀𝑎𝑡𝑐ℎ(𝑄) = 𝐴𝑟𝑔𝑀𝑎𝑥 (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸(𝑄), 𝐸(𝐷)))≥ 

𝜏 

If the similarity score satisfies the threshold, the 

corresponding predefined response is returned. 

Otherwise, the RAG pipeline is invoked to process 

the query. As more queries are processed, repeated 

patterns are identified and dynamically added to 

the predefined question-answer management 

system. This iterative process ensures continuous 

improvement of the system’s predefined state, 

reducing the reliance on real-time retrieval for 

frequently encountered queries. By maintaining a 

balance between the predefined response 

mechanism and the RAG pipeline, the system 

sustains responsiveness and minimizes 

computational overhead. 

2.4 RAG Pipeline 

The RAG pipeline manages queries that are 

considered complex or infrequent. The RAG 

module is made up of two major components: the 

retriever and the generator. The retriever used a 

dense embedding model to locate relevant 

documents within the prepared corpus, ensuring 

that the most semantically similar content was 

selected. The generator on the other hand is 

powered by a transformer-based model, generating 

a coherent and contextually relevant response 

using the retrieved documents (Olawore et al. 

2025). 

2.5 Performance Evaluation 

We have completed a preliminary evaluation 

comparing our RAG_HYBRID proposal with a 

RAG-only approach. We have used classic metrics 

such as accuracy, precision, recall, and F1-score to 

assess the relevance and precision of the chatbot’s 

responses. These metrics provide a robust 

framework for evaluating the alignment of the 

chatbot’s outputs with expected answers, ensuring 

the system’s ability to deliver accurate and 

contextually appropriate responses. 

To assess performance, we have measured 

latency. Latency was determined by recording the 
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time elapsed between the submission of a query 

and the chatbot’s final response. This analysis 

demonstrated the hybrid system's efficiency in 

reducing response times, highlighting its potential 

for improving user experience in real-time 

applications. 

Additionally, the RAG_HYBRID’s CPU 

utilization was evaluated and compared with the 

RAG-only solution. CPU usage was measured by 

logging the average processor consumption during 

query processing and the generation of the final 

response. This analysis provided insights into the 

computational efficiency of the hybrid architecture, 

emphasizing its ability to manage resource 

utilization while maintaining responsiveness. 

3 Results 

The evaluation result shows the effectiveness of the 

RAG-hybrid chatbot. Figure 2 shows the plot of the 

latency comparison between RAG-hybrid an 

RAG-only. 

   The plot illustrates a clear latency advantage of 

the RAG_HYBRID system over the RAG_ONLY 

system across 100 queries, consisting of 57 simple 

questions and 43 complex questions. 

RAG_HYBRID consistently demonstrates lower 

response times with minimal fluctuations, while 

RAG_ONLY exhibits significant spikes, exceeding 

6 seconds for some queries. These results highlight 

the efficiency of the RAG_HYBRID system in 

leveraging predefined answers to maintain low 

latency and reduce computational overhead. 

    Also, in terms of processing needs, Figure 3 

demonstrates a notable difference in CPU usage 

between the RAG_HYBRID and RAG_ONLY 

systems across the 100 test queries. 

RAG_HYBRID consistently exhibits lower CPU 

utilization, maintaining efficiency and avoiding 

significant spikes, while RAG_ONLY shows 

pronounced peaks, with usage exceeding 3.5% for 

certain queries. These results highlight the 

computational efficiency of the RAG_HYBRID 

approach, which leverages predefined answers to 

reduce the processing burden, compared to the 

RAG_ONLY system that relies on resource-

intensive retrieval and generation processes. The 

edge cases in RAG_HYBRID are situations where 

the chatbot had to respond to users’ queries with 

RAG.  

Finally, Table 1 shows that the RAG-hybrid 

chatbot achieves outstanding performance, with 

98% accuracy and recall, a perfect precision of 

1.00, and an F1-score of 0.99. These results 

highlight its reliability and effectiveness in 

delivering accurate and relevant responses. 

Accuracy Precision Recall F1score 

RAG-

Hybrid 

0.98 1.00 0.98 0.99 

4 Conclusions and Future Work 

This study introduced a hybrid RAG chatbot 

architecture that efficiently combines predefined 

question-answer pairs with retrieval-augmented 

generation, demonstrating notable improvements 

in latency, CPU usage, and overall accuracy 

compared to RAG-only solutions. These results 

highlight the system's efficiency and scalability for 

real-time conversational AI. 

Future efforts will focus on enhancing the 

classification model to adapt to evolving query 

patterns and integrating advanced language models 

to handle complex queries more effectively. We 

will also explore other methods of mitigating 

Figure. 2: Latency comparison between rag_hybrid 

and rag_only. 

Figure. 3: Comparison of CPU usage between 

rag_hybrid and rag_only. 

Table 1: Performance metrics of the RAG hybrid 

model. 
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computational expense. An extended evaluation of 

our proposal in real-world scenarios and the 

incorporation of user experience metrics will also 

contribute to further evidence of its practical utility. 
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