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Abstract

Large language models (LLMs) gained im-
mense popularity due to their impressive capa-
bilities in unstructured conversations. Empow-
ering LLMs with advanced prompting strate-
gies such as reasoning and acting (ReAct) (Yao
et al., 2022) has shown promise in solving com-
plex tasks traditionally requiring reinforcement
learning. In this work, we apply the ReAct strat-
egy to guide LLMs performing task-oriented di-
alogue (TOD). We evaluate ReAct-based LLMs
(ReAct-LLMs) both in simulation and with real
users. While ReAct-LLMs severely underper-
form state-of-the-art approaches on success rate
in simulation, this difference becomes less pro-
nounced in human evaluation. Moreover, com-
pared to the baseline, humans report higher sub-
jective satisfaction with ReAct-LLM despite its
lower success rate, most likely thanks to its
natural and confidently phrased responses.

1 Introduction

Task-oriented Dialogue (TOD) systems solve tasks,
such as accessing information or booking places
and tickets, by interacting with humans in natu-
ral language (Budzianowski et al., 2018; Rastogi
et al., 2020). Traditional TOD pipelines integrate
specialized components for natural language un-
derstanding (NLU), dialogue state tracking (DST),
dialogue management and natural language genera-
tion (NLG), and optionally speech recognition and
synthesis (Ultes et al., 2017). On the other hand,
end-to-end architectures model all components in
a single neural networks (Wen et al., 2017; Zhu
et al., 2020, 2022). Both approaches are costly
to develop, requiring manual engineering and/or
collecting large dialogue corpora. Large language
models (LLMs) (Ouyang et al., 2022) offer an alter-
native to this by generalizing from instructions or a
small number of examples and promise fluent and
natural replies. However, unlike standard LLM use
scenarios, task-oriented dialogues typically have

a rigid structure and require access to an external
database to retrieve necessary information, such as
venues or objects to search for and their properties.

Recently, synergizing reasoning and acting in
LLMs (ReAct) (Yao et al., 2022) has shown promis-
ing results in controlled tasks that need external
information access. ReAct employs few-shot LLM
prompting with a sequence of thoughts, actions,
and observations. Thoughts refer to internal reason-
ing that decomposes a problem into sub-problems.
Actions execute external API calls or programs,
and observations analyze the results of actions.
In this work, we investigate the ability of LLMs
guided by ReAct to solve task-oriented dialogue.

Our contributions are as follows: (i) We im-
plement a ReAct-based system for TOD, using
GPT-3.5 and GPT-4 LLMs respectively (OpenAI,
2023), for the MultiWOZ tourist information do-
mains (Budzianowski et al., 2018). (ii) We evaluate
our ReAct-LLM system both with a simulated user
and with humans, and we include a manual quali-
tative analysis of human dialogues and a API cost
versus performance trade-off assessment. (iii) Our
results show that ReAct-LLMs clearly underper-
form state-of-the-art baselines in terms of success
rate in simulation. However, this difference is less
pronounced in human evaluation, and humans even
rate their satisfaction with the ReAct-LLM system
higher than the baseline.

2 Related Work

Classical approaches for dialogue management
(Casanueva et al., 2018; Weisz et al., 2018a), varied
from handcrafted (HDC) to reinforcement learning
(RL). The combination of deep RL with imitation
learning (Cordier et al., 2020) as well as structural
RL have also been applied to multi-domain, multi-
task dialogue (Chen et al., 2018; Cordier et al.,
2022). However, these approaches require separate
specialized components, involving extensive engi-
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neering, the need for semantically annotated data
as well as user simulators operating at the semantic
level.

Latest end-to-end neural architectures are built
on top of pretrained language models (Peng et al.,
2021; Lin et al., 2020) and involve two-step gener-
ation: the model first generates the dialogue state
or database query based on user input; then, it gen-
erates the reply based on external database search.
These approaches provide more flexibility and po-
tentially better fluency, but require even larger train-
ing corpora.

Recent approaches explore simple zero-shot or
few-shot LLM prompting for TOD, using examples
of relevant dialogue turns (Hudeček and Dusek,
2023), database or API definitions (Stricker and
Paroubek, 2024), templated conversation snippets
(Zhang et al., 2023), or detailed behavior and API
calling instructions (Xu et al., 2024). In contrast,
in this work we propose to use the ReAct strat-
egy (Yao et al., 2022) to guide LLMs towards task
oriented dialogue through domain selection, slot
detection and belief state tracking.

Since dialogue is dynamic and evaluation on
static data in single-turn replies may not be con-
sistent with full dialogue performance (Takanobu
et al., 2020), we evaluate the system on full dia-
logues. First, we evaluate performance in a simu-
lated environment, which, unlike Xu et al. (2024),
utilizes the well established CONVLAB3 bench-
mark (Zhu et al., 2022) to guarantee reproducibility
and fair comparison with previous approaches. We
also assess the conversations with humans. Unlike
previous works on dialogue management (Weisz
et al., 2018b; Zhu et al., 2020; Cordier et al., 2022),
the simulator and our system do not interact at
the semantic level, instead they interact in nat-
ural language. Unlike previous end-to-end and
LLM-based approaches, which generated delexi-
calized responses with placeholders and replaced
these with valid entity names from the database in
a rule-based fashion, we generate full responses in-
cluding entity names. This avoids constraining the
inherent capabilities of LLMs in generating natural
language. Instead, we guide the LLM towards the
database constraints through ReAct prompting.

3 ReAct for Task-Oriented Dialogue

Figure 1 shows the proposed architecture: the
ReAct-LLM system agent (SA) interacts with
a user in natural language. The SA has ac-

cess to external tools to guide it through the
TOD pipeline. We provide few-shot exam-
ples in the prompt following ReAct (Yao et al.,
2022). We give the ReAct-LLM agent a list
of tools: list_domains, list_slots, db_query
and generate_booking_reference (details in
Appendix A.1), which it can use as actions. The
example provided in the prompt shows how and in
what order the tools should be used. The reasoning
process to be followed by the SA is outlined below:

Step 1: The SA should try to understand the user
input. Its first thought should be explicitly planning
out the next course of action, to be executed in
Steps 2-5. The SA should plan for identifying
the domain and the corresponding slots and values
from the user input, forming the belief state and
using it to query the database, retrieving the results
and forming the final answer based on the results.
Step 2: The SA should call list_domains, ob-
serve its output and decide which domain the user
request belongs to.
Step 3: Now it needs the list of slots available
in the selected domain to identify the slot values
from the user request. The system should use the
list_slots tool with the domain as input, ob-
serve the list of slots available and decide which
slots have been mentioned in the user input and
form/update the belief state.
Step 4: It should call db_query using the state
as input to retrieve records from the database that
match the user request.
Step 5: As the final step, it observes the retrieved
entities and generates an appropriate response.

We also provide a tool for generating booking
reference numbers when the user requests a book-
ing (generate_booking_reference). The agent
is given a detailed example in the prompt showing
the sequence of thoughts, actions and observations
for two consecutive user turns (see Appendix A). It
also has access to previous conversation history as
well as a description of each tool provided.

4 Experimental Setup

We use the LangChain1 library for implementing
ReAct-LLM. The prompt details are given in Ap-
pendix A, Figure 2. We use Langfuse2 for debug-
ging the reasoning traces and to keep track of the
computational costs of our experiments. We exper-
iment with OpenAI GPT-3.5 (gpt-3.5-turbo-0301)

1https://www.langchain.com/
2https://langfuse.com/

https://www.langchain.com/
https://langfuse.com/
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Figure 1: The proposed ReAct-LLM system agent uses few-shot examples in the prompt to guide the LLM in
decomposing reasoning into a sequence of thoughts, actions, and observations.

and GPT-4 (gpt-4-32k) models. We first couple our
SA with a simulated user, then proceed to evaluate
it with humans.

4.1 Simulated User

We implemented an LLM-based user agent, but it
was not able to end the conversation correctly and
occasionally switched its role to play the system,
which resulted in inappropriate conversations (see
Appendix C). Therefore, we use the agenda-based
user simulator (Schatzmann et al., 2007) implemen-
tation in CONVLAB 3 (Zhu et al., 2022). A goal
generator in agreement with the MultiWOZ dataset
is used to initialize the agenda. The simulator then
generates the semantic representation and converts
it into natural language. This is fed to the system
agent and the response from the system is sent to
the BERT-based NLU of the simulator that returns
its semantic representation. This semantic repre-
sentation is in turn used to update the agenda. The
simulator then generates the next utterance based
on the system response and the updated agenda.

4.2 Evaluation Setup

To measure how well the user goals were satis-
fied by the system, we compute the standard met-
rics: success, book, inform and complete rates as
well as the average number of turns,3 using CON-
VLAB 3 (Zhu et al., 2022). A dialogue is suc-
cessful if the system provided the right informa-
tion and was able to book the requested entities
in agreement with the user goal. In addition, we
also measure the cost incurred by using OpenAI
APIs. We compare our ReAct-LLMs to multiple di-

3Note that the lower the average number of turns the better
since this means that the system achieves the goal faster.

alogue management baselines: HDC and RL-based,
such as proximal policy optimization (PPO) (Schul-
man et al., 2017) and structured RL with imitation
learning (ACGOS) (Cordier et al., 2022). These
baselines use CONVLAB’s pipelines with BERT
NLU and template-based NLG. We simulated 1000
dialogues, using a fixed random seed in the goal
generator for reproducibility.

For a more realistic assessment, we decided to
invite humans to evaluate the system for a fair as-
sessment. We opt for an in-house evaluation to
ensure high quality. Finally, we do a detailed qual-
itative analysis of a small sample of the dialogue
logs to identify the most frequent error sources.

5 Results

We now assess both simulated and real users.

5.1 Simulated Evaluation
Table 1 compares ReAct-LLM systems with pre-
vious works in CONVLAB. Note that systems in
the first section of the table interact at the seman-
tic level and hence, the metrics show the upper
bound of the performance that can be achieved by
a full TOD system. We observe that ACGOS per-
forms best in terms of inform rate. The HDC policy
proves to be superior to other methods with higher
book, success and complete rates and fewer turns.
Both React-LLMs clearly underperform all base-
lines, with the GPT-4 version distinctly ahead of
the GPT-3.5 one.

ReAct-LLMs are costly. Table 2 shows the per-
token cost for the two GPT models, as well as the
total number of tokens used and the approximate
total experiment cost. The success rate improve-
ment for GPT-4 does not appear to justify the cost
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Configuration Avg Turns ↓ Inform Rate ↑
(P/R/F1) Book Rate ↑ Success Rate ↑ Complete Rate ↑

HDC (semantic level) 10.6 87.2 / 98.6 / 90.9 98.6 97.3 97.9
ACGOS (semantic level) 13.2 94.8 / 99.0 / 96.1 98.7 97.0 98.2
BERT NLU + HDC + Tpl. 12 82.8 / 94.1 / 86.2 91.5 83.8 92.7
BERT NLU + PPO + Tpl. 17.8 69.4 / 85.8 / 74.1 86.6 71.7 75.5
BERT NLU + ACGOS + Tpl. 14.8 88.8 / 92.6 / 89.5 86.6 81.7 89.1
ReAct-LLM (GPT-3.5) 15.3 59.0 / 64.9 / 58.3 40.5 28.2 45.9
ReAct-LLM (GPT-4) 15.5 62.7 / 81.3 / 66.8 58.2 43.6 63.8

Table 1: Simulated evaluation on 1000 dialogues (Section 4.2). Tpl. stands for templated-based NLG.

Cost/1M tokens 1000 sim. dialogues
Model Input Output # Tokens Total cost

gpt-3.5-turbo-0301 $1.50 $2.00 40.6M $61.71
gpt-4-32k $60.00 $120.00 35.8M $2,258.81

Table 2: Experiment cost for GPT-3.5 vs. GPT-4.

difference.

5.2 Human Evaluation
Volunteers were asked to chat online with a sys-
tem, in order to achieve a dialogue goal randomly
generated by ConvLab. They could start a conver-
sation as many times as they wish and were paired
with a randomly chosen system each time, either
the HDC baseline or our ReAct-LLM (GPT-3.5).
They were asked to give a score for success (if all
the dialogue goals were achieved) as well as a sub-
jective score for their overall satisfaction with the
conversation on a scale of 1-5. We then converted
the ratings to percentages and reported the average
rating provided for each system.We collected 95 di-
alogues for each system, with the help of 20 users.
Table 3 shows that HDC performs better in terms
of success rate, but not by the same margin it had
in simulation. We see that the HDC system falls
short in the human evaluation compared to the user
simulation. Contrary to the simulated evaluation,
ReAct-LLM performs much better with real users.
Overall, users are more satisfied with ReAct-LLM
than with HDC, despite the better success rate of
HDC, because ReAct-LLM is self-confident and
generates well structured, polite, fluent and natural
sentences even though it was not always able to
find what the user was looking for. We also see that
the React-LLM system has a slightly lower average
number of turns when compared with the simulated
evaluation, while the opposite is true for HDC.

5.3 Qualitative Analysis
By inspecting a sample of the generated dialogues,
we identify several issues. First, we see that the

Dialogue System Avg Satisfaction Success
Turn Rate (%) Rate (%)

BERT NLU + HDC + Tpl. 15.91 54.10 60.00
ReAct-LLM (GPT-3.5) 14.42 65.47 50.52

Table 3: Human evaluation results, with 95 dialogues
for each system.

reasoning traces may just be imitating the examples
given in the prompt. This may work for simpler
cases with fewer goals to achieve. However, when
the goals get larger with multiple domains and the
user requests become more complicated, ReAct-
LLM struggles to understand the user and to per-
form tasks accordingly. Beyond that, the reasoning
is inconsistent and strays from instructions at times.
Furthermore, the LLM can come up with creative
responses, but struggles to stay within the bounds
set by the instructions, often producing invalid di-
alogue states or not sticking to the set of external
tools given. Compared to the GPT-3.5 agent, the
GPT-4 agent is more consistent with respect to the
desired reply format, is better at clarifying, and
produces more verbose and polite replies. More
details are shown in Appendix B and D.

6 Conclusion

The performance of ReAct-LLM falls short com-
pared to HDC and RL baselines, which perform
better mainly due to their fine-grained control at
each step in the pipeline. By relying completely on
the reasoning abilities of ReAct-LLM, we lose the
ability to control its reasoning traces and response
generation. Additionally, difficulty in understand-
ing the system requests by the user simulator, due
to BERT-NLU errors, leads to repeated utterances
and thus a higher number of turns on average. The
human evaluation shows that ReAct-LLM is pre-
ferred by users over the HDC baseline, despite its
lower success rate.
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Nikola Mrkšić, Tsung-Hsien Wen, Stefan Ultes, Lina
Rojas-Barahona, Steve Young, and Milica Gašić.
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A The ReAct Prompt

Figure 2 shows an example of the final ReAct
prompt, namely Generic Prompt, in which the ex-
amples provided in the prompt (Figure 3) contained
a random example from the MultiWOZ dataset. We
also experimented with another variation (i.e., Do-
main Specific), in which the examples provided
were dynamically changed based on the domains
in the goal. We observe that using domain-specific
examples in the prompt has no effect on the per-
formance of the system. Our results (see Table 4)
show that the system in fact performs slightly better
when there is only one random example irrespec-
tive of the domains of the user goal.

A.1 Tool Description

The tools are python functions that we provide in
the prompt to guide the model to make grounded de-
cisions with respect to a database. Thus, it chooses
from the available domains and slots in the database

according to user’s constraints provided in the in-
put. Based on the list of slots, the LLM ‘reasons’
and decides on the appropriate slots. The tools and
descriptions provided to the LLM are as follows:

• list_domains() - This function lists the do-
mains available in the database. Use this tool
first to find the available domains and identify
the correct domain for the userś request.

• list_slots(domain) - This function lists
the slot names available for a given domain.
Use this function after list_domains and be-
fore using db_query to identify the slots avail-
able for the selected domain.

• db_query(domain: str, state: dict,
topk=1) - This function is used to query
the database to retrieve information in the
belief state. Form the belief state with the
domain and slots that were identified using
list_domains and list_slots tools.

• get_booking_reference(domain,
utterance=None) - This function is
used to generate a booking reference for the
service selected by the user.

For db_query, the agent very rarely used the topk
parameter to retrieve more results. In cases where
the user asks for more options, the agent defaults
to saying that it has only one option when in reality
the database does contain multiple options for the
query.

B Qualitative Analysis

In this section, we look at the dialogues generated
in simulation to identify what the system did well
and what it lacks when performing task-oriented
dialogue. We randomly selected 50 dialogues from
the 1000 simulations for GPT-3.5 using generic
examples (cf. Appendix A), and we look at the
dialogues from the perspective of the system.

System produces creative responses but does
not stick to the instructions An advantage of
using LLMs for dialogue tasks is that the system
is able to rephrase its response in cases where the
user repeats the request. This can be seen in the
example in Figure 4. However, after a certain point,
the repeated request from the user seems to confuse
the system resulting in a response where it talks
about performing actions it does not have access
to. If the system did indeed have access to more
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Prompt Type Avg Turns Inform Rate
(P/R/F1) Book Rate Success Rate Complete Rate

Generic 14.9 56.2 / 67.5 / 58.6 36.8 28.3 48.5
Domain Specific 14.0 61.1 / 63.2 / 59.1 35.4 22.2 47.4

Table 4: Evaluation of the performance of the ReAct TOD system when domain specific examples are given. This
experiment was run using GPT-3.5 for 100 dialogue simulations.

Respond to the human as helpfully and accurately as possible.

You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [{tool_names}]

Input: the input to the action, should be in JSON object

containing values for

the tool parameters

Observation: the result of the action

... (this Thought/Action/Input/Observation can repeat N times)

Thought: I now know the final answer

Final Answer: the final answer to the original input question

If you can’t find the answer just say it as your final answer.

You don’t have to use a tool every time, but when you do

only specify the tool name

as the Action.

Example:

{examples}

Begin!

Chat history:

{history}

Question: {input}

{agent_scratchpad}

Figure 2: The ReAct prompt used to instruct the system
LLM agent on how to perform task-oriented dialogue.

tools for managing booking, this response would
have been ideal in this situation, helping the user
confirm the date of the booking.

Smaller goals are easier to achieve Analysing
the conversations, an interesting observation that
stood out was that the shorter the goal, the easier
and quicker it was for the system to achieve. See
the example in Figure 5 where the goal is to re-
quest the phone and postcode of a police station.
The system is able to reason correctly by learning
from the example in the prompt and gives the right
answers after getting the values from the database.
However, it might also be the system imitating the
example.

Reasoning is not always consistent The main
factor we are assessing in this system is an LLM’s
capabilities to reason and perform actions based
on the reasoning. Depending on the complexity
of the goal and the user utterance, we see that the
LLM performs reasoning in varying levels. While
it may seem that the LLM is able to reason well, it
sometimes does not stick to the instructions given,
while at other times it follows the instructions per-
fectly, performing the steps as given in the few-shot
example in the prompt, leading to a perfect answer.

Issues generating the correct dialogue state In
TOD, the system should accumulate the belief state
in order to answer the user’s queries correctly. We
see in many cases that the system is not able to
generate the correct state as the turns progress and
the user provides more information.

Hallucinations are a major issue in LLMs. We
see that this is the case even when using LLMs
for TOD. Figure 6 shows that the LLM produces
invalid slots – ‘time’ instead of ‘arriveBy’ in this
case.

Another issue that was found was that the system
fills the wrong slots with the wrong information as
shown in the example in Figure 7. Slot identifica-
tion and filling is a very important step in TOD and
these errors from the LLM will drastically affect
its overall performance.

No clarifying questions from the system In a
complex task such as task-oriented dialogue, it is
essential that the system understands the user re-
quest clearly in order to be able to answer correctly.
Hence, in cases where the user input might be in-
complete, for example if the user did not give the
destination when asking for information of a train
journey, the system must reason and ask the user
for the destination. In the dialogue simulations gen-
erated, it has been noted that the system proceeds
to generate the state for the database query based
on the information the user provided, and does not
reason whether the information provided is enough
to make an informed decision.
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Question: are there any 3 star hotel -s , guesthouses ,

or bed and breakfast s that have wifi that you don’t have to pay for?

Thought: The user is looking for 3 star hotels, guesthouses or

bed and breakfasts that have free wifi. I can find this information in the

database. For that I need to identify the domain and the slots and values.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain hotel matches the user’s request. Now I need to

identify the slot names and values.

Action: list_slots

Input: {domain: hotel}

Observation: [address, area, internet, parking, id, location, name, phone,

postcode, price, pricerange, stars, takesbookings, type]

Thought: The user is asking for 3 star hotel -s , guesthouses ,

or bed and breakfast s that have wifi that you don’t have to pay for.

So the slots are internet: free and stars: 3. Now I need to query the database

Action: db_query

Input: {domai: hotel, state: {hotel: {internet: yes, stars: 3}}}

Observation: [[{address: 151 hills road, area: south, internet: yes,

parking: yes, id: 11, location: [52.1725982, 0.1112224], name:

bridge guest house, phone: 01223247942, postcode: cb28rj, price:

{double: 75, family: 90, single: 50}, pricerange: moderate,

stars: 3, takesbookings: yes, type: guesthouse, Ref: 00000011},

location: [52.201275, 0.129935], name: gonville hotel, phone:

01223366611, postcode: cb11ly, ’price’: {double: 95, family: 119,

single: 79}, pricerange: expensive, stars: 3, takesbookings: yes,

type: hotel, Ref: 00000018}, {address: 156 chesterton road, area:

north, internet: yes, parking: yes, id: 19, location:

[52.2309912, 0.1295545], name: hamilton lodge, phone: 01223365664,

postcode: cb41da, price: {double: 73, family: 85, single: 50},

pricerange: moderate, stars: 3, takesbookings: yes, type:

guesthouse, Ref: 00000019}]

Thought: I now know the final answer.

Final Answer: I have found 3 hotels matching your criteria,

do you have a price range in mind ?

Question: no, but the hotel should be in the north.

Thought: A new slot ’area’ with value ’north’ has been identified from

the user request for the same domain ’hotel’. I need to query the database

with the updated slot value.

Action: db_query

Input: {domain: hotel, state: {hotel: {internet: yes,

stars: 3, area: north }}}

Observation: [{address: 156 chesterton road, area: north, internet: yes,

parking: yes, id: 19, location: [52.2309912, 0.1295545], name:

hamilton lodge, phone: 01223365664, postcode: cb41da, price:

{double: 73, family: 85, single: 50}, pricerange: moderate,

stars: 3, takesbookings: yes, type: guesthouse, Ref: 00000019}]

Final Answer: I have found the hamilton lodge . It is a guesthouse in

the north. Would you like more information about it?

Figure 3: The example provided in the ReAct prompt
showing the LLM the steps to be followed for perform-
ing TOD.

User: I need a hotel please . Can you help me find a hotel called the

home from home ?

System: I have found the hotel ḧome from home.̈ It is a guesthouse in

the north with a moderate price range and 4 stars. Would you like more

information about it?

User: What about 2 nights ? That will work . Can you make a reservation

for 3 people, please ? On friday please.

System: Your booking reference for a reservation for 3 people for

2 nights at the home from home guesthouse on Friday is 00000021.

User: I need a room starting on friday .

System: Your booking reference for a room at the home from home

guesthouse starting on Friday is 00000021.

User: I want to check in on friday .

System: I’m sorry, I couldn’t find the check-in date for the reservation

made earlier. Please provide me with the booking reference again so I

can check the details.

Figure 4: An excerpt of a conversation where the LLM
shows creative ways to handle repeated user requests.

Other Observations

• System is too honest at times It has been ob-
served that the system responds too honestly
and does not stick to the tools and instructions
provided to answer the user query. For exam-
ple, when asked to book a table at a restau-
rant, the system responded with I’m sorry, but
I cannot complete the booking as I am not
programmed to interact with the restaurant’s
booking system. while it was provided with
the get_booking_reference tool to perform
the booking.

• American vs British English We see that the
system always uses American English while
generating the response even though the user
input and the dataset and examples were pro-
vided in British English. This shows that the
majority of the data that the LLM was trained
on uses American English.

• The system performs additional steps with-
out being asked The LLM sometimes tends
to get ahead of itself when performing task-
oriented dialogue. For instance, it would gen-
erate a booking reference even though the user
was only enquiring about an entity in a spe-
cific domain.

C LLM User Agent Issues

This section looks at the conversation from a user’s
perspective to identify the reasons the conversation
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goal: { police: { info: {}, reqt: { postcode: ?, address: ?, phone: ? }}},

User: Hello , I have been robbed . Can you please help me get in touch

with the police ?

Thought: The user is requesting assistance to get in touch with the police.

I need to identify the correct domain for this request.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain police matches the user’s request. I need to find the

available slots for this domain

Action: list_slots

Input: {domain: police}

Observation: [name, address, id, phone, postcode]

Thought:The user has not provided any specific information about the

police station they need to contact. I need to ask for more information or

provide a general query to retrieve a list of police stations

Action: db_query

Input: {domain: police, state: {police: {}}}

Observation: [{name: Parkside Police Station, address: Parkside,

Cambridge, id: 0, phone: 01223358966, postcode: cb11jg}]

System: I have found one police station matching your request. The

Parkside Police Station is located at Parkside, Cambridge. Would you

like me to provide you with their phone number?

User: Can you give me the phone number please ? Can I please have the

postcode of the police station as well ?

Thought: The user is asking for the phone number and postcode of the

police station. I can retrieve this information from the database using the

domain ’police’ and the slot ’phone’ and ’postcode’

Action: db_query

Input: {domain: police, state: {police: {}}}

Observation: [{name: Parkside Police Station, address: Parkside,

Cambridge, id: 0, phone: 01223358966, postcode: cb11jg}]

System: The phone number for Parkside Police Station is 01223358966

and the postcode is cb11jg.

User: You were great . Goodbye .

System: Goodbye! Have a nice day!

Figure 5: A full conversation for a simple goal.

did not go well when we used an LLM as the user
agent.

LLM switches roles with the system During the
initial experiments where the user agent was also
played by an LLM, we noticed an interesting phe-
nomenon. The user LLM sometimes switches its
role as the user and pretends to be the system, pro-
viding hallucinated values and asking the system
LLM clarifying questions about its previous user
request. Figure 8 shows two excerpts where the
user provides the system with information it made

User: I would also like to book a train , please . I will leave on monday.

I need to book a train to london kings cross . I would like to leave after

14:15

System: The only available train that matches your request is TR6028

departing from Cambridge at 15:00 and arriving at London Kings Cross

at 15:51 on Monday. Your booking reference is 00000005. Is there

anything else I can help you with?

User: I need it to depart from cambridge.

Thought: The user has provided new information that the train should

depart from Cambridge. I need to update the query to include this

information.

Action: db_query

Input: { domain: train, state: {train: {departure: cambridge, destination:

london kings cross, day: monday, time: after 14:15}}}

Figure 6: An excerpt showing the system hallucinating
the slot name.

User: Howdy , I need a train heading into london kings cross . I need

a train leaving after 16:30. The train should leave on wednesday

Thought: The user is requesting for a train leaving after 16:30 heading

to London Kings Cross on Wednesday. I need to identify the domain and

and slots for this request.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain for this request is ’train’. Now I need to identify the

slots and values

Action: list_slots

Input: {domain: train}

Observation: [’arriveBy’, ’day’, ’departure’, ’destination’, ’duration’

’leaveAt’, ’price’, ’trainID’]

Thought:The slots for this request are ’departure’: after 16:30,

’destination’: London Kings Cross, and ’day’: Wednesday. I need to query

the database to find the available trains

Figure 7: An excerpt showing the wrong slot being filled
by the system. departure refers to the departure station
and leaveAt refers to the departure time.

up.

Unable to end the conversation based on goal
fulfillment The user agent was not able to end the
conversation based on the goal and conversation
history. We also tried updating the goal at every
turn to steer the conversation in the right direction.
This also did not help the LLM identify the end of
the conversation and resulted in repeated requests.
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User: What type of car do you need for the taxi?

System: I’m sorry, but I don’t have information about the type of car

needed for the taxi.

User: System: For your restaurant booking, I can inform you that the

restaurant is not available at 5:30 pm, but it is available at 5:45 pm.

Would you like me to book a table for 8 people at Pizza Hut City Centre

at 5:45 pm?

System: I’m sorry, I couldn’t understand your request. Please provide

a valid input.

Figure 8: Excerpts showing the LLM prompted to play
the user acting like the system.

D Manual Analysis of GPT-3.5 vs GPT-4

We compared the generated outputs for both GPT-
3.5 (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023) for 50 randomly selected goals. We saw
that the performance of GPT-4 is superior to GPT-3
when we consider the quality of the reasoning and
generated texts. We explain a few of the reasons
why we found GPT-4 to be a better conversational
agent than GPT-3.5 below.

Parsing Errors GPT-4 is able to generate the
output in the required format when compared to
GPT-3.5. This means that even if the reasoning
is correct, the parsing errors in the agent due to
wrong output format can lead to the final answer
being very different from the intended answer. This
leads to miscommunication between the user and
the system. GPT-4 is more adept at conforming
to the prescribed format than GPT-3.5 resulting in
better performance.

Clarifying and verifying user requests GPT-
4 asks clarifying questions and verifies with the
user before performing important steps such as
booking a service. On the other hand, GPT-3.5 does
the booking in the same turn without consulting
the user. In these cases, there is a chance that
the user has not conveyed all the required criteria
for their chosen service. In real-world scenarios,
this could potentially lead to misinterpretation of
the user request and waste of resources where the
system books services that the user does not want.
Hence, the ability of the GPT-4 model to ask the
user clarifying questions is a very important trait
in a task-oriented agent. See Figure 9 for a sample
conversation on the same goal and how GPT-4 and
GPT-3.5 differ.

GPT-4

User: I would also like to book a train , please . I will leave on

monday. I need to book a train to london kings cross . I would like

to leave after 14:15.

System: I have found a train for you. It departs from Cambridge at

15:00 on Monday and arrives at London Kings Cross at 15:51. The

journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR6028. Would you like to book this train ?

User: I need it to depart from cambridge

System: I have found a train for you. It departs from Cambridge

at 05:00 on Monday and arrives at London Kings Cross at 05:51.

The journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR7075. Would you like to book this train?

User: I would like to leave after 14:15.

System: I have found a train for you. It departs from Cambridge at

15:00 on Monday and arrives at London Kings Cross at 15:51.

The journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR6028. Would you like to book this train?

User: I would like 3 tickets please .

System: I have booked 3 tickets for you. Your booking reference

is 00000005.

GPT-3.5

User: I would also like to book a train , please . I will leave on monday .

I need to book a train to london kings cross . I would like to leave after

14:15.

System: Your booking reference for the train service is 00000106.

Figure 9: Excerpts of a conversation showing how GPT-
4 clarifies and communicates better than GPT-3.5.

Politeness and verbosity Analysing the system
utterances for both models, we saw that GPT-4
produces more verbose and polite answers. While
GPT-3.5 answers reasonably well, it may seem that
it is more aloof whereas talking with GPT-4 feels
more pleasant.

E User Interface for Human Evaluation

Figure 10 and Figure 11 are screenshots of the
web user interface provided to the users for human
evaluation. In the first step, the user is provided
with instructions and a goal based on which the
user chats with the randomly assigned system. The
second step provides the interface to evaluate the
conversation along with guidelines.
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Figure 10: Step 1 of human evaluation: Chatting with the system

Figure 11: Step 2 of human evaluation: Evaluating the conversation
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