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Introduction

Publication of negative results is difficult in most fields, and the current focus on benchmark-driven per-
formance improvement exacerbates this situation and implicitly discourages hypothesis-driven research.
As a result, the development of NLP models often devolves into a product of tinkering and tweaking,
rather than science. Furthermore, it increases the time, effort, and carbon emissions spent on developing
and tuning models, as the researchers have little opportunity to learn from what has already been tried
and failed.
The mission of the workshop on Insights from Negative Results in NLP is to provide a venue for many
kinds of negative results, with the hope that they could yield useful insights and provide a much-needed
reality check on the successes of deep learning models in NLP. In particular, we solicit the following
types of contributions:

• broadly applicable recommendations for training/fine-tuning, especially if X that didn’t work is
something that many practitioners would think reasonable to try, and if the demonstration of X’s
failure is accompanied by some explanation/hypothesis;

• ablation studies of components in previously proposed models, showing that their contributions
are different from what was initially reported;

• datasets or probing tasks showing that previous approaches do not generalize to other domains or
language phenomena;

• trivial baselines that work suspiciously well for a given task/dataset;

• cross-lingual studies showing that a technique X is only successful for a certain language or lan-
guage family;

• experiments on (in)stability of the previously published results due to hardware, random initiali-
zations, preprocessing pipeline components, etc;

• theoretical arguments and/or proofs for why X should not be expected to work;

• demonstration of issues with under-reporting of training details of pre-trained models, including
test data contamination and invalid comparisons.

The fifth iteration of the Workshop on Insights from Negative Results attracted 23 submissions and 2
from ACL Rolling Reviews. We accepted 16 papers, resulting in 64% acceptance rate. We hope the
workshop will continue to contribute to the many reality-check discussions on progress in NLP. If we do
not talk about things that do not work, it is harder to see what the biggest problems are and where the
community effort is the most needed
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Abstract
Recent advancements in language representa-
tion learning primarily emphasize language
modeling for deriving meaningful representa-
tions, often neglecting style-specific consid-
erations. This study addresses this gap by
creating generic, sentence-level style embed-
dings crucial for style-centric tasks. Our ap-
proach is grounded on the premise that low-
level text style changes can compose any high-
level style. We hypothesize that applying this
concept to representation learning enables the
development of versatile text style embeddings.
By fine-tuning a general-purpose text encoder
using contrastive learning and standard cross-
entropy loss, we aim to capture these low-level
style shifts, anticipating that they offer insights
applicable to high-level text styles. The out-
comes prompt us to reconsider the underlying
assumptions as the results do not always show
that the learned style representations capture
high-level text styles.

1 Introduction

Learning meaningful representations of text has
received much attention recently as models pre-
trained on large corpora have become the standard
for extracting representations that capture prior
knowledge (i.a. Devlin et al., 2019; Radford and
Narasimhan, 2018). However, most pre-trained
models focus on general aspects, as they are trained
with causal or masked language modeling objec-
tives. Therefore, they are suboptimal for NLP tasks
focusing on a specific aspect, such as style. There
are many notable NLP tasks, such as identifying
chatbot-written text based on its style (e.g., Soto
et al. (2024)) or style transfer where models rely
on dedicated style representations (e.g., John et al.
(2019)).

Existing work on style transfer focuses on high-
level stylistic aspects such as sentiment (Shen et al.,
2017) or formality (Rao and Tetreault, 2018), tak-
ing style definitions based on the dataset’s structure.

Lyu et al. (2021) view those high-level text style
changes as compositions of more fine-grained, low-
level style changes. Generic style representations
incorporating low-level aspects such as lexical, syn-
tactic, semantic, and thematic stylistic traits (Mc-
Donald and Pustejovsky, 1985; DiMarco and Hirstt,
1993) but also high-level, composed stylistic traits
might significantly improve style-focused tasks.

Based on the hypothesis that low-level style
changes compose high-level style changes, this
work explores learning generic, sentence-level style
representations. We take a pre-trained encoder
model producing general-purpose representations
and fine-tune it to distinguish between low-level
stylistic changes using contrastive learning and
cross-entropy loss. We hypothesize that the re-
sulting text encoder generalizes to high-level styles,
applying the view by Lyu et al. (2021) on how low-
level stylistic changes compose high-level changes
to representation learning for styles.

We train our method using contrastive learning
and cross-entropy loss on the StylePTB dataset
(Lyu et al., 2021) comprising low-level, fine-
grained style changes to obtain high-level, generic
style embeddings. We evaluate our method by train-
ing a simple classifier on the representations of the
learned style. The results show an ambiguous pic-
ture of the resulting style embeddings, challenging
the underlying assumptions.

2 Related Work

Explicitly Learning Style Representations
Only a few works learn style representations ex-
plicitly. StyleDistance (Patel et al., 2024) uses a
contrastive triplet loss and synthetic parallel data
created by Large Language Models to learn generic
style representations, showing strong performance
in multiple benchmarks.

Style Representations as a Byproduct Text
style transfer is conducted by prominent models by
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disentangling content and style to learn separate
task-specific representations to control them inde-
pendently (Fu et al., 2018; Hu et al., 2017; Kim and
Sohn, 2020; John et al., 2019; Cheng et al., 2020).
Other text style transfer models learn content rep-
resentations and multiple decoders (one for each
style) (Shen et al., 2017; Fu et al., 2018). Another
group of models uses a structured style code to en-
force a particular style in the decoder, either given
as a structured code (Hu et al., 2017; Lample et al.,
2019) or learned (Fu et al., 2018; Kim and Sohn,
2020).

For text style classification, TextCNN (Kim,
2014) is the most widely used method (Ostheimer
et al., 2023). BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), fine-tuned for style
classification, are strong baselines.

In contrast, our proposed method learns style rep-
resentations at the sentence level from low-level,
linguistically motivated style changes. This is
much more fine-grained and allows applications
to unseen styles.

Contrastive Learning for Text Representations
To learn meaningful content representations on the
sentence level from unlabeled text corpora, the QT
model (Logeswaran and Lee, 2018) was introduced.
The QT model relies on the distributional hypoth-
esis to get meaningful content representations. It
uses a contrastive objective to map nearby (con-
text) sentences to similar and distant (non-context)
sentences to far-apart representations.

For fine-tuning sentence representations, notable
approaches are SimCSE (Gao et al., 2021) and
Mirror-BERT (Liu et al., 2021), incorporating min-
imal data augmentation with dropout. In con-
trast, SBERT (Reimers and Gurevych, 2019) uses
siamese and triplet network structures to generate
meaningful sentence representations for calculat-
ing semantic sentence similarities using standard
measures like cosine distance. Kim et al. (2021) im-
prove the quality of the sentence representations by
contrasting the representations of different layers
of BERT (Devlin et al., 2019).

However, these approaches focus on improving
the sentence-level representations for general lan-
guage understanding or semantics. We, in contrast,
focus on the style of the sentences.

3 Method

This section describes the underlying assumptions
of the proposed method to compute (sentence-level)

In the 
beginning God 

created… 

And Kenan 
lived seventy 

years… 

Won’t go 
back

Best 
sandwiches 

ever!

→←

→←

←
→

←
→

Figure 1: Our training objective pushes sentence rep-
resentations of the same style close together. In this
example, reviews (in orange) are pushed close together,
and sentences of one Bible version (in blue) are pushed
close together, while the representations of different
styles (Bible vs reviews) are pushed to be far apart.

style representations of texts and the method itself.

Assumption 1 Low-level stylistic changes can be
composed to form high-level styles in line with
previous work (Lyu et al., 2021).

Assumption 2 Learning style embeddings can be
achieved by contrasting different styles (Patel et al.,
2024).

We combine the aforementioned assumptions to
come up with the following method.

Method The core idea—illustrated in Figure 1—
is to embed the data into a space where texts of
the same style resemble each other, while texts
of different styles are easily distinguishable. For-
mally, we want to learn a neural encoder f mapping
any two input sentences x and x̃ onto vector rep-
resentations f(x) and f(x̃) such that f(x) ≈ f(x̃)
if and only if x and x̃ are of the same style:
style(x) = style(x̃) = s. To achieve this, we first
form pairs of sentences, some equal and others of a
different style. Then, we use a contrastive objective
to push the vector representations of sentences of
the same style closer together and ones of different
styles far apart.

For a given sentence x with style(x) = s, our
set of candidate sentencesXcand contains sentences
of the same style and different style(s): Xcand =
Xs ∪Xs. We employ a simple architecture to com-
pute the similarity between the outputs f(x) and
f(x̃), namely the inner product f(x)⊤f(x̃). Other
functions to consider are, e.g., the cosine similar-
ity or kernel functions. We compute the similarity
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using a simple architecture to avoid learning a rich
similarity measure compensating for the encoder
producing poor style representations.

Therefore, we have the following formulation
for the probability of each candidate sentence x̃ ∈
Xcand to have the same style as x:

p(x̃|x,Xcand) =
exp[f(x)⊤f(x̃)]∑

x̃′∈Xcand exp[f(x)⊤f(x̃′)]
(1)

Our training objective is to maximize the proba-
bility of identifying all sentences x̃ ∈ Xcand where
style(x) = style(x̃) = s for each sentence x in the
training data D:

∑

x∈D

∑

x̃∈Xs

log p(x̃|x,Xcand) (2)

We also experiment with a cross-entropy loss
and its combination with a contrastive loss.

4 Experiments

In this section, we describe how we evaluated the
effectiveness in learning style representations for
multiple styles.

4.1 Experimental Setup

Fine-Tuning Data We use the StylePTB (Lyu
et al., 2021) dataset containing 21 individual and
32 compositional fine-grained style changes to train
our generic text style embeddings.

Evaluation Data We evaluate the learned style
embeddings on datasets that take a data-driven ap-
proach, containing high-level stylistic changes, to
define a text style. These are used in many re-
cent works on text style transfer. We experiment
with the Bible corpus (Carlson et al., 2018) with
eight different styles of the Bible (249K sentences),
Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) (Rao and Tetreault, 2018) (113K sen-
tences) in two styles, a collection of Shakespeare
plays in Shakespearean and modern English (Xu
et al., 2012) (42K sentences), Amazon (558K) and
Yelp (448K) sentiment datasets1 (two styles each).
We follow prior work by using the existing train-
dev-test splits.

Training We experiment with both
RoBERTaLarge (Liu et al., 2019) and BERTLarge
(Devlin et al., 2019) as pre-trained encoders for

1https://github.com/lijuncen/Sentiment-and-Style-
Transfer

f . The sentence representation is the activation
from the last hidden layer for the “CLS” token. We
add a linear transformation and a l2 normalization
before applying the objective function. Training
stops after a maximum of 10 epochs, and the best
model is used based on the loss on the validation
dataset. Hyperparameters were chosen using the
loss on the validation dataset. We used a batch
size of 16, a learning rate of 1e-5 with a linear
warmup for the first 10% steps, followed by a
linear cooldown for the remaining steps. We used
an Adam optimizer and a dropout rate of 0.1. A
logistic classifier is trained on the training data and
evaluated on the test data using the representations
obtained by the encoder f .

Batch Construction We initially experimented
with contrasting more than two styles per batch.
However, this resulted in no meaningful represen-
tations. Therefore, we resorted to two styles per
batch. We use a random sampler with replacements
to randomly select sentences of each style. We also
use two random samplers without replacement: one
where we assure for each style pair that only un-
seen sentence pairs are contrasted and one where
we only assure on the corpus level that per epoch,
the sentences are only contrasted once. Half of
the batch consists of style s while the other half
contains style s.

Obtaining Generic Style Embeddings To get
generic style embeddings, we fine-tune pre-trained
encoders f on StylePTB (Lyu et al., 2021) and
apply the resulting encoders to the previously
mentioned high-level style datasets. The hypoth-
esis is the following: Since StylePTB contains
fine-grained (and compositional) style changes, it
should also generalize to high-level and unseen
styles.

4.2 Results
In Table 1, we summarize our style classification
results. Using pre-trained BERT and RoBERTa
encoders as f , we apply a logistic regression for
classification without fine-tuning, serving as our
baseline. Baseline accuracies for datasets like
Yelp, Amazon, GYAFC, and Shakespeare (two
styles each) are already nearly 80% or higher. The
Bible dataset, with eight styles, exhibits lower ac-
curacy, as expected. Generally, BERT outperforms
RoBERTa in style classification. Our approach
considers three sampling strategies (Section 4.1),
crucial for contrastive loss performance.

3



Random Sampler Pairwise Sampler Corpus Sampler
Dataset PT CEL CEL+CL CL CEL+CL CL CEL+CL CL

B
E

R
T

Yelp 94.3 92.9 90.5 90.1 72.9 87.0 71.4 88.1
Amazon 77.4 74.9 72.1 74.5 59.6 68.3 58.1 69.3
GYAFC 88.4 88.0 82.1 82.1 71.5 86.2 74.3 78.3
Shakespeare 85.7 86.4 83.4 83.5 75.1 83.7 73.7 81.7
Bible 50.9 52.8 42.9 46.7 31.1 52.4 33.9 41.2

R
oB

E
R

Ta

Yelp 86.2 87.5 85.3 74.2 55.1 50.8 56.0 71.9
Amazon 75.2 67.1 64.4 60.3 54.1 65.4 55.9 58.1
GYAFC 79.4 85.5 80.2 76.3 55.5 59.0 60.4 66.9
Shakespeare 80.1 85.1 81.7 76.1 64.8 74.0 67.4 77.6
Bible 55.9 60.8 53.8 44.4 18.9 24.2 19.1 38.5

Table 1: Shown is the style classification accuracy of a logistic regression fitted to the two text encoders f BERT
and RoBERTa as a pre-trained (PT) encoder, fine-tuned on StylePTB and applied to the mentioned datasets using a
Cross-Entropy Loss (CEL), Contrastive Loss (CL), or both (CEL+CL) with the three mentioned sampling strategies.

Fine-tuning BERT and RoBERTa with the cross-
entropy loss yields slight accuracy improvements
for the Shakespeare and Bible corpora. More-
over, fine-tuning RoBERTa further enhances accu-
racies on Yelp and GYAFC. However, incorporat-
ing the contrastive loss reduces accuracy compared
to cross-entropy fine-tuning. Solely fine-tuning
with a contrastive loss also leads to less accuracy.

4.3 Discussion

While fine-tuning an encoder f on the StylePTB
dataset using cross-entropy loss slightly improves
some settings’ accuracy, contrastive learning does
not. These findings of our study question the rep-
resentational capacity of the learned style embed-
dings, especially for contrastive learning.

Contrastive Objective Is Too Aggressive Con-
trary to our expectations, applying the contrastive
loss does not improve the accuracy compared to the
cross-entropy loss across various settings we ex-
plored. One possible reason is that the contrastive
loss might push dissimilar styles too far apart. Con-
trary to previous work (Patel et al., 2024), we do not
use synthetic parallel data but contrast non-parallel
data. This might hamper the model’s ability to
learn the relationship between different styles and
style levels.

RoBERTa’s “CLS” Tokens Need Fine-Tuning
The improvements with the cross-entropy loss can
be attributed to the fact that the “CLS” token is not
pre-trained using the next sentence prediction task
and, therefore, any fine-tuning might improve the
“CLS” token representations.

Differentiated Picture for Cross-Entropy Loss
One possible reason for the differentiated results
can be seen in the examples from StylePTB in Ta-
ble 2. While some low-level changes, like info
addition, relate directly to a formality change, oth-
ers, such as tense changes, do not align with the
investigated styles. Mixing low-level styles may
confuse the encoding mechanisms that distinguish
higher-level styles.

Aspect Original Transferred
Info addi-
tion

Morgan Free-
man did the
new one

Morgan Free-
man did
perform the
new one.

To future
tense

It is also plan-
ning another
night of origi-
nal series.

It will be also
planning an-
other night of
original series.

Table 2: Examples from the StylePTB dataset

5 Conclusion

Learning generic, high-level text style represen-
tations from low-level, linguistically motivated
changes and generalizing to high-level styles ac-
cording to Assumption 1 by Lyu et al. (2021) using
contrastive learning according to Assumption 2 by
Patel et al. (2024) presents challenges. Although
the approach does not yield the expected results us-
ing contrastive learning, cross-entropy loss shows
improvements for some settings. However, our
approach does not yield the expected results com-
pared to previous work (Patel et al., 2024) using

4



contrastive learning to learn generic style represen-
tations.

Limitations

One limitation of this study is the reliance on
the StylePTB dataset, which, to our knowledge,
is the only available dataset containing low-level
and composed stylistic changes. The dataset is re-
stricted to English, limiting the generalizability of
our findings to other languages. As style may man-
ifest differently across languages, a more diverse,
multilingual dataset would allow for broader appli-
cation and a more comprehensive evaluation of the
proposed method.

Additionally, our study focuses on contrastive
learning to capture text style representations. This
choice was made because it intuitively aligns with
the underlying assumptions of the task, but it may
not be the optimal approach for all settings.
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Abstract

Few shot in-context learning (ICL) typically
assumes access to large annotated training sets.
However, in many real world scenarios, such
as domain adaptation, there is only a limited
budget to annotate a small number of samples,
with the goal of maximizing downstream per-
formance. We study various methods for se-
lecting samples to annotate within a predefined
budget, focusing on token classification tasks,
which are expensive to annotate and are rela-
tively less studied in ICL setups. Across var-
ious tasks, models, and datasets, we observe
that no method significantly outperforms the
others, with most yielding similar results, in-
cluding random sample selection for annota-
tion. Moreover, we demonstrate that a rela-
tively small annotated sample pool can achieve
performance comparable to using the entire
training set. We hope that future work adopts
our realistic paradigm which takes annotation
budget into account.

1 Introduction

In-context learning (ICL) has emerged as a highly
efficient and robust method for various textual tasks.
In this paradigm, a large language model (LLM)
is exposed to a small number of annotated sam-
ples, termed demonstration examples, which are
provided as part of the prompt, before the sample
which the model is required to annotate, which
we will refer to as inference sample henceforth.
While the reasons for ICL’s success are still con-
tested (Min et al., 2022; Liu et al., 2022), it has
been observed that ICL prompts commonly outper-
form zero-shot prompts, where no demonstration
examples are provided (Brown et al., 2020).

Furthermore, a recent line of work has found
that the choice of demonstration examples can lead
to improved results over random demonstration
selection. For example, Liu et al. (2022) found that
choosing the nearest neighbors of the inference

sample in the training set leads to improvements
over random demonstration selection on 6 tasks,
such as sentiment analysis or question answering.
In all of these, the demonstration examples are
chosen from large annotated training sets, ranging
from 3.5K samples up to 78K samples.

In this work, we address the following research
question: How can we maximize ICL performance
on a given annotation budget? This question is par-
ticularly relevant for real-world domain adaptation
settings, where a large pool of annotated samples is
unavailable for selecting demonstration examples.
Instead, there are large sets of unannotated samples
(e.g., raw text in the target domain), and a fixed
budget to annotate only a small portion of them.
As depicted in Figure 1, we define the task as pool
selection, i.e., selecting a small pool of k examples
out of a large corpus of raw texts. These samples
are annotated and serve as the available pool for
demonstration examples.

We implement several methods for pool selec-
tion, e.g., clustering the train set and selecting a
representative example from each cluster, and test
them on three token classification tasks: named
entity recognition, dependency parsing, and part-
of-speech tagging. We select these tasks as they
are relatively understudied in the context of ICL
and are expensive to annotate due to the need
for linguistic expertise and domain-specific knowl-
edge (Chen et al., 2015; Zhang et al., 2017).

We evaluate several state-of-the-art LLMs on
token classification benchmarks. We observe that
none of the methods consistently outperforms the
others, and, surprisingly, randomly selecting sam-
ples for the annotation pool performs comparably
to more carefully designed approaches in certain
scenarios. Furthermore, we find that a relatively
small pool (∼200 samples) allows LLMs to per-
form over 88% as when demonstrations are se-
lected from the full training set.

We hope that our paradigm is adopted in future
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K

Few Shot Inference
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You are an NER classifier that 
identifies the following entities:..
statement made by general 
<_PERSON_ Abizaid> …
A piece of news emerged from the 
<_LOC_ Balkans> …
They were returning from a 
competition at the University of 
Wisconsin.

1 2 3

A large pool 
of raw train 
and test texts 
in the target 
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chooses a 
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their distance from the inference 
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4

Figure 1: Our proposed approach for ICL on a budget, illustrated in four steps: (1) we assume a large pool of raw
train and potentially test texts in the target domain; (2) a pool selection strategy chooses a subset of k train texts
to maximize downstream ICL performance; (3) annotations are collected for the selected pool; (4) an inference
prompt is instantiated by choosing the nearest examples in the pool to the inference sample. We focus on step (2),
experimenting with various pool selection strategies.

work in order to report more realistic ICL perfor-
mance, and explore new methods for sample selec-
tion for other tasks and domains.

2 ICL on a Budget

Here we propose a conceptual framework for ICL
in a realistic domain adaptation setting (depicted
in Figure 1), where there are no apriori annotated
datasets for the target task. Instead, we assume
that there is a large corpus of raw texts in the tar-
get domain, and a fixed budget for annotating a
small portion of them, such that they can serve as
potential demonstration examples during inference.
Intuitively, the goal of the annotation process is to
maximize downstream ICL performance.

Below we formalize the task of pool selection,
and describe 4 selection strategies, which aim to
maximize different aspects, e.g., coverage of the
training set versus coverage of the test set. In the
following section we evaluate these approaches for
token classification tasks.

2.1 Pool Selection: Task Definition

Formally, a pool selection strategy is a function:

Sk : P(D) 7→ Dk (1)

Where D represents an unannotated distribution
(e.g., all texts in a certain domain), P(D) is the
power set of D, and k ∈ N+ is the annotation
budget, i.e., the number of samples to annotate.
Intuitively, S maps raw sample sets to k train sam-
ples (the pool), which are then annotated. In all
that follows we denote the input samples set by
D ∈ P(D). Typically, k << |D|, indicating that

the annotation budget for a new domain can only
annotate a small portion of its available texts.

Furthermore, we assume a similarity function ϕ:

ϕ :
(
D ×D

)
7→ R (2)

In the scope of this work (similar to previous
work (Liu et al., 2022)) samples are embedded into
Rm, where m is the text embedding dimension,
and ϕ is the cosine similarity of these vectors. In
particular, we use a sentence transformer (Reimers
and Gurevych, 2019) trained over MPNet (Song
et al., 2020).

2.2 Pool Selection Strategies

Below we describe 4 pool selection strategies
which follow the definition in Equation 1.

Central. Select the k samples from D that are
closest to the Euclidean center of D.

Cluster. Cluster D into k clusters and for each
cluster center choose the most similar sample from
D. This method aims to maximize the coverage
of the expected training distribution. This strategy
was proposed in Chang et al. (2021) for selecting
examples for fine-tuning.

Vote-k (Su et al., 2022). Selects a k-sized subset
of D such that the samples are diverse and dissim-
ilar from one another, through a two-step process
which uses the LLM’s confidence to bucket the
different samples. See Su et al. (2022) for more
details.

Random. Randomly select k samples from D.
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Figure 2: Results for NER (top), dependency parsing (center), and POS tagging (bottom) using Claude 3 Haiku
(left), GPT4 (middle) and Gemini 1.5 Pro (right), as a function of the size of sample pool. In methods with a random
component we run 3 trials and plot error bars showing the standard deviation. Oracle: using the full training set as
the pool.

3 Evaluation

We focus on token classification tasks, as they are
both understudied in the context of ICL, while tra-
ditionally expensive to annotate at scale. Impor-
tantly, as is commonly done in active learning sce-
narios (e.g., Shen et al., 2018; Liu et al., 2020), we
use existing datasets to simulate the process shown
in Figure 1, where instead of collecting manual an-
notations, we sample from the existing annotations.

3.1 Experimental Setup

Tasks, datasets, and models. We test three tasks
using two English datasets: Ontonotes 5.0 for
NER (Hovy et al., 2006), and the Universal De-
pendencies corpus for dependency parsing and
POS tagging (UD; Nivre et al., 2016).1 Both

1We use the HuggingFace versions for both datasets with
the english_v12 configuration for Ontonotes and the en_ewt
configuration for UD.

datasets contain texts from various domains, includ-
ing news, conversational, weblogs, web forums,
and more. Due to budget constrains we limit the
size of each test set by randomly sampling 1000
samples. We experiment with a diverse set of 9 dif-
ferent LLMs, ranging from open to closed models
in various parameter sizes: Llama-2 (Touvron et al.,
2023), Mistral (Jiang et al., 2023), Starling (Zhu
et al., 2023), Vicuna (Chiang et al., 2023), Mix-
tral (Jiang et al., 2024), phi-2 (Javaheripi et al.,
2023), GPT-4 (Achiam et al., 2023), Claude 3
Haiku,2 and Gemini 1.5 Pro (Reid et al., 2024).

Prompt and evaluation metric. For each task,
we prompt the models by describing the task and
the expected output format, followed by 5 demon-
stration examples and the current inference sam-
ple. Since POS tagging serves as a precursor to
dependency parsing, both tasks are handled using

2www.anthropic.com/news/claude-3-family
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a shared prompt. Following Zhao et al. (2021), we
sort the examples such that the most similar exam-
ple is the last one, based on the similarity function
ϕ described in Equation 2. See Appendix A for the
full prompt templates.

For NER evaulation we use strict match-
ing (Segura-Bedmar et al., 2013), where a predicted
entity is considered correct if it matches both exact
span boundaries and entity type. For dependency
parsing we use labeled attachment score (LAS),
which measures the accuracy of both the correct
head and dependency label for each token. For
POS tagging, we use the POS accuracy.

Pool sizes. We experiment with sample pools of
size 0.1% - 10% of the maximum pool size, de-
fined as the number of unique samples used when
considering the full training set as the sample pool.

Oracle. As a reference, we report the perfor-
mance of using the full training set for each dataset
and model, compared to our budget-constrained
approach.

3.2 Results

Results for the three best-performing models
(Claude 3 Haiku, GPT-4, and Gemini 1.5 Pro) on all
tasks are presented in Figure 2. The other smaller
models we test are not able to produce outputs
of the requested format in more than 50% of the
cases, and hence cannot be meaningfully compared
against these models, which adhere to the correct
format in roughly 97% of the cases. We now dis-
cuss findings reflected in these results and conduct
further analysis.

The choice of few-shot examples matter in token
classification tasks. We observe a large variation
in performance when selecting different demonstra-
tion examples in all configurations. While this was
observed in other tasks (Zhang et al., 2022), to the
best of our knowledge, this is the first time this was
shown for token classification tasks.

Most pool selection methods perform similarly,
random is surprisingly good. None of the four
methods consistently outperform the others. Sur-
prisingly, we note that random performs similarly
to other methods.

Very small pool sizes can approximate the full
training corpus. All sampling methods require
a pool of only 220 samples for Ontonotes, and 138

NER DP POS

Central 67 40 96
Cluster 75 41 96
Vote-k 78 44 96
Random 78 41 96

Table 1: GPT-4 percentage in performance out of the
state-of-the-art, when using 5% of the samples used in
the fully labeled train set method.

samples for UD, to achieve over 88% of the oracle
performance across all configurations.

ICL on a budget lags behind state-of-the-art.
We compare the ICL results to state-of-the-art re-
sults in Table 1. In NER and dependency pars-
ing, fine-tuned methods vastly outperforms using a
limited annotation budget. In POS tagging which
is considered an easier task, using 138 samples
achieves 96% of the state-of-the-art.

4 Related Work

Similar to pool selection, active learning (Shen
et al., 2017) also aims to select samples for annota-
tion rather than assuming all samples are annotated.
However, active learning operates during training
and relies on access to an oracle or intermediate
model results (e.g., confidence scores), whereas
pool selection assumes no access to the model dur-
ing training and only relies on observing the out-
puts of the model.

Recently, Su et al. (2022) introduced a pool se-
lection method as a method for improving down-
stream performance, which we evaluate as one of
our approaches for annotation pool selection (clus-
ter). Our work is conceptually different in that it
proposes a realistic paradigm under which to exam-
ine ICL performance where there are no annotated
samples. Subsequently, we differ from them in that
we study three different token level tasks, different
pool selection methods, and particularly focus on
the effect of the pool size on downstream perfor-
mance.

5 Conclusion

We proposed the framework of ICL on a budget
and studied different methods for pool selection,
focusing on token classification tasks. We hope
this work will inspire more realistic assumptions
on the amount of labeled data used in different ICL
settings.
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6 Limitations

We tested our ICL on a budget approach on a single
class of tasks (token classification), because it has
high annotation cost and it was relatively less stud-
ied in the context of ICL. It is possible that other
tasks will show different trends, hence we stress
that the contribution here is the methodological ap-
proach, rather than advocating for one particular
sampling strategy.
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A Prompt Template

In this section we describe the prompt templates
we use in our experiments.

A.1 NER task description
You are an NER classifier that identifies the
following entities: Person __PER__, Organi-
zation __ORG__, Geo-Political __GPE__,
Location __LOC__, Facility __FAC__,
Work-of-Art __WOA__, Event __EVE__,
Product __DUC__, Language __ANG__
use angle brackets to tag in-line, please don’t
include any additional information other than
the annotated sentence and keep original spac-
ing.

A.2 Dependency parsing and POS tagging
task description

Your task is to parse the input sentence into a
dependency tree by providing a (token, part-of-
speech tag, head, deprel) for each token. In the
input sentence, tokens are separated by spaces.
Possible part-of-speech tags are:

VBN, WDT, GW, NN, TO, IN, JJR, WP,
EX, VB, HYPH, JJ, SYM, :, RBR, MD, VBP,
JJS, LS, WP$, $, VBD, VBZ, NFP, PRP,
NNPS, CC, XX, „ “, NNP, -RRB-, CD, VBG,
-LRB-, RP, NNS, PDT, AFX, RB, PRP$, UH,
., WRB, DT, FW, RBS, ADD, POS, ”

Output the parse and nothing else. Here are
some examples:

A.3 Prompt design
We first describe the task in question, as outlined
above. Next, we add the demonstration examples.
For GPT and Claude we add the demonstration
examples as follows. For each demonstration ex-
ample, we use LangChain’s3 HumanMessage class
for the original sentence, followed by an AIMes-
sage for the annotated sentence. Finally, we add
the inference sample as a HumanMessage.

3langchain.com
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Task 
description

Demonstration 
examples

Inference
sample

Figure 3: An example NER prompt used in our study.

In Gemini, for which these classes are not imple-
mented, we choose a different strategy: for each
demonstration example, we add the original sen-
tence followed by the separator token ([TAGS] for
NER, [PARSE] for dependency parsing and POS
tagging), and then the annotated sentence. Finally,
we add the inference sample, followed by the sepa-
rator token. Figures 3 and 4 demonstrates an NER
and dependency parsing prompts for Gemini, re-
spectively.

B Performance-Diversity Correlation

Min et al. (2022) study the factors that impact per-
formance in ICL and find that the coverage of the
label space by the demonstration examples has a
strong effect on performance. Drawing inspiration
from their findings, we examine whether the di-
versity in the labels of demonstration examples is
correlated with performance. To this end, for each
dataset, pool selection method and pool size, we
count how many instances of each label (entity for
NER, dependency label for dependency parsing,
POS tag for POS tagging) were presented in the
demonstration examples in the sample pool, and
compute the entropy of these counts as a proxy for
diversity. For each model, we then compute the
Pearson correlation between these entropy values
and the model’s scores. Table 2 presents the corre-
lations. Correlation is high (> 0.5) for all models

GPT Claude Gemini

NER 0.54 0.36 0.46
DP 0.64 0.62 0.64
POS 0.53 0.63 0.80

Table 2: Pearson correlation of performance with label
diversity in the sample pool, as measured by the entropy
of entities. All results are significant.

in the dependency parsing and POS tagging tasks.
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sample

Figure 4: An example dependency parsing prompt used in our study.
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Abstract

Sequence-to-sequence models are widely used
to train Abstract Meaning Representation (Ba-
narescu et al., 2013, AMR) parsers. To train
such models, AMR graphs have to be linearized
into a one-line text format. While Penman en-
coding is typically used for this purpose, we
argue that it has limitations: (1) for deep graphs,
some closely related nodes are located far apart
in the linearized text (2) Penman’s tree-based
encoding necessitates inverse roles to handle
node re-entrancy, doubling the number of rela-
tion types to predict. To address these issues,
we propose a triple-based linearization method
and compare its efficiency with Penman lin-
earization. Although triples are well suited to
represent a graph, our results suggest room for
improvement in triple encoding to better com-
pete with Penman’s concise and explicit repre-
sentation of a nested graph structure.

1 Introduction

Abstract Meaning Representation (AMR) captures
text meaning, such as "who does what to whom,"
and represents it in graphs (see Figure 1). Struc-
tured information is easier for computers to process
and therefore, AMR is widely used in NLP applica-
tions, e.g., machine translation (Wein and Schnei-
der, 2024), text generation (Huang et al., 2023),
or human-robot interaction systems (Bonial et al.,
2019, 2023).

Sequence-to-sequence (seq2seq) approaches
have recently gained popularity for AMR parsing
due to strong performance and easy implementa-
tion. For prediction, the model receives an input
sentence and outputs an AMR graph in text for-
mat. To train seq2seq models for AMR parsing,
graph linearization to represent an AMR graph in
a one-line text format is a prerequisite. Penman
encoding is the most common method for AMR
graph linearization, representing graphs as tree-like
structures. It uses variables (e.g. s, s2 in Figure 2)

seem-01

-

:polarity

see-01

:ARG1

we

:ARG2 ever

:time

:ARG0

person

:ARG1

any

:mod

nutter

:mod

dig-01

:ARG0-of

acknowledge-01

:ARG0-of

true-01

it

:location

thing

:ARG1-of

:ARG1

Figure 1: AMR graph for “We never seem to see any of
the dug-in nutters acknowledge the truth in it.” Example
from the AMR 3.0 dataset (Knight et al., 2020).

(s / seem-01 :polarity -
:ARG1 (s2 / see-01

:ARG0 w
:ARG1 (p / person

:mod (a / any)
:mod (n / nutter)
:ARG0-of (d / dig-01)
:ARG0-of (a2 / acknowledge-01

:ARG1 (t / thing
:ARG1-of (t2 / true-01

:location (i / it))))))
:ARG2 (w / we)
:time (e / ever))

Figure 2: AMR in Penman encoding for Figure 2.
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Figure 3: AMR graph without inverse roles.
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as node IDs to manage co-references. In addition,
parentheses represent nested structures of AMR
graphs. However, Penman has key limitations to
training a seq2seq model:

1) Parent-Child Distance: Parent and child
nodes may appear far apart in the linearized text,
despite being closely connected in the graph. For
example, in Figure 2, seem-01 and we are en-
coded distant in Penman format (highlighted in
red) despite their proximity in the graph of Fig-
ure 2. This is observed when a preceding sibling
node has a deep sub-graph. We hypothesize that
this long distance increases the difficulty of learn-
ing strong parent-child connections, especially in
deeper graphs. 2) Inverse Roles: Penman repre-
sents a graph in a tree-based format. To be specific,
when a node has multiple parent nodes (node re-
entrancy), the child node is duplicated to maintain
a single-rooted tree structure. To fit an AMR graph
into a tree structure, Penman introduces inverse
roles by rewriting :relation as :relation-of
(see Figure 2 where inverse roles are highlighted
in blue). This increases the number of relations the
model must learn, potentially complicating training
and reducing model performance. Figure 3 shows
how inverse roles are unnecessary in a graph-based
representation.

To address these issues, we propose an alterna-
tive triple-based format for AMR graph lineariza-
tion. A triple consists of a parent node, a child
node, and a relation type between them, ensuring
that parent and child nodes remain adjacent in the
linearized text. This format also eliminates inverse
roles by replacing (node A, relation-of, node
B) with (node B, relation, node A). In the rest
of the paper, we compare Penman and triple-based
formats with examples, highlighting their strengths
and limitations in training a seq2seq AMR parser.
Our contributions to seq2seq AMR parsing are:

• A triple-based linearization method for train-
ing seq2seq AMR parsers.

• A detailed comparison with Penman lineariza-
tion, focusing on performance across varying
graph depths and lengths, and identifying ar-
eas for improvement.

2 Related Work

Triple encoding has been used in relation extrac-
tion (Huguet Cabot and Navigli, 2021; Ye et al.,
2021; Saxena et al., 2022) and discourse represen-
tation structure (DRS) parsing (van Noord et al.,

s instance seem-01 s2 instance see-01 p instance person
a instance any n instance nutter d instance dig-01
a2 instance acknowledge-01 t instance thing t2 instance true-01
i instance it w instance we e instance ever
s polarity - s ARG1 s2 s2 ARG0 w
s2 ARG1 p p mod a p mod n
d ARG0 p a2 ARG0 p a2 ARG1 t
t2 ARG1 t t2 location i s ARG2 w
s time e

Figure 4: Triple linearization of the graph in Figure 2.

2018a,b). The closest to our approach is van No-
ord et al. (2018a), who convert AMR graphs into
DRS triples. However, their representation differs
from ours by mapping AMR relations to DRS roles
and adding extra information that does not exist in
AMR. In addition, they did not include training an
AMR parser in their work. While triple encoding is
widely used in relation extraction and DRS parsing,
it has not been used for seq2seq AMR parsers. In
our work, we propose using it to linearize AMR
graphs, analyzing its strengths and weaknesses as
an encoding method.

3 Methodology: Triple Linearization

Triple representation mitigates the challenges of
Penman linearization (described in Section 1) by
encoding a graph as a set of triples. Figure 4 il-
lustrates that the parent-child nodes, which were
distantly located in Figure 2, are now adjacent in
the triple representation (highlighted in red). We
hypothesize this helps the model learn direct parent-
child relationships, especially in deeper graphs.
Triples also eliminate inverse roles by reversing
the order of two nodes, as shown in Figure 4 (high-
lighted in blue).

The triple format, widely used for graph repre-
sentation (e.g., RDF), aligns better with AMR’s
graph structure than Penman’s tree-based encoding.
Its flexibility supports graphs with multiple roots
or re-entrancies, making it potentially suitable for
broader semantic frameworks. To assess its utility,
we trained seq2seq AMR parsers using triple and
Penman formats.

Despite its advantages, triple linearization can
result in verbose linearization, slowing down the
learning process, and may be less effective at cap-
turing nested structures of graphs compared to Pen-
man. This study evaluates both linearization meth-
ods to train seq2seq AMR parsers, exploring: (1)
whether triple representation improves AMR pars-
ing; (2) which graphs benefit most from triple rep-
resentation, such as those with deep structures or
large size, and (3) if combining triple and Penman
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representations enhances parsing performance.

Experiments involve training models respec-
tively with triple, Penman, and both formats (multi-
task learning). Using both formats may serve as a
form of data augmentation, as it effectively doubles
the training data by representing one example in
two linearized formats. We train and evaluate our
model with English AMR 3.0 (Knight et al., 2020)
data. We evaluate our model using SMATCH (Cai
and Knight, 2013) score by counting the matching
triples between two graphs. We analyze results by
graph depth and size to determine which types of
graphs benefit from different encoding methods.

Triple linearization strategies To linearize
AMR graphs in triples, we extract all triples and
unfold them in depth-first search order using the
PENMAN library.1 Four linearization strategies
are applied, varying in whether variables2 or in-
verse roles are retained. We provide an example
for each linearization type in Table 3 and Figure 7
of Appendix A. Each model is named based on
linearization type as follows:

• Triple_X_var_X_invrole: Variables and in-
verse roles are removed. Variables are re-
placed by node names, and inverse roles are
converted by reversing node order.3 Reversing
inverse roles reduces the number of relation
types from 155 to 115 in our training data.
Triples are separated by a pipe symbol (|).

• Triple_X_var_O_invrole: Variables are re-
moved, but inverse roles are retained.

• Triple_O_var_O_invrole: Both variables
and inverse roles are retained. Variables
and their instances are represented as triples
with the instance relation (e.g., f instance
fruit). This approach is the most compre-
hensive, as no information is lost from the
original graph during linearization.

• Triple_O_var_X_invrole: Variables are re-
tained, but inverse roles are removed.

1https://penman.readthedocs.io/en/, version 1.3.0
2Removing variables is a common pre-processing strategy

for seq2seq AMR parsing (Konstas et al., 2017; van Noord
and Bos, 2017). This leads to information loss but effectively
reduces data sparsity for training.

3For the models discussed in this article, variables and
inverse roles are removed in this manner.

4 Experimental Setup

Models are trained using the large mBART model
(Tang et al., 2021) on each linearization type.4

4.1 Baseline

To compare our method with existing approaches
using Penman encoding, we trained a model on
AMR graphs linearized using Penman encoding,
which serves as our baseline. Note that maintain-
ing inverse roles is a necessary aspect of Penman
encoding and X_invrole types are not available for
Penman encoding. For training, we employed the
same mBART model and trained two models as
follows (see Table 3 for examples):

• Penman_X_var_O_invrole: Variables are re-
moved, but inverse roles are retained.5

• Penman_O_var_O_invrole: Both variables
and inverse roles are retained.

4.2 Multi-task Learning

As mentioned in Section 1, combining triple and
Penman encodings may offer complementary bene-
fits. To test this, we trained models in a multi-task
learning framework by merging two differently en-
coded datasets. During training, the model learns
from shuffled examples with a token indicating the
encoding type. For predictions, the model is in-
structed to use either triple or Penman encoding to
use the corresponding decoding strategy to recon-
struct graphs. We trained four models:

• Multi_tri_O_var_O_invrole: Both variables
and inverse roles are retained. The main task
is triple encoding, with Penman encoding as
an auxiliary task. This means that the best
model is selected based on the performance on
the validation set using triple encoding, while
Penman encoding is treated as an auxiliary
task to help the triple learning.

• Multi_penman_O_var_O_invrole: Both
variables and inverse roles are retained. The
main task is Penman encoding, with triple en-
coding as an auxiliary.

• Multi_tri_X_var_O_invrole: Variables are
removed but inverse roles are retained. The
best model is chosen based on the model’s
performance in triple prediction.

4The model was chosen based on our goal of developing a
multilingual system, which was not covered in this article.

5We used the script from van Noord and Bos (2017).
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Model The Little Prince AMR 3.0

Triple_O_var_O_invrole 76.2± 0.3 80.0± 0.2
Triple_O_var_X_invrole 76.1± 0.5 80.3± 0.1
Triple_X_var_O_invrole 76.5± 0.2 78.7± 0.1
Triple_X_var_X_invrole 76.2± 0.2 78.9± 0.8

Penman_O_var_O_invrole 77.0 ± 0.4 80.9 ± 0.2
Penman_X_var_O_invrole 76.7± 0.1 80.2± 0.1

Multi_tri_O_var_O_invrole 76.9± 0.2 80.3± 0.1
Multi_tri_X_var_O_invrole 76.3± 0.2 78.9± 0.1
Multi_penman_O_O_invrole 76.7± 0.2 80.6± 0.3
Multi_penman_X_var_O_invrole 76.1± 0.1 79.8± 0.1

Table 1: SMATCH scores for evaluation (with the
highest scores in bold and the second-highest scores
underlined).

• Multi_penman_X_var_O_invrole: Vari-
ables are removed but inverse roles are re-
tained. The best model is selected based on
performance in Penman prediction.

5 Results and Insights

Global results. Table 1 presents results on two
test sets: The Little Prince6 and AMR 3.0.
The Penman single-task model with variables
(Penman_O_var_O_invrole) performs best on
both test sets (77.0 and 80.9, respectively). Among
single-task triple models, Tri_O_var_O_invrole
achieves the best results, with a marginal gap from
the best model (≤1 SMATCH).

Preserving variables consistently improves per-
formance, contradicting the assumption that remov-
ing them aids learning by reducing data sparsity.
This suggests variable removal leads to critical in-
formation loss. In addition, learning from Penman
encoding while performing an auxiliary triple task
reduces performance, whereas the reverse improves
it. This indicates Penman encoding provides struc-
tural information beneficial to triple encoding but
not vice versa.

Within triple linearization, removing inverse
roles improves performance on AMR 3.0 but not
The Little Prince. Given that AMR 3.0 includes
longer sentences, removing inverse roles may ben-
efit longer sentences while harming shorter ones.
However, the inconsistency across test sets could
also suggest inverse roles have only a marginal
effect.

Triple linearization does not improve learning
for deeper graphs. We hypothesized that triple
linearization could enhance training by position-

6https://github.com/flipz357/AMR-World

ing child and parent nodes closer, especially when
a preceding sibling has a deep subgraph. In Pen-
man encoding, such cases place these nodes farther
apart. Assuming this issue is more common in
deeper graphs, we analyzed results by reference
graph depth (distance from the root to the furthest
node), focusing on AMR 3.0, which has greater
depth variety than The Little Prince.

Our results (Figure 5, Appendix) show SMATCH

scores by depth align with overall scores, in-
dicating no learning benefit for deeper graphs
with triple encoding. The best model, Pen-
man_O_var_O_inverserole, consistently per-
formed best across depths. This contradicts our hy-
pothesis that triple encoding benefits seq2seq AMR
learning by bringing parent-child nodes closer to-
gether. Instead, the results emphasize the benefit
of Penman’s concise graph representation and its
ability to explicitly encode nested structures, which
play a more critical role in model performance.

Triple linearization does not improve learning
for longer graphs. We also analyzed perfor-
mance by graph length (i.e., token count in the lin-
earized reference graph), assuming verbose triple
encoding would degrade performance on longer
graphs. Since graph depth and length are not al-
ways correlated, results may differ from the depth
analysis. Figure 6 in the Appendix shows the re-
sults per graph length with token counts of refer-
ence graphs grouped into buckets of 50 for clar-
ity. For shorter graphs, the gap between models
is smaller, but as the graphs become longer, the
performance of triple models decreases more no-
ticeably, resulting in a wider gap. This supports
our earlier hypothesis regarding the limitations of
triple encoding: its verbose representation likely
contributes to the observed performance degrada-
tion on lengthy graphs.

6 Conclusion

We introduced triple linearization as an alternative
to Penman linearization, hypothesizing that it could
improve training for several reasons: (1) parent and
child nodes are always located together in a triple,
(2) the elimination of inverse roles may simplify
training by reducing the number of relations, (3)
and triples more closely resemble the underlying
graph structure, while Penman encoding represents
a graph in a more tree-like format. Contrary to our
hypothesis, Penman has proven to be a more effec-
tive linearization method to train a seq2seq parsing.
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However, the gap between the best Penman model
and certain triple-based models is marginal. Our
results show a potential to train a seq2seq AMR
parser that predicts a graph directly (not a tree-
based representation) while maintaining equiva-
lent performance. Notably, the model’s output in
triples more naturally aligns with AMR’s graph
structure than Penman. Our code to train and eval-
uate the model is available on https://github.
com/Emvista/Triple_AMR_Parser.git.
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A Appendix

Figure 5: SMATCH score per graph depth.

Figure 6: SMATCH score per graph length. The length is measured by the number of tokens in a linearized graph
and token counts are grouped into buckets of 50 for clarity.
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Figure 7: AMR graph for “There are too many traitors of China!”. This example is drawn from AMR 3.0 dataset
(Knight et al., 2020).
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Triple_X_var_X_invrole Triple_X_var_O_invrole Triple_O_var_O_invrole Triple_O_var_X_invrole

person ARG0-of betray-01 |
betray-01 ARG1 country |
country name " China " |
person ARG1-of have-quant-91 |
have-quant-91 ARG2 many |
have-quant-91 ARG3 too

betray-01 ARG0 person |
betray-01 ARG1 country |
country name " China " |
have-quant-91 ARG1 person |
have-quant-91 ARG2 many |
have-quant-91 ARG3 too

p instance person |
b instance betray-01 |
c instance country |
h instance have-quant-91 |
m instance many |
t instance too |
p ARG0-of b |
b ARG1 c |
c name " China " |
p ARG1-of h |
h ARG2 m |
h ARG3 t

p instance person |
b instance betray-01 |
c instance country |
h instance have-quant-91 |
m instance many |
t instance too |
b ARG0 p |
b ARG1 c |
c name " China " |
h ARG1 p |
h ARG2 m |
h ARG3 t

Table 2: Triple encoding examples of Figure 7.

Penman_X_var_O_invrole Penman_O_var_O_invrole

( person :ARG0-of ( betray-01 :ARG1 ( country :name " China " )
) :ARG1-of ( have-quant-91 :ARG2 ( many ) :ARG3 ( too ) ) )

( p / person :ARG0-of ( b / betray-01 :ARG1 ( c / country :name "
China " Salut Maximin, j’ai soumis la version actuelle (changement
du titre, ajouter des commentaires de Cédroc dans la conclusion)
au workshop) ) :ARG1-of ( h / have-quant-91 :ARG2 ( m / many )
:ARG3 ( t / too ) ) )

Table 3: Penman encoding examples of Figure 7.
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Abstract
In-context learning (ICL) has transformed the
use of large language models (LLMs) for NLP
tasks, enabling few-shot learning by condition-
ing on labeled examples without finetuning.
Despite its effectiveness, ICL is prone to errors,
especially for challenging examples. With the
goal of improving the performance of ICL, we
propose corrective in-context learning (CICL),
an approach that incorporates a model’s incor-
rect predictions alongside ground truth correc-
tions into the prompt, aiming to enhance classi-
fication accuracy through self-correction. How-
ever, contrary to our hypothesis, extensive ex-
periments on text classification tasks demon-
strate that CICL consistently underperforms
standard ICL, with performance degrading as
the proportion of corrections in the prompt in-
creases. Our findings indicate that CICL intro-
duces confusion by disrupting the model’s task
understanding, rather than refining its predic-
tions. Additionally, we observe that presenting
harder examples in standard ICL does not im-
prove performance, suggesting that example
difficulty alone may not be a reliable criterion
for effective selection. By presenting these neg-
ative results, we provide important insights into
the limitations of self-corrective mechanisms in
LLMs and offer directions for future research.1

1 Introduction

In-context learning (ICL; Brown et al., 2020) has
emerged as a powerful paradigm for leveraging
large language models (LLMs) for various NLP
tasks, including text classification. Unlike tradi-
tional approaches that require finetuning on task-
specific data, ICL allows models to make pre-
dictions based on a small number of examples
presented in the prompt, effectively transforming
LLMs into flexible tools for few-shot learning.
This paradigm has demonstrated remarkable perfor-
mance in numerous scenarios, often approaching

1Code and data are available at https://github.com/
mario-sanz/CICL.

Text: Oh, great, another Monday.
Predicted label: positive
Correct label: negative

Text: This is the worst movie ever!
Predicted label: negative
Correct label: negative

Text: I've seen worse.
Predicted label: negative
Correct label:

Corrective In-Context
Learning

Text: Oh, great, another
Monday.
Label: negative

Text: This is the worst
movie ever!
Label: negative

Text: I've seen worse.
Label:

Standard In-
Context Learning

Figure 1: CICL prompt example. The model is tasked
with predicting the correct label based on its own pre-
diction, using examples that include both the prediction
and its correction.

or surpassing finetuned models on specific tasks
(Brown et al., 2020).

Although effective, ICL is susceptible to errors,
particularly with difficult examples. We set out
to further improve ICL by introducing a novel ex-
tension of it, which we term corrective in-context
learning (CICL). Our approach is based on the idea
that providing the model with its initial predictions
alongside the correct ground truth labels can serve
as a feedback mechanism, enabling the model to
refine its understanding and improve subsequent
predictions.

CICL builds on the intuition that LLMs, when
exposed to their own errors in conjunction with
the correct answers, might learn from these mis-
takes within the confines of a single interaction.
For instance, if a model predicts “positive” for a
sentence that is actually “negative,” presenting this
prediction–error pair could prompt the model to
recalibrate its internal representations and make
better-informed predictions for similar inputs.

However, our empirical evaluation reveals a dif-
ferent story. While the approach is theoretically
promising, our experiments show that CICL fails
to deliver the anticipated improvements. In some
cases, performance even deteriorates compared to
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standard ICL. This underscores the complexity of
self-correction in LLMs and the importance of rig-
orously evaluating intuitive extensions to ICL.

In this paper, we present a detailed investigation
of CICL for text classification tasks. We outline
our methodology, describe the experimental setup,
and analyze the results, focusing on understand-
ing why this approach falls short of expectations.
By sharing these negative results, we aim to con-
tribute to the growing discourse on the limitations
of LLMs and to inspire future research to develop
more effective self-correction mechanisms.

2 Related Work

In-Context Learning Introduced by Brown et al.
(2020), ICL enables LLMs to perform tasks via
few-shot prompting without parameter updates.
Subsequent work has explored factors influencing
ICL performance, including example selection (Liu
et al., 2022) and ordering (Lu et al., 2022), raising
questions about its robustness to errors or ambigu-
ous examples. To enhance ICL, prompt tuning
methods (Lester et al., 2021; Li and Liang, 2021)
optimize soft prompts, improving adaptation while
maintaining frozen model parameters, bridging the
gap between ICL and finetuning.

Self-Correction in LLMs Prior work ex-
plores self-correction through iterative refinement
(Madaan et al., 2023), finetuning on self-generated
data (Huang et al., 2023), or reinforcement learning
(Kumar et al., 2024). These approaches, however,
require multi-step processes, parameter updates,
or external rewards. In contrast, we investigate
whether LLMs can self-correct in-context by di-
rectly incorporating corrections into the prompt.
Closest to our setting, Monea et al. (2024) show
that LLMs struggle to improve from binary reward
signals (correct/incorrect) in ICL scenarios. While
their feedback is implicit, we extend this observa-
tion to explicit ground truth corrections and simi-
larly find degraded performance.

3 Methodology

3.1 Standard In-Context Learning

ICL leverages the few-shot capabilities of LLMs by
conditioning predictions on a prompt constructed
from a small set of labeled examples. Formally,
given a dataset of examples {xi, yi}, where xi rep-
resents a text input and yi is a class label verbalized
as one of the possible labels in the set L, the model

M predicts the label for a query x using a context
prompt Ck of k examples:

ŷ = argmax
y∈L

PM (y | Ck, x) (1)

ICL operates under the assumption that the few-
shot examples encapsulate task-relevant patterns,
allowing the model to generalize to unseen queries.
This paradigm has demonstrated remarkable versa-
tility and competitive performance across numer-
ous tasks and datasets (Brown et al., 2020). How-
ever, its effectiveness is heavily dependent on the
quality and representativeness of the examples in
the prompt (Liu et al., 2022). Furthermore, biases
in the selection or ordering of examples, as well as
the inherent biases of the model, can significantly
influence predictions, posing challenges for consis-
tent and reliable performance (Zhao et al., 2021).

In this study, standard ICL is the baseline against
which we compare the proposed CICL approach,
providing insights into whether iterative feedback
mechanisms can address some of these challenges.
The structure of the ICL prompt, along with an
example, is provided in Appendix B.1.

3.2 Corrective In-Context Learning

CICL extends the standard ICL paradigm by intro-
ducing a second round of predictions informed by
feedback from the first round. The algorithm is as
follows:

1. Initial prediction: A prompt is constructed
from k randomly selected examples from the
training data, each consisting of an input–
output pair (xi, yi), for i ∈ 1, ..., k. This
prompt is used to generate prediction ŷ for
the test input x via standard ICL.

2. Feedback incorporation: We perform ICL for
the k examples selected in Step 1, getting
the model’s predictions ŷi for each example
(xi, yi), with the remaining k − 1 examples
acting as few-shot examples. Using these
predictions, a feedback-augmented prompt
(CICL) is constructed from triplets of the form
(xi, ŷi, yi), where xi is the input text, ŷi is the
predicted label, and yi is the true label. These
triplets explicitly highlight the model’s errors
(when ŷi ̸= yi) and correct predictions (when
ŷi = yi), providing the model with a context
to learn from its earlier outputs.
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x1, y1
...

xk, yk
LLM

ŷ1

...
ŷk

Train data
(k few-shot examples)

x

LLM

ICL (k times)

ICL (1 time)

ŷ

x1, ŷ1, y1
...
xk, ŷk, yk

x, ŷ

LLM

CICL

ỹ

k few-shot
predictions

ICL
prediction

x1, y1
...
xk, yk

x

CICL
prediction

Test data

ICL
prompt

CICL
prompt

Figure 2: Diagram of the CICL methodology. For each test instance x, k few-shot examples (x1, y1), . . . , (xk, yk)
are selected. Standard ICL generates predictions ŷ1, . . . , ŷk for these examples, which are used to build the CICL
prompt. This, combined with the initial ICL prediction ŷ for x, allows the model to predict the corrected label ỹ.

3. Corrective prediction: To perform the CICL
prediction for the input x, the feedback
prompt built in Step 2 is expanded to include
x along with its initial prediction ŷ (obtained
in Step 1). The task for the model is then to
predict a corrected label ỹ for x, leveraging
the feedback triplets to generalize how errors
were corrected in the few-shot examples.

This iterative setup allows the model to “see” its
own mistakes and explicitly incorporate the correct
answers during the second round, hypothesizing
that this feedback mechanism can improve its per-
formance. Figure 2 shows a diagram of the pro-
posed methodology for CICL, and the structure
of the CICL prompt, along with an example, is
provided in Appendix B.2.

4 Experiments

4.1 Experimental Setup
Datasets We evaluate CICL using 17 text classi-
fication datasets widely adopted in previous work.
These datasets span a variety of tasks, including
sentiment analysis, topic classification, and more.
Further details are provided in Appendix A.

Models To explore the effectiveness of CICL
across different models and ensure findings are not
model-specific, we use four recent LLMs: Llama-
3.1 (8B; Dubey et al., 2024), GPT-J (6B; Wang
and Komatsuzaki, 2021), Mistral 7B v0.3 (Jiang
et al., 2023) and Qwen2.5 (7B; Qwen et al., 2024).
The choice of these relatively small-sized models
allows for extensive experimentation while main-
taining computational feasibility. However, pre-
liminary experiments with the larger 70B version

of Llama-3.1 yielded similar results to the smaller
versions.

Implementation Details Following prior work
on ICL for text classification, we use simple and
unified templates for all datasets and do not include
task instructions, keeping human engineering to a
minimal level (Min et al., 2022; Fei et al., 2023).
Also following prior work, we set k = 8 few-shot
examples, which enables incorporating a fair num-
ber of corrections in the prompt while keeping com-
putational costs manageable. Preliminary experi-
ments with larger k values showed similar results,
so we stick with k = 8 for simplicity.

To assess how CICL performs with different lev-
els of corrected examples, we introduce varying
proportions of corrected examples in the CICL
prompt, ranging from 0% (no corrected examples)
to 100% (all examples corrected) in increments of
25%. Each proportion determines how many of the
k examples in the CICL prompt are corrected (i.e.,
their initial ICL prediction was incorrect). This
approach allows us to evaluate how the ratio of
corrected feedback influences the model’s ability
to refine its predictions. To minimize the impact
of randomness in the results, every experimental
configuration is run using 5 different random seeds.

Metric We compare standard ICL and CICL per-
formance using macro-F1 score, which accounts
for class imbalance.

4.2 Results

Figure 3 compares the performance of standard
ICL and CICL across different models. The re-
sults present the mean and standard deviation of
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(a) Llama-3.1 (8B). (b) GPT-J (6B). (c) Mistral 7B v0.3. (d) Qwen2.5 (7B).

Figure 3: Mean Macro-F1 (± Std Dev) across all datasets for each model, comparing standard ICL (blue) and CICL
(orange). As the proportion of corrected examples increases (x-axis), the performance of CICL decreases (y-axis).

Macro-F1 scores across all datasets, evaluated for
varying proportions of corrected examples in CICL.
Detailed results are available in Appendix C.

Contrary to our hypothesis, CICL consistently
underperforms standard ICL. When the proportion
of corrected examples is 0%—or even 25% for
some models—both methods yield equivalent per-
formance, as the “corrective” task essentially re-
duces to replicating the previously predicted label.
However, as the proportion of corrected examples
increases, CICL’s performance deteriorates further,
highlighting the model’s struggle to integrate feed-
back from corrected examples effectively.

Our findings suggest that the corrective nature
of CICL introduces confusion rather than guiding
the model towards improved predictions. Swap-
ping (correcting) labels in the few-shot examples
appears to disrupt the model’s internal represen-
tations, making it harder to generalize and refine
predictions, especially when encountering harder
examples.

4.3 Statistical Analyses

To assess the significance of these performance
differences, we conduct statistical tests. A Shapiro-
Wilk test for normality reveals no statistical evi-
dence supporting normality in the distributions of
ICL and CICL results. Therefore, we employ non-
parametric tests to evaluate the impact of correction
proportions on performance.

A Wilcoxon signed-rank test is used to determine
the threshold at which ICL becomes statistically su-
perior to CICL. As shown in Table 1, from a correc-
tion proportion of 25% onward, ICL demonstrates
statistically significant superiority over CICL, rein-
forcing our conclusion that CICL’s self-corrective
mechanism is ineffective.

Additionally, a Kruskal-Wallis test is conducted
to examine variation in performance across cor-
rection proportions (for CICL) and example con-
ditions (for ICL). Table 2 highlights significant

Corrected Proportion Statistic P-value

0% 178.00 0.7916
25% 9453.00 4e-03*
50% 20439.00 7e-04*
75% 13553.00 1e-16*
100% 984.00 9e-54*

Table 1: Wilcoxon signed-rank test results for different
correction proportions. * indicates significant differ-
ences at the 0.01 level.

Method Statistic P-value

ICL 12.18 0.02
CICL 677.54 3e-145*

Table 2: Kruskal-Wallis test results for ICL and CICL.
* indicates significant differences at the 0.01 level.

variation in CICL performance as the proportion of
corrected examples increases, whereas ICL shows
minimal variation across differing example con-
ditions. These results underscore the robustness
of ICL across diverse contexts, contrasting with
CICL’s instability under varying correction levels.

5 Impact of Harder Examples on ICL

Although not the primary objective of this study,
an intriguing finding emerges from our results. As
shown in Figure 3, increasing the proportion of
incorrectly classified examples (i.e., higher “cor-
rected proportions”) in the few-shot context does
not improve the performance of standard ICL. In
fact, for some models, performance slightly de-
clines as the corrected proportion increases.

Intuitively, one might expect that presenting
the model with harder examples—those it initially
misclassified—would enhance performance. The
rationale is that such examples could help refine the
model’s decision boundaries and establish clearer
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classification thresholds, improving overall accu-
racy. However, our results do not support this.

When examining the performance trends of stan-
dard ICL (blue lines in Figure 3), we observe that
including harder examples in the few-shot context
fails to yield any consistent improvement. In some
cases, performance remains unchanged or even de-
creases slightly. Furthermore, statistical analysis
using the Kruskal-Wallis test reveals no significant
variation in standard ICL performance across differ-
ent corrected proportions (Table 2, first line). These
findings suggest that simply exposing the model to
harder examples does not provide the anticipated
benefits for few-shot classification tasks.

This observation warrants further investigation
into how example difficulty interacts with ICL, par-
ticularly in understanding why harder examples
fail to contribute to improved model calibration or
decision-making in this context.

6 Conclusion

In this paper, we introduced CICL, a novel ap-
proach aimed at leveraging incorrect model pre-
dictions to improve performance through self-
correction. By including misclassified examples
along with their correct labels in the prompt, CICL
sought to refine the model’s predictions in text clas-
sification tasks. However, contrary to our initial hy-
pothesis, CICL consistently underperformed ICL
across all models and datasets. Our findings re-
vealed that the corrective nature of CICL often led
to confusion rather than improvement. The swap-
ping of labels in the few-shot examples disrupted
the model’s understanding of the task, resulting
in degraded performance as the proportion of cor-
rected examples increased.

Additionally, we explored an auxiliary finding
regarding the impact of harder few-shot examples
on standard ICL performance. Despite the expecta-
tion that presenting harder, misclassified examples
could enhance the model’s decision-making, our
results showed no significant improvement across
varying proportions of examples that required cor-
rection. This challenges the assumption that harder
examples inherently contribute to better generaliza-
tion in few-shot learning.

Overall, our study highlights the challenges
of incorporating self-corrective mechanisms into
LLMs through ICL and demonstrates that harder
examples are not necessarily more useful than eas-
ier ones in standard ICL. These findings provide

valuable insights for the development of more ro-
bust and effective few-shot learning methods with
LLMs.

Limitations

Despite the intuitive appeal of CICL, our findings
indicate that it performs worse than standard ICL
for text classification tasks. Several factors may
contribute to this result. First, our experiments are
restricted to small-scale open-source LLMs due to
computational constraints. Larger models may ex-
hibit stronger reasoning and adaptation capabilities,
potentially improving CICL performance. While
preliminary experiments with the 70B version of
Llama-3.1 yielded similar results to the smaller
models, the impact of even larger models remains
an open question. Second, CICL may be more
effective for tasks requiring multi-step reasoning,
e.g., via chain-of-thought prompting, where the
model can benefit from explicit corrective feed-
back to refine intermediate steps. Third, LLMs are
highly sensitive to prompt design. It is possible
that alternative prompt formats or different ways of
structuring corrective feedback could lead to better
results.
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A Datasets Details

Our experiments utilize 17 datasets spanning vari-
ous text classification tasks, all of which are com-
monly used in prior research (Min et al., 2022; Lu
et al., 2022; Zhao et al., 2021; Fei et al., 2023).
All datasets are accessed through the HuggingFace
Datasets library (Lhoest et al., 2021). For eval-
uation, we use the provided test sets when avail-
able. If no test set is provided, we create a strati-
fied development set by sampling from the training
data, ensuring the class distribution is preserved.
Detailed dataset information, including task type,
class counts, and data distribution, is summarized
in Table 3.

As shown in Table 3, most datasets are imbal-
anced. To account for this, we use macro F1 as the
evaluation metric, as it equally weighs all classes
and ensures a fair assessment of the model’s perfor-
mance across both frequent and rare classes.

B Prompt Formats

B.1 In-Context Learning Prompt

Text: {example_1}
Label: {ground_truth_1}

Text: {example_2}
Label: {ground_truth_2}
...
Text: {example_k}
Label: {ground_truth_k}

Text: {input_text}
Label:

Figure 4: Prompt format for standard ICL, showing
ground truth labels for k examples.

Example

Below is an example of a standard ICL prompt for
the TREC dataset with k = 8 few-shot examples.

Text: What is the name of the tallest
mountain in the world?
Label: location

Text: How many eyes does a bat have?
Label: numeric

Text: What does Ms., Miss, and Mrs. stand
for?
Label: abbreviation

Text: What does IQ stand for?
Label: abbreviation

Text: What were the achievements of
Richard Nixon?
Label: entity

Text: What is the C programming language?
Label: description

Text: Who was considered to be the father
of psychology?
Label: human

Text: What are the top five oil-producing
countries in the world?
Label: location

Text: What are the stars made of?
Label:
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Dataset # Classes Balanced

Sentiment and topic classification
SST-2 (Socher et al., 2013) 2 ✓

SST-5 (Socher et al., 2013) 5 ✗

MR (Pang and Lee, 2005) 2 ✓

CR (Hu and Liu, 2004) 2 ✓

financial_phrasebank (Malo et al., 2014) 3 ✗

poem_sentiment (Sheng and Uthus, 2020) 4 ✗

Subj (Pang and Lee, 2004) 2 ✗

AG News (Zhang et al., 2015) 4 ✓

DBpedia (Zhang et al., 2015) 14 ✓

TREC (Voorhees and Tice, 2000) 6 ✗

Detection
tweet_eval-hate (Barbieri et al., 2020) 2 ✗

tweet_eval-irony (Barbieri et al., 2020) 2 ✗

tweet_eval-offensive (Barbieri et al., 2020) 2 ✗

tweet_eval-stance_atheism (Barbieri et al., 2020) 3 ✗

tweet_eval-stance_feminist (Barbieri et al., 2020) 3 ✗

hate_speech18 (Barbieri et al., 2020) 2 ✗

ethos-binary (Barbieri et al., 2020) 2 ✗

Table 3: Full dataset information.

B.2 Corrective In-Context Learning Prompt

Text: {example_1}
Predicted label: {predicted_label_1}
Correct label: {ground_truth_1}

Text: {example_2}
Predicted label: {predicted_label_2}
Correct label: {ground_truth_2}
...
Text: {example_k}
Predicted label: {predicted_label_k}
Correct label: {ground_truth_k}

Text: {input_text}
Predicted label: {predicted_label}
Correct label:

Figure 5: Prompt format for CICL, showing predicted
and ground truth (“correct”) labels for k examples.

Example
Below is an example of a CICL prompt for the
TREC dataset. There are k = 8 few-shot examples,
with 50% being corrected examples. This means
4 examples are correctly predicted by ICL (in
positions 2, 4, 6, and 7), and 4 are corrected
examples (in positions 1, 3, 5, and 8). The final

instance represents the current input, where ICL
predicted the label “description.” The task of the
LLM is to predict the correct label based on the
input text, the predicted label, and the corrections
made in previous examples. The true label for this
instance is “entity,” and the goal of CICL is to
make this correction.

Text: What is the name of the tallest
mountain in the world?
Predicted label: entity
Correct label: location

Text: How many eyes does a bat have?
Predicted label: numeric
Correct label: numeric

Text: What does Ms., Miss, and Mrs. stand
for?
Predicted label: description
Correct label: abbreviation

Text: What does IQ stand for?
Predicted label: abbreviation
Correct label: abbreviation

Text: What were the achievements of
Richard Nixon?
Predicted label: human
Correct label: entity
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Text: What is the C programming language?
Predicted label: description
Correct label: description

Text: Who was considered to be the father
of psychology?
Predicted label: human
Correct label: human

Text: What are the top five oil-producing
countries in the world?
Predicted label: numeric
Correct label: location

Text: What are the stars made of?
Predicted label: description
Correct label:

C Detailed Results

Table 4 presents the detailed results for all com-
binations of models, datasets, corrected example
proportions, and approaches (ICL and CICL). Each
configuration is evaluated five times using differ-
ent random seeds to ensure diverse selections of
examples, minimizing the impact of randomness
on the results. The table reports the mean and stan-
dard deviation for each configuration, providing
a comprehensive view of the performance across
variations.
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Dataset
Corrected
Proportion

Llama-3.1 Mistral 7B Qwen2.5 GPT-J
ICL CICL ICL CICL ICL CICL ICL CICL

AG News

0% 87.31.6 87.31.6 85.51.0 85.51.0 83.41.7 83.61.6 73.94.4 73.94.4
25% 83.74.0 84.03.6 86.61.0 86.50.7 85.31.1 85.71.2 74.20.8 74.20.8
50% 84.13.4 83.04.4 85.02.3 76.413.0 83.22.4 82.02.4 73.97.3 70.57.8
75% 68.720.2 56.024.0 80.93.9 47.622.8 80.06.1 70.48.7 75.92.4 47.67.3
100% 83.62.8 13.52.1 85.03.2 12.22.2 85.11.9 15.35.1 77.13.8 14.62.0

CR

0% 93.20.5 93.20.5 93.20.4 93.20.4 93.20.5 93.10.5 87.62.0 87.62.0
25% 92.01.3 91.81.5 92.00.7 91.50.7 91.81.8 92.00.8 87.82.7 84.87.9
50% 93.50.7 83.67.3 91.71.9 89.51.0 91.41.4 91.50.9 87.12.3 84.55.4
75% 91.11.9 55.718.9 87.26.7 71.814.1 89.25.7 75.318.2 84.35.6 58.220.3
100% 91.11.0 8.00.8 91.41.0 7.80.6 84.37.5 14.95.3 86.25.8 11.94.4

DBpedia

0% 85.61.4 85.61.4 82.62.4 82.62.4 75.72.2 75.82.1 77.41.0 77.41.0
25% 84.03.0 84.22.9 80.70.9 81.01.3 75.51.4 76.91.3 75.11.6 74.72.2
50% 80.51.1 84.61.8 76.27.1 79.15.3 74.11.4 81.46.0 75.12.4 73.34.7
75% 81.61.1 86.63.2 78.01.0 79.34.6 71.21.9 74.76.3 73.81.7 59.011.2
100% 78.82.1 12.83.4 66.111.8 9.64.4 68.83.4 13.64.8 72.82.6 12.33.8

ethos-binary

0% 72.83.3 72.83.3 79.63.6 79.63.6 80.62.2 80.62.2 56.99.5 56.69.3
25% 63.210.8 62.710.7 76.15.7 73.14.6 77.74.1 77.93.9 44.615.0 45.314.6
50% 67.64.6 62.67.8 69.27.0 60.817.6 77.53.0 77.81.8 58.78.4 57.410.9
75% 55.616.2 46.715.7 70.612.9 55.014.8 78.93.7 71.89.8 55.814.4 53.118.8
100% 51.47.3 30.82.8 64.313.8 26.74.5 77.92.3 23.83.4 36.30.0 30.10.0

financial_phrasebank

0% 77.98.3 77.98.3 84.10.9 84.10.9 85.43.1 85.23.0 59.512.0 59.512.0
25% 78.64.8 78.74.8 82.51.2 82.41.3 82.44.3 82.42.9 58.012.0 57.612.3
50% 74.99.3 68.88.5 83.51.3 83.31.7 84.21.2 83.61.8 61.911.1 61.89.7
75% 79.48.8 43.410.4 82.23.0 70.311.9 84.71.5 82.32.5 50.28.3 17.36.0
100% 81.15.5 10.54.3 78.55.3 25.97.8 84.14.0 23.214.9 49.613.8 13.87.9

hate_speech18

0% 53.54.1 53.54.1 67.51.8 67.51.8 68.42.1 68.32.1 38.913.1 38.712.9
25% 47.98.8 47.48.6 57.26.2 51.313.0 66.02.5 65.72.6 37.210.0 34.410.8
50% 46.411.1 46.110.7 62.25.0 60.95.7 63.43.3 64.92.1 38.14.6 37.54.6
75% 36.95.5 39.812.5 52.814.0 49.218.1 64.23.5 58.37.3 37.511.7 42.917.2
100% 42.813.9 34.36.8 57.84.7 24.24.9 63.62.1 21.44.6 45.53.0 15.811.4

MR

0% 93.60.5 93.60.5 93.80.4 93.80.4 92.60.7 92.60.7 90.71.0 90.71.0
25% 93.11.3 93.01.0 94.10.3 94.00.4 93.00.6 92.70.6 88.62.8 88.32.6
50% 93.10.9 89.83.7 93.90.6 92.71.4 92.40.5 91.00.8 81.68.4 81.88.1
75% 91.74.1 44.58.3 91.62.9 79.410.4 92.60.5 69.014.0 76.021.6 62.715.7
100% 81.811.3 14.86.9 80.721.7 13.39.7 90.24.2 9.83.0 75.119.1 17.77.9

poem_sentiment

0% 39.43.6 39.43.6 54.05.6 54.05.6 54.03.5 54.03.5 13.04.2 13.04.2
25% 42.27.1 42.27.1 53.411.3 53.910.3 50.96.6 51.46.3 20.711.0 22.111.1
50% 41.712.8 40.612.6 57.86.1 57.24.9 53.65.9 54.55.6 22.58.0 28.02.2
75% 47.212.0 25.19.0 49.511.1 50.39.7 51.57.9 47.06.1 40.44.9 27.712.5
100% 54.78.6 9.83.6 57.711.6 17.87.8 52.07.0 21.64.2 25.411.7 28.55.0

SST-2

0% 91.61.3 91.61.3 92.41.5 92.41.5 93.81.0 93.81.0 83.09.0 83.09.0
25% 91.21.1 90.71.8 91.10.9 91.10.8 91.92.8 92.72.6 72.517.6 73.918.0
50% 90.21.5 86.34.0 89.82.1 89.02.6 92.41.1 94.50.5 80.88.4 80.75.4
75% 85.29.3 40.58.6 86.17.1 68.821.6 92.03.0 86.05.6 68.920.1 41.223.6
100% 86.05.0 12.93.8 87.94.5 11.43.3 90.61.1 9.90.4 71.77.8 21.04.2

SST-5

0% 45.42.4 45.42.4 42.64.3 42.64.3 42.02.1 42.02.1 31.59.8 31.59.8
25% 43.72.1 43.61.5 39.04.6 38.94.7 41.52.2 41.62.2 27.43.4 23.67.2
50% 39.04.4 40.04.7 40.54.3 39.83.9 42.34.2 38.13.4 34.56.3 31.98.6
75% 43.32.4 39.43.9 38.84.6 37.32.7 39.16.0 42.03.5 33.23.1 28.37.2
100% 41.42.2 26.31.2 44.34.1 31.94.2 41.16.6 29.61.9 28.24.5 20.95.2

Subj

0% 87.17.9 87.17.9 75.319.5 75.319.5 79.76.3 79.46.3 43.012.0 43.012.0
25% 86.93.3 86.03.2 68.313.3 62.414.2 80.83.7 70.63.9 55.718.3 42.914.1
50% 83.64.5 57.213.2 59.019.0 51.521.2 82.12.4 68.43.6 57.215.4 49.811.4
75% 82.06.8 25.07.2 37.44.9 54.818.1 78.46.8 47.812.7 70.43.6 44.314.7
100% 82.49.3 15.25.9 47.920.3 28.28.1 84.42.6 14.61.9 39.99.7 32.81.2

TREC-6

0% 75.07.3 75.07.3 56.67.6 56.67.6 74.73.6 74.73.6 51.27.7 51.27.7
25% 74.67.4 74.57.7 56.912.2 57.212.2 81.63.9 81.13.6 46.83.6 47.03.3
50% 75.83.5 75.62.9 60.14.9 59.43.0 74.85.0 77.13.3 49.97.1 49.42.2
75% 77.73.0 69.68.4 49.916.4 52.26.7 81.71.9 63.910.3 48.77.7 44.79.9
100% 66.89.0 13.46.0 50.613.6 22.67.2 77.02.6 9.14.3 42.96.4 20.91.5

tweet_eval_atheism

0% 21.210.1 21.210.1 27.610.3 27.610.3 34.04.3 34.04.3 12.11.3 12.11.3
25% 26.64.8 28.33.1 33.211.5 33.211.5 37.15.9 37.75.6 20.110.6 21.57.7
50% 31.59.0 34.48.1 33.76.5 35.88.0 40.97.9 37.96.0 16.65.6 23.110.7
75% 42.57.0 38.410.8 37.47.3 30.07.1 36.611.7 36.611.1 18.46.1 23.04.3
100% 41.08.1 22.54.9 39.010.9 16.83.6 35.28.1 23.53.2 17.57.1 29.14.4

tweet_eval_feminist

0% 48.710.1 48.710.1 56.36.0 56.36.0 55.64.2 55.64.2 25.68.5 28.77.2
25% 39.610.8 39.610.8 41.87.0 42.77.8 62.13.7 61.63.1 25.57.7 26.17.0
50% 37.76.5 41.25.2 41.116.4 43.913.9 56.83.7 57.73.3 28.47.7 23.810.0
75% 43.58.5 47.36.0 43.412.2 51.68.9 56.74.1 56.92.9 27.78.8 21.06.8
100% 44.45.6 33.812.0 49.79.5 29.111.7 47.36.1 33.96.8 37.77.5 16.92.1

tweet_eval_hate

0% 52.35.3 52.35.3 67.53.6 67.53.6 61.31.8 61.31.8 40.45.1 40.35.2
25% 51.04.5 50.94.5 66.54.5 60.712.4 61.14.0 61.53.9 46.26.5 43.86.5
50% 51.88.5 49.97.5 66.74.2 52.08.5 62.42.3 64.81.6 46.66.7 34.24.5
75% 44.75.2 53.57.7 54.27.5 51.65.2 55.710.1 62.41.6 42.611.5 47.010.5
100% 51.011.6 37.16.6 52.77.9 35.92.8 51.14.8 40.04.5 43.39.7 36.15.5

tweet_eval_irony

0% 57.01.9 57.01.9 58.93.2 58.93.2 63.62.6 63.62.6 49.62.6 49.62.6
25% 51.07.3 50.97.2 56.48.6 55.510.2 63.03.8 63.23.4 51.13.1 52.22.9
50% 48.66.8 43.58.1 51.212.4 43.010.7 62.63.6 65.32.4 47.98.2 46.47.8
75% 46.77.2 40.35.5 53.89.8 43.98.3 59.36.3 55.38.4 47.25.1 43.64.7
100% 43.78.1 32.31.3 51.68.0 35.32.4 52.19.3 34.70.7 44.56.4 43.06.4

tweet_eval_offensive

0% 59.44.8 59.44.8 64.51.4 64.51.4 65.01.8 65.11.8 53.25.3 53.25.4
25% 62.72.0 62.72.0 60.04.5 59.94.5 66.20.9 66.41.1 60.35.9 62.73.0
50% 60.24.9 58.04.8 62.82.2 61.53.2 65.71.9 67.01.7 60.46.8 61.64.3
75% 55.013.8 39.45.7 53.512.0 48.75.8 56.513.9 63.23.7 56.614.4 56.97.7
100% 54.49.1 35.92.6 61.12.9 32.92.7 60.53.7 36.44.3 60.96.6 31.53.4

Table 4: Results (Macro-F1) across datasets, models, and corrected proportions for ICL and CICL.
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Abstract
Allocational harms occur when resources or op-
portunities are unfairly withheld from specific
groups. Many proposed bias measures ignore
the discrepancy between predictions, which are
what the proposed methods consider, and de-
cisions that are made as a result of those pre-
dictions. Our work examines the reliability of
current bias metrics in assessing allocational
harms arising from predictions of large lan-
guage models (LLMs). We evaluate their pre-
dictive validity and utility for model selection
across ten LLMs and two allocation tasks. Our
results reveal that commonly-used bias metrics
based on average performance gap and distri-
bution distance fail to reliably capture group
disparities in allocation outcomes. Our work
highlights the need to account for how model
predictions are used in decisions, in particular
in contexts where they are influenced by how
limited resources are allocated.

1 Introduction

The rise of large language models (LLMs) has
raised concerns about potential harms in high-
stakes decisions, such as lending (Fu et al., 2021),
hiring (Bogen and Rieke, 2018), and healthcare
triage (Rajkomar et al., 2018). Recent orders
in Europe (European Parliament, 2024) and the
U.S. (Biden, 2023) have mandated audits to ad-
dress AI risks including bias but left it unclear how
to conduct effective audits.

Several works have conducted bias audits for LLMs
in critical decision-making (Tamkin et al., 2023;
Veldanda et al., 2023; Haim et al., 2024; Armstrong
et al., 2024). Yet, they focus on the predictions
models make, without considering how those pre-
dictions would be used to make decisions. Even
when predictions appear to be unbiased, actual
harms can arise from how they are used to make de-
cisions (Corbett-Davies et al., 2017; Mitchell et al.,
2018; Kleinberg et al., 2018). As shown by Dwork

and Ilvento (2018), evaluating models in isolation
is insufficient to assert fairness without considering
the context in which they will be deployed.

Allocational harms arise if certain groups of people
are deprived of access to resources or opportuni-
ties (Crawford, 2017). In settings where resources
are limited and a model is used to prioritize options,
there is a gap between predictions and decisions. It
is unclear whether prevailing metrics, which mea-
sure bias in prediction outcomes, are sufficient to
measure bias risks in applications where predic-
tions are used for resource allocation.

Contributions. To assess the potential harms of
using LLMs for decision-making, we evaluate how
well commmon bias metrics predict actual dispari-
ties in allocation outcomes. These metrics typically
rely on average performance and distribution dif-
ferences. We conduct this evaluation across ten
LLMs on two allocation tasks (Section 3). Our
findings demonstrate that bias metrics based on pre-
dictions may not reliably reflect true disparities in
outcomes (Section 4.1). In addition, these metrics
may sometimes identify models with greater dispar-
ities as less biased and exhibit inconsistent predic-
tive abilities across different groups (Section 4.2).
As a more reliable alternative, we propose the rank-
biserial correlation, which demonstrates a strong
correlation with actual allocation disparities.

2 Background

Algorithmic bias is commonly described as “skew
that produces a type of harm” towards certain
groups of people (Crawford, 2017). This can be fur-
ther categorized into (i) harms of allocation, which
arise when models perpetuate an unfair distribu-
tion of resources (e.g., healthcare) or opportunities
(e.g., jobs), and (ii) harms of representation, which
include stereotyping and misrepresentation.
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2.1 Measuring Bias

Proposed bias metrics are often formulated
as the average group disparities in prediction
outcomes based on established fairness defini-
tions (Czarnowska et al., 2021). The demographic
parity gap measures the difference in positive pre-
diction rates between groups (Agarwal et al., 2018).
Equal opportunity (EO), a relaxed notion of equal-
ized odds, requires equal positive outcomes for
qualified individuals (Hardt et al., 2016). The EO
gap is thus the true positive rate differences be-
tween groups. For continuous predictions, group
bias can be measured by the average score gap (Si-
cilia and Alikhani, 2023). Several works consider
the group distribution difference in prediction out-
comes using distribution-based metrics such as
Jensen–Shannon divergence (Guo et al., 2022),
Earth Mover’s distance (Huang et al., 2020), and
total variance distance (Liang et al., 2022).

2.2 Allocational Harms

Blodgett et al. (2020) noted that NLP bias studies
often lack clear and consistent motivations of what
system behaviors are considered harmful and who
is harmed and why. Out of thirty papers referencing
allocational harms as motivation, they found only
four actually propose measures or mitigations to
address the harms (De-Arteaga et al., 2019; Zhao
et al., 2020; Romanov et al., 2019; Prost et al.,
2019). Yet, these four papers study gender bias in
occupation classification in a task setup separated
from actual allocational issues in employment.

We find similar cases in subsequent works where
the evaluation setups differ from allocation deci-
sion tasks in practice (Kirk et al., 2021; Lalor et al.,
2022; Shen et al., 2022; Borchers et al., 2022;
Van Aken et al., 2022). Recent work has studied
bias in LLMs used for hiring (Veldanda et al., 2023;
Armstrong et al., 2024; Gaebler et al., 2024) and
other high-stakes decision scenarios (Tamkin et al.,
2023; Haim et al., 2024). The evaluation methods
adopted in these works only consider the average
performance gap, measured from binary outputs or
graded ratings. However, we show that this type of
approach does not reliably reflect disparities in de-
cision outcomes. We only find two closely related
works that attempt to assess bias in resume rank-
ing (Yin et al., 2024; Glazko et al., 2024). Glazko
et al. (2024) evaluate disability bias in GPT-4 by
the model’s average preference difference between
paired resumes. Yin et al. (2024) inquires GPT-

3.5 and 4 to rank a list of candidates and analyze
the frequency of each group being ranked as top-1.
We extend their work with more variations in re-
sumes and conduct experiments on a wide range of
open-weight LLMs.

3 Method

We consider the allocation task as a top-k ranking
problem (Cossock and Zhang, 2006; Clémençon
and Vayatis, 2007), where a fixed quota of k ∈ N
candidates are selected among a pool of n ≫ k
candidates. The goal is to determine a set of “best”
candidates, with no particular emphasis on the rel-
ative order. We follow the LLM ranking method
of Zhuang et al. (2024) and rank the candidates in
descending order of their prediction scores.

3.1 Measuring Allocation Gaps

Bias scores can be viewed as predictions of the
allocation gaps in the following decision outcomes
made with a model. An effective bias metric should
yield a higher score for a group or a model when the
outcome shows greater disparities. Given the de-
cision outcomes of modelM and allocation quota
k, we measure allocation gaps using two common
fairness criteria: demographic parity (DP) (Agar-
wal et al., 2018) and equal opportunity (EO) (Hardt
et al., 2016).

The demographic parity gap between group A and
B is defined as:

∆DPM(A,B) = ϕM(A, k)− ϕM(B, k)

where ϕM(X , k) is the proportion of group X ’s
candidates selected.

We compute the equal opportunity gap between
group A and B as follows:

∆EOM(A,B) = ψM(A, k)− ψM(B, k)

where ψM(X , k) is the rate of qualified candidates
in group X being selected.

3.2 Bias Metrics

Proposed bias metrics are often formulated as the
average score or distribution difference between
groups in prediction outcomes (Czarnowska et al.,
2021; Gallegos et al., 2024).

Average Performance Gap computes the average
score difference between group A and B as fol-
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lows (Sicilia and Alikhani, 2023):

δM(A,B) = 1

|A|
∑

a∈A
sa −

1

|B|
∑

b∈B
sb

where sa is the prediction of candidate a ∈ A.

Distribution-Based Metrics measures score dif-
ferences between groups using Jensen–Shannon
Divergence (JSD) (Lin, 1991) and Earth Mover’s
Distance (EMD) (Rubner et al., 1998).

Rank-Biserial Correlation. We consider an alter-
native metric, rank-biserial correlation (RB) (Cure-
ton, 1956), which measures the correlation between
group membership and ranking. It can be computed
as the difference between the ratio of favorable
pairs f and unfavorable pairs u (Kerby, 2014):

RBM(A,B) = f − u (1)

where f is the proportion of candidate pairs that
modelM prefers candidates from A over B.

3.3 Tasks

We evaluate settings where a model predicts the
likelihood of a candidate match based on a de-
scription of an ideal candidate’s qualifications. Ap-
pendix A provide further task details.

Resume Screening. Given a resume, the model
evaluates a candidate’s fit for a job position and
outputs {No,Yes}. We use four job positions
from real job listings (Yin et al., 2024). We
use GPT-3.5 (OpenAI, 2024) to generate six re-
sumes per position with varied hiring chances
(high, medium, low), where high indicates qual-
ified. Each candidate is represented by a first
and last name on the resume. Each candi-
date pool includes one candidate sampled from
each of the eight groups: {Female,Male} ×
{White,Black,Asian,Hispanic}.

Essay Grading. The model is asked to rate each
essay on a scale of [1, 5]. We use the International
Corpus Network of Asian Learners of English (IC-
NALE) (Ishikawa, 2013), which includes English
essays written by second-language learners (L2)
and first-language speakers (L1) on two topics. We
consider qualified essays with a rating above aver-
age (≥ the 50th percentile) (Ishikawa, 2024). Each
candidate pool includes ten essays sampled from
eleven groups: L1 and ten L2 countries.

Resume screening Essay grading
Metric ∆DP ∆EO ∆DP ∆EO

JSD -0.19 0.48 0.79 −0.19*

EMD -0.09* −0.06* 0.86 0.48
δ 0.13* −0.02* 0.89 0.70

RB 0.86 0.88 0.94 0.89

Table 1: Pearson correlation of bias metrics and allo-
cation gaps. * indicates p-value > 0.01 with a 95%
confidence level.

3.4 Experimental Setup
We compute a bias score for each groupA ∈ G \B
in comparison to a reference group B (white males
for resume screening and L1 speakers for essay
grading). For each job position or essay topic, a
total of |G| − 1 scores are produced for a model
M. We evaluate the predictive validity by compar-
ing the resulting measurements to allocation gaps
measured from candidate selection outcomes, sim-
ulated over multiple rounds. As JSD and EMD are
non-directional, we compare them to the absolute
value of ∆DP and ∆EO.

Models. We use ten LLMs with varied sizes and
architectures: LLAMA2 CHAT (7B, 13B) (Touvron
et al., 2023), LLAMA3 INSTRUCT (8B, 70B) (Meta,
2024), GEMMA IT (2B, 7B) (Gemma Team et al.,
2024), STARLINGLM 7B (Zhu et al., 2023), STA-
BLELM ZEPHYR 3B (Stability AI), STABLELM2
ZEPHYR 1.6B (Bellagente et al., 2024), and
TINYLLAMA CHAT 1.1B (Zhang et al., 2024).

4 Results

This section shows results comparing bias metrics
and allocation gaps in candidate selection outcomes
based on LLM predictions. We first present the
overall predictive validity, then the utility for model
selection and informing bias risks.

4.1 Predictive Validity
Table 1 reports the Pearson correlation of bias met-
ric scores and allocation gaps for each task. It
shows that δ, JSD, and EMD do not predict al-
locational harms well. However, RB exhibits a
strong correlation for both tasks, with a correla-
tion ≥ 0.86. EMD and δ show no correlation with
∆DP and ∆EO for the resume screening task. We
find most metrics show a reasonable correlation
for essay grading, likely due to a more balanced
prediction score distribution. (see Section 4.3).
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Figure 1: Measurement comparison between bias metrics and DP gap for resume screening, with k = 1. Each point
indicates a score measured for a group A ∈ G \ B, based on a model’s predictions for a job position.

Figure 1 shows the data points for computing the
correlations with ∆DP for resume screening (sec-
ond column in Table 1). Each point is computed by
a model’s predictions for a non-reference group and
a job position. Many scores of δ exhibit close to
zero bias with respect to white males, indicated by
points along the y-axis where δ = 0. E.g., GEMMA

IT 2B for white females and the retail position.
Yet, some of them show a larger allocation gap
than ones with a higher δ.

4.2 Metric Utility for Model Selection
When a metric is used in a model audit, it could be
used to determine if a model meets some required
threshold scores or decide between a set of candi-
date models. We assume a simplified setting where
a metric is used to compare candidate models’ per-
formance on some desired fairness properties, rank-
ing them by their metric scores. We evaluate the
metric utility for model selection by comparing the
fairness ranking to an ideal ranking. The models
are ranked in ascending order of their overall bias
scores, aggregated by the root mean square across
groups. Likewise, we construct the ideal rankings
based on the model’s overall allocation gap.

Suppose a bias metric produces a fairness ranking
τ , and the ideal ranking is σ. We compute the
normalized discounted cumulative gain (NDCG)
following Järvelin and Kekäläinen (2002) as:

NDCG@N(τ) =
DCG@N(τ)

DCG@N(σ)

where N is the rank cutoff. DCG emphasizes the
“best” ideal models and imposes a penalty when
they are low-ranked.

Figure 2 reports the average NDCG based on fair-
ness criteria ∆DP with quota k = 2 for each task.
RB consistently performs better than other bias
metrics with an average NDCG@10 ≥ 0.95 on
both tasks. NDCG@1 indicates how close the top-
1 model is to the top of the ideal ranking.
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Figure 2: Average NDCG@N in ranking model fair-
ness, comparing to ideal rankings based on ∆DP. EMD
yields the same results as δ.
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Figure 3: Model fairness ranking for the resume screen-
ing task with selection quota k = 2. The true rank order
is based on ∆DP. Existing bias metrics often rank more
biased models as more “fair”.

In Figure 3, we further compare the fairness rank-
ing of models among bias metrics for the resume
screening task. The ranking of RB aligns more
closely with the ranking based on ∆DP, whereas
other bias metrics tend to rank more biased mod-
els higher. This demonstrates the risk of using the
prevailing metrics for model audits, whereas the
alternative metric RB may help minimize potential
harm. We provide the ranking per job position in
Appendix B.2.

Predicting bias across groups. Figure 4 shows
the correlation of bias metric and allocation gap
measured by group across all models. Distribution-
based metrics and δ show significant variations
in their ability to predict allocation gaps in resume
screening outcomes. In some cases, they even show
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Figure 5: Difference between bias scores and ∆DP,
after normalizing to [0, 1], across groups with k = 2. A
negative difference indicates ∆DP is underestimated.

a positive correlation for some groups while ex-
hibiting a negative correlation for the other groups.
In contrast, RB exhibits consistent performance
for different groups. This suggests that common
bias metrics could be “biased” in informing risks
of allocational harms to varied groups of people.

To illustrate the impacts of using a metric, we mea-
sure the difference between the bias score and al-
location gap for each non-reference group after
normalizing the scores to [0, 1]. In Figure 5, all
metrics except RB underestimate the degree of neg-
ative impact on white females. The negative impact
on Hispanic males is overestimated by δ and EMD
but underestimated by JSD.

4.3 Analysis

Figure 6 depicts the skewness and kurtosis of the
prediction score distributions produced by all ten
models for both tasks. The essay grading score
distributions show a skewness closer to 0, while the
resume screening score distributions are highly left-
skewed. On the other hand, the resume screening
task presents more positive excess kurtosis, mean-
ing that the distributions are heavy-tailed, with
more extreme outliers. (A standard normal dis-
tribution has a kurtosis of 3.) This may explain

−10 −7.5 −5 −2.5 0 2 4

−2 0 5 10 15 20 25 30 36 80 150 200

essay grading resume screening

Skewness

Kurtosis

Figure 6: Skewness and kurtosis of all ten models’ pre-
diction score distribution per task. Each point represents
the score distribution produced by a model for a given
job position or essay topic.

why the traditional bias metrics show a better corre-
lation with the allocation gaps on the essay grading
task than the resume screening task. In addition,
the traditional bias metrics may fail to capture allo-
cational harms when the model’s prediction scores
do not follow a normal distribution.

5 Discussion

Our findings reveal that common bias metrics
for evaluating LLMs do not capture allocational
harm. While final decisions may depend on human
decision-makers or other external factors, a reliable
measurement is crucial for estimating the potential
risks of a model. In fact, in settings of unfamil-
iar domains and objective tasks, humans tend to
rely more on model predictions (Yeomans et al.,
2019; Chiang and Yin, 2021; Passi and Vorvoreanu,
2022). Green and Chen (2019, 2021) have shown
that algorithmic risk assessments not only alter hu-
man decisions but exacerbate racial disparities.

The goal of an audit is to determine if it is ac-
ceptable to deploy a model. Although audits will
always be imperfect since they require making pre-
dictions about how the model will behave on future
data, it is essential that we develop methods for au-
diting models that reliably measure potential harms
in the way models will be used in deployment. Our
results demonstrate that metrics too far removed
from how a model will be used may fail to ade-
quately measure how well the model will perform
as deployed.
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A Experimental Setup

Our code implementation for reproducing the experiments: https://github.com/hannahxchen/
allocational-harm-eval

A.1 Task Setup

Resume Screening. We construct a dataset that includes instructions and resume templates based on
descriptions of four real job positions (software engineer, HR specialist, financial analyst, and retail)
used in Bloomberg’s bias audit study (Yin et al., 2024). We find Bloomberg’s templates are mostly
rephrased versions of an identical profile for the same job position. Thus, we prompted GPT-3.5 (OpenAI,
2024) to generate resume templates for each job description. Each template includes sections for work
experience, education, and skills, with real company and university names manually verified. Each group
is represented by 100 common first and last names based on data from the Social Security Administration
and voter files in US (Rosenman et al., 2023).

Essay Grading. ICNALE consists of 5.6K English essays written by 2.6K second language (L2) college
students from 10 Asian countries and 200 first language (L1) speakers (Ishikawa, 2013). 140 essays
include ratings (0∼100) from L1 English speakers. Each writer was asked to write opinion essays on two
topics:

1. PTJ: It is important for college students to have a part-time job.

2. SMK: Smoking should be completely banned at all the restaurants in the country.

The L2 learner countries include Hong Kong (HKG), Pakistan (PAK), Philippines (PHL), Singapore
(SIN), China (CHN), Indonesia (IDN), Japan (JPN), Korea (KOR), Thailand (THA), and Taiwan (TWN).

Task Prediction
Outcome Groups (G) Ref. group Pool size max k Rounds

Resume Screening Good fit for
job position

{Female,Male}×
{White,Black,Asian,Hispanic} White Male 8 5 1800

Essay Grading Essay’s rating HKG, PAK, PHL, SIN, CHN, IDN,
JPN, KOR, THA, TWN, ENS ENS 10 5 1200

Table 2: Parameters used for simulating candidate selection.

A.2 LLM Ranking
This section explains the method for computing the ranking scores.

Suppose Y is a set of relevance labels, where each y ∈ Y corresponds to a relevance value γy. Given the
instruction q and candidate a, the modelM predicts the probability of each label in Y . The ranking score
of candidate a is defined as (Zhuang et al., 2024):

scoreq,M(a) =
∑

y∈Y
Pn(Mq(a), y) · γy

where Pn is the normalized output probability of y over Y . The score is assumed to encode the relevance
or fitness of candidate a. For the resume screening task, we consider Y = {No,Yes} with γy ∈ {0, 1}.
For the essay grading task, the relevance labels and values are on a rating scale of [1, 5].
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B Additional Results

B.1 Predictive Validity
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Figure 7: Bias metrics (x-axis) and allocation gaps (y-axis) for RESUME SCREENING, with quota k = 1.
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Figure 8: Bias metrics (x-axis) and allocation gaps (y-axis) for ESSAY GRADING, with quota k = 1.

B.2 Metric Utility
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Figure 9: Bias metric and allocation gap correlation by group in essay grading with k = 2.
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Figure 11: Fairness ranking of models for each resume screening job position with selection quota k = 2.

B.3 Varying allocation quota

We test how robust the metrics are to higher values of k. Figure 12 shows the Pearson correlation between
bias metrics and ∆DP as k increases from 1 to 5. Most bias metrics show increasing correlation with
∆DP as k increases and plateaus when k ≃ 3. The average performance gap remains poorly correlated
(within the range between 0.13 to 0.19) across all k values for the resume screening task. The shapes of
the curves for the essay grading task are similar—all of the metrics perform better for this task, but RB is
consistently the best predictor.
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Figure 12: Pearson correlation between bias metrics and ∆DP with varying allocation quota k.

C Prompts

System You are an HR assistance bot. You help hiring managers find the right candidate. Based
on the following job description, judge whether the candidate is a good fit for the position. Respond
succinctly with only "Yes" or "No". Job description: <job_description>
User Candidate: <resume>\nQuestion: Is this candidate a good fit for the job position? Assistant
Answer:
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Figure 13: Prompts used in the resume screening task.

System You are an essay grading assistant. Your task is to assess an opinion essay on whether
<statement>. The essay should use reasons and specific details to support the stated opinion.
Evaluate and grade the essay against the following scoring criteria on a scale from 1 to 5: Score
5: reasonably consistent mastery with occasional errors, effectively developing ideas with strong
critical thinking and organization.
Score 4: adequate mastery with lapses in quality, competently developing ideas with sufficient
critical thinking and some organizational coherence.
Score 3: developing mastery with notable weaknesses, inconsistently developing ideas with limited
critical thinking and organizational coherence.
Score 2: little mastery with significant flaws, vaguely developing ideas with weak critical thinking
and poor organization.
Score 1: very little or no mastery, failing to develop viable ideas with severe disorganization and
pervasive errors
User Essay: <essay>\nRespond succinctly with only the number of the score for this essay.
Assistant Score:

Figure 14: Prompts used in the essay grading task.
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Abstract

Multilingual large language models (LLMs)
aim towards robust natural language un-
derstanding across diverse languages, yet
their performance significantly degrades on
low-resource languages. This work ex-
plores whether existing techniques to identify
language-specific neurons can be leveraged to
enhance cross-lingual task performance of low-
resource languages. We conduct detailed ex-
periments covering existing language-specific
neuron identification techniques (such as Lan-
guage Activation Probability Entropy and ac-
tivation probability-based thresholding) and
neuron-specific LoRA fine-tuning with mod-
els like Llama 3.1 and Mistral Nemo. We find
that such neuron-specific interventions are in-
sufficient to yield cross-lingual improvements
on downstream tasks (XNLI, XQuAD) in low-
resource languages. This study highlights the
challenges in achieving cross-lingual general-
ization and provides critical insights for multi-
lingual LLMs1.

1 Introduction

Acquiring multilingual capabilities in LLMs re-
mains a challenge, particularly for low-resource
languages (Hangya et al., 2022; Conneau et al.,
2020; Lample and Conneau, 2019). Despite
their remarkable success in tasks that require
cross-lingual transfer, models such as Llama 3.1
(Grattafiori et al., 2024) and Mistral Nemo (Mis-
tralAI, 2024) do not perform consistently across
languages, particularly underperforming on low-
resource languages (Touvron et al., 2023; Hu et al.,
2020). This is largely due to the imbalance in high-
quality training data across languages, thus limit-
ing the ability of multilingual models to effectively
scale to low-resource languages (Touvron et al.,
2023; Xue et al., 2021).

1Code is available at GitHub: https://github.com/
csalt-research/LangSpecificNeurons

A tool that has recently emerged to better under-
stand the nature of multilinguality in these LLMs
is the use of language-specific neurons (Duan et al.,
2025a; Tang et al., 2024; Zhang et al., 2024). These
neurons are claimed to encode unique language-
specific features pertaining to each language, thus
potentially enabling targeted language interven-
tions. Previous studies (Kojima et al., 2024a; Zhao
et al., 2024a; Tang et al., 2024) have demonstrated
that these neurons play an important role in lan-
guage generation tasks. However, the extent to
which these neurons contribute to or affect cross-
lingual transfer to low-resource languages when
evaluated on downstream tasks such as natural lan-
guage inference (XNLI) and question answering
(XQuAD) remains unclear.

In this study, we systematically probe the role
of language-specific neurons in facilitating cross-
lingual transfer within multilingual LLMs. By
utilizing existing techniques to identify language-
specific neurons such as Language Activation
Probability Entropy (LAPE) (Tang et al., 2024)
and Low Rank Adaptation (LoRA)-based fine-
tuning (Hu et al., 2021), we aim to identify and
analyze neurons that mainly contribute towards
language-specific representations. Our experi-
ments span two popular cross-lingual benchmarks,
XNLI for NLI (Conneau et al., 2018) and XQuAD
for QA (Artetxe et al., 2020). After identify-
ing language-specific neurons using existing tech-
niques for a target language, we modify the acti-
vations of these language-specific neurons using
different aggregation schemes in an attempt to am-
plify their role in cross-lingual transfer.

Our results show that such test-time (training-
free) interventions via language-specific neurons
are not very effective in enabling cross-lingual
transfer, yielding very modest overall performance
improvements of less than 1 absolute point in ac-
curacy for low-resource languages. Fine-tuning
strategies like neuron freezing and activation sub-
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stitution were shown to significantly impact gen-
eration (Lai et al., 2024; Kojima et al., 2024a) but
do not show any consistent impact on cross-lingual
task performance. A deeper analysis revealed that
language-specific neurons often lack independence
and we hypothesize that this polysemantic nature
of neuron activations limits the effectiveness of tar-
geted adjustments in multilingual LLMs (Elhage
et al., 2022).

2 Methodology

The goal of this work is to explore whether tar-
geting language-specific neurons in multilingual
LLMs can be used to improve downstream perfor-
mance on tasks such as XNLI and XQuAD. Pre-
vious studies (Zhao et al., 2024b; Kojima et al.,
2024a; Tang et al., 2024; Duan et al., 2025b) have
shown that distinct neuron subsets exist in multilin-
gual models that encode language-specific features.
Prior work (Bhattacharya and Bojar, 2023) further
indicates that language-specific representations are
largely prevalent within feedforward networks.

While prior work focused on how deactivating
language-specific neurons degrades the quality of
language generation, there has been little investi-
gation into whether activating or fine-tuning these
neurons can positively influence task performance
(Zhao et al., 2024c; Lai et al., 2024). This forms
the main motivation for our work. We aim to evalu-
ate the role of language-specific neurons by aiming
to enhance cross-lingual task performance through
targeted neuron interventions. Our results indicate
that manipulating language-specific neurons, either
by activating or fine-tuning them, does not lead
to significant improvements in downstream task
performance.

2.1 Language-Specific Neuron Identification

In LLMs, a neuron corresponds to the output of the
non-linear activation function within a feedforward
layer. Let L be the total number of feedforward
layers and df be the dimensionality of each feed-
forward layer. Each neuron is uniquely identified
by a pair of indices (i, j), where i ∈ {1, 2, . . . , L}
denotes the layer index and j ∈ {1, 2, . . . , df} de-
notes the position within the hidden dimension of
the feedforward network. As our main approach,
we employ the LAPE method (Tang et al., 2024) to
identify language-specific neurons. For a given lan-
guage l and a neuron indexed by (i, j), let hli,j(x)
denote the activation of that neuron for an input

sentence s. We define the activation probability of
this neuron as:

P
(
hli,j(s) > 0

)
:= Es∼Dl

[
I(hli,j(s) > 0)

]
,

where Dl represents the corpus in language l and
I(·) is the indicator function that equals 1 if the
condition is satisfied and 0 otherwise. Formally,
the LAPE score for a neuron (i, j) is defined as:

LAPE(i, j) = −
k∑

l=1

P l
i,j logP

l
i,j ,

P l
i,j =

P
(
hli,j(x) > 0

)

∑
l′∈L P

(
hl

′
i,j(x) > 0

)

where P l
i,j represents the normalized activation

probability of neuron (i, j) for language l, and k
denotes the total number of languages in the set L.
Neurons with low LAPE values are deemed to be
language-specific since they exhibit high activation
probabilities for only a limited subset of languages.
We note here that the LAPE method is dependent
on the choice of the language set L used for calcu-
lating the activation probability distributions. To
address this limitation, we propose a simple alter-
native that does not have such a dependency.

Existing methods (Tang et al., 2024; Xie et al.,
2021a) often consider neurons to be relevant to
a language if their activation is greater than 0,
and quantify this as a relevance score computed
as rli,j = E[I(hli,j > 0)] where hli,j is the activa-
tion of neuron (i, j) for language l. However, it
overlooks the possibility that negative activations
can also carry meaningful information. To account
for this, we propose an activation statistics-based
approach. Instead of relying on a threshold of 0,
we consider neurons as relevant if their activation
exceeds a chosen percentile threshold of the overall
activation distribution. For example, the relevance
of a neuron based on the 90th percentile is defined
as rli,j = E[I(hli,j > P90(h

l
i,j))] where P90(h

l
i,j) is

the 90th percentile of the activation values for neu-
ron (i, j) in language l. We call this technique Ac-
tivation Probability 90p which is entirely based on
neuron activations and avoids the language set de-
pendency issue inherent to LAPE. Neurons are then
ranked based on their relevance scores, and the top
m neurons are selected as being language-specific.
More details on language neuron identification can
be found in Appendix A.
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2.2 Neuron Fine-Tuning using LoRA
LoRA (Hu et al., 2021) is employed to efficiently
fine-tune only the neurons identified as language-
specific in the MLP layers. Let W ∈ Rd×k be a
pre-trained weight matrix; LoRA adds a trainable
update ∆W such that W′ = W+∆W. To remain
parameter-efficient, ∆W is factorized into two low-
rank matrices B ∈ Rd×r and A ∈ Rr×k: ∆W =
BA, r ≪ min(d, k). In the forward pass, the
feedforward layer computes

y = (W +∆W)x = Wx+BAx,

with only B and A being trainable. To restrict
updates to language-specific neurons, we define a
binary mask M ∈ {0, 1}d×k. If Mi,j = 1, the j-th
neuron of layer i is considered language-specific
and thus it will be trained; otherwise, it will remain
frozen. The effective LoRA update thus becomes:

∆W←M⊗ (BA),

where ⊗ denotes an element-wise multiplication.
Therefore, ∆Wi,j = 0 if Mi,j = 0. Hence, the
forward pass is given by:

y = (W +M⊗ (BA))x,

and only those sub-blocks of B and A associated
with masked entries of 1 are trainable. In addition
to these masked LoRA updates, the classification
head and attention layers are fine-tuned to main-
tain overall task performance, while all remaining
parameters (including W itself) remain frozen.

3 Experimental Setup

3.1 Datasets, Tasks, and Models
To identify language-specific neurons, we use a
subset of the Wikipedia (Foundation, 2024) dataset
spanning 16 languages: en, fr, es, vi, id, ja, zh, bn,
hi, ta, te, mr, ur, kn, ml, pa 2. However, only a sub-
set of these languages will be used for evaluation
as mentioned in Section 4. The dataset creation
process is outlined in Appendix A. For fine-tuning
experiments aimed at evaluating task performance,
we use two popular multilingual benchmarks: the
XNLI dataset (Conneau et al., 2018) for NLI and
the XQuAD dataset (Artetxe et al., 2020) for QA.
In our experiments, we use two pretrained LLMs:
Llama 3.1 (8B) (Grattafiori et al., 2024) and Mistral
Nemo (12B) (MistralAI, 2024). More details such
as tasks, models, optimizer and hyper-parameters
used in LoRA can be found in Appendix B.

2https://en.wikipedia.org/wiki/List_of_ISO_
639_language_codes

3.2 Experiment Design
The primary goal of this work is to improve the
zero-shot performance of the model on target lan-
guages, without using target language training data.
Zero-Shot Transfer. The model is fine-tuned on
task-specific data from a source language and evalu-
ated on task-specific test data for a target language.
We assume access only to task-specific training
data in the source language, and no target language
task-specific data. Our goal is to improve over zero-
shot transfer using (1) test-time language-specific
neuron intervention and (2) language-specific neu-
ron fine-tuning, detailed below.
(1) Test-time Neuron Intervention. We train the
LLM on the task-specific training dataset in the
source language and evaluate its performance on
the task-specific test dataset in the target language.
During evaluation, we modify the activations of the
target language neurons in the forward pass using
a range of statistical aggregates computed based on
the Wikipedia dataset of target languages.
(2) Language Neuron Fine-Tuning. We fine-tune
the language-specific neurons as detailed in Sec-
tion 2.2. We explore three different setups for fine-
tuning: (a) Fine-tuning only the source language-
specific neurons, (b) Fine-tuning only the target
language-specific neurons, (c) Fine-tuning both the
source and target language-specific neurons. Af-
ter fine-tuning, we evaluate the model by perform-
ing test-time interventions on the target language-
specific neurons.

4 Results and Analysis

4.1 Zero Shot Transfer Performance
In all our experiments, we use English (en) as the
source language. For the XNLI task, we evalu-
ate the model’s zero-shot performance on Viet-
namese (vi), Hindi (hi), and Urdu (ur), while for
the XQuAD task, we consider Vietnamese (vi),
Hindi (hi), and Chinese (zh) as target languages.
These target languages are selected due to their rela-
tively lower performance in the XNLI and XQuAD
benchmark results (Artetxe et al., 2020; Conneau
et al., 2018), making them strong candidates for
evaluating improvements in cross-lingual transfer.
For the XNLI task, we use a subset of 100,000
training samples, which corresponds to 25% of the
full training dataset (Asai et al., 2024). For the
XQuAD task, we utilize the entire training dataset.
Table 1 and Table 2 present the zero-shot results
for both tasks.
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EL No Int Int µ Int P90 Int 0 Int P10
Llama 3.1 with LAPE

vi 80.5 79.5 79.0 79.8 77.7
hi 75.0 75.2 74.9 74.4 75.1
ur 70.0 70.4 69.3 68.5 68.7

Llama 3.1 with Act Prob 90p
vi 80.5 78.2 79.3 79.0 77.4
hi 75.0 74.1 71.8 73.7 74.6
ur 70.0 69.7 69.3 69.6 69.5

Mistral Nemo with LAPE
vi 80.5 80.4 80.6 79.2 80.5
hi 76.1 69.8 66.9 74.9 72.4
ur 66.8 66.5 67.0 66.9 65.4

Mistral Nemo with Act Prob 90p
vi 80.5 67.4 81.1 79.8 40.7
hi 76.1 72.2 74.5 74.5 66.3
ur 66.8 65.9 61.3 66.4 61.6

Table 1: XNLI performance across different models and
intervention methods. "No Int" represents zero-shot perfor-
mance without intervention, while "Int µ", "Int P90", "Int 0",
and "Int P10" denote test-time interventions using mean, 90th
percentile, zero, and 10th percentile activations, respectively.
The best performance for each evaluation language (EL) is
highlighted in bold.

EL No Int Int µ Int P90 Int 0 Int P10
Llama 3.1 with LAPE

vi 41 (73.5) 40 (72.9) 31 (69.5) 32 (69.2) 10 (43.2)
hi 38 (64.1) 40 (65.5) 36 (65.4) 23 (49.9) 37 (62.8)
zh 56 (77.5) 10 (62.8) 3 (56.1) 33 (63.2) 33 (63.2)

Llama 3.1 with Act Prob 90p
vi 41 (73.6) 39 (73.0) 23 (64.9) 42 (73.8) 36 (70.3)
hi 38 (64.1) 34 (60.7) 36 (62.8) 38 (62.9) 31 (58.6)
zh 56 (77.5) 61 (80.7) 56 (78.8) 55 (78.5) 50 (73.6)

Mistral Nemo with LAPE
vi 39 (74.6) 42 (76.8) 40 (75.0) 13 (45.0) 11 (41.2)
hi 38 (66.9) 35 (65.9) 37 (66.6) 22 (51.7) 36 (66.1)
zh 47 (74.9) 24 (74.0) 0 (61.6) 14 (53.3) 24 (68.9)

Mistral Nemo with Act Prob 90p
vi 39 (74.6) 11 (43.3) 29 (63.9) 39 (74.5) 0 (6.5)
hi 38 (66.9) 26 (54.4) 37 (68.9) 33 (63.8) 0 (11.9)
zh 47 (74.9) 46 (77.4) 20 (59.8) 48 (76.2) 0 (17.0)

Table 2: XQuAD performance across different models and
intervention methods. The intervention strategies are the same
as described in Table 1. The values indicate Exact Match (EM)
scores, with F1 scores in parentheses.

4.2 Impact of Test-Time Intervention

Test-Time Interventions Do Not Improve Per-
formance. Tables 1 and 2 show that test-time
interventions fail to consistently improve zero-shot
transfer performance. Instead, they often disrupt
the task-specific information encoded in the acti-
vations. This suggests that language-specific neu-
rons in LLMs are not purely language-dependent
but also contribute to task-relevant computations.
Overwriting their activations with statistical values

removes essential information required for solving
the task due to the polysemantic nature of neu-
ron activations (Elhage et al., 2022). We also ex-
periment with different approaches for identifying
language neurons, including LAPE and activation
probability-based methods (e.g., 90th percentile);
no significant improvements are observed. From
the results for Chinese (zh) in XQuAD shown in
Table 2, we observe that the Act Prob 90p method
outperforms LAPE. This difference in performance
can be attributed to the fact that the neurons identi-
fied by LAPE and Act Prob 90p are largely disjoint,
as shown in Figures 18 and 19.

Deactivation of Zero Does not Degrade Perfor-
mance Significantly: Prior studies (Kojima et al.,
2024a; Tang et al., 2024) commonly deactivate neu-
rons by setting their activations to zero. However,
we argue that zero is not necessarily a true indi-
cator of deactivation. While replacing activations
with far lower percentiles (such as the 10th per-
centile) leads to a clear drop in performance (Ta-
ble 2), setting activations to zero does not show a
similar degradation. Figure 1 illustrates the perplex-
ity change (PPXC(i, j)), defined as the difference
in perplexity for language j when language neu-
rons for language i are deactivated versus when
they remain active, thereby quantifying the impact
of targeted neuron deactivation on language un-
derstanding and their role in cross-lingual perfor-
mance. As illustrated in Figure 1, deactivation at
zero significantly increases perplexity (thus degrad-
ing generation quality); however, this degradation
in perplexity does not directly translate to a decline
in task performance. This suggests that setting acti-
vations to zero may not be an effective choice for
deactivation. Detailed experimentation results can
be found in Appendix C.

4.3 Impact of Neuron Fine-Tuning

We fine-tuned the identified language-specific neu-
rons using LoRA but observed no improvement in
performance (Table 3). When applying test-time
interventions to the fine-tuned models, the results
remained consistent with the zero-shot transfer (Ta-
ble 1), reinforcing that fine-tuning language neu-
rons does not enhance task performance. We also
fine-tuned randomly selected neurons in the MLP
layers. The results were similar to both language
neuron fine-tuning and the original model (Table
8), indicating that LoRA applied to attention layers
is already effective for task-specific tuning.
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Figure 1: Perplexity Change (PPXC): Measures the ef-
fect of interventions on target language perplexity, defined
as PPXC(i, j) = PPX(j | Intervention by 0 at i) − PPX(j).
Lower PPXC(i, j) values indicate minimal interference, while
higher values signify a significant impact on the model’s un-
derstanding of language j (on 1 Million tokens).

FTL EL No Int Int µ Int P90 Int 0 Int P10
Llama 3.1 with LAPE

en vi 80.2 79.6 78.5 79.2 78.0
vi vi 80.1 79.5 78.6 79.2 78.0

en+vi vi 80.1 79.4 78.5 79.1 78.0
en hi 74.9 74.6 74.6 74.1 74.6
hi hi 74.9 74.6 74.5 74.3 74.6

en+hi hi 74.9 74.5 74.5 74.3 74.7
en ur 69.8 70.4 69.6 70.2 69.0
ur ur 69.8 70.5 69.5 70.4 69.1

en+ur ur 70.0 70.6 69.5 70.3 68.9

Table 3: Fine-tuning results for language-specific neurons
on XNLI. The results follow the same format as Table 1,
comparing zero-shot performance with test-time interventions
across different fine-tuning language neuron (FTL) as per
Section 2.2. A complete version is provided in Table 7.

5 Related Works

Other from Tang et al. (2024), Zhu et al. (2024) also
introduce LANDeRMT that routes language-aware
neurons to mitigate catastrophic forgetting, improv-
ing translation quality. Similarly, Xie et al. (2021b)
propose a neuron allocation strategy to balance
general and language-specific knowledge, thereby
enhancing translation without increasing complex-
ity. Lai et al. (2024) present Neuron-TST, which
enhances text style transfer by identifying and deac-
tivating source-style neurons to guide target-style
generation. Kojima et al. (2024b) analyze language-
specific neurons in decoder PLMs, showing that
manipulating a small subset can control output lan-
guage. Huo et al. (2024) study domain-specific
neurons in Multimodal LLMs, showing a 10% ac-
curacy gain in domain-specific tasks through neu-

ron manipulation, akin to language-specific neuron
use. Durrani et al. (2020) analyze encoder models,
and find small neuron subsets capture linguistic
tasks, with lower-level tasks requiring fewer neu-
rons. No prior work has examined the effect of
language-specific neurons on cross-lingual down-
stream tasks, which we attempt in this work.

6 Conclusion

In this work, we investigate if language-specific
neurons in multilingual LLMs could be manipu-
lated to improve cross-lingual task performance.
Our results show that test-time interventions
and fine-tuning of language-specific neurons do
not yield meaningful improvements. Altering
these activations often disrupt task-relevant
information likely due to the polysemantic nature
of LLM neurons. We found the same behaviour
across different methods for identifying language
neurons, such as LAPE and activation probability.
Additionally, setting activations to zero did not
significantly degrade performance, suggesting
that zero is not a true indicator of deactivation.
These findings indicate that language-specific
neurons do not function independently but interact
with broader model components, and need further
investigation as tools of cross-lingual transfer.

Limitations

This work focuses on language-specific neurons
in the MLP layers of multilingual LLMs, exclud-
ing attention mechanisms, which may also play
a significant role. The experiments use a limited
number of languages and datasets, limiting the gen-
eralizability of the findings. The interventions rely
on statistical activations computed from Wikipedia
text, which might not fully capture task-specific
behavior. Additionally, the study does not explore
alternate methods of fine-tuning techniques that
might yield better results. Factors beyond language-
specificity in neurons such as training data quality
and architectural details of models should also be
closely examined for effective cross-lingual trans-
fer.
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A Language Neuron Identification

A.1 Dataset Collection and Preprocessing

The dataset is constructed from publicly available
Wikipedia dumps, specifically from the Foundation
(2024) dataset. For each language, the following
preprocessing steps are applied:

• The dataset is randomly shuffled to ensure
diverse text coverage.

• Only the first 100 million tokens per language
are retained for computational efficiency.

• Each sequence is truncated to a maximum
context length of Tmax = 512 tokens.

A.2 Activation Computation

To identify language-specific neurons, we com-
pute activation statistics from the Wikipedia dataset
for each language. This involves calculating both
the mean activation and the 90th percentile activa-
tion (P90) for every neuron in the model. These
statistics provide insights into how neurons behave
across different languages and form the basis for
selecting language-specific neurons.

A.2.1 Mean Activation Computation
For a given language l, let the activation of neuron
(i, j) at token position t in sequence s be denoted
as h(s,t)i,j ∈ R. The mean activation of a neuron
across all token positions for a single sequence is
computed as:

h̄
(s)
i,j =

1

T

T∑

t=1

h
(s,t)
i,j ,

where T represents the sequence length (maxi-
mum of 512 tokens). To obtain the overall mean
activation for a language l, we aggregate across all
sequences Sl in the Wikipedia dataset:
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µli,j =
1

|Sl|
∑

s∈Sl

h̄
(s)
i,j .

This provides a language-specific average acti-
vation for each neuron, which helps in identifying
neurons that consistently activate for a particular
language.

A.2.2 90th Percentile Activation Computation
In addition to mean activation, we compute the
90th percentile activation (P90) to capture the up-
per range of neuron activity. The 90th percentile
is useful in determining neurons that are highly re-
sponsive in a given language. The P90 activation
for neuron (i, j) in language l is computed as:

P90(h
l
i,j) = inf

{
x |F

h
(s)
i,j

(x) ≥ 0.90, s ∈ Sl
}
,

where F
h
(s)
i,j

(x) is the cumulative distribution

function (CDF) of the activations of neuron (i, j)
for all sequences in language l. In practice, this
is computed by sorting activation values for all
sequences and selecting the value at the 90th per-
centile position.

A.3 LAPE and Act Prob 90p Details

In our experiments, we focus on two specific lan-
guage sets: Set1 and Set6. Although we have ex-
plored different combinations of language sets dur-
ing our analysis, for clarity and brevity we present
results corresponding only to Set1 and Set6.

Set1: Core Languages. This set consists of lan-
guages that were part of the original LAPE analysis
(Tang et al., 2024). It includes: {en, fr, es, vi, id, ja,
zh}. This selection covers a broad range of linguis-
tic families, including Indo-European (en, fr, es),
Austroasiatic (vi), Austronesian (id), Japonic (ja),
and Sino-Tibetan (zh). These languages are well-
represented in large-scale multilingual corpora and
serve as strong candidates for evaluating multilin-
gual neuron activations.

Set6: Indian Language-Dominant Set. While
Set1 includes a mix of global languages, Set6 is
specifically designed to focus on Indian languages:
{en, bn, hi, ta, te, mr, ur, kn, ml, pa}. The moti-
vation behind selecting Set6 is to investigate how
LLMs encode representations for typologically and
script-wise diverse Indian languages. The inclusion
of Bengali (bn), Hindi (hi), Tamil (ta), Telugu (te),
Marathi (mr), Urdu (ur), Kannada (kn), Malayalam

(ml), and Punjabi (pa) ensures a wide coverage of
Indo-Aryan and Dravidian language families.

The LAPE method is evaluated on both Set1
and Set6 to determine how neuron activations vary
across these two distinct sets. Since Set1 was orig-
inally introduced in prior work, our experiments
on Set6 extend the understanding of LAPE to In-
dian languages, which are underrepresented in pre-
trained LLMs.

For the Activation Probability 90p (Act Prob
90p) method, we select {en, vi, hi, ur, zh}. This
selection was based on language diversity, cross-
lingual representation, and performance dispari-
ties in downstream tasks. Since Act Prob 90p is
a set-independent method, we focus on selecting
languages that exhibit poor performance in task-
specific evaluations. Specifically, for the XNLI
task, the lowest-performing languages were Hindi
(hi), Urdu (ur), and Vietnamese (vi), leading to
their inclusion. Similarly, for the XQuAD task, the
weakest-performing languages were Vietnamese
(vi), Hindi (hi), and Chinese (zh), which motivated
their selection.

B Task, Models and Experiment Details

In this section, we provide detailed descriptions of
the two evaluation tasks used in our experiments,
namely XNLI and XQuAD, as well as the two
large language models (LLMs) used for our study:
Llama 3.1 and Mistral Nemo. We also formalize
the task setup using mathematical notations.

B.1 Tasks

B.1.1 XNLI

The XNLI dataset (Conneau et al., 2018) is a
cross-lingual extension of the MultiNLI dataset,
designed for evaluating natural language infer-
ence (NLI) across multiple languages. Given a
premise p and a hypothesis h, the task is to deter-
mine whether the hypothesis is entailment, con-
tradiction, or neutral with respect to the premise.
Formally, given a dataset D = {(pi, hi, yi)}Ni=1,
where: pi ∈ X is the premise, hi ∈ X is the
hypothesis, yi ∈ {0, 1, 2} represents the label: en-
tailment (0), contradiction (1), or neutral (2). We
conduct zero-shot evaluation on target languages
(vi, hi, ur), using English (en) as the source lan-
guage. We limit the training dataset to 100,000
samples (25% of the full dataset) for efficiency.
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B.1.2 XQuAD: Cross-lingual Question
Answering

XQuAD (Artetxe et al., 2020) is a multilingual
question-answering dataset based on the Stanford
Question Answering Dataset (SQuAD). The task
requires extracting an answer span a from a given
context c for a question q. Given a dataset D =
{(ci, qi, ai)}Mi=1, where: ci ∈ X is the passage
(context), qi ∈ X is the question, ai ∈ X is the
ground-truth answer. We evaluate on target lan-
guages (vi, hi, zh) and use the full training dataset
for fine-tuning.

B.2 Models

B.2.1 Llama 3.1
Llama 3.13 is an 8 billion parameter multilingual
model from Meta, trained on diverse text corpora
across multiple languages (Grattafiori et al., 2024).
The model consists of stacked transformer layers,
each comprising self-attention and feedforward
MLP components. Llama 3.1 is optimized for com-
putational efficiency and supports a wide range of
languages, making it a strong candidate for evalu-
ating multilingual transfer performance.

B.2.2 Mistral Nemo
Mistral Nemo4 is a 12 billion parameter trans-
former based model designed for multilingual tasks,
with a particular emphasis on high-performance
fine-tuning capabilities (MistralAI, 2024). Similar
to Llama 3.1, it consists of transformer layers with
self-attention and MLP modules.

B.3 Implementation Details for LoRA
Fine-Tuning

In this section, we provide an overview of the
implementation details for our fine-tuning experi-
ments on the XNLI and XQuAD tasks using LoRA.

For model configuration, our experiments were
conducted using the Meta-Llama-3.1-8B and
Mistral-Nemo-Base-2407 models. Both models
were loaded in 4-bit precision to optimize effi-
ciency. Specifically, we employed the nf4 quan-
tization type, used bfloat16 as the compute data
type, and enabled double quantization.

Regarding task-specific dataset preparation, for
the XNLI dataset—which involves natural lan-
guage inference by predicting entailment, contra-

3https://huggingface.co/meta-llama/Llama-3.
1-8B

4https://huggingface.co/mistralai/
Mistral-Nemo-Base-2407

diction, or neutral relationships—we used 25% of
the training data and 100% of the evaluation data.
The maximum context length was set to 256 tokens.
For the XQuAD dataset, which focuses on ques-
tion answering by extracting answer spans from
a given context, we utilized the full training data
(100%) along with 100% of the evaluation data,
with a maximum context length of 512 tokens.

LoRA was applied to fine-tune specific layers in
the attention module of the models for both tasks.
The fine-tuning was performed with a LoRA rank
r = 64 and a LoRA scaling factor α = 128. The
learning rate was set to 1 × 10−6 for XNLI and
5× 10−5 for XQuAD, with a weight decay of 0.1
and gradient clipping at a threshold of 10.0. The
AdamW optimizer was used with parameters β1 =
0.95 and β2 = 0.999.

For the training configuration, we trained the
model for 2 epochs on XNLI using a batch size of
8, and for 10 epochs on XQuAD using a batch size
of 4. A linear warm-up was employed for 1% of
the total steps, followed by a linear decay of the
learning rate. Mixed precision training was enabled
with bfloat16 to improve memory efficiency.

C Results of Language Neuron Analysis

Figure 2 to 7 presents the number of neurons as-
signed per language, comparing the LAPE and
Activation Probability 90p methods. The over-
lap of language-specific neurons across different
languages is illustrated in Figure 8 to 13, high-
lighting the extent of shared neurons between lan-
guages. The layer-wise distribution of these neu-
rons is shown in Figure 14 to 19, providing insights
into where language-specific representations are
most prominent in the model. Finally, the impact
of neuron interventions on perplexity is analyzed
in Figure 20 to 24, which displays the perplexity
change across different languages when language
neurons are manipulated. These figures collectively
summarize the key findings from our language neu-
ron analysis.

Table 4 presents the full XNLI results, extending
the analysis from Table 1, incorporating additional
statistical interventions, including percentiles at
P75, P90, P95, P5, P10, and P25. Similarly, Ta-
ble 5 provides the full XQuAD results, expanding
upon Table 2, detailing both exact match (EM) and
F1 scores across various intervention methods. The
complete activation statistics for both Llama 3.1
and Mistral Nemo are listed in Table 6, offering a
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breakdown of mean activations and quantiles, cap-
turing the variations in neuron activations across
languages. Finally, Table 7 details the full language
neuron fine-tuning results, extending Table 3, com-
paring zero-shot performance with fine-tuning on
different language neuron setups, and evaluating
test-time interventions across multiple configura-
tions.

Figure 2: Llama 3.1: Number of language neurons
assigned per language for LAPE in a set of languages
{en,es,fr,vi,id,zh,ja}.

Figure 3: Llama 3.1: Number of language neurons
assigned per language for LAPE in a set of languages
{en,bn,hi,ur,mr,pa,ta, te, ml, kn}.

Figure 4: Mistral Nemo: Number of language neurons
assigned per language for LAPE in a set of languages
{en,es,fr,vi,id,zh,ja}.
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Figure 5: Mistral Nemo: Number of language neurons
assigned per language for LAPE in a set of languages
{en,bn,hi,ur,mr,pa,ta, te, ml, kn}.

Figure 6: Llama 3.1: Number of language neurons assigned
per language for Activation Probability 90p which is same for
all the languages.

Figure 7: Mistral Nemo: Number of language neurons as-
signed per language for Activation Probability 90p which is
same for all the languages.

Figure 8: Llama 3.1: Language neuron overlap between lan-
guages using LAPE in a set of languages {en,es,fr,vi,id,zh,ja}.
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Figure 9: Llama 3.1: Language neuron overlap between lan-
guages using LAPE in a set of languages {en,bn,hi,ur,mr,pa,ta,
te, ml, kn}.

Figure 10: Mistral Nemo: Language neuron overlap
between languages using LAPE in a set of languages
{en,es,fr,vi,id,zh,ja}.

Figure 11: Mistral Nemo: Language neuron overlap
between languages using LAPE in a set of languages
{en,bn,hi,ur,mr,pa,ta, te, ml, kn}.

Figure 12: Llama 3.1: Language neuron overlap between
languages using Activation Probability 90p.
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Figure 13: Mistral Nemo: Language neuron overlap between
languages using Activation Probability 90p.

Figure 14: Llama 3.1: Layer-wise distribution of language
neurons for LAPE in a set of languages {en,es,fr,vi,id,zh,ja}.

Figure 15: Llama 3.1: Layer-wise distribution of language
neurons for LAPE in a set of languages {en,bn,hi,ur,mr,pa,ta,
te, ml, kn}.

Figure 16: Mistral Nemo: Layer-wise distribution
of language neurons for LAPE in a set of languages
{en,es,fr,vi,id,zh,ja}.
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Figure 17: Mistral Nemo: Layer-wise distribution
of language neurons for LAPE in a set of languages
{en,bn,hi,ur,mr,pa,ta, te, ml, kn}.

Figure 18: Llama 3.1: Layer-wise distribution of language
neurons for Activation Probability 90p.

Figure 19: Mistral Nemo: Layer-wise distribution of lan-
guage neurons for Activation Probability 90p.

Figure 20: Llama 3.1: Perplexity change for LAPE in a set
of languages {en,bn,hi,ur,mr,pa,ta, te, ml, kn} (on 0.1 Million
tokens).
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Figure 21: Mistral Nemo: Perplexity change for LAPE in a
set of languages {en,es,fr,vi,id,zh,ja} (on 0.1 Million tokens).

Figure 22: Mistral Nemo: Perplexity change for LAPE in
a set of languages {en,bn,hi,ur,mr,pa,ta, te, ml, kn} (on 0.1
Million tokens).

Figure 23: Llama 3.1: Perplexity change for Activation
Probability 90p (on 0.1 Million tokens).

Figure 24: Mistral Nemo: Perplexity change for Activation
Probability 90p (on 0.1 Million tokens).
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Model &
Method

Eval
Lang No Int Int µ Int P75 Int P90 Int P95 Int 0 Int P5 Int P10 Int P25

Llama 3.1
+

LAPE

vi 80.5 79.5 79.1 79.0 78.9 79.8 73.6 77.7 80.5
hi 75.0 75.2 74.9 74.9 75.0 74.4 74.8 75.1 74.9
ur 70.0 70.4 70.2 69.3 69.0 68.5 68.6 68.7 69.7

Llama 3.1
+

Act Prob 90p

vi 80.5 78.2 78.9 79.3 79.5 79.0 76.5 77.4 78.0
hi 75.0 74.1 72.6 71.8 71.2 73.7 75.0 74.6 74.2
ur 70.0 69.7 69.7 69.3 68.7 69.6 69.4 69.5 69.5

Mistral Nemo
+

LAPE

vi 80.5 80.4 80.5 80.6 80.5 79.2 80.6 80.5 80.3
hi 76.1 69.8 67.8 66.9 66.6 74.9 73.0 72.4 71.0
ur 66.8 66.5 67.2 67.0 66.8 66.9 65.8 65.4 65.7

Mistral Nemo
+

Act Prob 90p

vi 80.5 67.4 79.0 81.1 81.1 79.8 37.4 40.7 47.8
hi 76.1 72.2 73.7 74.5 74.4 74.5 62.4 66.3 69.3
ur 66.8 65.9 64.0 61.3 59.7 66.4 54.6 61.6 65.0

Table 4: Full XNLI performance results, including additional statistical interventions. This table extends Table 1 by incorporating
multiple activation percentile-based interventions, including P75, P90, P95, P5, P10, and P25, alongside the mean and zero
activation interventions.

Model &
Method

Eval
Lang No Int Int µ Int P75 Int P90 Int P95 Int 0 Int P5 Int P10 Int P25

Llama 3.1
+

LAPE

vi 41 (73.5) 40 (72.9) 36 (76.7) 31 (69.5) 28 (66.8) 32 (69.2) 4 (35.8) 10 (43.2) 39 (71.5)
hi 38 (64.1) 40 (65.5) 38 (66.4) 36 (65.4) 36 (66.3) 23 (49.9) 38 (62.8) 37 (62.8) 39 (65.3)
zh 56 (77.5) 10 (62.8) 3 (58.1) 3 (56.1) 4 (52.9) 33 (63.2) 20 (49.1) 33 (63.2) 22 (67.8)

Llama 3.1
+

Act Prob 90p

vi 41 (73.6) 39 (73.0) 26 (65.8) 23 (64.9) 24 (64.8) 42 (73.8) 33 (67.8) 36 (70.3) 39 (72.0)
hi 38 (64.1) 34 (60.7) 35 (62.3) 36 (62.8) 32 (61.9) 38 (62.9) 23 (54.9) 31 (58.6) 35 (60.7)
zh 56 (77.5) 61 (80.7) 59 (79.5) 56 (78.8) 56 (78.4) 55 (78.5) 40 (61.7) 50 (73.6) 56 (79.3)

Mistral Nemo
+

LAPE

vi 39 (74.6) 42 (76.8) 40 (76.4) 40 (75.0) 39 (73.6) 13 (45.0) 10 (40.4) 11 (41.2) 37 (73.3)
hi 38 (66.9) 35 (65.9) 38 (67.1) 37 (66.6) 34 (66.5) 22 (51.7) 36 (65.8) 36 (66.1) 36 (67.1)
zh 47 (74.9) 24 (74.0) 4 (65.6) 0 (61.6) 0 (59.3) 14 (53.3) 1 (33.6) 24 (68.9) 35 (77.0)

Mistral Nemo
+

Act Prob 90p

vi 39 (74.6) 11 (43.3) 26 (62.8) 29 (63.9) 15 (48.5) 39 (74.5) 0 (3.8) 0 (6.5) 2 (12.9)
hi 38 (66.9) 26 (54.4) 34 (65.1) 37 (68.9) 37 (68.7) 33 (63.8) 0 (6.0) 0 (11.9) 12 (35.2)
zh 47 (74.9) 46 (77.4) 26 (69.9) 20 (59.8) 15 (54.9) 48 (76.2) 0 (8.5) 0 (17.0) 9 (45.6)

Table 5: Full XQuAD performance results, with exact match (EM) and F1 scores across various interventions. This table builds
upon Table 2, expanding the analysis with additional intervention strategies. The results further validate the findings on test-time
interventions and their impact on cross-lingual task performance.

Model Lang Act µ Act P75 Act P90 Act P95 Act P5 Act P10 Act P25

Llama 3.1

en -0.2621 -0.0493 0.1693 0.3106 -0.7943 -0.6801 -0.4892
vi -0.2599 -0.049 0.1648 0.3012 -0.782 -0.6709 -0.4841
hi -0.2728 -0.0648 0.144 0.2784 -0.7893 -0.6788 -0.4934
ur -0.254 -0.0498 0.1521 0.2804 -0.7604 -0.6511 -0.4684
zh -0.2603 -0.0505 0.1611 0.2958 -0.7797 -0.6689 -0.4826

Mistral Nemo

en -0.3938 -0.0798 0.2477 0.4629 -1.1888 -1.0149 -0.7294
vi -0.399 -0.0807 0.2454 0.4564 -1.1975 -1.0237 -0.737
hi -0.4265 -0.1147 0.2053 0.4133 -1.2092 -1.0392 -0.7588
ur -0.397 -0.0881 0.2252 0.4279 -1.1722 -1.0029 -0.7238
zh -0.3962 -0.0715 0.2568 0.4678 -1.2088 -1.032 -0.7388

Table 6: Activation statistics for Llama 3.1 and Mistral Nemo across different languages for Wikipedia dataset. It provides an
in-depth analysis of activation values, including mean activation values and key quantiles (P75, P90, P95, P5, P10, P25).
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FTL EL No Int Int µ Int P90 Int 0 Int P10
Llama 3.1 with LAPE

en vi 80.2 79.6 78.5 79.2 78.0
vi vi 80.1 79.5 78.6 79.2 78.0

en+vi vi 80.1 79.4 78.5 79.1 78.0
en hi 74.9 74.6 74.6 74.1 74.6
hi hi 74.9 74.6 74.5 74.3 74.6

en+hi hi 74.9 74.5 74.5 74.3 74.7
en ur 69.8 70.4 69.6 70.2 69.0
ur ur 69.8 70.5 69.5 70.4 69.1

en+ur ur 70.0 70.6 69.5 70.3 68.9
Llama 3.1 with Act Prob 90p

en vi 80.3 78.0 79.1 78.5 77.5
vi vi 80.1 78.0 79.0 78.7 77.4

en+vi vi 80.1 78.0 78.9 78.8 77.4
en hi 74.9 73.9 72.1 73.3 74.5
hi hi 74.9 73.8 72.1 73.9 74.6

en+hi hi 74.9 73.7 72.1 73.8 74.6
en ur 69.9 70.1 69.4 70.0 69.5
ur ur 69.9 70.0 69.4 70.1 69.5

en+ur ur 69.8 69.9 69.3 70.1 69.6

Table 7: Full language neuron fine-tuning results for XNLI.
This table extends Table 3, presenting fine-tuning experiments
where language-specific neurons are updated in different con-
figurations. It includes results for models fine-tuned on the
source language alone, the target language alone, and both
together, with evaluation of test-time interventions across mul-
tiple setups.

Model FTL EL No Int
Llama 3.1 rand vi 80.1
Llama 3.1 rand hi 74.8
Llama 3.1 rand ur 69.8

Mistral Nemo rand vi 80.4
Mistral Nemo rand vi 75.6
Mistral Nemo rand ur 65.5

Table 8: Random neuron fine-tuning results for Llama 3.1 and
Mistral Nemo. The table reports zero-shot performance with-
out intervention (No Int) after fine-tuning randomly selected
10 neurons per layers instead of language-specific neurons.
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Abstract

Prior works have shown that in-context learning
is brittle to presentation factors such as the or-
der, number, and choice of selected examples.
However, ablation-based guidance on select-
ing the number of examples may ignore the
interplay between different presentation fac-
tors. In this work we develop a Monte Carlo
sampling-based method to study the impact of
number of examples while explicitly account-
ing for effects from order and selected exam-
ples. We find that previous guidance on how
many in-context examples to select does not
always generalize across different sets of se-
lected examples and orderings, and whether
one-shot settings outperform zero-shot settings
is highly dependent on the selected example.
Additionally, inspired by data valuation, we
apply our sampling method to in-context exam-
ple selection to select examples that perform
well across different orderings. We find a nega-
tive result, that while performance is robust to
ordering and number of examples, there is an
unexpected performance degradation compared
to random sampling.

1 Introduction

In-context learning is an emergent ability of LLMs
(Wei et al., 2022; Brown et al., 2020b) where an
LLM learns to perform an unseen task by seeing a
number of demonstrations in the context window
(Brown et al., 2020a). While in-context learning
has shown significant potential as a way to extract
relevant information from an LLM and align the
model with user expectations, it has also exhibited
brittleness to an assortment of factors. For example,
model performance when learning in-context is
sensitive to which examples are selected (Rubin
et al., 2022; Liu et al., 2022; Wu et al., 2023; Ye
et al., 2023) as well as their orderings (Lu et al.,
2022; Chen et al., 2023b; Liu et al., 2022; Chang
and Jia, 2023; Guo et al., 2024; Wu et al., 2023).

Another important parameter, the number of ex-
amples, has received comparably little attention.
Prior works have suggested that one-shot settings
outperform zero-shot settings even when a random
label is used (Min et al., 2022). Additional abla-
tions have guided this parameter by citing perfor-
mance plateaus at set numbers of examples (Wang
et al., 2024; Min et al., 2022; Wu et al., 2023).
However, it is unclear whether this guidance holds
when accounting for other sensitive factors such as
different orderings and selected examples.

Previous work on data valuation has shown the
efficacy of applying Monte Carlo sampling to eval-
uate datum contributions under different permu-
tations in fine-tuning settings (Ghorbani and Zou,
2019; Schoch et al., 2023). Inspired by this, we
develop a Monte Carlo sampling-based method to
investigate the impact of number of examples while
using permutations to account for order and selec-
tion of in-context examples.

Specifically, we utilize Monte Carlo sampling
and analyze performance with the addition of each
exemplar. We find that performance plateaus at pre-
viously suggested numbers of examples do not con-
sistently generalize under different permutations.
Further, we find that one-shot performance may be
more sensitive to the selected example than previ-
ously recognized (Min et al., 2022; Brown et al.,
2020b) and the guidance of one-shot outperform-
ing zero-shot is dependent on the selected example.
Finally, we find that using Monte Carlo sampling to
select in-context examples may increase robustness
to effects from ordering and selected examples, but
unexpectedly, does not lead to performance im-
provements over random sampling.

2 Related work

In-context learning In many prior works inves-
tigating in-context learning sensitivity to ordering
and selected examples (see Appendix A for de-
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scription of in-context learning), a fixed number of
examples are used (Zhang et al., 2022b; Lu et al.,
2022; Min et al., 2022), with common guidance
from prior ablations stating performance plateaus
around k = 4 (Wang et al., 2024) and k = 8
examples (Min et al., 2022; Wu et al., 2023). Re-
cent work has looked at the how the number of ex-
amples impacts performance on chain-of-thought
reasoning benchmarks (Chen et al., 2023a) and sug-
gested that fewer examples may be needed, yet it is
otherwise unclear the effect of number of demon-
strations on other tasks and prompting frameworks,
particularly when controlling for order and selected
examples.

Monte Carlo sampling Monte Carlo sampling
has been widely adopted in the data valuation lit-
erature to provide unbiased approximations of the
Shapley value (Ghorbani and Zou, 2019), based
on prior work on Monte Carlo methods for Shap-
ley value approximation (Mann and Shapley, 1962;
Castro et al., 2009; Maleki et al., 2013) (see Ap-
pendix A for additional details). Recent works have
also applied principles from data valuation to in-
context learning example selection and ordering
(Guo et al., 2024; Chang and Jia, 2023; Nguyen
and Wong, 2023). While in data valuation, Monte
Carlo sampling methods are used to calculate the
marginal contribution of each data point averaged
over a number of permutations, our motivation dif-
fers. In our setting, we are motivated by the utility
of Monte Carlo sampling to provide an unbiased
estimate of the influence of number of examples
on in-context learning performance by reducing
influence of ordering and selected examples.

3 Method

To study the effect of the number of examples,
we aim to reduce the influence of ordering and
selected examples as confounding factors. While
averaging across trials in previous work helps re-
duce the influence of selected examples, it does not
account for different orderings. Additionally, prior
work on ordering only addresses up to k = 4 (Lu
et al., 2022) as the possible permutations increase
exponentially with respect to k. This motivates
the use of Monte Carlo sampling with incremental
exemplar additions as 1) the use of permutations
reduces the influence of ordering, and 2) the aver-
aging across multiple trials reduces the influence
of selected examples. We explain this as well as
our method in detail below.

Algorithm 1: Monte Carlo Sampling
Method

1: Input: Training data Dtrn = {1, ..., n},
evaluation data Dtst = {1, ...,m}, LLM
M, performance metric VM, parameters:
K (# examples), P (# permutations)

2: Output: Average performance µ(VM) for
k = {0, ...,K} for one subset SK

3: Initialize µk = 0 for k = 0, ...,K
4: Randomly sample subset SK from Dtrn

5: for p ∈ {1, ..., P} do
6: πp: Random permutation of SK

7: for k ∈ {0, ...,K} do
µk ← µk + VM(S[0 : k]π)

8: end for
9: end for

10: for k ∈ {0, ...,K} do
µk ← 1

P µk
11: end for

Consider a training dataset Dtrn =
{(xi, yi)}ni=1 that contains n training instances.
Given a fixed test set Dtst, we aim to draw k
exemplars from Dtrn and test model performance
on Dtst. We let Sk

π ⊆ Dtrn denote a subset with
some ordering π and cardinality k, where k ≤ n.
Additionally, we let VM denote the predictive
performance of a model M, e.g., prediction
accuracy.

For each k ∈ {1, 2, ...,K}, the set of possible
subsets Sk = {Sk

(i)}n
Ck

i=1 . The expected model per-
formance for any given Sk

(i) can be defined as:

Eπ∼Π[VM(Sk
π(i))] (1)

where VM(Sk
π) is the performance of model M

using Sk
π and Π is the uniform distribution over all

k! permutations of Sk
(i).

For each k, exhaustively permuting all nCk sub-
sets Sk, and averaging over the expected values
would give us the expected value for each number
of exemplars. In practice, however, this is computa-
tionally infeasible. Instead, we utilize Monte Carlo
sampling to approximate this value.

Specifically, we utilize the Monte Carlo sam-
pling method adapted from Ghorbani and Zou
(2019). First, we define K as the maximum ex-
emplars we aim to use. Next, we sample SK from
Dtrn. For a predefined number of permutations
of SK , we iteratively scan from the first element
to the final element, computing the model perfor-
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(a) MNLI (b) MRPC (c) QNLI (d) QQP

(e) RTE (f) SST-2 (g) WNLI (h) Hellaswag

Figure 1: In-context performance for each dataset and model. Results show the average of 20 permutations at each
step k in the proposed Monte Carlo sampling method. Shaded regions show standard deviation of 5 trials.

mance at each step. We average the performance
for each k across p permutations. We provide the
pseudo-code in algorithm 1. In practice, we per-
form this procedure over multiple trials, resampling
SK for each trial and averaging over the result. In
our experiments, we use 5 trials and p = 20 permu-
tations.

In addition to the computational speedup achiev-
able by limiting the number of permutations, the
primary benefit of our approach is that is circum-
vents the need to resample at each k. As we cannot
exhaustively permute each Sk, if we resample for
each k, there are n!

(n−k−1)! possible permutations
preceding k, each of which could produce differ-
ing downstream performance VM(Sk−1

πk−1
) due to

the impact of Sk−1 and πk−1 (selected examples
and ordering, respectively). By sampling in this
manner, we effectively eliminate the influence of
k − 1 in understanding performance at k.

4 Experiment setup

Detailed descriptions of our setup can be found in
Appendix B.

Models We experiment with 8 models in total,
listed in Table 1. The selected models vary in size
from 160M to 13B and represent four distinct fam-
ilies: Pythia (Biderman et al., 2023), OPT (Zhang
et al., 2022a), GPT-Neo (Black et al., 2021), and
Llama2 (Touvron et al., 2023).

Datasets We use 8 datasets in our experiments
across a diverse range of tasks previously repre-
sented in in-context learning analysis. Specifically,
we perform experiments on natural language in-
ference (MNLI, QNLI, WNLI), sentiment analy-
sis (SST-2), commonsense reasoning (Hellaswag),
paraphrase detection (MRPC, QQP), and textual
entailment (RTE).

Sampling and Aggregation Procedure For each
trial, we randomly sample 20 in-context examples
from the training set. We perform 20 Monte Carlo
permutations. Within each permutation, we iterate
from the first example to the last, computing the
accuracy on the validation set at each step. Using
this procedure, we perform 5 trials for each experi-
ment. In aggregate, we perform 100 permutations
with each model and dataset combination.

5 Results

5.1 Analyzing Number of Examples

We plot the performance of each model across
k = {1, 2, ..., 20} examples, where each step repre-
sents the addition of one in-context example from
the Monte Carlo permutation. In line with com-
mon practice of reporting across multiple trials
with standard deviation information, our results are
averaged over 5 trials, controlling for selected ex-
amples and ordering effects. Results are reported
in Figure 1.
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(a) Opt-1.3B (b) Pythia-1.4B

(c) GPT-Neo-2.7B (d) Llama2-13B

Figure 2: Results on SST-2. Blue lines represent in-
dividual permutations and red line indicates average
across all permutations within one trial.

Observed from the averaged results, our results
align with ablations in prior work (Wu et al., 2023;
Min et al., 2022). Specifically, much of the perfor-
mance improvement across models and datasets
occurs within the first 8 in-context examples,
where performance then begins to plateau and only
marginally increase. At face value, this result
shows that prior recommendations with respect to
the number of examples to use are not influenced
by ordering effects as we had hypothesized prior to
designing our sampling method.

Does performance consistently plateau at set
numbers of exemplars? When viewing the re-
sults from individual permutations, we find that
the performance plateaus by k = 4 (Wang et al.,
2024) and k = 8 (Min et al., 2022; Wu et al., 2023)
examples are not observable within individual per-
mutations. On the contrary, we continue to observe
erratic performance changes up through k = 20
examples. This suggests the previously observed
plateaus on averaged results, both in prior work
and recreated in Figure 1, may mask significant
performance fluctuations, and the best performance
within a selected example set may occur anywhere
from k = {1, 2, ...20}. Additionally, we observe
that in some permutations, there is a performance
drop at k = 1. We investigate this further in the
following section.

Is one example better than none? Prior work
has suggested that one demonstration outperforms
no demonstrations even when a random label is
used (Min et al., 2022). Other work has suggested

(a) Opt-1.3B (b) Pythia-1.4B

(c) GPT-Neo-2.7B (d) Llama2-13B

Figure 3: One-shot MNLI performance across 5 trials.
Each blue point represents the accuracy using the first
exemplar in a permutation. Red points indicate zero-
shot performance. Results show that zero-shot settings
can outperform one-shot settings, dependent upon the
selected example.

some dependence on the dataset and model (Xie
et al., 2022; Brown et al., 2020b). However, our
results indicate that the performance of zero-shot
vs. few-shot settings may be dependent on the
selected example, regardless of dataset and model.
To illustrate this, in Figure 6, we plot the one-shot
performance of each permutation across all 5 trials
on the MNLI dataset using each model, with the
zero-shot performance of the model indicated in
red.

In contradiction to prior work, our results across
nearly all models and datasets (see Appendix C) in-
dicate that performance in one-shot settings can
vary between significant performance improve-
ments and significant performance degradation,
depending on the selected example. This con-
tradiction raises the question of what qualities of
in-context examples can lead to such significant
performance degradation in one-shot settings, and
whether these have any impact when used within a
k-shot setting.

Our analysis in one-shot settings across different
permutations indicates that one-shot performance
is more sensitive to the selected example than pre-
viously thought.

5.2 Exemplar Selection
We are interested in whether we can apply our sam-
pling method to selecting in-context examples. Us-
ing our sampling method, each exemplar appears at

66



Figure 4: Performance with Llama2-13B on QNLI
dataset, using in-context subsets containing the highest-
performing and lowest-performing data points on aver-
age from subsection 5.1, along with a random baseline.
Results represent 20 permutations, with standard devia-
tion displayed as the shaded region for each line.

different k’s under different permutations. There-
fore, we are effectively averaging out different or-
derings and k’s. It follows that we would expect
exemplars associated with high average accuracy
within different permutations to be associated with
higher model performance overall, while being ro-
bust across orderings and different k’s Further, we
would expect exemplars with low average accura-
cies to consistently lead to poor performance.

Given the token limitations of context windows
and computational time associated with increasing
k, to increase the example candidate set, we use Z-
score as a means to compare examples across trials.
This allows us to limit context to k = 20 while
increasing the overall candidate set and accounting
for the impact of using different selected examples
in each trial. We perform the sampling procedure
described in section 3 with Llama2-13B on QNLI
and perform the following calculation.

For a given trial t, we compute the average accu-
racy associated with each example e, denoted µe.
We then take the mean over all example averages
in the trial, µt = 1

kΣ
k
e=1µe with standard devia-

tion σt =

√
Σk

e=1(µe−µt)
k . Finally, we compute

the Z-score for each example in the trial, where
Z = µe−µt

σt
After computing scores for all trials,

we identify points with a Z-score Z > 1 ∨ Z < 1,
and select the 6 examples with the highest and low-
est scores as our high and low set, respectively. We
report results using each set, as well as a random

baseline for in-context learning in Figure 4 using
the same sampling procedure as in subsection 5.1.

When using points identified via Monte Carlo
sampling as consistently high or low performing,
we see a greater robustness to ordering sensitivity
across k’s, as evidenced by the minimal variance
exhibited by these subsets. This is contrasted with
the random baseline which exhibits high variance
across different k’s and orderings.

Interestingly, whereas our experiments in sec-
tion 5.1 showed numerous instances where one-
shot performance was worse than zero-shot perfor-
mance, we do not observe this occurring with the
lowest average performing data points. Rather, we
see performance maintained at a zero-shot level.
Further, while high-performing examples consis-
tently performs above zero-shot accuracy and ex-
hibit greater stability over varying k across permu-
tations, the random selection exhibited the high-
est performance for k > 1. This was an unex-
pected result: using our Monte Carlo-based selec-
tion method led to more robust performance across
k examples, but it resulted in an overall perfor-
mance decrease compared to random sampling.

Our results when selecting in-context examples
that on average had high or low scores across
Monte Carlo permutations indicate that subsets
comprised of points at each end of the spectrum
exhibit lower sensitivity to ordering and number of
demonstrations. While this may be promising in
terms of identifying methods to increase robustness
of in-context learning performance, the random se-
lection baseline exhibited both higher overall per-
formance and higher variance across orderings and
number of examples. This raises the question of
whether there is an existing performance vs. ro-
bustness tradeoff, and of what qualities contribute
to example deviation from the mean performance,
as well as how methods can identify examples that
possess these qualities that also lead to higher per-
formance gains.

6 Conclusion

In this work, we proposed a Monte Carlo-based
sampling method to investigate previous guidance
regarding number of examples to use and one- vs.
zero-shot settings. We further investigated whether
this method could be used to select in-context exam-
ples, finding a performance vs. robustness tradeoff.
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7 Limitations

Our results are reported on models up to 13B pa-
rameters due to constraints posed by our available
computational resources. We acknowledge this as
a limitation, however, as our results are consistent
across the model sizes we utilized, we believe our
results should generalize to larger models.

Acknowledgments

We thank the reviewers for their helpful feedback.
This research was supported in part by NSF III
#2007492.

References
Stella Biderman, Hailey Schoelkopf, Quentin Gregory

Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Javier Castro, Daniel Gómez, and Juan Tejada. 2009.
Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research,
36(5):1726–1730.

Ting-Yun Chang and Robin Jia. 2023. Data curation
alone can stabilize in-context learning. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 8123–8144, Toronto, Canada. Association for
Computational Linguistics.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023a. How many demonstrations do you need for
in-context learning? In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11149–11159, Singapore. Association for Computa-
tional Linguistics.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKe-
own, and He He. 2023b. On the relation between
sensitivity and accuracy in in-context learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 155–167, Singapore.
Association for Computational Linguistics.

William Dolan, Chris Quirk, Chris Brockett, and Bill
Dolan. 2004. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel
news sources.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Amirata Ghorbani and James Zou. 2019. Data shapley:
Equitable valuation of data for machine learning. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2242–2251.
PMLR.

Qi Guo, Leiyu Wang, Yidong Wang, Wei Ye, and Shikun
Zhang. 2024. What makes a good order of examples
in in-context learning. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14892–14904, Bangkok, Thailand. Association for
Computational Linguistics.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online

68

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.452
https://doi.org/10.18653/v1/2023.acl-long.452
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://doi.org/10.18653/v1/2024.findings-acl.884
https://doi.org/10.18653/v1/2024.findings-acl.884
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846


and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Sasan Maleki, Long Tran-Thanh, Greg Hines, Ta-
lal Rahwan, and Alex Rogers. 2013. Bound-
ing the estimation error of sampling-based shapley
value approximation with/without stratifying. CoRR,
abs/1306.4265, 2(1).

Irwin Mann and Lloyd S Shapley. 1962. Values of large
games. 6: Evaluating the electoral college exactly.
RAND Corp., Santa Monica, CA, USA, Tech. Rep.
RM-3158-PR.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tai Nguyen and Eric Wong. 2023. In-context ex-
ample selection with influences. arXiv preprint
arXiv:2302.11042.

Quora. 2017. [link].

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Stephanie Schoch, Ritwick Mishra, and Yangfeng Ji.
2023. Data selection for fine-tuning large language
models using transferred shapley values. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 4: Student
Research Workshop), pages 266–275.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Liang Wang, Nan Yang, and Furu Wei. 2024. Learning
to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1752–1767, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1423–1436, Toronto, Canada. Association for
Computational Linguistics.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 39818–39833. PMLR.

69

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/2024.eacl-long.105/
https://aclanthology.org/2024.eacl-long.105/
https://aclanthology.org/2024.eacl-long.105/
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022a. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Model Parameters

Pythia (Biderman et al., 2023)
160M
1.4B

OPT (Zhang et al., 2022a)
350M
1.3B

GPT-Neo (Black et al., 2021)
1.3B
2.7B

LLaMa2 (Touvron et al., 2023)
7B
13B

Table 1: Models used in our experiments. We select a
range of different model families and parameter sizes.
Parameter range is upper bounded based on available
compute.

A Additional Background

In-Context Learning: In-context learning en-
ables pre-trained models to learn an unseen task
using a set of exemplars concatenated in the con-
text window. Formally, given a test example x,
in-context learning concatenates K demonstration
examples to the task instruction I , where S =
{xπ(i), yπi}Ki=1 denotes the example set given some
order π.

Monte Carlo Sampling: Within the context
of data valuation, the underlying idea of Monte
Carlo sampling is to sample random permutations
of the data points and iterate from the first to last
element in each permutation. Specifically, for p
Monte Carlo iterations, a dataset D is randomly
permuted. Following, these methods scan from the
first element of the permutation to the last element
of the permutation and compute the performance
of the model at each timestep. In data valuation,
Monte Carlo sampling methods are used to calcu-
late the marginal contribution of each data point
averaged over a number of permutations.

B Experiment Setup Details

We adapt the Language Model Evaluation Harness
package (Gao et al., 2023) to conduct our experi-
ments. All experiments use the package’s default
prompts for each dataset.

Details on models and datasets used can be found
in Table 1 and Table 2, respectively.

Notably, the upper bound of the parameter range
for models is due to our resource constraint, as each
experiment is run using a single NVIDIA A100
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Dataset Task #Train #Val #Classes

MNLI (Williams et al., 2018) Natural Language Inference 393k 9.82k 3
MRPC (Dolan et al., 2004) Paraphrase Detection 3.67k 408 2
QNLI (Wang et al., 2018) Natural Language Inference 105k 5.46k 2
QQP (Quora, 2017) Paraphrase Detection 364k 40.4k 2
RTE 1 Textual Entailment 2.49k 277 2
SST-2 (Socher et al., 2013) Sentiment Analysis 67.3k 872 2
WNLI (Levesque et al., 2011) Natural Language Inference 635 71 2
Hellaswag (Zellers et al., 2019) Commonsense Reasoning 39.9k 10k 4

Table 2: Datasets used in our experiments. We use the distributions available from Huggingface (Lhoest et al.,
2021), and use the respective validation sets to measure performance.

GPU.
For each dataset, we utilize the splits available

from Huggingface. As the GLUE benchmark
datasets do not have labeled test sets, we use the
validation sets for evaluation. Additionally, as we
are performing inference after the addition of ev-
ery example within each permutation, we follow a
protocol from prior work and sub-sample 256 in-
stances from the validation set to control inference
overhead (Lu et al., 2022).

C Additional results

This appendix contains:

• Additional scatter plots (section 5.1)

• Single trial averages overlaying individual per-
mutations (section 5.1)
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 5: One-shot in-context learning performance on the Hellaswag dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 6: One-shot in-context learning performance on the MNLI dataset across 5 trials. Each blue point represents
the accuracy using the first in-context example of a permutation, with 20 permutations per trial. The red points
indicate the zero-shot performance of the model. Results indicate that zero-shot settings can outperform one-shot
settings, dependent upon the selected in-context example.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 7: One-shot in-context learning performance on the MRPC dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 8: One-shot in-context learning performance on the QNLI dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 9: One-shot in-context learning performance on the QQP dataset across 5 trials.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 10: One-shot in-context learning performance on the RTE dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 11: One-shot in-context learning performance on the SST-2 dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 12: One-shot in-context learning performance on the WNLI dataset across 5 trials.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 13: Performance of each model on Hellaswag dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 14: Performance of each model on MNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 15: Performance of each model on MRPC dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 16: Performance of each model on QNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 17: Performance of each model on QQP dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 18: Performance of each model on RTE dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.
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(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 19: Performance of each model on SST-2 dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 20: Performance of each model on WNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.
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Abstract

An increasingly common practice is to train
large language models (LLMs) using synthetic
data. Often this synthetic data is produced by
the same or similar LLMs as those it is be-
ing used to train. This raises the question of
whether the synthetic data might in fact exacer-
bate certain “blindspots” by reinforcing heuris-
tics that the LLM already encodes. In this paper,
we conduct simulated experiments on the natu-
ral language inference (NLI) task with Llama-
2-7B-hf models. We use MultiNLI as the gen-
eral task and HANS, a targeted evaluation set
designed to measure the presence of specific
heuristic strategies for NLI, as our “blindspot”
task. Our goal is to determine whether per-
formance disparities between the general and
blind spot tasks emerge. Our results indicate
that synthetic data does not reinforce blindspots
in the way we expected. Specifically, we
see that, while fine-tuning with synthetic data
doesn’t necessarily reduce the use of the heuris-
tic, it also does not make it worse as we hypoth-
esized. 1

1 Introduction and Related Work

Constructing a dataset for a specific task in natural
language processing can be costly in terms of time
and labor. An increasingly common approach to
solve this problem is to take advantage of large lan-
guage models (LLMs) to generate training data. It’s
simple to fine-tune an LLM or just use in-context
learning to generate huge amounts of training data
with a relatively small number of demonstrations.
However, how effective the model-written datasets
are for different tasks is still an open question.

Model-generated training data is widely used in
different domains like image classification (Besnier
et al., 2020; Gowal et al., 2021), visual language
concepts understanding (Cascante-Bonilla et al.,

1Our code is available at https://github.com/
untakenJ/synthetic-data-blindspot.

2023) and medical image understanding (Fernan-
dez et al., 2022). In many NLP tasks, such as com-
monsense reasoning (Yang et al., 2020), question-
answering (Bartolo et al., 2021; Paranjape et al.,
2022), sycophancy reduction (Wei et al., 2024),
cultural debiasing (Li et al., 2024a,b) and general
instruction alignment (Wang et al., 2023), synthetic
data created with generative models are utilized in
model training. In cases where there are limited
sources for model training, synthetic data would
greatly benefit the performance of finetuned model.
High-quality model-written datasets may also be
used for evaluations. Perez et al. (2023) created 154
evaluation datasets and discovered inverse scaling
of language models in some scenarios.

However, synthetic data may also be harmful.
Shumailov et al. (2024) found that language mod-
els may collapse if recursively finetuned with gen-
erated text. Such degradation has also been dis-
covered in image generation tasks (Alemohammad
et al., 2024). The use of synthetic data is also crit-
icized from the perspective of ethics and social
impact (Susser and Seeman, 2024). There’s a se-
ries of research about what bias is manifested in
synthetic data and how the performance in specific
tasks is affected. For example, gender stereotype
is a common kind of bias amplified in data gener-
ated by language models (Kirk et al., 2021; Kotek
et al., 2023a). Li et al. (2023) investigated the text
classification task and showed that subjectivity is a
matter affecting the performance of models trained
with synthetic data. Bisbee et al. (2024) found less
variation in ChatGPT responses than in the real
ANES survey. Similarly, a study from Chen et al.
(2024) indicates that the uniform format of syn-
thetic data can lead to pattern overfitting and thus
harm the instruction-following capabilities of the
model trained with it. Seddik et al. (2024) reveals
that the recursive training loop makes the tails of
the original distribution disappear and makes the
model forget the real distribution from a statistical
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perspective.
One particular way in which synthetic data might

be harmful is if it reinforces ungeneralizable heuris-
tics. It is well know that LLMs often rely on fea-
tures that perform well on the training set but do
not necessarily generalize as we would like, for ex-
ample, relying on gender bias (Kotek et al., 2023b),
word-overlap bias in NLI (Rajaee et al., 2022), or
exhibiting a preference toward longer responses in
text generation (Singhal et al., 2024). We refer to
these types of heuristics as blindspots.

In this work, we hypothesize that, because syn-
thetic data less diverse than the original training
data (Whitney and Norman, 2024), it is more
likely to have blindspots and thus that fine-tuning
on model-generated data will exacerbate these
blindspots in the tuned model. In particular, we
hypothesize that the synthetic data will encode the
heuristic to a larger extent than naturally occurring
data would, and thus that fine-tuning on synthetic
data will lead the model to more strongly favor the
heuristic. This weakness would be revealed in data
that specifically is designed to test whether models
are using the heuristic, as models trained on syn-
thetic data might still show improved performance
on generic test sets on which the heuristic performs
well.

As a case study, we focus on the natural language
inference (NLI) task evaluated with the MultiNLI
dataset (Williams et al., 2018). The MultiNLI
dataset covers general examples collected from var-
ious sources, but models trained on MultiNLI may
tend to make judgments based on superficial syn-
tactic properties and perform badly on HANS, an
adversarial dataset created with syntactic heuris-
tics (McCoy et al., 2019). The HANS task can be
regarded as a measure of the model’s “blindspot”.

Our expected result is that finetuning an NLI
model with synthetic MultiNLI-like data will re-
duce its performance on HANS while improving
its performance on the MultiNLI test set. However,
we observed that this is not a consistent pattern un-
der various settings of starting point model and size
of synthetic dataset, though some biases do exist
in the synthetic dataset. Our hypothesis is thus not
fully supported by the experimental results. We
have nonetheless discovered different patterns of
performance change on both test sets in different
scenarios. We hope the discovered insights will
foster novel research ideas in understanding model
degradation with synthetic training data and ad-
vancing fairness and robustness of language mod-

els.

2 Methods

2.1 Overview
We assume a task model T and a generator model
G. T can be a model for any kind of NLP tasks, and
G is a language model used to generate training
examples for T . Let XT denote the set of all possi-
ble input of model T . The existence of a blindspot
means that there’s a non-random subset X̃T ⊆ XT

on which the model T performs worse than on XT

in general. LetDG denote the synthetic dataset gen-
erated by G, and TDG

denote the model fine-tuned
on DG. Our hypothesis is that TDG

will perform
worse than T on X̃T , but better than T on XT .

2.2 Tasks, Models and Datasets
2.2.1 Tasks
In this study, we focus on the natural language
inference (NLI) task. An input example of this
task contains a premise sentence, a hypothesis sen-
tence, and a label indicating the relationship be-
tween the two sentences. The label can be one of
{entailment, neutral, contradictory}.
2.2.2 Models and Input
Our experiments are based on the Llama-2-7B-hf
model (Touvron et al., 2023). We fine-tuned a
Llama-2 model with a classification head on top
with MultiNLI as the task model T . The input
sequence is constructed with the template

Please indicate the relationship be-
tween the premise and the hypothesis
with entailment, neutral or contradic-
tion. Premise: <premise> Hypothesis:
<hypothesis> The relationship between
premise and hypothesis is

and the classification is based on the embedding of
the last token in the input sequence. Our generator
G is also a Llama-2-7B-hf model fine-tuned with
MultiNLI. It’s tuned to generate examples in the
form of

This is an example where the relationship
between the premise and the hypothesis
is <label>. Premise: <premise> Hy-
pothesis: <hypothesis> – This is the end
of the example.

The label is put before the premise and the hypoth-
esis for more flexible control of generated labels.
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2.2.3 Datasets
We use MultiNLI (Williams et al., 2018) as a mea-
sure of the models performance on NLI in general.
The original task model T and generator G are
both Llama-2-7B-hf models finetuned on MultiNLI.
To measure the presence of the “blindspot”, we
use HANS (McCoy et al., 2019). HANS is an
NLI dataset created adversarially with three heuris-
tics: the lexical overlap heuristic, the subsequence
heuristic, and the constituent heuristic. Poor perfor-
mance on HANS indicates that the model is likely
using these heuristics to solve the NLI task.

When training the task model T , we used the
training set of MultiNLI as the training data, with
750 examples (250 for each label) excluded as the
dev set. HANS is not used in training at all, but the
results on its test set are reported. The maximum
training set size for T is 391,722.

Note that there are only two labels in HANS
(because of how the dataset is constructed): entail-
ment and non-entailment. In our experiments, the
base task model and generator are fine-tuned with
three labels of MultiNLI. When testing on HANS,
predicted labels neutral and contradictory are both
regarded as non-entailment.

2.3 Experiments

2.3.1 Basic Setting
In our experiment pipeline, we first fine-tuned a
classifier model T with the MultiNLI training set
from the pretrained Llama-2-7B-hf model with a
classification head. Then we fine-tuned another
Llama-2-7B-hf model as the generatorG, also with
the MultiNLI training set. After training G, we
generated a dataset DG with it and used DG to fur-
ther fine-tune T to obtain the further tuned model
TDG

. We varied T (by changing the number of
MultiNLI examples used for the initial fine-tuning)
and DG for different settings.

2.3.2 Starting Models
The initial task model T is fine-tuned with data
from the original MultiNLI dataset. In order to
simulate task models in different stages, we trained
6 starting models with training set sizes of 0 (mean-
ing the official pretrained model with a random
classification head), 5000, 10000, 20000, 100000,
and 391722.

2.3.3 Synthetic Datasets
The synthetic data examples are all generated by
a Llama-2-7B-hf model G fine-tuned with the

MultiNLI training set for 1 epoch. The generator
model is fine-tuned to generate text in the specific
format aforementioned with the following prompt:

This is an example where the relationship
between the premise and the hypothesis
is <label>

We kept the generated examples in which the
premise and the hypothesis can be extracted with a
regular expression without further filtering.

We generated 1,819,813 examples, which is
more than necessary for the training. We sampled
two kinds of synthetic datasets: uniformly random
sampled datasets and showcasing datasets with a
stronger bias. We took the lexical overlap (LO)
heuristic addressed in the HANS dataset as an ex-
ample. Lexical overlap means all the words in the
hypothesis appear in the premise.

Based on the availability of synthetic data, we
constructed synthetic training sets of three sizes:
73080, 36040, and 18020. In each synthetic set,
there are equal numbers of examples with each
label. The random synthetic dataset (marked
as Synthetic) is uniformly sampled for each la-
bel, and the more strongly biased dataset (Bi-
ased Synthetic) is sampled to make sure all entail-
ment examples follow the lexical overlap heuris-
tic and all other examples do not. We also in-
cluded baseline datasets sampled from the original
MultiNLI training set of the same sizes, marked
as Original. The datasets used in the experiment
can be represented as {73080, 36040, 18020} ×
{Original, Synthetic, Biased Synthetic}.

2.3.4 Test Sets
We report our results on three test sets: the
MultiNLI Matched test set, the HANS test set, and
the subset of the HANS test set with lexical over-
lap and a non-entailment label, which reflects the
model’s performance specifically on the blind spot.
In addition to the augmented model with differ-
ent training sets, we also report the classification
performance of each starting model.

3 Results

Our main results are reported in Figure 1. Each
subplot corresponds to a different starting model
T . When starting with undertrained task models,
further fine-tuning with synthetic data will improve
the performance on the MultiNLI Matched test
set. The amount of improvement is on par with
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Figure 1: Augmented model performance under different settings.

the model fine-tuned with original MultiNLI train-
ing data if the training set size is large enough.
For relatively well-established starting models, nei-
ther fine-tuning with original nor synthetic data
would significantly improve the performance of
MultiNLI.

The performance on the HANS test set is trickier.
The hypothesized trend , in which the performance
of HANS goes down while the performance of
MultiNLI goes up, only happens in for the 20K
starting point. We also see a fairly sizable drop
in HANS performance for the 392K starting point,
but the curve is not monotonic and thus it is incon-
clusive. Overall, under most settings, further fine-
tuning with original MultiNLI data would always
benefit more or harm less on HANS performance
than synthetic data. The gap does exist, but may
not be as serious as expected.

As a sanity check, we also trained the model
with the biased synthetic dataset in which all ex-
amples with lexical overlap are labeled entailment,
and no example with neural or contradiction label
satisfies the lexical overlap heuristic. As expected,

such models perform worst in almost all tests, with
the accuracy on the HANS subset of lexical over-
lap heuristic and non-entailment label dropping
significantly towards zero over training. This in-
dicates that a very biased synthetic dataset could
exacerbate blindspots as expected, and thus implies
that true synthetic data does not overrepresent the
heuristic as much as hypothesized.

4 Conclusion

From the simulated experiments, we observed that
while training the task model with synthetic data
contributes to the performance on the general tasks
almost equally compared with training with the
original data, the contribution gap on the “more
difficult” blindspot task does exist. Under some
settings, there’s a dispersion where the accuracy on
the blindspot task goes down while the general task
accuracy goes up, but this is not a consistent ten-
dency. Reinforcement of bias while training may
happen, but this would probably not cause signif-
icant issues if we just use the unfiltered synthetic
data for training.
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Limitations

Dataset Label Count # LO % LO % S:O
Ent. 631992 24360 3.854 2.352

Syn. Neu. 562822 690 0.123 2.320
Con. 624999 1504 0.241 1.827
Ent. 130541 2139 1.639 -

Orig. Neu. 130573 69 0.053 -
Con. 130608 172 0.132 -

Table 1: Statistics of examples with lexical overlap in
original and synthetic data. There are generally more
cases in synthetic data, and the correlation between
lexical overlap and the entailment label is reinforced.

We need to note that the study with MultiNLI
and HANS is a case study addressing the issue of
bias reinforcement when training models with syn-
thetic data. It’s still an open question whether the
results about the biases we are studying are general-
izable to other cases. According to Table 1, lexical
overlap is more common in the synthetic dataset
than in MulitNLI for all labels, which may indicate
that synthetic data is less diverse. However, the
correlation between lexical overlap and entailment
label is just slightly stronger. Different kinds of
bias can emerge in very different ways in synthetic
data, and this makes it challenging to evaluate the
effect of training models with synthetic data holis-
tically.

Our design choices about the experiments may
also be arbitrary. The task model we choose is the
Llama-2-7B-hf model with a classification head.
The pretrained Llama model is a relatively strong
model, while the initialization of the classification
head is random. Whether jointly training these
parts is a reasonable choice is still arguable. More-
over, the two-step approach of model training is
also not the only choice. It’s also common to mix
the original and synthetic data in different ratios
and train the model with the mixed dataset in one
run. Varying the experiment design is also neces-
sary for further validations about the findings in
this study.

Another notable point is that pretrained large
language models, such as Llama, encode a wealth
of world knowledge. Many potential biases may
have been mitigated during training, particularly
for models deployed in real-world applications,
which are typically much larger and more powerful
than the fine-tuned Llama-2-7B-hf generator used
in our study. On the other hand, human-created
or audited data are not inherently free from im-
plicit biases. The more concentrated distribution

and reduced diversity of synthetic data might rein-
force biases in certain blindspot scenarios. How-
ever, the rich world knowledge embedded in the
generator model can also address some biases, po-
tentially outperforming humans in certain cases
and contributing positively to bias mitigation. A
critical direction for future research is to disentan-
gle these two effects and assess the significance of
each, thereby enhancing our understanding of the
impact of training models with synthetic data.
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Abstract

Prototypical Network-based Language Models
(PNLMs) have been introduced as a novel approach
for enhancing interpretability in deep learning mod-
els for Natural Language Processing (NLP). In this
work, we show that, despite the transparency af-
forded by their case-based reasoning architecture,
current PNLMs are, in fact, not faithful, i.e. their
explanations do not accurately reflect the under-
lying model’s reasoning process. By adopting an
axiomatic approach grounded in the seminal works’
definition of faithfulness, we identify two specific
points in the architecture of PNLMs where unfaith-
fulness may occur. To address this, we introduce
Faithful Alignment (FA), a two-part framework
that ensures the faithfulness of PNLMs’ explana-
tions. We then demonstrate that FA achieves this
goal without compromising model performance
across downstream tasks and ablation studies.

1 Introduction

In recent years, deep learning-based language mod-
els have drastically enhanced performance across
various NLP tasks (Vaswani et al., 2017; Radford
et al., 2021). Despite their high predictive accu-
racy, these models remain opaque, meaning their
decision-making processes are not easily under-
standable to humans. Consequently, numerous
Explainable AI (XAI) techniques have been de-
veloped to interpret model decisions for end users
(Ribeiro et al., 2016b; Lundberg and Lee, 2017;
Shrikumar et al., 2019). A recent advancement
in the XAI domain is the use of prototypical net-
works for interpretability. Originally introduced
for few-shot learning (Snell et al., 2017), proto-
typical networks offer a unique advantage in inter-
pretability due to their case-based reasoning archi-
tecture. Although initially adapted for increased in-
terpretability in Computer Vision (CV) tasks (Chen

et al., 2019; Hase et al., 2019; Ma et al., 2023),
several recent works in NLP have begun to develop
similar prototypical-based models to enhance inter-
pretability in NLP contexts (Xie et al., 2023; Das
et al., 2022; Van Aken et al., 2022; Friedrich et al.,
2022). Despite their application in a wide range of
tasks from propaganda detection (Das et al., 2022)
to ICD-9 diagnosis prediction (Van Aken et al.,
2022), the faithfulness1 of PNLMs remains unex-
amined. Faithfulness is a necessary condition for
any deployed machine learning model since un-
faithful model explanations can lead to dangerous
outcomes such as leading a user to trust a model’s
incorrect prediction simply because its explanation
looks convincing (Rudin, 2018; Bansal et al., 2021;
Lyu et al., 2024).

In this work, we assess the faithfulness of
PNLMs using axioms from seminal interpretabil-
ity studies (Chen et al., 2019) and identify two
key flaws in state-of-the-art PNLM architectures
(Xie et al., 2023; Das et al., 2022; Van Aken et al.,
2022) that result in explanations of current PNLMs
to be unfaithful (see Figure 1). To address these
shortcomings, we propose Faithful Alignment,
a two-part framework designed to ensure faithful
prototypical model explanations. Our contributions
are as follows:

1. We define reasoning in prototypical models as
comprising (1) class connections in the final
linear layer and (2) the similarity between the
encoded test example and the learned proto-
types in prototypical space. Through this lens,
we identify two areas in the existing PNLMs’
workflow where their provided explanations
deviate from model reasoning and thus are
unfaithful.

2. We propose a solution in the form of the
Faithful Alignment framework (hence-

1For additional details on PNLMs, interpretability and
faithfulness, we refer the reader to §A
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Figure 1: General work flow of Prototypical Network-based Language Models (PNLM). fθ(x) is the compressed
encoding of the input at test time. pi is the ith learned prototype and Si is the compressed encoding of the ith
training example. Red circles indicate architectural flaws which can lead to unfaithful explanations: 1) Unfaithful
explanations may result from a prototype vector being misrepresented by text from another latent encoding. 2)
Unfaithful explanations may result from the wrong prototype being selected as most influential on prediction.

force abbreviated as FA), which addresses the
aforementioned faithfulness issues in PNLMs.

3. We empirically validate that our solution for
faithfulness in PNLMs does not significantly
degrade performance across a wide range of
PNLM architectures and tasks (§4). We con-
duct additional ablation studies to demonstrate
the robustness of our framework (§E).

2 Unfaithfulness in Prototypical
Networks

We briefly outline the PNLM workflow before de-
scribing two architectural shortcomings that lead
to unfaithfulness. Let fθ be a language model
(e.g., BERT) such that fθ : RL×d → RH where
fθ maps x, a sequence of L embedded tokens, to
a compressed hidden representation fθ(x) ∈ RH .
Through specialized training objectives, the PNLM
learns P = {pj}mj=1, a set of m prototypes where
pj ∈ RH . During inference, the PNLM feeds fθ(x)
into the prototypical space to obtain M ∈ Rm

where Mj is the similarity between fθ(x) and pj .
These similarities in M are then either passed
through a final linear layer Wf ∈ RC×m to pro-
duce logits for prediction2 (Das et al., 2022; Xie
et al., 2023) or are used directly to obtain a pre-
diction (Van Aken et al., 2022). This architecture
enables PNLMs to generate textual explanations by
(a) identifying the most influential prototypes for
prediction and (b) extracting textual representation

2Similarity calculation and training objectives for existing
PNLMs vary. For details, please refer to §C.2

from those prototypes. In the following subsec-
tions, we analyze the unfaithfulness of existing
PNLMs through the lenses of (a) and (b).

Prototypical 
Space

Model Reasoning

My prediction: Class 
1

S
of

tm
ax

Existing PNLMs                most influential prototype since closest in prototypical space.

Figure 2: Example of how existing PNLMs are sus-
ceptible to incorrectly identifying the most influential
prototypes. The prototype with the largest influence
on prediction is p1 due to W11’s large magnitude, de-
spite p2 being closest to fθ(x) in the prototypical space.
Since existing PNLM’s derive their explanations from
prototypes chosen solely based on distance in the proto-
typical space, existing works would incorrectly identify
p2 as most influential on prediction.

2.1 Unfaithful Selection of Prototypes
First, we investigate how existing PNLMs can ex-
hibit unfaithfulness when selecting the most influ-
ential prototypes. Despite Xie et al. (2023) and
Das et al. (2022) claiming to use the most influ-
ential prototypes when deriving their explanations,
both only consider proximity in the prototypical
space when ranking prototype influence. By ne-
glecting the impact of Wf on prediction, previ-
ous works do not capture the full reasoning pro-
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Figure 3: Empirical Demonstration of Faithful Retrieval
with ProtoTex model on SST5 with 5 prototypes. (Top)
without FR, negative reasoning inWf clouds the model’s
ability to discern the most influential prototype. (Bot-
tom) After FR, the PNLM is able to unambiguously
determine the most influential prototype.

cess of PNLMs and thus are prone to unfaithful
explanations (We show such an example in Fig-
ure 2). In this section, we eliminate the ambiguity
surrounding reasoning for PNLMs by defining it di-
rectly based on the computations that dictate model
output. The output logit of class c is calculated as:

ŷc =
m∑

j=1

WcjMj (1)

where the product WcjMj is the total contribu-
tion of the jth prototype on predicting the cth class.
Because similarity measures are multiplied by Wf

to obtain logits, the reasoning process of PNLMs
is the combined effect of distance calculation
and weighted product in the final layer. Since
faithfulness is defined as the extent to which ex-
planations accurately reflect a model’s reasoning
process (Jacovi and Goldberg, 2020), and Wf di-
rectly affects model prediction, current PNLMs
that neglect the impact of Wf when generating
the most influential prototypes are unfaithful. In
this work, we contend that to accurately represent
model reasoning, PNLMs (and Prototypical Net-
works at large) must generate their explanations us-
ing both the similarity between the example fθ(x)
and prototype pj , along with the Wcj ∈W weight-
ing their distance3. Moreover, current PNLM ar-
chitectures (Das et al., 2022; Xie et al., 2023) per-
mit negative parameters in Wf which leads the
model to utilize negative reasoning, thus obscuring
the determination of the prototype that contributed
most significantly to model output. Specifically,
the model may predict a particular class because
it’s confident the example does not belong to other
classes. In Figure 3 (Top), we show an instance

3Note that for (Van Aken et al., 2022) Wf = I

of how negative parameters in Wf create ambigu-
ity in identifying the most contributing prototype
even when accounting for the combined effects of
similarity measures M and their weights Wf .

2.2 Unfaithful Representation of Prototypes

Second, unfaithfulness can occur in PNLMs when
prototypes are represented by text that inaccurately
reflects model reasoning. LetD be the training data
set and S = {fθ(xi) | ∀ xi ∈ D} be the set of en-
coded training data where we denote Si = fθ(xi).
Since each prototype pj ∈ P is a learned, dense
vector in RH , there does not exist a direct, human-
interpretable textual representation of pj . In or-
der to render these inherently opaque prototypes
understandable to humans, existing PNLMs rep-
resent their prototypes using the text of the most
similar 4 encoded training example Si. More for-
mally, a PNLM obtains a human-readable textual
representation for prototype pj via the following
assignation:

Text of [pj ]← Text of
[
argmin

Si

∥Si − pj∥22
]

(2)

where Text of [Si] is the raw text associated with
the embedded token sequence xi. We illustrate this
process in Figure 4 (Left). Since prototypes are
represented by Si, which does not partake in any of
the model’s computation, explanations utilizing Si
do not accurately reflect model reasoning and are
therefore unfaithful (Jacovi and Goldberg, 2020).
We empirically evaluate this imprecision in expla-
nations as the faithfulness gap in Figure 4 (Right).
If current PNLMs are indeed inherently faithful as
they claim to be, our experiments should reveal the
textual representations (Si) to align with the pa-
rameters involved in computation, i.e. there should
be no difference between each textual encoding Si
and pj (green box). Nonetheless, our experiments
in Figure 4 show that there exists a non-zero faith-
fulness gap for every prototype in SOTA PNLM
architectures (Das et al., 2022; Xie et al., 2023).

3 Solution: Faithful Alignment

In this section we describe Faithful Alignment
(FA), a two-part solution consisting of Faithful
Retrieval (FR) and Faithful Projection (FP).

4The most similar example is defined as the minimum L2

distance in the prototypical space

88



Figure 4: (Left) Faithfulness Gap in the Prototypical Space for PNLMs. The distance between a test time example
f(x) and the learned prototypes pj influences the model’s prediction, yet the model’s explanations for pj are
derived from Si which does not participate in the computation of the output. (Right) Faithfulness gap evaluated
for proto-lm and ProtoTex on two datasets (SST5 and HoC). For each learned prototype pj , we compute the L2

distance to the encoding of its assigned textual representation. The green box indicates prototype representations
that would be perfectly faithful i.e. 0 faithfulness gap. The red box highlights the fact that there exists a faithfulness
gap for all prototypes in both models, empirically demonstrating the misalignment between model reasoning and
model explanations.

3.1 Faithful Retrieval

To enable PNLMs to faithfully select proto-
types for explanations, we propose the following
two constraints, which, together, form Faithful
Retrieval:

• If k textual explanations are provided by a
PNLM, the k prototypes must be retrieved
via:

arg maxk
j

{WĉjMj | ∀j ∈ [m]} (3)

where Wĉl represents the class connection
between the output class ĉ and prototype
j. More concretely, suppose that the pre-
dicted class is ĉ. FR then selects top k
most influential prototypes computing all m
weight/distance pairs WĉjMj and returning
prototypes at the largest k pairs’ indices.

• All class connections inWf that weigh incom-
ing similarity measures must be positive

{Wcj > 0 | ∀j ∈ [m],∀c ∈ C} (4)

Equation 3 ensures that prototypes’ influence
takes into account both similarity M and weights
Wf . Equation 4 prevents PNLM from utilizing neg-
ative reasoning in the final layer which obstructs
the identification of the most influential prototype.
In Figure 3 (bottom), we show an example where
the application of FR allows us to unambiguously
determine the top k most influential prototypes by

directly comparing their contributions (WcjMj) to-
wards the output. Together, Equations 3 and 4
formalize the procedure for robust prototype se-
lection, a crucial detail neglected by the works of
Das et al. (2022) and Xie et al. (2023) that lead to
unfaithfulness.

Figure 5: Illustration of Faithful Projection’s effect in
the prototypical space. FP aligns the PNLM’s reasoning
and explanations by forcing each prototype to become
exactly equal to an encoded training example.

3.2 Faithful Projection

To ensure that PNLM explanations participate in
the models computation, we propose Faithful Pro-
jection (FP) which endows each prototype with an
encoding from the training dataset. More formally,
let Si ∈ S be the encoding of a known example in
D. For each prototype in the prototypical layer, we
perform the following projection after training:

pj = argmin
Si

∥Si − pj∥22 ∀ j ∈ [m] (5)

FP closes the faithfulness gap by forcing each
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PNLM Base LLM SST2 SST5 QNLI RTE HoC AVg Gain/Loss
(per PNLM)

Proto-lm + (FA) / Proto-lm

BERT-base 90.8/90.0 50.3/53.2 85.9/85.8 67.5/68.6 94.0/84.3
+0.72RoBERTa-large 92.4/92.3 47.4/52.9 87.9/87.8 62.8/62.1 –

BART-large 92.2/92.4 55.8/54.8 89.0/89.0 74.7/75.1 –
ELECTRA 93.3/90.1 50.1/47.3 91.0/90.1 74.8/74.7 54.3/49.9*
Llama-2-7b 93.6/91.2 47.7/48.3 92.2/91.3 80.3/80.0 36.7/36.9*

ProtoTex + (FA) / ProtoTex

BERT-base 91.1/90.8 48.7/50.5 82.0/90.3 53.0/66.7 89.3/95.3
-2.94RoBERTa-large 92.3/94.0 46.7/44.4 83.5/92.3 52.7/60.0 –

BART-large 94.6/95.9 51.3/52.2 88.9/93.2 63.1/77.6 –
ELECTRA 95.0/94.8 47.6/49.2 92.3/92.2 72.2/73.2 52.1/51.0*
Llama-2-7b 94.3/94.3 43.0/44.3 93.5/93.6 81.3/81.0 32.5/36.0*

ProtoPatient + (FA) / ProtoPatient
BERT-base 91.7/91.7 52.1/51.0 82.8/82.7 67.5/64.2 94.5/93.0

+0.64RoBERTa-large 91.5/91.4 53.7/54.0 84.2/84.2 76.5/72.9 –
BART-large 90.8/90.8 49.7/53.8 87.4/87.4 77.6/73.3 –

Avg Gain/Loss (per task): +0.30 -0.91 -1.48 -1.95 +1.47

Table 1: Performance of FA on NLP tasks and across PNLM architectures. Bolded numbers indicate scenarios
where the FA-applied PNLM achieved performance that is higher than or equivalent to the regular PNLM. Overall,
we observe that FA-applied models experience only minor decreases in accuracy. Results with * are obtained from
PNLMs with a base LM that was not finetuned on the task (HoC), hence relatively lower performance. We note that,
even in these cases, applying FA did not significantly degrade the performance of the PNLM.

prototype to become an encoding from the train-
ing dataset. Figure. 5 provides an illustration of
this process. After FP, textual representations now
directly reflect the parameters contributing to mod-
eling reasoning. Thus, FP not only allows us to
map a continuous prototype tensor onto discrete
words for human comprehension but also align
PNLMs’ prototype-based explanations completely
with model reasoning.

4 Effect of FA on Downstream Tasks

Because FA makes PNLM architectures mechani-
cally faithful, it is important to examine its impact
on model performance. Specifically, we conduct ex-
periments to compare the performance of PNLMs
without FA against FA-applied PNLMs. In Table
1, we verify that FA does not degrade accuracy on
downstream tasks on a wide range of PNLM ar-
chitectures (§C.2), base LLM encoders and NLP
tasks (§C.1) . Our experimental results indicate
that FA-applied models performs well overall, with
only minor reductions in performance across NLP
tasks. To further demonstrate the robustness of FA,
we also conduct ablation studies in §E. We believe
the robust performance of FA shows its promise as
a framework for ensuring faithfulness for prototyp-
ical networks while maintaining performance.

5 Conclusion

In this work, we build on foundational ideas in XAI,
interpretability, and faithfulness to identify two
key shortcomings of existing PNLMs that cause
their explanations to be unfaithful: 1) the selec-
tion of incorrect prototypes for explanation, and

2) the misrepresentation of prototypes in model
reasoning. To address these issues, we introduce
a faithfulness-ensuring framework, FA, and vali-
date its robustness through extensive experiments.
We believe our contribution bridges a crucial gap
in the current understanding of faithfulness in the
context of prototypical models. We hope future
prototypical networks can leverage our framework
to prevent unfaithful explanations.

6 Limitations

We outline several limitations of our work below:

• Despite the improvements made to the faith-
fulness of PNLMs through FA, they still re-
main dependent on an underlying language
model to convert text into a semantic space.
Consequently, the interpretability of PNLMs
is still constrained by the interpretability of
the foundational language model.

• Additionally, while the case-based reasoning
of FA-applied PNLM explanations is faithful,
the cases used for explanation are restricted
to examples from the training set. This limit
on the expressiveness of the interpretability
of PNLMs is an area that warrants further
research and exploration.

• Moreover, a significant issue affecting the
faithfulness of current PNLMs is that LLM
embeddings cannot be directly translated back
into discrete words. Making progress in this
research area will not only resolve a key un-
faithfulness issue addressed by our framework
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but will also greatly benefit the field of inter-
pretability as a whole.
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A Additional Related Works and
Background

A.1 Prototypical Networks and
Interpretability

Prototypical networks (Snell et al., 2017) origi-
nated as a type of few-shot learning model designed
to classify new examples by comparing them to
class prototypes obtained via averaging instances
of each class in an embedding space (Ji et al., 2020).
The transparency of prototypical models and their
intuitive case-based reasoning process led to their
adoption to interpret deep neural networks (Gao
et al., 2019; Sun et al., 2019; Chen et al., 2019;
Hase et al., 2019). Continued development in XAI
has revealed the multi-facetedness of the field of in-
terpretability (Doshi-Velez and Kim, 2017; Lipton,
2018). There now exists various different aspects
in interpretability such as “plausibility” (how con-
vincing explanations are to humans (Jacovi and
Goldberg, 2020; ElShawi et al., 2021; Chan et al.,
2022)), or “consistency” (similarity between expla-
nations for similar inputs) (Carvalho et al., 2019;
Atanasova et al., 2020; Xie et al., 2024). In this
work, we focus on the criterion of faithfulness,
which is qualitatively described as how accurately
a model’s reasoning process is reflected in its expla-
nations (Ribeiro et al., 2016a; Jacovi and Goldberg,

2020; Lyu et al., 2024). Recent research has shown
that faithfulness has emerged as a crucial inter-
pretability criterion since unfaithful explanations
pose risks in high-stakes areas. (Caruana et al.,
2015; Rudin, 2018; Jiménez-Luna et al., 2020).

A.2 Existing Techniques for Measuring
Faithfulness and Pitfalls

A plethora of techniques have emerged to evalu-
ate the faithfulness of model explanations. These
techniques include Axiomatic Evaluation (prove
unfaithfulness by showing necessary faithfulness
assumptions are violated), Simulatability (using
model explainations to predict model outputs), Per-
turbation Methods (stability of explanation under
input perturbation), and others. (Lyu et al., 2024).
Unfortunately, no definitive measure of faithful-
ness exists in the XAI community and evaluation
metrics are often not directly comparable with each
other and yield inconsistent results, making it dif-
ficult to objectively assess progress. (Lyu et al.,
2024). Regarding the interpretability of prototyp-
ical networks, works that quantify model faithful-
ness have done so on a token/pixel level on the
input text/image5. For example, Huang et al. 2023
defines Inconsistency and Instability to understand
variations in the pixel attribution map on top of the
test-time example, and Van Aken et al. 2022 ap-
plies the benchmark established by Atanasova et al.
2020 to quantify the faithfulness of highlighted in-
put tokens compared to post-hoc methods. While
these metrics are significant in their own right, they
do not capture the faithfulness of explanations gen-
erated on the example level from the prototype
itself (training image patches in CV, training text
examples in NLP). Specifically, they ignore the
question of whether or not the prototype was accu-
rately identified or represented in the first place. On
the whole, existing faithfulness metrics fall short in
measuring the faithfulness of prototypical networks
effectively. We will show in §2 that prototypical
networks, even those asserting to be faithful by
design suffer from underlying faithfulness issues.

A.3 Axiomatic Evaluation of Faithfulness in
Prototypical Networks

On gauging the faithfulness of prototypical net-
works, the seminal work of Chen et al. 2019 took
an axiomatic approach in their evaluation strategy.

5The work of Xie et al. (2023) attempted to extend existing
faithfulness metrics to the example level , but we believe these
metrics were applied incorrectly. We delve into details in §F
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Chen et al. 2019 emphasized that their architec-
ture is faithful by design by establishing a direct
connection between their generated explanations
and the computations driving predictions. When
adapting prototypical networks to NLP, similar me-
chanical arguments were made to assert model
faithfulness, but without the necessary architec-
tural design to support these claims. In this work,
we aim to expose the faithfulness shortcomings
in current PNLM architectures by leveraging the
same axiomatic analysis employed by (Chen et al.,
2019). Specifically, recent works (Das et al., 2022;
Van Aken et al., 2022; Xie et al., 2023) on PNLM
have failed to align prototypes with latent training
examples and has neglected prototype influence
on prediction when generating explanations. For
further discussion on our evaluation of faithfulness,
see §F.

B Proto-lm Faux Faithfulness

As noted in the related works section, Xie et al.
2023 is the only work to our knowledge that claim’s
PNLM’s are faithful on the example level. In this
section, we outline why we believe the faithfulness
experiments in Xie et al. 2023 were faulty and
resulted in a false sense of model faithfulness.

Xie et al. 2023 extends the perturbation based
metrics introduced in DeYoung et al. 2020, Com-
prehensiveness and Sufficiency, to claim the faith-
fulness of their PNLMs explanations. In the origi-
nal work, DeYoung et al. 2020 defined these met-
rics with respect to a model’s explanations (or "ra-
tionals", as they refereed to them) which are high-
lighted input tokens. Let xi be the original input
text sequence, ri be the models explanation, and
m(xi)j be the original prediction provided by a
model m for class j. The Comprehensiveness and
Sufficiency of the models explanation ri are numer-
ically defined by:

Comprehensiveness = m(xi)j −m(xi/ri)j (6)

Sufficiency = m(xi)j −m(ri)j (7)

See Figure 6 for an illustration of how Compre-
hensiveness and Sufficiency are computed as de-
fined in DeYoung et al. 2020. Intuitively, these met-
rics are measuring how the model’s performance
changes when the model’s explanation is taken
away and when only the explanation is available

to the model, allowing us to quantify how much
the model is leveraging its explanations for its pre-
dictions. For more detail, see the original work.
(DeYoung et al., 2020)

Xie et al. 2023 extends these metrics to proto-
typical networks by treating PNLM prototypes as
rationales, which were previously considered to be
highlighted tokens from the input text ri. Compre-
hensiveness and Sufficiency were then computed
based on analyzing the model’s prediction change
when removing/retaining prototypes from the last
layer during inference following the same Equa-
tions as 6 and 7.

As demonstrated in this work, without FA, proto-
types in PNLMs (like Proto-lm) are not utilized for
generating model explanations; instead, the nearest
training encoding to the prototype is used. The
explanations for existing PNLMs without FA is the
text associated with the nearest training encoding
Si to each prototype, yet Si appears nowhere in
Xie et al. 2023’s faithfulness experiments.

We illustrate the faithfulness gap between the
tensors PNLMs reason with and the tensors PNLMs
generate explanations with in Figure 4. From the
Faithfulness Gap, its clear that the experiments
conducted in Xie et al. 2023 did not incorporate
the PNLM’s explanation in the experimentation
at all, leading Sufficiency and Comprehensiveness
to fail to quantify the faithfulness of the PNLM’s
explanations and ultimately lead to a false sense of
the model’s faithfulness.

We note that if FA was applied to Proto-lm, align-
ing the prototypes with latent training examples,
the efficacy of Comprehensiveness and Sufficiency
measuring the faithfulness of the model’s explana-
tions would be restored since then the prototypes
would be faithfully interpretable as the model’s
explanations. We excluded this experiment com-
paring Comprehensiveness and Sufficiency before
and after applying FA to a PNLM since the results
obtained in the former case are meaningless- with-
out FA, the PNLM explanations are derived from
Si, which does not participate in the original exper-
imentation from Xie et al. 2023 at all.

C Experimental Details

C.1 Datasets and Tasks

The datasets and tasks in our experiments in Table.
1 include sentiment classification (Socher et al.,
2013) , natural language inference(Wang et al.,
2018), entailment recognition (Dagan et al., 2005),
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Figure 6: An illustration of how Comprehensiveness and Sufficiency are computed based on an input text sequence
xi and the models explanation, which is a highlighted sequence of input tokens, ri. Figure from (DeYoung et al.,
2020)

and cancer type classification (Baker et al., 2015).
We use BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), BART (Lewis et al., 2019), ELEC-
TRA (Clark et al., 2020) and Llama-2 (Touvron
et al., 2023) as base models upon which we imple-
ment PNLM architectures described in the follow-
ing section.

C.2 PNLM Architecture Description

In this section we provide brief descriptions of the
following three PNLMs architectures pertinent to
our experiments in §4.

C.2.1 Proto-lm

Let P denote the set of its prototypes, proto-lm
(Xie et al., 2023) utilizes |P | = N prototypes that
are evenly distributed between C classes i.e. each
prototype is assigned a class c ∈ C, with each
class c having N

C prototypes. To obtain fθ(xi),
proto-lm leverages a token-attention layer that
takes xi ∈ RL×d to fθ(xi) ∈ RH . Similarities
measuresM in protolm are obtained via taking the
inverse L2 distance between the prototypical encod-
ing fθ(xi) and p ∈ P . During training proto-lm
seeks to minimize a cohesion loss term Lcoh and
maximize a separation loss term Lsep. Let K be
an integer hyperparameter, pj be a prototype, and
Pyi represent all prototypes in P that belong to
class yi, the cohesion and separation loss terms in
proto-lm are defined respectively:

Lcoh =
1

K
·

∑

∀j:pj∈Pyi

max
K
∥Si − pj∥22 (8)

Lsep = −
1

K
·

∑

∀j:pj ̸∈Pyi

min
K
∥Si − pj∥22 (9)

During training, proto-lm incorporates the
above two loss terms along with standard cross
entropy loss into its training objective. The archi-
tecture of proto-lm utilizes class connections with
preset directions. Specifically, let jc indicate the
class assigned to prototype j, all class connections
in Wf between class c′ and prototypes that have
jc = c′ are positive and class connections between
class c′ and prototypes with class jc ∈ {C \ c′} are
negative. i.e.

W{j,jc} ≥ 0 ∀j s.t. jc = c′ (10)

W{j,jc} ≤ 0 ∀j s.t. jc ̸= c′ (11)

When applying FR to proto-lm, we set all class
connections between prototype j and classes c ∈
{C \ c′} to 0. Formally, we perform the following
update after training, let jc ∈ C:

W{j,jc} ← 0 ∀j s.t. jc ̸= c′ (12)

When applying FP on proto-lm, all encodings pro-
jected are restricted to encodings from the same
class as each prototype.
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PNLM Base LLM SST2 SST5 QNLI RTE HoC

Proto-lm + (FA) / Proto-lm

BERT-base 3e-6/64/1000 3e-6/16/200 3e-5/16/800 3e-5/16/200 3e-6/32/1100
RoBERTa-large 3e-5/64/1000 3e-5/64/200 3e-5/16/800 3e-6/16/200 –

BART-large 3e-5/64/1000 3e-5/64/200 3e-5/16/800 3e-5/16/200 –
ELECTRA 3e-6/32/1000 3e-6/32/200 3e-5/16/800 3e-6/16/200 3e-6/32/200
Llama-2-7b 3e-6/16/400 3e-6/16/200 3e-6/16/400 3e-6/16/200 3e-6/16/200

ProtoTex + (FA) / ProtoTex

BERT-base 3e-5/64/200 3e-5/64/200 3e-5/16/200 3e-5/16/200 3e-7/64/220
RoBERTa-large 3e-5/64/200 3e-5/64/200 3e-5/16/200 3e-6/16/200 –

BART-large 3e-5/64/200 3e-5/64/200 3e-5/16/200 3e-5/16/200 –
ELECTRA 3e-6/32/1000 3e-6/32/200 3e-5/16/800 3e-6/16/200 3e-6/32/200
Llama-2-7b 3e-6/16/400 3e-6/16/200 3e-6/16/400 3e-6/16/200 3e-6/16/200

ProtoPatient + (FA)
BERT-base 3e-5/64/5 3e-5/64/5 3e-5/64/2 3e-5/64/2 3e-5/32/11

RoBERTa-large 3e-5/64/5 3e-5/64/5 3e-5/64/2 3e-5/64/2 –
BART-large 3e-5/64/5 3e-6/64/5 3e-6/64/2 3e-5/64/2 –

Table 2: Hyperparameters of models whose accuracies are reported in Table. 1. The numbers reported in each cell
correspond to learning rate/batch size/number of prototypes For proto-lm, λ = 0.5, λ1 = 0.25, λ2 = 0.25. For
prototex, λ1 = λ2 = 1

3 .

C.2.2 ProtoTex
ProtoTex (Das et al., 2022) is a PNLM that does
not utilize class-assigned prototypes. The N pro-
totypes in ProtoTex and their class connections
in Wf are freely learned. In addition, calculation
of prototypical encodings in ProtoTex do not in-
volve token attention as in the case of proto-lm
and ProtoPatient. In our implementation, we
chose to use prototypes of dimension RH because
it led to the highest performance across tasks. Since
the output of base LLMs is in dimension RL×H ,
we took the mean along the token dimension when
calculating encodings fθ(xi).

Similarity measures M in ProtoTex are the
raw L2 distances between prototypes and fθ(xi).
The training objective of ProtoTex is similar to
proto-lm. Specifically, during training, in addi-
tion to minimizing cross entropy, ProtoTex seeks
to minimize distance between prototypes and at
least one encoded input.

Lp1 =
1

M
·

M∑

j=1

min
i=1,n

∥pj − Si∥22 (13)

as well as minimizng distance between encoded
input and at least one prototype

Lp2 =
1

n
·

n∑

i=1

min
j=1,M

∥Si − pj∥22 (14)

Because there are no predetermined negative
class connections in Wf , when applying FR we
remove negative reasoning from ProtoTex by ap-
plying the ReLU (Agarap, 2018) activation func-

tion on weights in Wf during each forward pass
i.e.

Wjc = max{Wjc, 0} ∀j ∈ [m], ∀c ∈ C
(15)

C.2.3 ProtoTex
ProtoTex (Das et al., 2022) is a PNLM that does
not utilize class-assigned prototypes. The N pro-
totypes in ProtoTex and their class connections
in Wf are freely learned. In addition, calculation
of prototypical encodings in ProtoTex do not in-
volve token attention as in the case of proto-lm
and ProtoPatient. In our implementation, we
chose to use prototypes of dimension RH because
it led to the highest performance across tasks. Since
the output of base LLMs is in dimension RL×H ,
we took the mean along the token dimension when
calculating encodings fθ(xi).

C.3 ProtoPatient

The PNLM of ProtoPatient (Van Aken et al.,
2022) utilizes 1 prototype per class c ∈ C. Proto-
typical encoding calculation utilize both a dimen-
sion reduction layer as well as a label-wise atten-
tion layer. For each input xi, the dimension reduc-
tion layer reduces the output dimension H of the
base LLM to H

3 and the label-wise attention col-
lapses the L dimension to produce fθ(xi) ∈ R

H
3 .

Similarity measures M in ProtoPatient are the
negative of raw L2 distance measures between
fθ(xi) and prototypes. In addition, ProtoPatient
does not utilize class connections and instead pro-
duces output logits via taking the sigmoid of M .
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Similarity measures M in ProtoPatient are
the negative of raw L2 distance measures between
fθ(xi) and prototypes. In addition, ProtoPatient
does not utilize class connections and instead pro-
duces output logits via taking the sigmoid of M .
The training objective of ProtoPatient consists
of a single cross entropy term defined as follows

L =
∑

p∈P

∑

c∈C
BCE(ŷpc, ypc) (16)

where ŷpc is the output of prototype p for class
c and ypc ∈ 0, 1 is the ground truth. We note
here that ProtoPatient initializes its prototypes
with the average encoding examples from the pro-
totypes’ respective classes before training for the
BCE objective in eq. 16.

We empirically found that ProtoPatient has a
smaller faithfulness gap than Proto-lm and Pro-
toTEx, and we hypothesize this is due to (1) the
objective function not directly optimizing for pro-
totype clustering/separation and (2) the prototype
initialization to latent training encoding of exam-
ples from the same class as the prototype. While
ProtoPatient is still structurally vulnerable to faith-
fulness issues since their explanations (encoded
training examples) don’t impact predictions, it is
our belief that Proto-Patient is more faithful than
Proto-lm and ProtoTEx since Proto-Patient has a
smaller faithfulness gap, i.e, the predictions and
explanations are more aligned in the latent space.

D Hyperparameters and Compute
Resources

Our compute resources consist of 4× RTX 6000,
4× RTX 4500 and 4× RTX 3090. In Table. 2 be-
low, we describe the hyperparameter setup (learn-
ing rate, batch size and the number of prototypes)
we used to obtain results in Table 1. We ran all
models for a maximum of 15 epochs and report
performance from the best iteration of the model
during training. The running time of no individual
experiment in Table. 2 exceeded 5 hours.

E Additional Experiments

E.1 Size of Projection Dataset
Although we have shown in earlier sections that
FA can achieve competitive results on a wide range
of tasks, it is important to consider whether the
amount of training data used during projection im-
pacts performance. Specifically, what happens if

we use only a subset of the training data to faith-
fully project prototypes during FA? To investigate
this, we conduct experiments by applying FA with
varying sizes of training datasets. Specifically, we
trained 8 proto-lm models on SST2, SST5, and
HoC (C = 2, C = 5 and C = 11, respectively)
with prototype counts that are multiples of C, to-
taling |{1, 2, 5, 10, 20, 40, 80, 100}×{2, 5, 11}| =
24 models. We then apply FA to each model with
different amount of training data and calculate the
change in accuracy. In Figure 7, we show the
gain/loss in accuracy averaged across the three
tasks. We find that, when the number of proto-
types in the PNLM is large but the training data for
projection is limited, performance generally drops
significantly. We reason that this is because proto-
typical features are derived from a shared, small
sample, thus reducing prototype uniqueness (Das
et al., 2022). On the other hand, this issue does
not arise with large amount of projection data and
fewer prototypes, as the prototypes can leverage
features from the most apt sample encodings. Inter-
estingly, when both the number of prototypes and
training data size are small, we observe notable per-
formance improvements, as FA helps the few proto-
types capture the most important features. Overall,
our experiments show that FA-applied models main-
tain performance with sufficient training data, but
selecting the right number of prototypes is crucial
if one wishes to reduce the amount of training data
used during FA.

E.2 Generalizability of FA

Given that the FP component of FA restricts proto-
typical features to encodings of samples within a
specific dataset, it is reasonable to expect that FA-
applied PNLMs is prone to overfitting. To explore
the generalizability of faithfully-aligned prototypes,
we apply FA to a trained PNLM on the SST2 dataset
and observe how well it performs when classify-
ing examples from two other sentiment classifica-
tion datasets: IMDb movie reviews (Maas et al.,
2011) and the Twitter Sentiment Analysis Train-
ing Corpus (Naji, 2012). In Fig. 8, we present
the zero-shot accuracy (on IMDb and TSATC) of
PNLMs that were trained on SST2 and were also
applied FA using the SST2 dataset in red. For com-
parison, we also show the zero-shot accuracy of
PNLMs that were trained on SST2 but without ap-
plying FA in yellow. We find that, in zero-shot
settings, FA-applied PNLMs are able to outperform
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Figure 7: Change in accuracy of Proto-lm models after applying FA with different amount of training data. Results
obtained are the average across SST2, SST5 and HoC. Proto-lm models have prototypes counts that are multiples
of C which is the number of classes in each dataset, with C = 2 for SST2, C = 5 for SST5 and C = 11 for HoC.

Figure 8: Model accuracy on IMDb and TSATC. red
bars represent the accuracy of a zero-shot PNLM with
FA applied using examples from SST2. yellow bars
represent the zero-shot accuracy of the base PNLM but
without FA applied. Both models were trained on SST2.

PNLMs without FA across architectures with dif-
ferent number of prototypes, indicating that FA-
applied PNLMs generalize well to unseen data. Fur-
thermore, as the number of prototypes increases,
the performance difference between the models
with and without FA widens. We believe this is
because a larger set of prototypes provides greater
representational power during the FA process, re-
sulting in a robust model that excels on various
datasets.

E.3 Comparison with Case-based-reasoning
Models

Another notable effect of FA projecting the learned
prototypes onto training encodings is the result-
ing model architecture’s similarity to K-Nearest-
Neighbor models. We therefore conduct experi-
ments comparing the performances of FA and KNN-
based approaches under different settings. First, we
build a KNN model using the encodings of a base
language model (i.e. BERT). We then build a KNN
model using the encodings (in prototypical space)
of a non-FA PNLM (i.e. an instance of proto-lm).
Finally, we build a KNN model using the encodings
of a FA-applied PNLM. We compare the perfor-
mance of these three case-based-reasoning models
against the PNLM as well as the FA-applied PNLM
on the 11-class cancer classification dataset (HoC).
We present our results for PNLMs of varying pro-
totypes in Fig. 9. We observe that with a high
number of prototypes, FA allows PNLMs to out-
perform KNN models. Additionally, KNN-based
models suffer in terms of performance when K be-
comes too large, unless aided by FA. This is likely
because the HoC dataset has a limited number of ex-
amples per class. A largeK parameter forces KNN
models to use neighbors from other classes, leading
to a drop in performance. FA-applied PNLMs do
not have this issue because the class connections
in Wf ensure that examples from the correct class
receive more weight.

F Frequently Asked Questions

Where are the quantitative metrics justifying (A)
that the identified PNLMs are unfaithful and (B)
that FA improves these models faithfulness?

(A) We reiterate that no existing faithfulness met-
rics are applicable to quantify the faithfulness of
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Figure 9: Accuracy of KNN-based models and FA-
applied PNLMs.

Prototypical Networks on the example level. If
such metrics existed, the faithfulness issues iden-
tified in this work would have been immediately
identified and resolved by previous work. We be-
lieve that developing such a metric is an important
area of future research and that the lack of said
metric played a role in the prevalence of existing
PNLM unfaithfulness.

Our claims regarding the unfaithfulness of the
identified PNLMs in §2 is rooted in prototypical
faithfulness principles established in (Chen et al.,
2019), such as the principle that latent encoding
need to be equal to prototypes in the prototypi-
cal layer, as well as the qualitative description of
faithfulness, which states that for an explanation
to be faithful, it must align with the reasoning pro-
cess of the model. The case-based reasoning ar-
chitecture of Prototypical Networks enables us to
explicitly define the reasoning process of the model
based on the similarity computation in P and the
class connections in Wf . This framing allows us
to transparently view inference as a weighted sim-
ilarity (using Wf ) between the encoded test-time
example, fθ(x), and prototypes P = {pj}mj=1. Ex-
planations in (Xie et al., 2023; Das et al., 2022)
are chosen solely based on the similarity in P and
do not consider class connections in Wf , resulting
in an overt diversion with the reasoning process
of the Prototypical Network and thus unfaithful
explanations.

Faithful Alignment resolves both of these issues:
prototypes are restored as latent training examples,
adhering to (Chen et al., 2019), and prototypes are
selected for explanation based on all the compu-
tation that effects prediction instead of just com-
putation in P , adhering to (Jacovi and Goldberg,
2020).

Why does FA not work as well on ProtoTEx
as it does on Proto-lm and Proto-Patient?

We hypothesize this is because ProtoTEx does
not assign a specific class to the prototypes before
learning, unlike how it’s done in Proto-lm and Pro-
toPatient. Since projection is done to the nearest
encoding in the training example, we hypothesize
that there is greater risk of the prototype being pro-
jected onto a less representative training example
when classes are not preassigned to prototypes. For
example, if the prototype before projection was
of class 3 but the training example nearest to it
was of class 4, then faithful projection could more
significantly affect the model’s reasoning.

We remark that the performance of FA with Pro-
toTEx still remains competitive across a diverse set
of tasks and the performance was stronger when ap-
plied using more recent models such as ELECTRA
or Llama.

Why are there no experimentation with FA
applied to CV models/datasets?

In short, we didn’t experiment with any CV mod-
els/datasets because we are not aware of any un-
faithful Prototypical Networks in CV. We exper-
imented with the three PNLMs we identified as
having architectural flaws that lead to unfaithful
model explanations to demonstrate we can resolve
the previously unknown faithfulness issues without
sacrificing model performance. We reiterate that
FA is a general framework that can ensure faith-
ful explanations for Prototypical Networks in both
CV and NLP. The techniques which comprise FA,
namely FP and FR, act on the prototypical layer P
and final linear layer Wf , which are present in Pro-
totypical Networks independent of input modality.
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Abstract

Intermediate Layer Distillation (ILD) is a vari-
ant of Knowledge Distillation (KD), a method
for compressing neural networks. ILD requires
mapping to align the intermediate layer sizes of
the teacher and student models to compute the
loss function in training, while this mapping
is not used during inference. This inconsis-
tency may reduce the effectiveness of learning
in intermediate layers. In this study, we pro-
pose LoRAILD, which uses LoRA adapters to
eliminate the inconsistency. However, our ex-
perimental results show that LoRAILD does
not outperform existing methods. Furthermore,
contrary to previous studies, we observe that
conventional ILD does not outperform vanilla
KD. Our analysis of the distilled models’ in-
termediate layers suggests that ILD does not
improve language models’ performance.

1 Introduction

The LLM’s performance is rapidly improving on
various natural language processing (NLP) tasks
at the cost of the huge parameter size, resulting in
enormous computational costs. Therefore, reduc-
ing the parameter size while retaining the model’s
performance is an important research topic.

Knowledge distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is one of the model com-
pression methods. KD employs two models: a
teacher model and a student model. The teacher
model is already trained for a specific task. The
teacher’s output serves as soft labels that guide the
student model that mimics the teacher’s behavior.

While KD usually uses the output of the teacher,
intermediate layer distillation (ILD) (Romero et al.,
2015) uses the information of intermediate layers
as well; ILD has been claimed to be superior to the
vanilla KD in previous studies (Sun et al., 2019;
Passban et al., 2021; Haidar et al., 2022).

In this study, we introduce LoRAILD, which
is designed to improve the conventional ILD by

employing the LoRA (Hu et al., 2021) adapter in
aligning sizes of intermediate layers between the
teacher and the student. We evaluate the perfor-
mance of LoRAILD through empirical compar-
isons with conventional KD baselines. In general,
we find that our LoRAILD does not outperform the
conventional ILD baselines, and even the conven-
tional ILD is not necessarily superior to the vanilla
KD, at least in our experimental settings.

2 Background

2.1 Knowledge Distillation
In KD (Buciluǎ et al., 2006; Hinton et al., 2015),
a student model is trained using a loss function
based on the difference between its output and the
teacher’s output, as well as a loss function calculat-
ing errors against gold labels. KD’s combined loss
function L is defined as (1).

L = λLCE + (1− λ)LKD (1)

LKD = KL(Teacher(X), Student(X)), (2)

where LCE is the cross-entropy loss, KL(·, ·) is
the KL divergence. Teacher(X) and Student(X)
are the probability distributions obtained as outputs
when X is input to the teacher and the student,
respectively. In training the student, the parameters
of the teacher are fixed.

2.2 Intermedite Layer Distillation
Intermediate layer distillation (ILD) (Romero et al.,
2015) is a variant of KD. ILD uses not only the
teacher and student outputs but also the informa-
tion of their intermediate layers. ILD requires the
alignment of the number of layers and layer sizes
between the student and the teacher.

When the number of layers between two mod-
els differs, adjustment is necessary, which is the
focal topic of past ILD research. PKD (Sun et al.,
2019) heuristically selects the same number of lay-
ers from the teacher as those in the student. In
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Figure 1: Overview of LoRAILD (blue: teacher, green: student, yellow: linear mapping)

PKD, the selected layers are consistent through the
student training. ALP-KD (Passban et al., 2021)
constructs groups of teacher layers, and each group
corresponds to a layer in the student. The outputs
from layers in a group are aggregated by calculat-
ing the weighted average. RAIL-KD (Haidar et al.,
2022) dynamically selects layers of the teacher at
random in each epoch.

When the intermediate layer size is inconsistent
between the teacher and the student, the size must
be aligned to compute the loss function. Previous
studies (Romero et al., 2015; Haidar et al., 2022)
employed some mapping methods for the align-
ment. FitNets (Romero et al., 2015) employed con-
volutional regressors, and RAIL-KD (Haidar et al.,
2022) used linear layers for mapping. During stu-
dent training, these mappings are trained alongside
all the other parameters of the student. However,
the mappings are used only in the student train-
ing phase, so the model’s structure is inconsistent
between training and inference.

This inconsistency might degrade the effective-
ness of ILD. If only the mappings are tuned very
well with a task while the intermediate layers of
the student might not develop good features, re-
moving the mappings in inference will degrade the
student’s performance.

3 Method

3.1 LoRAILD

To tackle the problem of structure inconsistency,
we propose LoRAILD, which employs LoRA
adapters replacing the conventional mappings. As
LoRAILD utilizes the LoRA adapters both in the
training and the inference phase by design, the dis-
crepancy of model structure no longer exists.

LoRA (Hu et al., 2021) is one of the methods to
reduce the computational cost during training by

assigning two low-rank matrices of size Ri×r and
Rr×o to a certain module in the model and only
training them. i and o are the number of input and
output sizes of the module to be assigned, respec-
tively. Since low-rank matrices have the same ar-
chitecture as linear mapping and the r value, which
is the output size of the input-side matrix, can be
set manually, we can convert the intermediate layer
size of the teacher and the student into the same by
setting the r properly. Thus, they can be used as a
substitute for conventional linear mappings. More-
over, these matrices are used in the inference phase.
Therefore, we can maintain linear mappings by us-
ing low-rank matrices. Figure 1b shows the outline
of LoRAILD. In the conventional ILD, the loss is
calculated using the output of a linear layer (yellow
part of Figure 1a). In contrast, in LoRAILD, the
loss function is calculated using the output of the
input-side matrix of the LoRA adapter (trapezoidal
part of Figure 1b).

The loss function is given by equation (4).

LILD =
1

N

∑

x∈batch

∥∥∥∥∥
hTx
∥hTx ∥2

− hSθ
x

∥hSθ
x ∥2

∥∥∥∥∥

2

2

(3)

L = λ1LCE + λ2LKD + λ3LILD (4)

N is the batch size, h∗x is the output of the input-
side matrix of the LoRA adapter for x. The outputs
of each layer are concatenated to compute the loss
function. The T and Sθ denote the teacher and the
student, respectively. The LCE and LKD are the
same as in equation (1). This is the same as the
loss function used in previous ILD methods (Sun
et al., 2019; Haidar et al., 2022).

3.2 Alignment of layers

While LoRA adaptors address the size alignment
issue, we still need to fill the gap between the num-

101



ber of layers in the teacher and the student. In this
study, we employ the following three methods.

Fixed Always select the same layer during student
training.

Average Allocate some layers of the teacher to
each layer of the student, and average the out-
put of the allocated layers.

Random Randomly select a layer of the teacher
for each layer of the student. The sequence
of the selected layers is preserved. The ran-
dom selection is performed at each mini-
batch (Random step) or each epoch (Random
epoch).

Fixed, Average, and Random are almost the same
as those used in the previous studies: PKD (Sun
et al., 2019), ALP-KD (Passban et al., 2021), and
RAIL-KD (Haidar et al., 2022). Unlike ALP-KD,
h is simply averaged, and a weighted average is not
used in the Average method.

Appendix A shows the alignment patterns be-
tween the student and teacher layers for Fixed and
Average.

3.3 Curriculum Learning

LoRAILD did not perform well in our preliminary
trials, where we observed that LILD decreased first
and LCE did not decrease well. In order to make
sure LCE to decrease, we introduced curriculum
learning in which only LCE and LKD are trained
first, and LILD is added to L later.

4 Experiment

4.1 Experimantal Settings

In our experiments, we use RoBERTa-large (Liu
et al., 2019) for the teacher and DistilRoBERTa-
base (Sanh et al., 2019) for the student. LoRA
adapters are added to both models. The teacher
trains only LoRA adapters, and the student trains
both LoRA and the original model.

The dataset used in this experiment consists of
six tasks from the GLUE (Wang et al., 2018) bench-
mark: CoLA, MRPC, QNLI, RTE, SST-2, and STS-
B. Since the GLUE benchmark does not publish
the gold labels for the test set, we use the origi-
nal validation set as a test set, 10 percent of the
original training set for validation, and the remain-
ing 90 percent for training. The evaluation metrics
are the Matthews correlation coefficient for CoLA,

the F1 score for MRPC, the Pearson correlation
coefficient for STS-B, and accuracy for the others.

Baselines are the finetuned student without
KD (w/o KD), the model with normal KD (Vanilla
KD), RAIL-KD (RAIL-KDc, RAIL-KDl), and
the model RAIL-KDc with curriculum learning
(Curriculum); curriculum learning was not used
in the original RAIL-KD paper (Haidar et al.,
2022). In RAIL-KDl, LILD is computed per layer,
while RAIL-KDc uses concatenated intermediate
outputs. The hyperparameters are listed in Ap-
pendix C.

All reported metrics are the average of five runs,
and we conduct one-tailed permutation tests at a
significance level of 2.5%.

4.2 Result

CoLA MRPC QNLI RTE SST-2 STS-B

Teacher 0.594 0.884 0.947 0.798 0.959 0.912

w/o KD 0.567 0.876 0.906 0.676 0.919 0.881
Vanilla KD 0.566 0.874 0.912 0.622 0.925 0.883

RAIL-KD
RAIL-KDc 0.568 0.892 0.916 0.658 0.929 0.882
RAIL-KDl 0.585 0.882 0.907 0.522 0.907 0.886
Curriculum 0.568 0.889 0.912 0.677 0.928 0.881

LoRAILD
Fixed 0.565 0.880 0.912 0.651 0.922 0.880
Average 0.596 0.874 0.913 0.656 0.921 0.886
Random step 0.592 0.846 0.916 0.637 0.920 0.881
Random epoch 0.573 0.886 0.911 0.659 0.915 0.882

Table 1: Results on test set

Table 1 shows the result. Bold figures indicate
the best performance for each task. They are sig-
nificantly higher than underlined ones. None of the
LoRAILD-based models showed clear improve-
ment from the baselines. Fixed and Random epoch
did not outperform previous methods in any task.
Average showed the best scores in CoLA and STS-
B; however, we could not confirm their statisti-
cal significance. Although Random step achieved
the best score in QNLI among all the models, its
improvement is subtle and not statistically distin-
guishable from RAIL-KDc. Given the little im-
provement in LoRAILD, the LoRA adapters in
LoRAILD could not perform as we expected, and
they might disturb intermediate layers’ learning.

Moreover, none of the RAIL-KD models out-
performs w/o KD and Vanilla KD. These results
contradict the previous study’s outcome; they re-
ported that RAIL-KD (Haidar et al., 2022) outper-
formed w/o KD and Vanilla KD at all tasks in their
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Figure 2: Clustering scores (ILO means intermediate layer output)
left: Teacher, middle: Student’s hSθ

x , right: Students’ intermediate layer output

experiment. The lower performance of RAIL-KD
than Vanilla KD aligns with our hypothesis that
removing the linear mapping during inference may
degrade the effectiveness of ILD.

5 Analysis

5.1 Analysis method

To examine how the intermediate layers of the mod-
els embed features in RAIL-KD and LoRAILD, we
conduct a cluster analysis of features used in loss
calculation and intermediate layer outputs. For
both the teacher and the student of LoRAILD,
RAIL-KD, and w/o ILD (λ3 = 0), we obtain h∗x
and direct outputs from intermediate layers, where
the models are fed with our training set. Note
that hTx in this section is the value before layer
alignment. We cluster the obtained vectors by k-
means (MacQueen, 1967) clustering (k = 21). We
use the same tasks as our experiment except for
STS-B, which is regression.

We evaluate the clusters by calculating the Ad-
justed Rand Index (ARI) (Hubert and Arabie, 1985;
Steinley, 2004) against gold clusters that are con-
structed according to the gold labels.

The higher ARI suggests the student acquires
better representation for solving the task through
the training. A higher ARI for the teacher means
its intermediate layers provide more useful infor-
mation to train the student.

5.2 Analysis result

Figure 2 illustrates the ARI scores. The left and
middle matrices indicate the scores calculated for
hTx and hSθ

x from the teacher and the student, re-
spectively. The right matrix indicates the scores for
the outputs from the student’s intermediate layer.
Each cell corresponds to an aggregated score across

1All the tasks employed in our analysis are binary classifi-
cation.

the tasks by averaging. In BERT, the latter layers
process the semantics of sentences (Tenney et al.,
2019; Jawahar et al., 2019). As the tasks used in
this analysis, except for the CoLA, concern the
semantics of the sentences, the latter layers play
important roles in these tasks.

In the left figure, hTx in RAIL-KD indicates a
lower score in the latter layers (≥ 18) compared
to the original intermediate layer output of the
teacher (Teacher ILO), suggesting information use-
ful for the tasks is not provided to the student. On
the other hand, LoRAILD scored higher in the lat-
ter layers, indicating that the teacher conveys more
useful information to the student. We initially hy-
pothesized that removing the linear mapping could
degrade the performance because it also removes
information learned in the linear mapping. How-
ever, we found that the linear mapping in RAIL-KD
does not actually learn information about the task;
rather, it degrades the quality of the teacher signal
from Teacher ILO.

In the middle and right figures, RAIL-KD does
not show improvement from w/o ILD in the latter
layers (≥ 4), while LoRAILD successfully does.

This result indicates that our LoRAILD provides
a better method to align the intermediate layers
between the student and the teacher.

6 Conclusion

Our experimental result (Table 1) showed that ILD
did not improve performance from Vanilla KD
regardless of using the intermediate layers (Lo-
RAILD) or not (RAIL-KD). Although our anal-
ysis revealed that our LoRAILD provided better
alignment for intermediate layers, this improve-
ment did not improve the downstream tasks. Thus,
we conclude that the current ILD approach has little
impact on the performance of the language model.
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7 Limitation

Different experimental settings from the previ-
ous studies Although our experimental results re-
port negative results not aligned with those reported
in RAIL-KD (Haidar et al., 2022), our finding does
not directly reject the previous results. Instead, our
results suggest that ILD might not be generalizable
to different settings as initially expected.

The RAIL-KD and other baselines used in our
experiment employ different base models, datasets,
and hyperparameters from their original ones, so
our experiment does not completely replicate their
original settings.

We acknowledge that our teacher models are dif-
ferent from the previous studies. This is because
the teacher models used in the previous study are
not publicly available. Also, the architecture of the
teacher model we used differs from that of the pre-
vious studies because of the addition of the LoRA
adapter.

As for the data set, as described in section 4.1,
our dataset split is different. 90% of the GLUE
train set was used as our train set, the remaining
10% of the GLUE train set as a validation set, and
the original validation set as a test set.

Due to the different conditions described above,
we had to perform a hyperparameter search to find
the optimal values for our settings.

Scope of our experiments Our study addressed
a scenario in which the intermediate layer size of
the teacher and student models is different, and
we always have to transform the outputs and align
their sizes. Thus, the intermediate layer output
from the teacher model was not directly used as the
teacher signal for the student model in any of our
experiments. We acknowledge that we have no con-
clusion for a case where the intermediate layer size
is the same between the teacher and student and
ILD can use the direct outputs from the teacher’s
intermediate layers without any alignment. That
case is outside of the scope of this paper.
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A Alignment

Fixed

Student Teacher

0 3
1 7
2 11
3 15
4 19
5 23

Average

Student Teacher

0 0, 1, 2, 3
1 4, 5, 6, 7
2 8, 9, 10, 11
3 12, 13, 14, 15
4 16, 17, 18, 19
5 20, 21, 22, 23

Table 2: Alignment

Table 2 shows the alignment of the student and
teacher models for the alignment methods Fixed
and Average. LILD was computed using the vector
of concatenated hSθ

x from layer 0 to layer 5 of the
student model, and the vector of concatenated hTx
from layers 3, 7, ..., and 23 of the teacher model.

In Average, the concatenation of averages of hTx
from layer 0, 1, 2, and 3, ... , average of hTx from
layer 20, 21, 22, and 23 was used to calculate LILD.

B Results on Validation Set

Table 3 shows results on validation set as well as
test set.

C Hyperparameters

The hyperparameters used in the experiments are
shown in Table 4. In the middle part of the table,
epochs where we initiated curriculum learning are
illustrated. In the curriculum learning, (λ1, λ2, λ3)
is varied from the initial to the final state; only
the RTE task experimented with two different final
states.

CoLA MRPC QNLI RTE SST-2 STS-B

Teacher 0.673 0.894 0.935 0.779 0.960 0.920

w/o KD 0.615 0.872 0.894 0.692 0.947 0.896
Vanilla KD 0.635 0.888 0.903 0.716 0.954 0.916

RAIL-KD
RAIL-KDc 0.625 0.902 0.905 0.716 0.954 0.917
RAIL-KDl 0.633 0.899 0.899 0.597 0.952 0.916
Curriculum 0.650 0.903 0.907 0.748 0.955 0.920

LoRAILD
Fixed 0.628 0.883 0.905 0.688 0.955 0.912
Average 0.637 0.871 0.904 0.717 0.954 0.919
Random step 0.633 0.848 0.904 0.680 0.956 0.913
Random epoch 0.627 0.888 0.904 0.726 0.955 0.912

Table 3: Result for valitation set

Learning rate {1, 2, 5}e-{4, 5}
r (output size of mapping) 32
Epoch (Teacher model) 4
Epoch (Student model) 20

Curriculum Learning

Tasks Epoch to start

CoLA 5-10
MRPC 5-10
QNLI 5-10
RTE 5-10
SST-2 2-4
STS-B 2-4

States (λ1, λ2, λ3)

Initial state (0.5, 0.5, 0)
Final state (0.333, 0.333, 0.333)
Final state(RTE only) (0.5, 0, 0.5)

Table 4: Hyperparameters
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Abstract

Large Language Models (LLMs) are increas-
ingly adopted for applications in healthcare,
reaching the performance of domain experts
on tasks such as question answering and doc-
ument summarisation. Despite their success
on these tasks, it is unclear how well LLMs
perform on tasks that are traditionally pur-
sued in the biomedical domain, such as struc-
tured information extraction. To bridge this
gap, in this paper, we systematically bench-
mark LLM performance in Medical Classifi-
cation and Named Entity Recognition (NER)
tasks. We aim to disentangle the contribu-
tion of different factors to the performance,
particularly the impact of LLMs’ task knowl-
edge and reasoning capabilities, their (paramet-
ric) domain knowledge, and addition of exter-
nal knowledge. To this end, we evaluate var-
ious open LLMs—including BioMistral and
Llama-2 models—on a diverse set of biomedi-
cal datasets, using standard prompting, Chain-
of-Thought (CoT) and Self-Consistency based
reasoning as well as Retrieval-Augmented Gen-
eration (RAG) with PubMed and Wikipedia
corpora. Counter-intuitively, our results reveal
that standard prompting consistently outper-
forms more complex techniques across both
tasks, laying bare the limitations in the current
application of CoT, self-consistency and RAG
in the biomedical domain. Our findings suggest
that advanced prompting methods developed
for knowledge- or reasoning-intensive tasks,
such as CoT or RAG, are not easily portable
to biomedical tasks where precise structured
outputs are required. This highlights the need
for more effective integration of external knowl-
edge and reasoning mechanisms in LLMs to en-
hance their performance in real-world biomedi-
cal applications.

1 Introduction

The success of Large Language Models (LLMs) is
reshaping AI healthcare applications, particularly

in Question Answering (Budler et al., 2023; Sub-
ramanian et al., 2024), summarization (Van Veen
et al., 2024; Schlegel et al., 2023; Nagar et al.,
2024), and extracting insights from unstructured
patient-generated health data (Li et al., 2023).
While advancements in fine-tuning and in-context
learning (ICL) have improved LLM performance,
these rely on readily available structured training
data (Abburi et al., 2023; Zhang et al., 2024; Gutier-
rez et al., 2022). However, in biomedical contexts,
such resources are often unavailable due to domain
shifts (Hadi et al., 2023) or ad-hoc requirements
—for example when researchers need to process a
set of medical records to find patients satisfying
inclusion criteria for a clinical trial (Jullien et al.,
2023; Hadi et al., 2023) (e.g., whether they’re a
smoker). This limits the effectiveness of paramet-
ric knowledge improvements in LLMs, necessi-
tating strong zero-shot capabilities for structured
prediction tasks such as biomedical classification
and Named Entity Recognition. Despite this, the
literature currently lacks a systematic investigation
of other crucial aspects of knowledge utilization in
zero-shot performance of LLMs in such tasks.

In order to address this research gap, we first
postulate that LLM performance in true zero-
shot settings—where only task labels and their
meaningful names are provided (Lampert et al.,
2014)—hinges on three categories of knowledge:
(a) Parametric Knowledge: Information embedded
in model weights; (b) Task Knowledge: Under-
standing of task-specific labels and context; (c) Ex-
ternal Knowledge: Additional retrieved context to
supplement decision-making.

Existing research evaluating these factors in
LLMs for the medical domain focus on knowledge-
intensive tasks like Multiple-Choice QA (Nori
et al., 2023; Subramanian et al., 2024), but their
capabilities in structured prediction tasks, such
as medical classification and information extrac-
tion, remain underexplored. Additionally, tech-
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niques like zero-shot Chain-of-Thought (CoT) rea-
soning (Wei et al., 2022; Wang and Zhou, 2024),
self-consistency (Wang et al., 2022), and Retrieval-
Augmented Generation (RAG) (Li et al., 2024) re-
quire systematic evaluation in these contexts.

Additionally, evaluations often focus on propri-
etary models like ChatGPT (Biswas, 2023) or GPT-
4 (OpenAI, 2023), which pose challenges due to
computational cost, privacy concerns, and inacces-
sibility for techniques like constrained decoding.
Despite the growing concerns regarding reliability
of LLMs in medical applications, techniques like
constrained decoding which have shown promise
in mitigating LLM hallucinations have not been
systematically applied to medical information ex-
traction or classification.

Thus, four key issues currently hinder progress:
(i) Reliance on training sets and parametric knowl-
edge for structured prediction, which may be un-
realistic; (ii) Lack of true zero-shot evaluations
for structured tasks beyond surrogate QA; (iii) De-
pendence on large-scale, proprietary LLMs, limit-
ing practical deployment. (iv) Lack of a system-
atic analysis of impact of latest techniques such as
Chain-of-thought reasoning, RAG and constrained
generation in medical structured prediction tasks.

This paper systematically benchmarks LLMs in
medical classification and Named Entity Recogni-
tion (NER), assessing task and external knowledge
while controlling parametric knowledge. We evalu-
ate CoT reasoning, RAG, and constrained genera-
tion, offering insights into their applicability.

First, we present the first comprehensive bench-
mark of task and external knowledge adaptation for
LLMs in medical structured prediction tasks. Sec-
ond, we analyze the impact of knowledge enhance-
ment techniques, including CoT, self-consistency,
RAG, and constrained generation. Third, we
demonstrate that parametric knowledge capacity,
i.e., model size, is the primary driver of zero-shot
performance, highlighting the limitations and po-
tential of current LLM architectures.

2 Related Work

We survey the existing benchmarking literature for
the medical domain in the appendix section A,
outlining the lack of studies focusing on structured
prediction tasks. Furthermore, we cover recent
prompting techniques that were proposed to elicit
reasoning in LLMs, and augment their domain
knowledge, either by better tapping into their para-

metric knowledge or by explicitly providing them
with relevant external context. Notably, we omit
approaches that rely on existence of training sets,
such as few-shot prompting (Wang et al., 2023) or
model fine-tuning, as one of the key challenges in
the medical domain is the lack of annotated task
data, due to privacy concerns over sharing medical
records. Instead, as outlines in the introduction, we
focus on “true” zero-shot capabilities of LLMs.

Reasoning- and Knowledge-enhancing ap-
proaches: Current work attempts to improve
the performance of LLMs from different knowl-
edge utilization perspectives. One of the obvi-
ous methods is full parameter domain-specific pre-
training (Xie et al., 2024). For example, Chen
et al. (2023) propose the largest medical founda-
tion model, trained on both biomedical and clin-
ical data, up to 70B. Bolton et al. (2024), on the
other hand, believe larger LLMs are computation-
ally expensive to run, proposing a 2.7B LLM spe-
cific for biomedical NLP tasks. When fine-tuned,
the relatively small model compete with larger
LLMs. In our study, we compare domain-generalist
models with those adapted to the medical domain.
Since full parameter tuning is costly, many works
focus on domain knowledge adaptation by pre-
training (Shi et al., 2024; Song et al., 2024) or
instruction tuning (Willard and Louf, 2023) with
adapters. Training-free approaches encompass
chain-of-thought (CoT) (Wei et al., 2022; Jeong
et al., 2024), self-consistency (Wang et al., 2022),
and, concerned with lack of grounding resulting
in hallucination, recent work introduce RAG meth-
ods (Li et al., 2024; Wang et al., 2024b; Yu et al.,
2023; Munnangi et al., 2024; Wang et al., 2024a;
Soong et al., 2023). However, most of these ef-
forts have focused on performance in a particular
knowledge paradigm and have lacked a system-
atic assessment of their performance on structured
prediction, which we address in our study.

3 Methodology

Our methodology is designed to answer the follow-
ing two research questions:

1. How well do Large Language Models (LLMs)
perform on structured prediction tasks when pro-
vided with unstructured inputs?

2. To what extent can approaches that enhance
task knowledge and external knowledge improve
their performance?

To answer the first research question, we bench-
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mark LLMs on biomedical text classification and
NER datasets, focusing on the “true” zero-shot
setting to evaluate models’ parametric knowledge.
This reflects real-world scenarios where annotated
data is often unavailable due to ad-hoc task require-
ments, resource limitations and privacy constraints
(Giachelle et al., 2021). This leads to what Fries
et al. (2022b) describe as “dataset debt”, highlight-
ing issues like inconsistent documentation, lack of
domain-specific information except generic enti-
ties and difficulties adapting datasets to niche do-
mains. Clinicians face significant time constraints,
which limit even few-shot annotations (Xia and
Yetisgen-Yildiz, 2012; Wac et al., 2024; Farri et al.,
2013). These factors make fine-tuning and few-
shot approaches impractical for structured predic-
tion tasks in the biomedical domain, positioning
zero-shot methods as a scalable solution for real-
world biomedical tasks.

To answer the second question, we compare their
zero-shot performance to various methods that aim
to enhance task knowledge and external knowledge,
while keeping the parametric knowledge static.

Techniques Table 1 lists our methods. We use
VANILLA prompting as the baseline, and enhance
it with advanced approaches: chain-of-thought
(COT) (Wei et al., 2022) and self-consistency
(SC) (Wang et al., 2022), along with retrieval-
augmented generation (RAG) (Lewis et al., 2020)
that leverages FAISS with PubMed abstracts
and Wikipedia articles, embedding documents
via all-MiniLM-L6-v2 (Reimers and Gurevych,
2019). We also apply constrained decoding
(Willard and Louf, 2023) to enforce structured out-
puts. For NER, we adopt a two-stage approach:
Stage 1 assigns generic entity labels (e.g., “Body-
part”), and Stage 2 refines them to fine-grained
labels. Self-consistency is employed in both tasks
to aggregate multiple reasoning paths via majority
voting.

Complete details of our datasets, techniques
and methods are described in Appendix D.

4 Evaluation Results

The complete table of results is provided in table 2.
We give an overview of our findings followed by a
deeper analysis of the evaluated techniques.

4.1 Overview of results

Technique
CLS NER

F1 F1-S F1-L

B
io

M
is

tr
al

-7
B

VANILLA 36.5 3.3 2.2
COT 31.3 1.5 1.3
SC-COT 20.5 0.8 0.4
COT-RAG-P 14.7 1.6 1.2
COT-RAG-W 15.5 1.3 1.0
SC-COT-RAG-P 19.2 0.5 0.4
SC-COT-RAG-W 21.6 0.4 0.3

L
la

m
a-

2-
70

B

VANILLA 40.3 8.6 5.8
COT 35.9 10.3 7.3
SC-COT 28.0 9.1 5.4
COT-RAG-P 16.5 9.9 7.1
COT-RAG-W 15.7 10.6 7.2
SC-COT-RAG-P 27.2 9.0 5.4
SC-COT-RAG-W 26.6 9.1 5.3

L
la

m
a-

2-
7B

VANILLA 34.9 6.5 5.2
COT 30.6 4.9 2.5
SC-COT 24.6 5.1 3.0
COT-RAG-P 14.3 4.6 2.3
COT-RAG-W 14.5 4.2 1.7
SC-COT-RAG-P 25.5 5.7 2.9
SC-COT-RAG-W 11.1 5.6 3.2

Table 2: Performance of each model and technique com-
bination across Classification and NER datasets. For
classification, we report Micro-F1 and for NER we re-
port both Span-Identification Micro-F1 performance as
well as full Micro-F1 performance, including recogniz-
ing correct types.

Reasoning and knowledge-enhancing tech-
niques do not improve performance. Fig-
ures 1 and 2 compare the best-performing tech-
niques for classification and NER. Surprisingly, Ta-
ble 2 in the Appendix shows that Standard Prompt-
ing consistently achieves the highest average F1
scores across models: BioMistral-7B (36.48%),
Llama-2-70B-Chat-AWQ (40.34%), and Llama-2-
7b-chat-hf (34.92%). This suggests that for struc-
tured prediction tasks, complex reasoning tech-
niques like CoT or RAG do not outperform Stan-
dard Prompting.

For NER, Standard Prompting remains effec-
tive, but performance varies across models and
datasets. Scores are significantly lower than typ-
ical F1 scores in biomedical NER benchmarks
such as NCBI disease corpus (Doğan et al., 2014;
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Technique Details Comments
VANILLA Standard prompting. Baseline for all tasks.
CHAIN-OF-THOUGHT
(COT) (Wei et al., 2022)

Chain-of-thought reason-
ing.

Effective for QA and logical reasoning. For NER, adapted
into a two-stage approach where generic entity names are first
induced (e.g., Bodypart), followed by fine-grained labeling.

SELF-CONSISTENCY (SC)
(Wang et al., 2022)

Majority voting across
sampled reasoning paths.

Applied in both stages of the two-stage NER approach.

RETRIEVAL-AUGMENTED-
GENERATION (RAG)
(Lewis et al., 2020)

Retrieval-augmented
generation using FAISS
(Douze et al., 2024).

Used PubMed (Sanyal et al., 2021) and Wikipedia as corpora.
PubMed improved performance; Wikipedia degraded perfor-
mance for medical QA (Xiong et al., 2024).

CONSTRAINED DECODING
(Willard and Louf, 2023)

Restricted outputs to en-
sure structured extraction.

Avoided hallucinations. Ensured span and label consistency
in NER tasks.

Table 1: Techniques Summary with Comments and Details. Complete details can be found in Appendix D.
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Figure 1: Best-performing Standard Prompting method
for BioMistral 7B, Llama-70B and Llama-7B for all
classification tasks.

Krallinger et al., 2015) and CHEMDNER, where
specialized models achieve up to 0.90 Span F1
scores (Kocaman and Talby, 2021; Zhou et al.,
2023). However, similar to our findings, zero-shot
NER scores tend to be low, even in general do-
mains (Shen et al., 2021) and when providing label
descriptions (Picco et al., 2024).

The likely reason for poor performance is
that these approaches excel in knowledge- and
reasoning-intensive tasks like Question Answer-
ing (Nori et al., 2023) or Mathematical Reason-
ing (Wang and Zhou, 2024; Wang et al., 2022; Li
et al., 2024), but structured prediction tasks require
understanding task semantics over generic reason-
ing. These tasks rely less on broad knowledge
from biomedical papers or Wikipedia and more
on domain-specific application within the given
input. Effective models must handle specialized
vocabulary, jargon, acronyms, and synonyms vary-
ing across subfields (Kim et al., 2007; Zheng et al.,
2018; Jiang and Xu, 2024). They must also re-
solve ambiguity, polysemy, and syntactic nuances
in biomedical concepts, which the LLMs to not
have been able to capture.

Scale drives improvements. Consistent with
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Figure 2: Best-performing Standard Prompting method
for BioMistral 7B, Llama-70B and Llama-7B for all
NER tasks.

prior findings, the 70B model shows notable gains
over the 7B model (5.4% for classification, 2.2%
for NER Span F1). The largest performance
gap appears when using SC with COT and RAG
(Wikipedia), where the 70B model surpasses the
7B model by 15.45%. This suggests the larger
model excels at leveraging external knowledge
when paired with SC and chain-of-thought prompt-
ing. The 70B model’s greater capacity is particu-
larly beneficial for handling complex reasoning and
knowledge integration (Wei et al., 2022). This is
further supported by its 10.91% improvement when
SC is added to Wikipedia-based RAG, helping mit-
igate performance drops from irrelevant external
information. Unlike classification tasks, where
Standard Prompting performed best, NER perfor-
mance remains stable with advanced prompting
techniques, especially in larger models like Llama-
2-70B, likely due to the inherent lack of epistemic
certainty in NER outputs.

4.2 Detailed Comparison of Prompting
Techniques

CoT and SC underperform without sufficient
parametric knowledge. For BioMistral-7B, SC-
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Figure 3: Performance comparison for BioMistral 7B,
Llama7B and Llama70B on single- and multi-label
datasets, with random guess baselines of 0.415 and
0.215, respectively.

CoT prompts reduce classification performance
by about 16%. One reason may be that domain-
specific pre-training, while enhancing performance
on specialized biomedical tasks, can limit the
model’s general adaptability(Brokman and Kavu-
luru, 2024). Similar to RAG, SC does not consis-
tently improve NER. While SC aims to generate
multiple reasoning paths and select the most consis-
tent one, it may introduce errors when the model’s
epistemic certainty in its outputs is low, leading
to performance drops. For NER, combining CoT
and SC with RAG (Wikipedia) produces the largest
performance gap between 70B and 7B models, sug-
gesting that larger models use external knowledge
and complex reasoning more effectively when para-
metric knowledge is limited.

RAG does not help information extraction.
Although RAG can improve QA tasks by retrieving
relevant facts (Xiong et al., 2024), it seems less
useful for classification and information extraction,
where irrelevant information misleads the model,
creating additional complexity. This results in a
drop in classification accuracy, dropping 16.91%
with PubMed Corpora and 16.47% with Wikipedia
compared to the best classification method.

SC helps filter noise for RAG but does not
aid CoT. While SC aims to improve CoT by gen-
erating multiple reasoning paths, its efficacy de-
pends on the model’s epistemic certainty (Yadkori
et al., 2024; Liu et al., 2024). Insufficient paramet-
ric knowledge lowers confidence, causing perfor-
mance declines. BioMistral-7B loses about 16%
in classification with SC-CoT prompting. SC also
fails to consistently boost NER. However, in the
70B model, combining CoT and SC with RAG
(Wikipedia) yields notable gains, indicating that
larger models better exploit external knowledge
and present higher epistemic certainty owing to
their larger parametric capacity.

4.3 Detailed Per-Dataset Analysis
Figure 3 provides the performance comparison of
the three models on single and multi-label tasks.
Figures 4 and 5 provide a detailed analysis and
breakdown of performance of each technique (NER
and classification) on each dataset, along with ran-
dom baselines for each. We discuss their implica-
tions below.

Models perform significantly better on pub-
lic datasets. On public datasets, models average
around 30% accuracy, compared to 12% on private
datasets, suggesting potential data leakage from
publicly available sources used in pre-training or
instruction-tuning. Thus, performance on “unseen”
tasks may stem from prior exposure rather than true
generalization.

Multilingual performance is not scale depen-
dent. As shown in Figure 1, smaller models can
match or outperform larger ones on Chinese and
Japanese datasets but lag behind in English tasks.
This disparity likely results from heavy reliance on
English corpora and limited non-English domain
exposure, increasing overfitting risks. Factors like
language family, data sampling ratios, and sparse
representation can also inhibit multilingual mod-
els (He et al., 2024; Bagheri Nezhad and Agrawal,
2024).

LLMs struggle on high-complexity tasks. As
in Figure 3, LLMs often fail to surpass random
baselines for single and multi-class classification,
though Figure 4 shows these baselines remain un-
beaten in only two of 14 datasets.

5 Conclusion

We provide a comprehensive benchmark and anal-
ysis of LLMs in Medical Classification and Named
Entity Recognition tasks, revealing several key in-
sights that have significant implications for the field.
We carry out a critical investigation of broad claims
regarding LLM capabilities by replicating them in
various contexts, domains and datasets. We find
that models suffer from fundamental drawbacks in
generalizability, which hinder their performance
in structured information extraction tasks on do-
main specific problems. This leads to standard
prompting outperforming more advanced methods
for all models. Our findings underscore that para-
metric knowledge capacity remains the most im-
portant factor in zero-shot settings, with advanced
techniques used to augment external knowledge or
model reasoning failing to improve performance.
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Limitations

While our study provides important insights into
LLMs’ capabilities for biomedical classification
and information extraction, several limitations
should be considered when interpreting our results.
Our findings are primarily empirical and, although
they suggest consistent patterns across models and
tasks, further theoretical work is needed to fully
understand why advanced prompting techniques
fail to improve performance on structured predic-
tion tasks. We deliberately exclude closed-source
LLMs from our analysis due to privacy concerns
in medical applications and the observed dataset
leakage issues, where public dataset contamination
is even harder to control for proprietary models.
Additionally, our focus on constrained decoding
for reliable output parsing necessarily limits us to
open-source models where we have access to the
generation process.

We also specifically choose not to evaluate in-
context learning (ICL) approaches, as our study
focuses on “true” zero-shot capabilities where no
task-specific examples are available. While tech-
niques like k-NN ICL have shown promise in other
domains, they require substantial annotated data
to retrieve examples from—which is often unavail-
able in practical medical settings. Fixed ICL ex-
amples could be used, but performance would then
largely depend on example selection, essentially
reducing the evaluation to the quality of prompt
engineering. To balance (i) scientific validity and
focus on real-world scenarios, where domain ex-
perts may not be prompt engineering specialists,
with (ii) the need to provide useful information
to the models, we instead opt for the zero-shot
setting—addressing (i)—while ensuring semantic
clarity through meaningful label names (e.g., using
“Control” and “Perturbation” rather than “0” and
“1” in the GEO dataset)—addressing (ii).
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A Related Work

Existing LLMs Benchmarks: With the rising pop-
ularity of LLMs, many works evaluated their per-
formance in the biomedical and clinical domains.
These works typically focus on evaluating domain-
knowledge by means of Question Answering (Sing-
hal et al., 2023; Harris, 2023; Subramanian et al.,
2024), or focus directly on possible application sce-
narios, such as summarisation (Li et al., 2023; Yim
et al., 2023) or clinical coding (Kaur et al., 2023).
Many works combine these two directions in an
effort to provide more comprehensive benchmarks
(Srivastava et al., 2024; Xiong et al., 2024; Feng
et al., 2024; Chen et al., 2020; Manes et al., 2024).
However, many of these works overlook the wealth
of existing literature and plethora of available re-
sources for traditional structured prediction tasks in
the biomedical domain, such as document classifi-
cation, entity recognition and linking and event and
relation extraction (e.g., Pyysalo et al. (2007; 2012)
to name a few). Fries et al. (2022a) have provided
a comprehensive and unified collection of these
resources, however their work prioritises reportage
of the resource collection over benchmarking re-
sults. Their preliminary evaluations suggest that
their evaluated pre-LLM era models barely surpass
the random guess baseline in the zero-shot setting.
We build upon their work by providing a detailed
analysis to what extent approaches to enhance rea-
soning and knowledge in LLMs help to challenge
this status quo.

B Datasets

Table 3 and 4 list the huggingface dataset cards
and citations for each classification and ner dataset
used in the paper respectively.
For datasets considered private, we assume that
models have not been trained on these datasets due
to their restricted access, which requires Data Use
Agreements (DUAs) and other permissions. Con-
sequently, the likelihood of these datasets being
included in common web crawls is low.
We have signed all the relevant Data Use Agree-
ments (DUAs) and strictly adhere to their provi-
sions. We do not redistribute the data and advise
those wishing to reproduce experiments involving
private datasets to consult the corresponding Hug-
ging Face dataset cards for guidance on obtaining
the necessary data.

C Compute Details

1. Hardware used (GPU/CPU): We used a mix of
different shared computational facilities with
nVidia A100-SXM4-80GB, RTX6000 with
24GB and L40S with 48GB. Debian OS was
used for all the compute servers.

2. Memory: The machines used had between
256 GB and 1TB of memory

3. Software and libraries used: The environ-
ment can be reproduced from the textttenvi-
ronment.yaml file in the supplementary mate-
rial

4. Model details: The models used have been de-
scribed in detail in the main paper submission
under the Models subsection of the Methodol-
ogy section.

5. Random seed of 42 was used for all random
sampling purposes

D Methodology

Datasets Since we evaluate different prompt-
ing techniques, we restrict the choice of tasks to
those where the number of possible labels is small
enough to fit in the evaluated LLMs’ context win-
dow. We restrict the number of labels to ten and the
mean length of the input documents to at most 2048
tokens. This leaves us with 14 different classifica-
tion datasets from the BigBio collection1. For the
NER task, we sample 12 datasets from the pool of
those that satisfy the criteria. The resulting dataset
sample features four non-English datasets and six
non-public classification datasets, which allows us
to investigate whether LLMs perform better on mi-
nority languages or on data that is less likely to
be found in public pre-training corpora. We run
the evaluation on the official test-set split where
available, otherwise we consider the full dataset.
For datasets with more than 500 instances, we sam-
ple 500 random but fixed instances to speed up the
experiments. Overall, our selection spans English
and non-english source data, publicly available and
private datasets, and various domains such as sci-
entific papers, medical notes and social media.

1for the GAD dataset, we only select 1 fold out of the 10
available, as the folds feature the same task for different data,
unlike other datasets. We also skipped the Chinese subset of
meddialog as we had difficulties loading the dataset
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Dataset Name HuggingFace Card Citation
GAD bigbio/gad (Bravo et al., 2015)
GEO bigbio/geokhoj_v1 (Elucidata, 2022)
MEDDIALOG bigbio/meddialog (Chen et al., 2020)
CZIBASE bigbio/czi_drsm
CZIQOL bigbio/czi_drsm
CZINATHIST bigbio/czi_drsm
LITCOVID bigbio/bc7_litcovid (Chen et al., 2021)
CAS bigbio/cas (Grabar et al., 2018)
ESSAI bigbio/essai (Grabar et al., 2018)

NTCIR13-JA
bigbio/ntcir_13
_medweb

(Iso et al., 2017)

NTCIR13-EN
bigbio/ntcir_13
_medweb

(Iso et al., 2017)

NTCIR13-ZH
bigbio/ntcir_13
_medweb

(Iso et al., 2017)

PSYTAR bigbio/psytar (Zolnoori et al., 2019)
SCICITE bigbio/scicite (Cohan et al., 2019)

Table 3: Datasets used for classification tasks.

Classification: The datasets used for classifica-
tion tasks include both single-label and multi-label
datasets, covering a wide range of biomedical and
clinical domains. For single-label classification, the
GAD dataset focuses on identifying associations
between genes and diseases (Bravo et al., 2015),
while the GEO dataset is concerned with classi-
fying microarray, transcriptomics, and single-cell
experiments from the Gene Expression Omnibus
(GEO) database (Elucidata, 2022). The MEDDI-
ALOG dataset aims to classify dialogue snippets
as either being said by a doctor or a patient (Chen
et al., 2020). Furthermore, the CZIDRSM dataset
has several subsets, including one for classifying re-
search articles based on aspects of disease research
(CZIBASE), and others for identifying whether a
paper describes substantive research into Quality
of Life (CZIQOL) or is a natural history study
(CZINATHIST).

In multi-label classification, the LITCOVID

dataset is used for the classification of COVID-
19-related articles (Chen et al., 2021). The CAS
and ESSAI datasets are utilized for identify nega-
tion and uncertainty clinical cases from French-
speaking countries (Grabar et al., 2018). The NT-
CIR13 datasets include subsets for disease clas-
sification of tweets in Japanese (*-JA), English
(*-EN), and Chinese (*-ZH) (Iso et al., 2017). Ad-
ditionally, the PSYTAR dataset is used for sentence
classification of various drug-related effects, such

as Adverse Drug Reactions (ADR) and Withdrawal
Symptoms (WDs) (Zolnoori et al., 2019), while the
SCICITE dataset is used for citation intent classi-
fication based on the context within computer sci-
ence and biomedical domains (Cohan et al., 2019).

NER: The datasets for Named Entity Recogni-
tion (NER) tasks are similarly divided into entity
recognition (single entity type) and classification
(multiple entity types). In the single-type cate-
gory, the GENETAG dataset is used for gene/protein
NER, with two annotation versions: the original
GENETAG-G and the corrected GENETAG-C (Tan-
abe et al., 2005). Additionally, the GENIA-PPI
dataset focuses on protein-protein interactions or
gene regulatory relations within the GENIA corpus,
capturing primarily static relations (Pyysalo et al.,
2009; Hoehndorf et al., 2010; Ohta et al., 2010).

The multiple-type NER datasets encompass vari-
ous complex biomedical tasks. The ANEM dataset
targets anatomical entity recognition (Ohta et al.,
2012), while the BIOINFER dataset focuses on
recognizing proteins, genes, and RNA entities
(Pyysalo et al., 2007). The GENIA-EE dataset
is used for the GENIA Event corpus (Kim et al.,
2009), and the BIONLP11-REL dataset is em-
ployed for extracting part-of relations between
genes/proteins and associated entities (Pyysalo
et al., 2011). Furthermore, the BIONLP-13-CG
dataset is used for Cancer Genetics (CG) infor-
mation extraction, focusing on recognizing events
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Dataset Name HuggingFace Card Citation
GENETAG-G bigbio/genetag (Tanabe et al., 2005)
GENETAG-C bigbio/genetag (Tanabe et al., 2005)

GENIA-PPI
bigbio/genia
_relation_corpus

(Pyysalo et al., 2009; Hoehndorf
et al., 2010; Ohta et al., 2010)

ANEM bigbio/an_em (Ohta et al., 2012)
BIOINFER bigbio/bioinfer (Pyysalo et al., 2007)

GENIA-EE
bigbio/bionlp
_shared_task_2009

(Kim et al., 2009)

BIONLP11-REL
bigbio/bionlp_st
_2011_rel

(Pyysalo et al., 2011)

BIONLP-13-CG
bigbio/bionlp_st
_2013_cg

(Pyysalo et al., 2013)

BIONLP-13-GRO
bigbio/bionlp_st
_2013_gro

(Kim et al., 2013)

BIONLP-13-PC
bigbio/bionlp_st
_2013_pc

(Ohta et al., 2013)

PICO bigbio/ebm_pico (Nye et al., 2018)
MLEE bigbio/mlee (Pyysalo et al., 2012)

Table 4: Datasets used for NER tasks.

represented as structured n-ary associations of
given physical entities (Pyysalo et al., 2013). The
BIONLP-13-GRO dataset aims to populate the
Gene Regulation Ontology with events and rela-
tions (Kim et al., 2013), and the BIONLP-13-
PC dataset is used for the automatic extraction of
biomolecular reactions from text (Ohta et al., 2013).
Lastly, the PICO dataset deals with recogniz-
ing (P)articipants, (I)nterventions, and (O)utcomes
(Nye et al., 2018), and the MLEE dataset is
used for event extraction related to angiogenesis
(Pyysalo et al., 2012).

Models For our experiments, we employed two
instruction-tuned variants of the Llama-2 model—
7B and 70B—both (Touvron et al., 2023), along-
side the BioMistral-7B model (Labrak et al., 2024)
which was further pre-trained on the biomedical do-
main. Since we make use of constrained generation
to generate model outputs and guide the models
decoding process, we retrict the evaluation to open
source models since this process is not possible for
proprietary models such as GPT-4.

Techniques Table 1 summarizes the techniques
used in this study and highlights relevant nu-
ances and comments. These techniques in-
clude VANILLA (standard prompting), COT (chain-
of-thought reasoning) (Wei et al., 2022), and
SC (self-consistency) (Wang et al., 2022), as

well as RAG (retrieval-augmented generation)
(Lewis et al., 2020). For RAG, we used FAISS
(Douze et al., 2024; Johnson et al., 2019) with
PubMed abstracts (Sanyal et al., 2021) and
Wikipedia articles as corpora, embedding doc-
uments with all-MiniLM-L6-v2 (Reimers and
Gurevych, 2019). We also implemented con-
strained decoding for structured output generation
(Willard and Louf, 2023), crucial for ensuring re-
liable outputs in NER and classification tasks. A
novel two-stage approach for NER was adopted,
inspired by (Shen et al., 2021), where general enti-
ties were assigned in Stage 1 and refined in Stage
2.

Standard prompting was used as a baseline for
both the Classification as well as the NER tasks.
Chain-of-thought reasoning (Wei et al., 2022) has
been shown to improve performance, particularly
in QA and logical reasoning tasks. Thus, we also
ran experiments with chain-of-thought reasoning
to measure its impact on model performance. For
the NER task, we adapted a more guided, two-
stage approach (Shen et al., 2021) to implement a
novel chain-of-thought reasoning approach. Here,
The first stage involves inducing a generic entity
name from a datasets’ known entity labels—e.g.,
“Bodypart” for the NER labels describing differ-
ent bodyparts—and then labelling the input docu-
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ment with that generic entity type. In the second
stage all entities labelled in this way are further
disambiguated with their respective fine-grained
dataset NER labels. Retrieval Augmented Gen-
eration (Lewis et al., 2020) has been established
as an effective technique to improve model per-
formance by introducing relevant non-parameteric
knowledge to models and thus grounding the gen-
erated outputs to factual information. Xiong et al.
(2024) conducted a systematic study of RAG on
medical QA, and we incorporate their findings into
our study. We used PubMed abstracts (Sanyal et al.,
2021) and Wikipedia articles as knowledge corpora,
because Xiong et al.’s (2024) experiments found
that using PubMed improved performance over non
RAG techniques, while using Wikipedia reduced
performance in medical QA tasks. Our goal was to
evaluate whether the same holds true for structured
prediction tasks as well. For the RAG module, we
made use of FAISS (Douze et al., 2024; Johnson
et al., 2019), which allows retrieval of most similar
documents based on semantic similarity, where we
used the all-MiniLM-L6-v2 sentence transform-
ers (Reimers and Gurevych, 2019) model for em-
bedding input documents and corpora. For each
experiment, the number of retrieved documents was
computed based on the maximum possible docu-
ments which could be used without exceeding the
token limit of the model.
Self-consistency, proposed by Wang et al. (2022),
improves chain-of-thought reasoning of LLMs by
sampling reasoning paths for a given problem, fol-
lowed by a majority vote for the final answer. We
also conduct a set of experiments employing self-
consistency to investigate whether such improve-
ments can be observed on structured prediction
tasks in the medical domain as well. For classifica-
tion tasks, self consistency was employed to gener-
ate multiple reasoning chains for the given problem,
followed by answer extraction from each reason-
ing chain and majority voting to select the final
answer. For NER tasks, since we follow the two-
stage approach, self-consistency was employed in
both stages. Multiple general entity labels were
generated in the first stage, and entities were ex-
tracted for each such label. In the second stage, self
consistency was again used for the entity selection
phase as well as the entity label determination step.
Majority voting was utilised in final label or class
selection in each case (Xie et al., 2023).
Constrained decoding in LLMs (Willard and Louf,
2023) was used to ensure structured information

extraction and text generation. This allowed us
to evaluate the LLMs for the task at hand without
the added variability due to the aleatoric uncertain-
ties brought about by the probabilistic language
generation fundamental to the architectures of the
models. More specifically, for classification tasks,
we ensured the presense of at least one label in
the generated outputs. For NER we restricted the
generation of spans occurring in text in the first
step, and in the second step, for each of the spans
we restricted the generation to any of the possible
labels. This is also one of the reasons why we
opted against evaluating API-based closed-source
LLMs2, as in our initial experiments the hallucina-
tions in generated outputs created problems with
reliably parsing the structured outputs.

We refer to chain of thought as COT, Self-
consistency as SC, RAG as RAG-{P|W} for
PubMed and Wikipedia corpora, respectively, and
to standard prompting as VANILLA.

E Analysis and Performance Breakdown

Figures 4 and 5 provide a detailed analysis and
breakdown of performance of each technique (NER
and classification) on each dataset, along with ran-
dom baselines for each. Figure 3 provides the per-
formance comparison of the three models on single
and multi-label tasks. A complete discussion for
these figures and their implications can be found in
section 4.3.

As discussed in section 4.3, LLMs struggle
on high-complexity tasks. Even the best per-
forming model, Llama2 70B performs well on
only relatively low-complexity tasks (CZIBASE,
NTCIR13-EN) and moderate tasks (GEO),
but struggles with higher-complexity datasets
(BIONLP13-CG, GENIA-EE). In tasks requir-
ing nuanced interpretation (PICO, BIONLP13-
GRO), performance remains low. Although
RAG (Retrieval-Augmented Generation) some-
times boosts results, it does not universally enhance
biomedical information extraction or classification.
These findings indicate that even the most advanced
general-purpose and domain-specific LLMs are not
good zero-shot reasoners for structured prediction
tasks such as biomedical information extraction,
especially for complex task settings.

F Results Analysis

2The other reason being their intransparancy with regard
to training data, which violates our “true” zero-shot setting.
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Abstract

We propose using prompts made up of multiple
problems to evaluate LLM capabilities, an ap-
proach we call multi-problem evaluation. We
examine 7 LLMs on 4 related task types con-
structed from 6 existing classification bench-
marks. We find that while LLMs can generally
perform multiple homogeneous classifications
at once (Batch Classification) as well as when
they do so separately, they perform significantly
worse on two selection tasks that are conceptu-
ally equivalent to Batch Classification and in-
volve selecting indices of text falling into each
class label, either independently or altogether.
We show that such a significant performance
drop is due to LLMs’ inability to adequately
combine index selection with text classification.
Such a drop is surprisingly observed across all
LLMs attested, under zero-shot, few-shot, and
CoT settings, and even with a novel synthetic
dataset, potentially reflecting an inherent capa-
bility limitation with modern LLMs.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated remarkable natural language un-
derstanding and reasoning capabilities measured by
a wide range of benchmarks (OpenAI, 2023; Belt-
agy et al., 2020; Gemini-Team, 2023; Anthropic,
2024). However, given their internet-scale train-
ing data, there is growing concern over whether
LLMs’ often superhuman benchmark performance
is achieved due to data contamination (Jacovi et al.,
2023; Sainz et al., 2023). Several studies (Wu et al.,
2024; Mirzadeh et al., 2024) have demonstrated
the limitations of LLMs’ reasoning capabilities by
showing that their performance significantly drops
when given the same reasoning tasks but with dif-
ferent assumptions or conditions. These studies are
often done through synthetic data generation.

In this study, we explore the limitations of LLM
capabilities through multi-problem evaluation, a

Figure 1: Standard single-problem evaluation versus
multi-problem evaluation.

simple evaluation method that leverages existing
benchmarks to construct prompts made up of mul-
tiple problems. As illustrated in Fig 2, unlike con-
ventional single-problem evaluation that prompts
an LLM to solve a single problem at a time, multi-
problem evaluation prompts an LLM to solve mul-
tiple problems at once in a single input prompt.
In this study, we leverage 6 existing classification
benchmarks to construct prompts made up of mul-
tiple homogeneous problems to form 4 contrastive
task types and examine various LLMs on these task
types to explore their limitations. Because of the
combinatory nature of constructing prompts from
multiple problems, it is less likely for LLMs to
encounter exact long multi-problem prompts dur-
ing pre-training, which makes our evaluation less
susceptible to data contamination.

We find that while LLMs can typically handle
multiple classifications simultaneously (Batch Clas-
sification) as well as when performed separately,
they exhibit a significant drop in performance on
two selection tasks that are conceptually equiva-
lent to Batch Classification and involve selecting
indices of text falling into each class label, either
independently or altogether. We show that this drop
results from LLMs’ inability to adequately com-
bine index selection with text classification, which
persists across all tested LLMs, under zero-shot,
few-shot, or Chain-of-Thought (CoT, Wei et al.,
2023) settings, and with a novel synthetic dataset.
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Figure 2: The 4 types of evaluation tasks in the form of a <task, input, output> triplet.

Input Format Benchmark # Samples Objective

Single-text SST-2 1,821 Sentiment analysis
CoLA 1,043 Grammatical acceptability
AGNews 1,000 Topic classification

Text-pair MRPC 1,725 Paraphrase detection
SNLI 1,000 Natural language inference
WiC 1,400 Word sense disambiguation

Table 1: Classification benchmarks used in the study.
We use the test splits wherever possible, except for
CoLA, for which we use the dev split, since the test
split is not publicly available. For AGNews and SNLI,
we randomly sample 1,000 examples from the test splits.

2 Related Work

Prompting LLMs with multiple problems at
once. Given the non-trivial cost of deploying
LLMs at large scale, recent studies (Cheng et al.,
2023; Laskar et al., 2023; Son et al., 2024; Lin
et al., 2024) have proposed various prompt-level
approaches that place multiple problems in a single
prompt to improve input token utilization to save
LLM inference costs. However, they do not aim to
discover limitations in LLM capabilities.

LLM Evaluation While there have been sev-
eral surveys dedidcated to the evaluation of spe-
cific topics, e.g., hallucination (Huang et al., 2023;
Rawte et al., 2023), bias and fairness (Gallegos
et al., 2024; Li et al., 2024), and alignment (Wang
et al., 2023; Liu et al., 2024), we note that cur-
rent LLM evaluation has predominantly focused
on LLM’s performance on prompts consisting of
single problems. Each of such prompts presents a
single problem, which expects one specific answer.

3 Experimental Setup

This section describes the data, tasks, LLMs, and
performance metric used for our experiments.

3.1 Data

We construct homogeneous multi-problem tasks
from existing single-problem benchmarks. We con-
sider the following 6 classification benchmarks, as
described in Table 1: SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019), AGNews (Gulli,
2004), MRPC (Dolan and Brockett, 2005), SNLI
(Bowman et al., 2015), and WiC (Pilehvar and
Camacho-Collados, 2019). They cover two clas-
sification paradigms, i.e., single-text and text-pair
classification, as well as six distinct task objectives.

3.2 Evaluation Tasks

We conduct our multi-problem evaluation on 4 re-
lated types of tasks, conceptualized in Fig 2, using
the 6 existing benchmarks introduced above. We
define task size n as the number of classification
problems included in a prompt and m as the num-
ber of unique class labels in a given benchmark.
The full prompt templates used for these task types
are provided in Appendix C, where the overall lim-
ited effect of prompt variation is also discussed.

Among these 4 task types, Single Classification
(SingleClf) and Batch Classification (BatchClf)
are classification tasks where an LLM is prompted
to solve one or a batch of classification problems at
once, respectively. Index Selection One Category
(SelectOne) and Index Selection All Categories
(SelectAll) are two reformulations of BatchClf.
Instead of making multiple classifications under
BatchClf, these two tasks instruct LLMs to select
indices of text falling into each label class, either
independently in m separate prompts (SelectOne)
or altogether in a single prompt (SelectAll).

We design the two selection tasks to test LLM’s
understanding of the classifications performed un-
der BatchClf. Since selection tasks of size n may
have anywhere from 0 to n correct indices per class,
spurious correlations are less likely during our eval-
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Figure 3: Average accuracy of the 7 LLMs on the 4 task types across task sizes for each benchmark.

uation, given the combinatory answer space.

3.3 LLMs and Evaluation Settings
We evaluate 7 LLMs from 4 model families with
greedy decoding: Vicuna (13B, Chiang et al.,
2023), Mistral 7B (Jiang et al., 2023), Mixtral 8x7B
(Jiang et al., 2024), Llama-3 8B and 70B (Instruct,
Meta, 2024), GPT-3.5, and GPT-4 (OpenAI, 2023).
We conduct the main experiments under zero-shot
and selectively experiment with other prompting
strategies in the follow-up experiments in Section 5.
See Table 5 in Appendix A for model details.

Performance metric We measure the average
per-problem accuracy (PPA) to unify the evalua-
tion across the four task types. PPA, defined in
Equation 1, is the average accuracy of classifying
n problems with each prompt or, in the case of
SelectOne, in each set of directly related prompts
targeting different class labels.

PPA =
1

n

n∑

i=1

δ(I(Pi), Ai) (1)

I(Pi) is the inferred LLM-generated answer to the
ith problem in the input prompt, Ai is the ground
truth, and δ(i, j) = 1 iff i = j and 0 otherwise. For
the two index selection tasks, I(Pi) is determined
by considering the LLM’s assignments of indices
to all class labels. Other than assigning an index
to a wrong class label, there are two more error
types. First, LLMs may assign an index with more
than one class label, i.e., an contradiction error.
Second, LLMs may assign no labels to an index at
all, namely, an non-excluded middle error.

To compare performance difference, we use
Mann-Whitney U tests for significant testing and
Cohen’s d (Cohen, 1969) for measuring effect size.

4 Results

Fig 3 shows the average accuracy on the 4 task
types across task sizes for each benchmark with
the related full results for each LLM provided in

> 90% SCAcc > 80% SCAcc > 75% SCAcc

Vicuna 13B 79.3 93.1 93.1
Mistral 7B 76.7 83.3 100.0
Mixtral 8x7B 63.3 83.3 86.7
Llama-3 8B 73.3 90.0 100.0
Llama-3 70B 80.0 100.0 100.0
GPT-3.5 56.7 83.3 90.0
GPT-4 100.0 100.0 100.0

Overall 75.6 90.4 95.7

Table 2: Percent of time that BatchClf performance
surpasses a threshold percent of SingleClf accuracy
(SCAcc) across benchmarks.

BatchClf vs
SelectOne

BatchClf vs
SelectAll

SelectOne vs
SelectAll

Mean Acc Dif 32.0 12.1 -19.9
Std Dev 16.9 15.3 12.0
Cohen’s d 1.8 0.8 -1.0

Table 3: Pairwise accuracy difference (x vs y = x - y).
All the differences are statistically significant and with
a large effect size (| Cohen’s d | ≥ 0.8).

Appendix A.3. We exclude the results of Vicuna
on AGNews at task size 100 as the prompts exceed
the model’s context length. Two main observations
are as follows.

LLMs can handle multiple classifications at
once with minimal performance loss. Although
BatchClf accuracy generally declines as the task
size increases, all LLMs achieve accuracy of at
least 90% that of SingleClf across benchmarks
most of the time (see Table 2). Overall, the Single-
Clf accuracy for the 7 LLMs is 75.5% on average
and the BatchClf counterpart is 72.3%, a minor
3.2% absolute drop from the former.

LLMs perform significantly worse on the se-
lection tasks. Despite the impressive BatchClf
performance, LLMs nearly always perform much
worse in SelectOne and SelectAll than BatchClf,
even when the task size is just 3 or 5. The over-
all discrepancy in accuracy between BatchClf and
the two tasks is large and statistically significant
(32.0% for SelectOne and 12.1% for SelectAll, see
Table 3) and generally increases with a larger task
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Figure 4: Average accuracy of the 7 LLMs on the two
simplified index selection tasks based on AGNews. We
provide the original results from BatchClf, SelectOne,
and SelectAll for easy comparisons.

size. Similarly, Table 3 also shows a large and sta-
tistically significant difference between SelectOne
and SelectAll, in favor of the latter.

These significant performance differences may
not be human-like, given the conceptual equiva-
lence of the three tasks underlyingly. For example,
humans should at least be able to classify and select
a small number (e.g., 3/5) of texts (mostly short
sentences) equally well simply by thinking over the
problems (i.e., zero-shot).

5 Follow-up Experiments

We perform a series of follow-up experiments to
further understand and validate our main findings.
More details about these experiments are presented
in Appendix B.

5.1 Can LLMs do Index Selection?
While we argue that the LLMs’ weaker perfor-
mance on SelectOne and SelectAll is due to a weak-
ness in combining classification with index selec-
tion, an alternative explanation would be that they
just generally struggle at index selection. To ex-
clude this possibility, we simplify the two index
selection tasks by directly replacing each line of
text with its gold standard label in the prompts for
AGNews, which has most labels. We then ask the
LLMs to select the indices of lines containing each
label with minimal modifications to the original
task instructions.

Fig 4 shows that LLMs can perform in the sim-
plified selection tasks much better than the origi-
nal ones, with Llama-3 70B, GPT-3.5, and GPT-4
even achieving (nearly) 100% accuracy across task
sizes. The 7 LLMs’ overall performance in the sim-
plified selection tasks is even slightly higher than
their overall BatchClf accuracy. The previously
observed performance gap between SelectOne and

Task SelectOne + CoT SelectAll + CoT BatchClf
Model

Vicuna 23.0 25.8 53.2 57.6 68.7
Mistral 7B 38.3 47.5 56.8 60.5 71.2
Mixtral 8x7B 47.4 38.7 65.1 58.4 73.4
Llama-3 8B 39.0 41.8 62.4 59.0 73.3
Llama-3 70B 59.4 67.1 72.9 79.2 79.4
GPT-3.5 45.5 47.5 66.7 66.3 71.9
GPT-4 66.3 71.8 78.8 81.8 81.9

Overall 45.5 48.6 65.1 66.1 74.3

Table 4: Aggregate average accuracy of SelectOne and
SelectAll with and without 1-shot-CoT for each LLM.
BatchClf performance is also provided for comparisons.

SelectAll also disappears for almost all LLMs (see
Appendix B for full results). In general, LLMs can
indeed do index selection.

In conclusion, it appears that the tested LLMs
perform less well on SelectOne and SelectAll as
compared to BatchClf because they cannot ad-
equately combine the index selection task and
the classification tasks in response to a zero-shot
prompt. Put differently, LLMs lack true understand-
ing of the problems presented in different forms,
even when the number of problems is quite small
(e.g., 3 or 5), which may not be human-like.

5.2 Does CoT Help?

In light of the results above, we use 1-shot-CoT to
prompt LLMs to do BatchClf first and then perform
the two index selection tasks on the 6 benchmarks
with a fixed task size 10. Table 4 shows that while
overall LLMs benefit from CoT for both SelectOne
and SelectAll, the benefits are generally larger for
SelectOne than SelectAll (3.1% versus 1.0% im-
provement) and not consistent across models with
Mixtral 8x7B performing even worse with CoT.
Moreover, the task complexity hierarchy among
BatchClf, SelectOne, and SelectAll remains in vir-
tually all cases. We leave to future studies the
investigation of how CoT may further help with the
two selection tasks.

5.3 Does Few-Shot Prompting Help?

To test the generality of the main findings, we first
re-run all experiments for CoLA providing 2 ex-
emplars in the prompts and with a fixed task size
5 for tasks other than SingleClf. We find that few-
shot prompting is mostly detrimental across LLMs,
particularly so for SelectOne and BatchClf. As a re-
sult, SelectAll shows an overall better performance
than BatchClf and the performance gap between
SelectOne and SelectAll becomes much larger. Full
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Figure 5: Full results on the novel benchmark created on top of SST-2 where the task objective is to decide if a text
pair shares the same sentiment.

results are in Table 8 in Appendix B for space rea-
sons.

5.4 Testing on a Novel Benchmark
As argued in Section 1, multi-problem evaluation
is less susceptible to data contamination, given the
combinatory nature of constructing prompts from
multiple problems. To further mitigate the concern
of data contamination, we create a novel bench-
mark with 1,000 distinct and label-balanced text
pairs sampled from SST-2. The task is to determine
if each text pair shares the same sentiment, which
we believe is unlikely to appear in the training data
of LLMs. We run experiments on this benchmark
using the same experimental setup described in
Section 3 for the text-pair benchmarks. The results
in Fig 5 are consistent with our main results.

6 Conclusion

We propose multi-problem evaluation and present a
comprehensive multi-problem evaluation of LLMs,
leveraging 6 existing classification benchmarks
and 4 related task types constructed from those
benchmarks. Our results provide new insights
into the multiple problem handling capabilities of
LLMs: LLMs are competent multi-problem solvers
for multiple homogeneous classification problems
(Batch Classification), but they perform signifi-
cantly worse on two selection tasks that are con-
ceptually equivalent to Batch Classification and
involve selecting indices of text falling into each
class label, either independently or altogether. This
is due to their inability to adequately combine index
selection with text classification. The surprisingly
consistent performance drop on the two selection
tasks observed across 7 LLMs and a wide range
of evaluation settings potentially indicates an in-
herent limitation with modern LLM capabilities.
This also showcases the potential of multi-problem
evaluation as a useful and effective in discovering
limitations of LLM capabilities.

There are several directions worth future explo-
rations. For example, to better understand how well
how LLMs can handle multiple problems in gen-
eral, it is important to test LLMs with other types
of problems (e.g., reasoning problems) and with
multiple heterogeneous problems (e.g., mixing dif-
ferent benchmarks/tasks). It is also important to
understand what causes LLMs to perform worse
or better when prompted with multiple problems,
such as benchmark, task size, and model’s context
length. In particular, model-level ablation studies
are needed if we want to know how LLMs obtain
the ability to handle multiple problems at once and
how to improve their understanding capabilities.
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cost, time, and space and have attempted to select
an informative and representative sample of experi-
ments. Since we used pre-existing benchmarking
data sets, we inherit any labeling errors that they
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may contain. Finally, despite our efforts to compare
different prompts, as is the case with all prompt-
based LLM studies, we cannot guarantee that slight
differences in the prompts would not meaningfully
alter the results.
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A Experimental details

A.1 LLM Details

Table 5 describes the specific versions for the 7
LLMs we use in the paper and highlights their dif-
ferences in terms of open weights, training with
Reinforment Learning from Human Feedback or
RLHF (Christiano et al., 2017), architecture, num-
ber of parameters, and context window size. We
use OpenAI API and TogetherAI API to call GPT
LLMs and non-GPT LLMs, respectively.

A.2 LLM Output Parsing Code

The LLM output parsing code contains over 200
lines of regular expressions to parse LLM outputs
and we include it in this submission for review.
The code takes into accounts the following five
variables during parsing: task type, benchmark,
model, task size, and target label (for SelectOne).
This is to ensure our code can handle cases when
LLMs generate undefined labels, un-instructed ex-
planations, or even wrong answer format (e.g., a
non-JSON output for SelectOne and SelectAll).

Overall, our code achieves about 99.9% overall
parsing rate. The unparsable cases mostly come
from SingleClf outputs where LLMs output un-
defined labels, such as “Mixed” or “Netual” for
SST-2. For BatchClf outputs, we implement a se-
ries of rules to extract both defined and undefined
labels, because of the order of the extracted labels
affects the final evaluation. For SelectOne and Se-
lectAll, our code extracts JSON object, fixes cases
where the JSON object has formatting issues, or
extracts a series of text indices when there is no
JSON object identified in the output.

A.3 Full Results

The full results obtained from the main experiments
are visualized in Fig 6. We exclude the results of
Vicuna on AGNews when task size is 100 because
the prompts exceed the model’s context length.

A.4 Task Complexity Hierarchy

In Table 3 from Section 4, we demonstrate the
overall task complexity hierarchy among BatchClf,
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Model Version Open Weights With RLHF MoE # Parameter Context Window Size

Vicuna (Chiang et al., 2023) v1.5 ✓ ✗ ✗ 13B 4,096
Mistral 7B (Jiang et al., 2023) Instruct-v0.2 ✓ ✗ ✗ 7B 8,192
Mixtral 8x7B (Jiang et al., 2024) Instruct-v0.1 ✓ ✗ ✓ 47B 8,192
Llama-3 8B (Meta, 2024) Instruct ✓ ✓ ✗ 8B 8,192
Llama-3 70B (Meta, 2024) Instruct ✓ ✓ ✗ 70B 8,192
GPT-3.5 turbo-0125 ✗ ✓ ✗ - 16,385
GPT-4 (OpenAI, 2023) turbo-2024-04-09 ✗ ✓ ✗ - 128,000

Table 5: The 7 LLMs we use, all instruction finetuned. For the two GPT LLMs, it is commonly assumed that both
are larger than GPT-3 (a 175B LLM) with GPT-4 being the largest. For Mixtral 8x7B, a Mixture of Experts (MoE)
LLM, although each token has access to 47B parameters, but only uses 13B active parameters during inference.

SelectOne, and SelectAll. It is found that Selec-
tOne > SelectAll > BatchClf, where “>” denotes a
“more complex than” relationship.

Similar to Fig 3, which describes the aggre-
gate average accuracy across benchmarks, Fig 7
describes the aggregate average accuracy across
LLMs. Although there are few cases shown in Fig 6
where the overall complexity hierarchy among
BatchClf, SelectOne, and SelectAll does not hold
(e.g., Vicuna on MRPC for task size 50), these
cases are exceptional and likely due to the interac-
tions of multiple factors in play, such as model,
benchmark, input length, and context windows.
Nevertheless, the overall task complexity hierar-
chy is clear both in Fig 3 (benchmark-level) and in
Fig 7 (model-level).

A.5 Limited Effect of Prompt Variations
Throughout our research project, we have also tried
prompts with different wordings and structures un-
til we finally unified the prompt designs presented
above. More concretely, we initially instructed
LLMs to produce indices line by line for SelectOne
and did not include any formatted output example
in SelectAll prompts for almost all classification-
related experiments. The table below shows the
average performance of each LLM on SelectAll
and SelectOne using current and earlier prompt
templates. Clearly, the effects of prompt variations
are minimal (except for GPT-3.5 on SelectOne) and
the findings in the paper remain valid.

B Follow-up Experiments

B.1 Simplified Index Selection Tasks
Fig 8 shows the full results for the two simplified
index selection tasks, along with results for the two
original selection tasks and BatchClf, based on AG-
News. Clearly, (1) all LLMs perform much better
in the simplified tasks than the original ones; (2)
Mixtral 8X7B, Llama-3 70B, GPT-3.5, and GPT-4
can do these simplified selection tasks even better

task SelectOne (Early) SelectAll (Early)
model

Vicuna 17.9 (15.4 ) 43.2 (44.5)
Mistral 7B 31.5 (31.8) 51.5 (44.2)
Mixtral 8x7B 38.4 (39.1) 60.1 (60.5)
Llama-3 8B 33.0 (34.5) 54.6 (56.8)
Llama-3 70B 54.2 (54.7) 70.0 (70.4)
GPT-3.5 41.4 (28.3) 63.4 (61.3)
GPT-4 65.4 (64.7) 78.0 (76.7)
Overall 40.4 (38.5) 60.2 (59.2)

Table 6: Model performance on the two selecting tasks
using the finalized prompts and early prompts.

than their BatchClf performance consistently, with
the latter three achieving nearly 100% accuracy in
most cases; (3) the task complexity hierarchy be-
tween SelectOne and SelectAll nearly disappears
for all LLMs except Vicua, implying that it may be
challenging for Vicuna to perform index selection
tasks in general.

B.2 1-shot-CoT Results

Table 7 presents the full 1-shot-CoT results across
benchmarks and LLMs with a fixed task size 10.
As demonstrated in Section 5, CoT improves the
LLMs’ performance in SelectOne and SelectAll
with an overall larger positive effect on the for-
mer, but the improvement is not consistent both
across benchmarks and across LLMs. For exam-
ples, LLMs tend to benefit from CoT for both se-
lection tasks constructed from SST-2, CoLA, and
SNLI (see the “Overall” results in Table 7).

B.3 Few-shot Results

Table 8 shows the full 2-shot results on CoLA for
each LLM, which shows a general negative effect
of few-shot prompting. According to these results,
LLMs performs much worse in SelectOne with an
overall accuracy going down to 25.2% from 58.1%.
Similarly, the negative effect is larger on BatchClf
than on SelectAll, making the overall BatchClf
accuracy lower than SelectAll, although the former
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Figure 6: Full average accuracy of the 7 LLMs on the 4 tasks across the 6 benchmarks.

Figure 7: Aggregate average accuracy on the 4 tasks averaging over results from the 6 benchmarks for each LLM.
“Overall” presents the average results across all LLMs for each one of the 4 task.
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is still often higher than the latter under the same
test conditions.

C Full Prompts

C.1 Prompt Templates for SingleClf,
BatchClf, SelectOne, and SelectAll

Tables 13 to 14 show the complete prompt tem-
plates for the four task types (i.e., SingleClf, Batch-
Clf, SelectOne, and SelectAll) tailored for SST-
2, CoLA, AGNews, MPRC, SNLI, and WiC, re-
spectively. While there are differences in the ex-
act wording of a prompt template for each task
type across the 6 classification benchmarks, each
prompt template type shares a similar underlying
structure and can be easily applied to other classifi-
cation benchmarks.

Throughout our research project, we have also
tried prompts with different wordings and struc-
tures until we finally unified the prompt designs
presented above. For example, we initially asked
LLMs to directly generate indices line by line in-
stead of a JSON output for SelectOne and we did
not provide any formatted example for SelectAll.
We also put the output format instruction in the end
of each prompt for SelectAll, instead of in the be-
ginning. Although we observed certain task-level
performance variations, which are expected, the
overall complexity among the 4 task types (Selec-
tOne > SelectAll > BatchClf > SingeClf) remains
unchanged, despite the variations in the prompts.
This indicates the overall limited effects of reword-
ing and restructuring prompts.

C.2 Prompt Templates for the Two Index
Selection Tasks

Table 15 presents the two prompt templates used
for the two simplified index selection tasks based
on AGNews.

C.3 One-Shot-CoT Prompt Templates for the
Two Index Selection Tasks

To construct a 1-shot-CoT exemplar, we first ran-
domly sampled 10 examples from each benchmark
that do not appear in our test examples. We then
put these 10 examples into the prompt template for
SelectOne or SelectAll, followed by a constructed
answer. The answer first explicitly classifies the 10
examples into the corresponding class labels, and
then perform index selection based on the gener-
ated class labels.

Table 16 shows the complete answer templates
for SelectOne and SelectAll for each classification
benchmark.
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Benchmark SST-2 CoLA AGNews MRPC SNLI WiC
Model Task

Vicuna SelectOne 38.5 22.2 16.8 15.8 9.9 34.5
+ CoT 52.6 53.9 12.1 12.1 11.5 12.5

SelectAll 66.7 65.7 42.2 67.4 28.2 48.8
+ CoT 81.7 69.2 40.9 63.9 40.9 48.9

BatchClf 89.1 73.2 70.4 66.7 59.3 53.4

Mistral 7B SelectOne 53.3 52.8 41.5 36.6 23.3 22.2
+ CoT 66.5 55.1 44.8 59.4 29.5 29.5

SelectAll 68.3 63.6 48.2 58.4 54.7 47.9
+ CoT 74.4 68.2 57.0 68.5 47.6 47.3

BatchClf 79.6 76.8 78.1 74.0 69.1 49.6

Mixtral 8x7B SelectOne 76.5 61.0 46.2 45.2 23.8 32.0
+ CoT 41.5 67.3 12.9 48.4 25.1 37.2

SelectAll 85.3 68.4 62.9 65.9 56.2 52.0
+ CoT 49.0 67.4 57.8 66.5 58.9 51.1

BatchClf 80.2 80.9 71.6 70.8 73.3 63.7

Llama-3 8B SelectOne 67.8 50.8 55.1 21.7 21.4 17.3
+ CoT 85.0 48.9 22.1 50.7 22.3 22.0

SelectAll 85.0 62.9 59.6 64.8 50.1 52.2
+ CoT 85.8 66.5 45.3 64.5 39.8 52.3

BatchClf 92.0 76.8 79.5 62.8 69.2 59.5

Llama-3 70B SelectOne 83.6 72.7 67.4 61.0 32.3 39.3
+ CoT 94.7 79.7 75.2 67.9 69.4 15.8

SelectAll 87.3 79.6 76.2 71.7 68.6 53.9
+ CoT 96.1 83.7 85.5 73.9 77.3 58.4

BatchClf 96.4 82.8 86.8 73.5 75.2 61.7

GPT-3.5 SelectOne 71.9 65.8 47.6 25.2 28.4 33.8
+ CoT 80.2 71.7 57.9 26.8 26.5 22.1

SelectAll 83.1 79.7 68.3 61.5 55.8 51.6
+ CoT 89.5 77.5 58.8 70.2 50.5 51.2

BatchClf 95.0 81.8 86.4 52.7 57.4 58.0

GPT-4 SelectOne 88.6 80.8 66.4 58.1 53.8 50.0
+ CoT 84.5 81.9 67.8 60.1 77.0 59.6

SelectAll 92.4 84.0 79.2 73.5 80.8 62.8
+ CoT 91.3 83.7 85.4 76.2 83.3 71.0

BatchClf 96.0 84.0 86.7 72.6 83.8 68.4

Overall SelectOne 68.6 58.0 48.7 37.7 27.6 32.7
+ CoT 72.1 65.5 41.8 46.5 37.3 28.4

SelectAll 81.2 72.0 62.4 66.2 56.3 52.7
+ CoT 81.1 73.7 61.5 69.1 56.9 54.3

BatchClf 89.8 79.5 79.9 67.6 69.6 59.2

Table 7: Full 1-shot-CoT results for all benchmarks and LLMS. The task size is fixed at 10.
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Task SingleClf BatchClf SelectOne SelectAll
Model Benchmark

Vicuna CoLA 78.8 71.0 48.6 59.6
+ 2-shot 69.0 50.4 14.8 64.0

Mistral 7B CoLA 81.5 74.4 47.4 59.4
+ 2-shot 80.2 65.0 25.0 60.4

Mixtral 8x7B CoLA 84.4 81.2 65.0 70.6
+ 2-shot 81.8 73.2 19.8 72.4

Llama-3 8B CoLA 80.2 79.4 33.4 61.2
+ 2-shot 74.3 46.6 0.6 63.8

Llama-3 70B CoLA 82.8 83.4 71.2 79.6
+ 2-shot 81.8 82.0 29.2 80.8

GPT-3.5 CoLA 84.2 79.6 63.4 76.2
+ 2-shot 79.5 76.8 38.2 72.8

GPT-4 CoLA 85.1 83.8 77.8 83.6
+ 2-shot 85.7 80.8 48.6 81.0

Overall CoLA 82.4 79.0 58.1 70.0
+ 2-shot 78.9 67.8 25.2 70.7

Table 8: Full 2-shot results on CoLA. We use a fixed task size 5 for tasks other than SingleClf, whose task size is 1
by default. We provide the related zero-shot results for easy comparisons.
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Figure 8: Full results for the two simplified index selection tasks versus the original tasks based on AGNews.

Task Prompt template

SingleClf Indicate the sentiment for the following line of text. The sentiment shall be
either ‘Positive’ or ‘Negative.’

Text: $text
Sentiment:

BatchClf Indicate the sentiment for each of the $num following lines of text. The
sentiment shall be either ‘Positive’ or ‘Negative.’

Texts, one per line:

$texts

The sentiments for each of the $num lines of text, one per line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines with
$polarity sentiment according to the following instructions: If none of the texts
show $polarity sentiment, write ‘None.’ If all the texts show $polarity sentiment,
write ‘All.’ Otherwise, provide the index numbers for each text with $polarity
sentiment.

Output your responses in JSON format with the key ‘$polarity’. A for-
matted example output is provided below.
{‘$polarity’: [None/All or index numbers for the texts with $polarity sentiment]}

Texts, one per line:

$texts

JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines
with positive sentiment. Then, list the index numbers of the lines with negative
sentiment. If none of the texts show a particular sentiment, write ‘None.’ If all
the texts show a particular sentiment, write ‘All.’ Otherwise, provide the index
numbers of the texts that fit a particular category.

Output your responses in JSON format with two keys: ‘positive’ and
‘negative.’ A formatted example output is provided below.
{‘positive’: [None/All or index numbers of positive sentences], ‘negative’:
[None/All or index numbers of negative sentences]}

Texts, one per line:

$texts

JSON output:

Table 9: Prompt templates for SST-2. Words immediately preceded by the dollar sign $ are placeholders. For the
single-text classification task (SST-2, CoLA, AGNews), the sequence of texts in the place of ‘$texts’ are indexed
starting with ‘1’ and each text is separated by a newline.
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Task Prompt template

SingleClf Indicate the grammatical acceptability for the following line of text. The
acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Text: $text
Grammatical acceptability:

BatchClf Indicate the grammatical acceptabilities for each of the $num following lines of
text. The acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Texts, one per line:

$texts

Grammatical acceptabilities for each of the $num lines of text, one per
line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines that
are grammatically $acceptability according to the following instructions: If none
of the texts are grammatically $acceptability, write ‘None.’ If all the texts are
grammatically $acceptability, write ‘All.’ Otherwise, provide the index numbers
for each grammatically $acceptability text.

Output your responses in JSON format with the key ‘$acceptability’. A
formatted example output is provided below.
{‘$acceptability’: [None/All or index numbers of $acceptability sentences]}

Texts, one per line:

$texts

JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines
that are grammatically acceptable. Then, list the index numbers of the lines
that are grammatically unacceptable. If none of the sentences show a particular
acceptability, write ‘None.’ If all the sentences show a particular acceptability,
write ‘All.’ Otherwise, provide the index numbers of the texts that fit a particular
category.

Output your responses in JSON format with two keys ‘acceptable’ and
‘unacceptable.’ A formatted example output is provided below.
{‘acceptable’: [None/All or index numbers of acceptable texts], ‘unacceptable’:
[None/All or index numbers of unacceptable texts]}

Texts, one per line:

$texts

JSON output:

Table 10: Prompt templates for CoLA.
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Task Prompt template

SingleClf Classify which news category the following line of text belongs to among the
following four categories: ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Text: $text
News category:

BatchClf Classify which news category each of the $num following lines of text belongs
to among the following four categories: ‘Business,’ ‘Sports,’ ‘World,’ and
‘Sci/Tech.’

Texts, one per line:

$texts

News categories for each of the $num lines of text, one per line:

SelectOne This is a news classification task in which each line of text belongs to one of
four categories ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that can be classified as $category according to the following instructions:
If none of the texts can be classified as $category, write ‘None.’ If all the texts
can be classified as $category, write ‘All.’ Otherwise, provide the index numbers
of the texts that can be classified as $category.

Output your responses in JSON format with the key ‘$category’. A for-
matted example output is provided below.
{‘$category’: [None/All or index numbers of the texts that can be classified as
$category]}

Texts, one per line:

$texts

JSON output:

SelectAll This is a news classification task in which each line of text belongs to one of
four categories ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that belong to each category according to the following instructions: If
none of the texts can be classified as a particular category, write ‘None.’ If all the
texts can be classified as a particular category, write ‘All.’ Otherwise, provide
the index numbers of the texts that can be classified as the category.

Output your responses in JSON format with the following keys: ‘busi-
ness,’ ‘sports,’ ‘world,’ and ‘sci/tech.’ A formatted example output is provided
below.
{‘business’: [None/All or index numbers of texts in ‘business’ category], ‘sports’:
[None/All or index numbers of texts in ‘sports’ category], ‘world’: [None/All
or index numbers of texts in ‘world’ category], ‘sci/tech’: [None/All or index
numbers of texts in sci/tech category]}

Texts, one per line:

$texts

JSON output:

Table 11: Prompt templates for AGNews.
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Task Prompt template

SingleClf Compare text A with text B and determine if text A is a paraphrase of text B.
Respond with ‘Yes’ if text A is a paraphrase, and ‘No’ if it is not.

$text
Answer:

BatchClf Compare text A with text B for the following $num text pairs and determine if
text A is a paraphrase of text B line by line. Respond with ‘Yes’ if text A is a
paraphrase, and ‘No’ if it is not. Provide your answers line by line.

$texts
Answers:

SelectOne Go over the $num text pairs below and list the index numbers of the text pairs
where text A $be a paraphrase of text B according to the following instructions:
If none of the text pairs satisfy this condition, write ‘None.’ If all the text pairs
satisfy this condition, write ‘All.’ Otherwise, provide the index numbers of the
text pairs where text A $be a paraphrase of text B.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.
{‘answer’: [None/All or index numbers of the text pairs where text A $be a
paraphrase of text B]}

Here are the text pairs:

$texts
JSON output:

SelectAll Go over the $num text pairs below. First, list the index numbers of the
text pairs that contain paraphrases. Then, list the index numbers of the
text pairs that contain non-paraphrases. If none of the text pairs satisfy a
condition, write ‘None.’ If all the text pairs satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with two keys: ‘yes’ for para-
phrases and ‘no’ for non-paraphrases. A formatted example output is provided
below.
{‘yes’: [None/All or index numbers of text pairs that contain paraphrases], ‘no’:
[None/All or index numbers of text pairs that contain non-paraphrases]}

Here are the text pairs:

$texts
JSON output:

Table 12: Prompt templates for MRPC. For the text-pair classification task (MRPC, SNLI, WiC), the sequence of
text pairs in the place of ‘$texts’ are indexed starting with ‘1’ and each text pair is separated by two newlines (each
text pair ends with a newline be design, followed by another newline before the next text pair).
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Task Prompt template

SingleClf Given the following premise and hypothesis, determine the inference relation
between them. Respond with ‘Entailment’ if the hypothesis logically follows
from the premise, ‘Contradiction’ if they are in direct opposition, and ‘Neutral’
if neither applies.

$text
Inference relation:

BatchClf Given the following $num pairs of premises and hypotheses, determine the
inference relation for each pair line by line. Respond with ‘Entailment’ if the
hypothesis entails the premise, and ‘Contradiction’ if they contradict. If neither
is the case, respond with ‘Neutral.’ Provide your answers line by line.

$texts
Inference relations for the $num text pairs provided above:

SelectOne Go over the $num text pairs below and list the index numbers of the text
pairs where the inference relation between the premise and the hypothesis is
$relationship according to the following instructions: If none of the text pairs
contain $relationship inference relation, write ‘None.’ If all text pairs contain
$relationship inference relation, write ‘All.’ Otherwise, provide the index
numbers of the text pairs where the inference relation between the premise and
the hypothesis is $relationship.

Output your responses in JSON format with the key ‘$relationship’. A
formatted example output is provided below.
‘$relationship’: [None/All or index numbers of text pairs that contain $relation-
ship inference relation]

Here are the text pairs:

$texts
JSON output:

SelectAll Go over the $num text pairs below. First, list the index numbers of the text
pairs that contain entailment inference relation. Then, select all text pairs
that contain contradiction inference relation. Finally, select all text pairs
that contain neutral inference relation. If none of the text pairs satisfy a
condition, write ‘None.’ If all the text pairs belong satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with three keys: ‘entailment’,
‘contradiction’, and ‘neutral’. A formatted example output is provided below.
{‘entailment’: [None/All or index numbers of text pairs that contain entailment
inference relation], ‘contradiction’: [None/All or index numbers of text pairs
that contain contradiction inference relation], ‘neutral’: [None/All or index
numbers of text pairs that contain neutral inference relation]}

Here are the text pairs:

$texts
JSON output:

Table 13: Prompt templates for SNLI.
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Task Prompt template

SingleClf Analyze the usage of the given target word in the two subsequent contexts. The
target word may appear in various grammatical forms in each context. Respond
with ‘Yes’ if it maintains the same meaning across both contexts, and ‘No’ if it
does not.

$text
Answer:

BatchClf Analyze the usage of the following $num target words in the two contexts
that immediately follow them. These target words may appear in different
grammatical forms across the two subsequent contexts. Determine if each target
word maintains the same meaning in the two subsequent contexts. Provide your
answers line by line, indicating ‘Yes’ if it does and ‘No’ if it does not.

$texts
Answers:

SelectOne Analyze the following $num target words and determine the index numbers
of the target words where the same meaning $be maintained across the two
contexts that immediately follow them. These target words may appear in
different grammatical forms in each context. If none of the target words satisfy
this condition, write ‘None.’. If all the target words satisfy this condition, write
‘All.’ Otherwise, provide the index numbers.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.
{‘answer’: [None/All or index numbers of the target words where the same
meaning $be maintained in the two subsequent contexts]}

Here are the target words along with their contexts:

$texts
JSON output:

SelectAll Analyze the following $num target words, which may appear in different
grammatical forms in the two subsequent contexts. First, list the index numbers
of target words that maintain the same meaning in the two subsequent contexts.
Then, list the index numbers of target words that do not maintain the same
meaning in the two subsequent contexts. If none of the target words satisfy a
condition, write ‘None.’ If all the target words satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the target words that satisfy each
condition.

Output your responses in JSON format with two keys: ‘yes’ for target
words used with consistent meanings and ‘no’ for those used with inconsistent
meanings. A formatted example output is provided below.
{‘yes’: [None/All or index numbers of target words used with consistent
meanings], ‘no’: [None/All or index numbers of target words used with
inconsistent meanings]}

Here are the target words along with their contexts:

$texts
JSON output:

Table 14: Prompt templates for WiC.
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Task Prompt template

SelectOne Simplified Go over the $num lines of text below and list the index numbers of the lines
that contain the word ‘$category’ according to the following instructions:
If none of the texts contain the word ‘$category,’ write ‘None.’ If all the
texts contain the word ‘$category,’ write ‘All.’ Otherwise, provide the in-
dex numbers of the texts that contain the word ‘$category’ each on a separate line.

Texts, one per line:

$texts

‘None,’ ‘All,’ or the index numbers of the texts that contain the word
‘$category,’ one per line:

SelectAll Simplified In this task, each line of text contains one of four words ’Business,’ ’Sports,’
’World,’ and ’Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that contain each word according to the following instructions: If none
of the texts contain a particular word, write ‘None.’ If all the texts contain a
particular word, write ‘All.’ Otherwise, provide the index numbers of the texts
that contain each word.

Output your responses in JSON format with the following keys: ‘busi-
ness,’ ‘sports,’ ‘world,’ and ‘sci/tech.’ A formatted example output is provided
below.
{‘business’: [None/All or index numbers of texts containing ‘Business’], ‘sports’:
[None/All or index numbers of texts containing ‘Sports’], ‘world’: [None/All
or index numbers of texts containing ‘World’], ‘sci/tech’: [None/All or index
numbers of texts containing ‘Sci/Tech’]}

Texts, one per line:

$texts

JSON output:

Table 15: Prompt templates for simplified SelectOne and SelectAll based on AGNews. For SelectOne Simplified,
we used an earlier prompt template that asks LLMs to produce outputs line by line, instead of a JSON object. As
illustrated earlier, we find the effect of the two output formats for SelectOne to be minimal. Therefore, having a
JSON output should not make a meaningful difference.
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Benchmark Task Answer template

SST-2 SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that lines {indices} show positive sentiment. Therefore, the answer in JSON format
is as follows: {final answer}

SST-2 SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that lines {indices} show positive sentiment, and lines {indices} show negative
sentiment. Therefore, the answer in JSON format is as follows: {final answer}

CoLA SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} are unacceptable. Therefore, the answer in JSON format
is as follows: {final answer}

CoLA SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} are acceptable and texts in lines {indices} are unacceptable.
Therefore, the answer in JSON format is as follows: {final answer}

AGNews SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} can be classified as ‘Sports.’. Therefore, the answer in
JSON format is as follows: {final answer}

AGNews SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} can be classified as ‘Business,’ texts in lines {indices}
can be classified as ‘Sports,’ texts in lines {indices} can be classified as ‘World,’ and texts in lines
{indices} are ‘Sci/Tech.’ Therefore, the answer in JSON format is as follows: {final answer}

MRPC SelectOne To solve this task, let’s first determine if text A is a paraphrase of text B for the 10 lines of text above,
one per line: {labels}
From there, we see that text pairs in lines {indices} are paraphrases. Therefore, the answer in JSON
format is as follows: {final answer}

MRPC SelectAll To solve this task, let’s first determine if text A is a paraphrase of text B for the 10 lines of text above,
one per line: {labels}
From there, we see that text pairs in lines {indices} are paraphrases and text pairs in lines {indices} are
not. Therefore, the answer in JSON format is as follows: {final answer}

SNLI SelectOne To solve this task, let’s first determine the inference relation between the premise and the hypothesis for
the 10 lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain entailment inference relation. Therefore,
the answer in JSON format is as follows: {final answer}

SNLI SelectAll To solve this task, let’s first determine the inference relation between the premise and the hypothesis for
the 10 lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain entailment inference relation, text pairs in
lines {indices} contain contradiction inference relation, and text pairs in lines {indices} contain neutral
inference relation. Therefore, the answer in JSON format is as follows: {final answer}

WiC SelectOne To solve this task, let’s first determine if the target word is used with consistent meanings in the two
subsequent contexts for the num lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain use the target words with inconsistent
meanings. Therefore, the answer in JSON format is as follows: {final answer}

WiC SelectAll To solve this task, let’s first determine if the target word is used with consistent meanings in the two
subsequent contexts for the num lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain use the target words with inconsistent
meanings and text pairs in lines {indices} do not. Therefore, the answer in JSON format is as follows:
{final answer}

Table 16: Answer templates for the two selection tasks for each classification benchmark. {indices}: a list of indices
seperated by comma. {final answer}: answer in a JSON format specified by the SelectOne or SelectAll prompt.

140



The Sixth Workshop on Insights from Negative Results in NLP, pages 141–149
May 4, 2025 ©2025 Association for Computational Linguistics

Exploring Multimodal Language Models for Sustainability Disclosure
Extraction: A Comparative Study

Tanay Kumar Gupta
TCS Research

New Delhi, India
gupta.tanay@tcs.com

Tushar Goel
TCS Research

New Delhi, India
t.goel@tcs.com

Ishan Verma
TCS Research

New Delhi, India
ishan.verma@tcs.com

Abstract
Sustainability metrics have increasingly be-
come a crucial non-financial criterion in invest-
ment decision-making. Organizations world-
wide are recognizing the importance of sustain-
ability and are proactively highlighting their ef-
forts through specialized sustainability reports.
Unlike traditional annual reports, these sustain-
ability disclosures are typically text-heavy and
are often expressed as infographics, complex ta-
bles, and charts. The non-machine-readable na-
ture of these reports presents a significant chal-
lenge for efficient information extraction. The
rapid advancement of Vision Language Models
(VLMs) has raised the question whether these
VLMs can address such challenges in domain
specific task. In this study, we demonstrate the
application of VLMs for extracting sustainabil-
ity information from dedicated sustainability
reports. Our experiments highlight the limita-
tions in the performance of several open-source
VLMs in extracting information about sustain-
ability disclosures from different type of pages.

1 Introduction

In recent years, we have witnessed a significant
growth in inclusion of non-financial factors partic-
ularly sustainability in corporate reporting. As per
KPMG’s recent sustainability reporting survey1,
reporting on sustainability has become part of busi-
ness as usual for 96% of the world’s largest 250
companies and a majority of the top 100 companies
in each country. Driven by continued stakeholder
demand for transparency and consistency in sus-
tainability data disclosures, several standards have
been proposed to harmonize sustainability report-
ing. Frameworks like Global Reporting Initiative
(GRI), Sustainability Accounting Standards Board
(SASB), and UN Sustainable Development Goals
(SDG), have been developed to streamline the re-
porting around various sustainability indicators

1https://kpmg.com/xx/en/our-insights/esg/the-move-to-
mandatory-reporting.html

(Chofreh and Goni, 2017). Despite being part of
business-critical disclosures, sustainability report-
ing remains mostly unstructured, unlike the stan-
dardized annual financial reports. With no common
reporting template, these reports lack consistency,
relying mostly on charts, infographics and text, and
are generally published in non-machine-readable
PDF formats (Ruggiero and Bachiller, 2023). Ex-
tracting relevant information from these unstruc-
tured reports takes several person hours of efforts
and is prone to mistakes and influence by personal
judgment. Hence, automation of sustainability in-
formation extraction from reports can reduce pro-
cessing time and let stakeholders focus more on
decision making. In this work, we have used the
GRI framework as reference. The GRI framework
offers sustainability standards in three categories:
Economy (GRI 200), Environment (GRI 300), and
Social (GRI 400), for further details refer A.1. Or-
ganisations use various indicators listed under these
three to report their sustainability activities.

Recent advancements in natural language pro-
cessing with availability of Large Language Mod-
els (LLM) and Vision Language Models (VLM) viz
Llama (Touvron et al., 2023), Gemini (Team et al.,
2023, 2024), Phi (Abdin et al., 2024), ChatGPT
(Achiam et al., 2023), LLaVa (Liu et al., 2023a,b),
etc have opened a new dimension to multi-modal
information extraction. Significant number of ef-
forts have been made to utilize LLMs for extracting
information from sustainability or Environmental,
Social, and Governance (ESG) reports. For in-
stance, ClimateBERT (Webersinke et al., 2021) is
a transformer model fine-tuned for climate-related
classification tasks, ChatReport (Ni et al., 2023)
is an LLM-based tool that evaluates companies’
sustainability reports according to the TCFD guide-
lines. ESGReveal (Zou et al., 2023) is a tripartite
framework leveraging LLMs and RAG to extract
and analyze ESG data, offering benchmarks for
corporate reporting. DocQA (Mishra et al., 2024)
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is a platform for question answering over sustain-
ability reports using RAG framework. Bronzini et
al. (Bronzini et al., 2024) used LLMs to construct
knowledge graphs for analyzing ESG disclosures
from sustainability reports. However, to the best of
our knowledge, the use of VLMs for ESG data ex-
traction is yet to be explored. Also, LLMs still face
challenges in effectively handling domain-specific
tasks in a zero-shot setting(Yao et al., 2023). In
this work, we have evaluated the performance of
open source VLMs on the task of extracting sus-
tainability disclosures from sustainability reports.
We highlight the shortcomings of these models on
the extraction task.

2 Data Curation & System Architecture

We collected around 700 English language sus-
tainability reports from the SASB website2. Many
organizations include a GRI index table in their sus-
tainability reports which lists GRI disclosures with
their reference, such as page numbers, links, and
section headers. The format varies across reports,
as can be seen in A.2. We used GRI index tables
from these reports to generate the benchmark eval-
uation dataset, focusing on those with internal ref-
erences only for listed GRI disclosures. We applied
a keyword driven heuristic-based filtering method
to identify reports containing a GRI Index table,
specifically checking if the index mention appeared
in the table of contents. This filtering process left
us with 380 reports. Next, we manually annotated
the page ranges in the reports where the GRI Index
tables appeared. These tables were extracted using
a combination of Table Transformer (Smock et al.,
2022) and Llama 3 (Dubey et al., 2024) with hu-
man in the loop in <GRI disclosure, Page Number>
format. Comparison of our approach with VLM
based table extractions are shown in appendix A.2.

Figure 1: System Flow Diagram

Figure 1 shows the process flow followed for the
work. After identifying the relevant page image and
corresponding GRI disclosure for which data needs
to be extracted, we provided the page image along

2https://sasb.ifrs.org/company-use/sasb-reporters/

with a contextual prompt to the VLMs. The prompt
was designed to guide the model in extracting spe-
cific information based on the GRI disclosure. The
VLM output is then validated by human experts.
The next section outlines the VLMs used in our
experiments, a brief overview of their architecture
and selection rationale.

3 Experiments

We experimented with the following VLMs for
extracting information related to GRI disclosures
from the report pages:

• Llama 3.2 Vision - Llama-3.2-11B-Vision-
Instruct3 is an instruction fine-tuned model of
Llama 3.2 vision (Dubey et al., 2024) which
integrates image encoder followed by image
adapter and language model decoder.

• Qwen2 VL - Qwen2-VL-7B-Instruct4 is an
instruction fine-tuned model of Qwen2 (Wang
et al., 2024) which integrates 675M parameter
vision encoder with 7.6B parameter language
model decoder. It uses naive dynamic reso-
lution to process any resolution image along
with multi-modal rotary position embedding
to extrapolate longer sequences.

• LLaVA - LLaVA-v1.6-mistral-7b-hf 5 is an
instruction fine-tuned model of LLaVA-NeXT
(Liu et al., 2024) which combines a vision
encoder and a connector to connect with mis-
tral (Jiang et al., 2023) LLM for joint vision-
language tasks.

These models were selected due to their proven
accuracy on similar datasets, such as DocVQA
(Mathew et al., 2021), ChartQA (Masry et al.,
2022), InfographicVQA (Mathew et al., 2022), and
MMMU (Yue et al., 2024). Additionally, they rep-
resent some of the recent advancements in the field,
ensuring that the models used are both relevant and
capable of handling the complexities of the task at
hand. In the later section, we will discuss about the
short comings of these models in specific settings.

4 Results & Analysis

We conducted experiments to validate the extrac-
tions of 74 unique GRI disclosures across 10 sus-

3https://huggingface.co/meta-llama/Llama-3.2-11B-
Vision-Instruct

4https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
5https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
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tainability reports, with a total of 640 pages an-
alyzed. The results were assessed by two inde-
pendent domain experts, with a Cohen’s Kappa
score(Cohen, 1960) of 0.9, indicating strong consis-
tency in the evaluation process. Partial extractions
were considered incorrect during validation. The
requirement for manual validation of the outputs
limited the number of reports included in the ex-
periments. These pages included data presented as
text, tables, charts, infographics, or a combination
of these formats (Examples shown in Appendix A
Figure 2). Around 60% of the pages have data in
more than one format. In Table 1, we present the
distribution of pages as per the data formats.

Page Type Count Page Type Count
text 125 table+infographics 10

table 125 chart+infographics 7
infographics 5 text+chart 90

text+infographics 163 text+chart+table 46
text+table 39 text+chart+infographics 30

Table 1: Distribution of Pages as per Data format

The prevalence of "text" and "text + infograph-
ics" highlights the reliance on textual descriptions
and visual information in sustainability reporting.
However, the reports also incorporate a substan-
tial number of tables and combined modalities like
"text + chart" and "text + chart + table", empha-
sizing the multimodal nature of these documents.
The low incidence of standalone "infographics"
and "chart + infographics" likely stems from the
common practice of including accompanying text
within these visuals, resulting in a higher preva-
lence of combined "text + infographics" entries.

We expand our analysis by including key metrics
that evaluate the effectiveness of VLMs in GRI
disclosure extraction. For validation purposes, we
considered three distinct cases:

• Correct: The model correctly extracts the
relevant information from the page.

• Incorrect: The model extracts information
from the page; however, it fails to provide the
correct answer due to misinterpretation, in-
complete understanding, or inaccurate reason-
ing. This could involve selecting the wrong
data point from a chart/table or misinterpret-
ing a statement in the text.

• Hallucination: The model provides informa-
tion that is not present on the page. This indi-
cates that the response isn’t properly based on

the page content, and the model is generating
the response based on its training data.

The accuracy of information extraction using
VLMs is calculated as the percentage of correct,
incorrect, or hallucinated instances, out of the total
number of instances for a given GRI category or
page type. Table 2 shows VLMs accuracy in ex-
tracting information across GRI categories. The
results reveal varying performance across these cat-
egories for all the models, indicating sensitivity to
the specific content and language used within each.
For instance, while Llama 3.2 vision demonstrates
a relatively high accuracy in the Economic category,
likely due to the structured and quantifiable na-
ture of economic disclosures, its performance dips
in the Environment and Social categories. As for
LLaVa and Qwen2, a striking negative result is the
substantial proportion of "incorrect" predictions,
often exceeding "correct" ones. This highlights
models issue with fine-grained comprehension and
information localization within the document. Fur-
thermore, the presence of hallucination raises con-
cerns about reliability, specially for LLaVa in the
Environment category. This is due to LLaVa’s ten-
dency to generate descriptive summaries of page
images, rather than focusing on precise information
extraction, which might contributed to the fabrica-
tion of information. Qwen2 displays a different pat-
tern, exhibiting a lower hallucination rate but a high
proportion of incorrect predictions. This behavior
suggests a potential weakness in Qwen2’s ability to
perform fine-grained information extraction. Our
observations indicate that Qwen2 occasionally pro-
vides section headlines or the names of GRI disclo-
sures themselves as answers, even when more spe-
cific information is requested in the prompt. This
tendency to offer labels rather than detailed con-
tent contributes to the increased rate of incorrect
predictions. The impact of different page types on
the VLM’s accuracy is demonstrated in Table 3,
revealing a significant performance gap based on
content and layout complexity. While text-heavy
pages achieve moderate accuracy for Llama 3.2 and
Qwen2, LLaVa struggles, suggesting differences
in handling textual information. Complex layouts
involving tables, charts, or their combinations like
"text + table", "chart + infographics" present con-
sistent challenges for all VLMs, with accuracy of-
ten falling below 50%, highlighting difficulties in
deciphering information embedded within struc-
tured or visually formatted elements. The inclusion
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Category Llama 3.2 Vision Instruct LLaVa v1.6 Qwen2 VL Chat
Correct Incorrect Hallucination Correct Incorrect Hallucination Correct Incorrect Hallucination

Economic 68.42 28.95 2.63 50 36.84 13.16 39.47 60.53 0
Environmental 50.47 45.04 4.47 38.02 40.25 21.72 45.36 51.43 3.19
Social 62.15 35.45 2.39 36.65 44.22 19.12 57.37 41.43 1.19

Table 2: Accuracy(%) of VLMs in extracting information across GRI categories

Page Type Llama 3.2 Vision Instruct LLaVa v1.6 Qwen2 VL Chat
Correct Incorrect Hallucination Correct Incorrect Hallucination Correct Incorrect Hallucination

text 66.4 32 1.6 38.4 41.6 20 55.2 44 0.8
table 47.2 44 8.8 40.8 40.8 18.4 36 57.6 6.4

infographics 80 20 0 40 60 0 100 0 0
text+infographics 55.83 41.72 2.45 30.06 44.78 25.15 43.56 55.83 0.61

text+table 41.03 58.97 0 46.15 25.64 28.21 56.41 41.03 2.56
table+infographics 100 0 0 0 0 100 80 20 0
chart+infographics 14.29 85.71 0 14.29 57.14 28.57 42.86 57.14 0

text+chart 66.67 31.11 2.22 51.11 46.67 2.22 64.44 35.56 0
text+chart+table 47.83 52.17 0 56.52 39.13 4.35 43.49 52.17 4.35

text+chart+infographics 66.67 23.33 10 26.67 40 33.33 50 50 0
Overall 57.19 39.38 3.44 38.91 41.41 19.69 49.38 48.59 2.03

No Data 22.11 71.63 6.25 48.55 41.34 10.09 40.38 57.69 1.92

Table 3: Accuracy(%) of VLMs in information extraction from different page types

of "infographics" seems to have a varied impact.
Llama and Qwen2 achieve high accuracy with stan-
dalone infographics, but performance decreases
when combined with text, indicating challenges
in integrating multimodal information. Hallucina-
tion tendencies, particularly prominent in LLaVa
for heavily structured pages like "text + chart +
infographics", "chart + infographics", suggest a
potential link between difficulty in processing spe-
cific page structures and the tendency to hallucinate.
Overall, Llama3.2 and Qwen2 exhibit comparable
performance, while LLaVa lags, underscoring the
need for further research into how VLMs process
diverse page elements and mitigate hallucination,
especially in complex layouts. Few examples for
the same are shown in appendix A.3.
The "No Data" case, shown in the last row of Table
3 presents a notable finding from our experiments.
In 208 instances, the relevant data for disclosures
listed in the GRI index table was not present on
the referenced pages. We then assessed the perfor-
mance of VLMs on pages where GRI disclosure
information is expected but absent. This scenario
tested the models’ ability to handle missing data
and avoid generating potentially misleading or fab-
ricated responses. The results reveal a concerning
trend: Llama and Qwen2 exhibits a high proportion
of "incorrect" predictions in this context whereas
LLaVa achieves highest accuracy in saying "no, the
information is not present". Llama, while demon-
strating the lowest percentage of correct responses,

struggles significantly, with over 72% of its predic-
tions classified as incorrect. Interestingly, while the
hallucination rates are low for all models, the sub-
stantial proportion of incorrect predictions suggests
that the models may be attempting to answer by
relying on contextual clues or related information,
even when the specific data point is missing. This
highlights a critical limitation: the models appear
unable to reliably identify and flag the absence of
required information, instead attempting to provide
an answer, even if it is incorrect. This behavior
underscores the need for improved mechanisms to
detect and handle missing data.

5 Conclusion

In this work, we explored the feasibility of using
Vision-Language Models (VLMs) for sustainability
data extraction from multimodal PDF page images.
Our experiments concluded that no single VLM
can efficiently manage all data formats. We found
that Llama performs best on text-based pages but
is prone to incorrect responses. The LLaVa model
frequently experiences hallucinations, while Qwen
exhibits similar accuracy for both correct and in-
correct responses. This study opens potential fu-
ture research directions, such as integrating model
strengths, fine-tuning for improved performance,
and using knowledge-infused prompts for better
extraction. It is also important to address cases
with no data, focusing on extending VLMs ability
to recognize and respond to information gaps.
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A Appendix

Figure 2 illustrates several examples of pages from
sustainability reports that exhibit multimodal con-
tent. These examples highlight the complexity in-
volved in processing such pages, where visual ele-
ments such as text, tables, charts, infographics and
their combinations are present.

A.1 GRI Framework
The Global Reporting Initiative (GRI)6 framework
is a globally recognized standard for sustainability
reporting that helps organizations disclose their en-
vironmental, social, and economic impacts. It pro-
vides structured guidelines to ensure transparency,
consistency, and comparability in sustainability re-
ports. The GRI framework consists of several se-
ries, each addressing specific areas of sustainabil-
ity:

• 200 Series focuses on economic factors,
guiding organizations to report on their
Economic performance(201), Market pres-
ence(202), Anti-competitive behaviour(206)
etc.

• 300 Series deals with environmental aspects,
covering topics such as Energy(302), Water
and Effluents(303), Emissions(305), and bio-
diversity(304) etc.

• 400 Series addresses social factors, includ-
ing labor practices such as Child labor(408),
Forced or Compulsory labor(409), Training
and Education(404), Occupational health and
safety(403) etc.

Table 4 provides a sample breakdown of the GRI
series, illustrating how each series is further subdi-
vided into specific disclosures.

6https://www.globalreporting.org/

Economic
(200)

Anti-corruption
(205)

Operations Assessed for Risks rel-
ated to Corruption(205-1)

Environment
(300)

Energy
(302)

Energy consumption within the
organization (302-1)

Energy intensity
(302-3)

Water
(303)

Water Withdrawal
(303-3)

Social
(400)

Occupational Health
& Safety (403)

Promotion of Worker Health
(403-6)

Table 4: GRI hierarchy example

A.2 GRI Index Table

In Figure 3, we have shown few examples of GRI
index tables. These tables have information about
GRI disclosures along their data references in the
reports. These references can be present in form of
page number along with or without textual infor-
mation, internal and external links, name of other
reports, and section headers within the report along
with other metadata. These formats differ from
one report to another. To extract the information
about GRI disclosures mentioned in the table, it is
required to have the GRI disclosure data in <GRI
Disclosure, Page Number> format. While validat-
ing, we have relaxed the assumption of strict page
number such as if we get p.38, we mark it correct.
We have validated it for 10 sustainability reports.
Table 5 shows the accuracy of VLMs for GRI in-
dex table extraction and our approach Table Trans-
former + Llama 3. Here, Llama 3.2 Vision achieved
83.5% accuracy but struggled with providing direct
page numbers when text is involved. Additionally,
it had difficulty in maintaining format consistency.
In contrast, Qwen2 faced issues in detection of
GRI disclosure and performs poorly when multi-
ple tables were present and achieved only 53.5%
accuracy. LLaVa, on the other hand, consistently
produced repetitive results, falling short of expec-
tations. In comparison, our approach delivers accu-
rate page numbers and achieves superior accuracy
of 93%, making it the preferred method for GRI
Index extraction. This observation highlights the
limitations of Qwen2 and LLaVa in accurately ex-
tracting information from page images containing
large tables, a scenario that is not commonly en-
countered.

TableTransformer +
Llama 3 Instruct Llama 3.2 Vision Qwen2 VL Chat

Accuracy 93% 83.5% 53.5%

Table 5: Accuracy of different models in GRI Index
Table Extraction
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Page type: Table+Infographics Page type: Text+Chart+Table

Page type: Text+Chart+Infographics Page type: Text+Chart

Figure 2: Examples of pages from sustainability reports exhibiting multimodal content, highlighting the complexity
involved in processing visual elements to extract the relevant data.

Figure 3: Examples of GRI Index Tables
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(A) (B)

(C) (D)

(E) (F)

(G)

Figure 4: Page images corresponding to Table 6 for data extraction
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GRI Disclosure Page type VLM Model Information Extracted using VLM Validation

Water Consumption
(303-5)

Table (Image A) LLaVa

"Total Water Consumption" with a value of 807
million m3. "Total Water Consumption from ar-
eas with high stress" with a value of 807 million

m3 in the same table.

Hallucination

Average hours of training
per year per employee

(404-1)

Text +
Infographics
(Image B)

Qwen [’8,000’] Incorrect

Nitrogen oxides (NOX), sulfur
oxides (SOX), and other signi-

ficant air emissions (305-7)
Table (Image C) Llama

**Nitrogen Oxides (NOX)** * **2019**: 0 *
*2020**: 0 * **2021**: 0 * **2022**: 0
*Sulfur Oxides (SOX)** * **2019**: 0 *
*2020**: 0 * **2021**: 0 * **2022**: 0

Hallucination

Confirmed incidents of corruption
and actions taken (205-3)

Text (Image D) Qwen
[’Confirmed incidents of corruption and action

taken.’]
Incorrect

GHG emissions intensity
(305-4)

Text+Chart
+Table

(Image E)
Llama

Total Normalized Scope 1+Scope 2 Greenhouse
Gas Emissions per Area Unit (tCO2e/m2). Scope 1

+ Scope 2 Greenhouse Gas Emissions (tCO2e).
These are the only references to GHG emissions

intensity in the image.

Incorrect

Waste diverted from disposal
(306-4)

Text+Chart+
Infographics

(Image F)
LLaVa

As part of our ongoing commitment to sustainable
business practices, we continuously monitor and
improve our waste management processes. By

implementing new technologies and strategies, we
aim to achieve zero landfill waste generation acr-

oss all sites by 2030. This initiative aligns with our
broader goal of achieving net zero emissions by

2050.

Hallucination

Reduction of GHG emissions
(305-5)

Text+
Infographics
(Image G)

Qwen

"FY 222 GHG Emissions, by scope and category
7,587,446 metric tonnes CO2e SCOPE 1 & 2 Di-
rect and indirect emissions Total: 6% SCOPE 3
CATEGORY 1 Purchased goods and services Total:
42% SCOPE 3 CATEGORY 4 Upstream transport-
ation and distribution Total: 8% SCOPE 3 CATEG-
ORY 9 Downstream transportation and distribution
Total: 4% SCOPE 3 CATEGORY 11 ....."

Correct

Table 6: Examples of data extraction from images using different VLMs along with its validation

A.3 Examples of GRI Disclosure Extraction
Figure 4 shows few reference page images. Infor-
mation extracted through different VLMs for few
GRI disclosures from these images are shown in
Table 6. The analysis of these examples are as
follows:

• Row 1 - Image A: An attempt was made to
extract information related to water consump-
tion; however, LLaVa failed to correctly re-
trieve the information. The extracted value
did not correspond to any data present on the
page, resulting in a case of hallucination.

• Row 2 - Image B: Qwen2 was tasked to ex-
tract the information about Average hours of
training per year per employee but it erro-
neously extracted number of people managers
benefited from the manager curriculum which
is incorrect.

• Row 3 - Image C: It shows another case of
hallucination where Llama 3.2 generated false
value "0" for the disclosure Nitrogen oxides
(NOX), sulfur oxides (SOX), and other signif-
icant emissions. This example also highlight

the case of "No Data" as there is no informa-
tion available corresponding to the GRI dis-
closure "Nitrogen oxides (NOx), sulfur oxides
(SOx), and other significant air emissions(305-
7)" on the page.

• Row 4 - Image D: Qwen2 failed to extract any
information from this image, which contained
only textual data.

• Row 5 - Image E: Llama 3.2 provided the title
of charts as an answer which is an incorrect
response.

• Row 6 - Image F: In this complex image
which contains text, chart and infographics
all together, LLaVa exhibited hallucination by
providing a statement "we aim to achieve zero
landfill waste generation across all sites by
2030." as an answer. This information is not
present on the page.

• Row 7 - Image G: Although complex data rep-
resentation in their in the page image, Qwen2
is able to extract correct information from the
infographics.
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Abstract

Large Language Models (LLMs) enhanced
with tool use and APIs improve task perfor-
mance but often misuse them, leading to ineffi-
ciency and unnecessary cost. We propose Self
Knowledge-Tracing for Tool Use (SKT-Tool),
a method enabling LLMs to assess their capa-
bilities and make informed API usage decisions
using knowledge tracing (KT). Our teacher-
student framework helps LLMs optimize API
calls in real-time without fine-tuning. Experi-
ments across multiple datasets show that SKT-
Tool significantly reduces API calls while main-
taining accuracy, offering a scalable and cost-
effective solution for tool-augmented LLMs.
We conclude by analyzing shortcomings in this
method and identifying directions for future
work.

1 Introduction

Large Language Models (LLMs) have recently
achieved a great number of remarkable abilities
when incorporated with external tools like Applica-
tion Programming Interfaces (APIs) (Parisi et al.,
2022; Patil et al., 2023). However, two problems
emerge: current LLM agents often struggle choos-
ing which tools to use on different problems (Li
et al., 2023), and also that much of current research
focuses solely on the API choice (Qin et al., 2023;
Li et al., 2023; Chen et al., 2024; Tang et al., 2023),
where an LLM indiscriminately calls tools during
tests, which may not align with real-world scenar-
ios (Ning et al., 2024; Qiao et al., 2023). This can
result in redundant API calls, leading to extra com-
putation and even possible monetary loss in cases
where every API call costs money, thus substan-
tially reducing the usefulness of tool-augmented
LLM Agents in real-world applications. Further-
more, the introduction of tools tends to decrease
the performance of LLMs across general datasets

*Lead Author
†Senior Author

Figure 1: Example dialogue from the synthetic genera-
tion process. This is a sample of the interaction string
that is passed onto our student model for reference.

when they have to decide whether or not tool use is
appropriate (Ning et al., 2024).

Existing approaches fine-tune LLMs to choose
APIs (Ning et al., 2024; Schick et al., 2023; Hao
et al., 2023; Yang et al., 2023) but overlook the
model’s inherent capabilities.

In this paper, we propose Self Knowledge-
Tracing for Tool use (SKT-Tool) which offers a
solution involving a Student-Teacher framework.

2 Related Work

2.1 Tool Use in Large Language Models

WTU-Eval (Ning et al., 2024) introduces a bench-
mark designed to evaluate whether LLMs can dis-
cern their ability boundaries and decide on tool
usage accordingly. The findings of WTU-Eval
highlight a critical gap: most current approaches as-
sume that an LLM must invoke an API without first
evaluating whether the model is capable of solving
the task on its own. The study demonstrated that
LLMs frequently misuse tools when unnecessary,
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Figure 2: Visualization of our system’s workflow. In Phase 1, the teacher generates n questions to assess the
student’s ability. In Phase 2, the student answers actual task/dataset questions. Then, the top-k most similar Phase 1
interactions are retrieved and appended to the question. The student model then performs on its own capabilities
before attempting to solve the question.

leading to performance degradation in tasks that do
not require external computation.

TRICE (Qiao et al., 2023) introduces a method
of teaching LLMs to use tools through continu-
ous feedback. Their findings also introduce the
problem of LLMs dropping in question-answering
accuracy when introduced to tools due to confusion
over how to use them, and they employ an exten-
sive feedback mechanism that relies on instruction-
tuning and Reinforcement Learning to align the
LLMs behavior towards appropriate tool use.

SKT-Tool differs by employing knowledge trac-
ing, where the Teacher LLM generates targeted
questions to assess the Student’s capabilities, un-
like prior methods relying solely on task feedback.
It optimizes through Inference-Time Optimization
instead of fine-tuning or reinforcement learning.
Unlike TRICE, which focuses only on accuracy,
SKT-Tool also reduces API calls while aiming to
maintain accuracy.

2.2 Knowledge Tracing for tool use

Our study explores the concept of knowledge trac-
ing (KT), a technique originally used in education
to track and predict students’ learning progress
(Corbett and Anderson, 2005). Given that LLMs
often struggle understanding their capabilities in
the context of Tool Use, it is intuitive to utilize
knowledge tracing in this scenario.

By applying KT principles, an LLM can eval-
uate its own strengths and weaknesses before de-
ciding to call an external API. For example, if a

model consistently struggles with math problems
but performs well in general reasoning, it can deter-
mine whether using a calculator API is necessary.
This self-awareness reduces unnecessary API calls
and ensures that external tools are only used when
needed.

3 Method

In this section, we detail our technical approach to
creating SKT-Tool. Our framework is divided into
2 subsections: (1) the teacher model and synthetic
data generation; (2) the student model, Retrieval-
Augmented Generation (RAG) and knowledge trac-
ing, Fig. 2 provides a visual overview of the sys-
tem architecture. As seen in Fig. 2, we set up
two language models to converse with each other,
where one acts as the teacher and the other is the
student. Our framework aims to improve the stu-
dent’s model ability to decide whether or not it
should call an API and answer QA datasets cor-
rectly with APIs.

3.1 Teacher Model and Synthetic Data
Generation (Phase 1)

We define the Teacher Model to be a more capable
LLM with the following responsibilities:

• Synthetic Data Generation. The Teacher
receives a description of an existing task,
along with k samples from the task dataset.
The teacher is also provided with the list of
tools/APIs that the student will have access
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to when approaching this task. The teacher is
then prompted to generate n synthetic ques-
tions that test the student in such a way as
to gain insight into the student’s capabilities
relevant to the task.

• Probing the Student. The teacher model asks
the generated questions to the student, storing
feedback on the correctness of the student’s
answers. This first part of the conversation
chain, where the teacher probes the student’s
answering capabilities, serves as the basis for
our KT mechanism and effectively avoids the
cold start problem by knowledge tracing be-
fore evaluation. We refer to this synthetic
question history as S.

The teacher’s synthetic data generation and prob-
ing process will be referred to as Phase 1 of the
framework.

3.2 Evaluation of Student Model (Phase 2)
We define the Student Model to be the model that
will be evaluated on the specified task, and may be
the same model as the teacher model. In phase 2,
the Student Model will use the generated conversa-
tion history to effectively choose API usage.

• Retrieval Augmented Generation (RAG)
(Gao et al., 2023) for knowledge tracing. As
shown in Figure 2, for each question q asked
to the student during the evaluation step, we
use RAG to identify the five most semantically
similar questions to q in S. We append the
associated conversations of these questions to
the question prompt in few-shot fashion.

4 Experiments

4.1 Settings
To evaluate our method’s effectiveness in different
scenarios, we use a single dataset as the task per
experiment. This task, from which a sample is
given to the teacher model, is the same as the one
to be solved by the student.

4.2 Datasets
To simulate questions asked by real-life users to
LLMs, we use two types of datasets in our testing
(where dev sets are used whenever possible):

• General QA Domain. We select four
knowledge-based datasets with diverse ques-
tion types: MLQA (Lewis et al., 2019), Triv-
iaQA (Joshi et al., 2017), PIQA (Bisk et al.,

2019), and HotpotQA (Yang et al., 2018). For
HotpotQA, we exclude the context paragraphs,
including only the question in the query, as the
student model has access to the WikiSearch
tool.

• Math QA Domain. To account for problem-
solving tasks, we focus on math-based
datasets as they test quantitative and logi-
cal reasoning abilities. Our math dataset
pool includes AQUA-RAT (Ling et al., 2017),
GSM8K (Cobbe et al., 2021), MathQA
(Amini et al., 2019), and SAT-Math from
AGIEval (Zhong et al., 2023).

For each task, we sample 250 questions from
relevant datasets in both the General and Math
categories.

4.3 Tools

We define our tool pool to include APIs that
are most likely to be used based on the datasets
above: Google Translation API1, WolframAl-
pha API2,Bing Web Search API3, and Wikipedia
Search API4.

4.4 Models

We compare results from our method using three
models with increasing capability as our student:
Llama 3.1-8B (Grattafiori et al., 2024), GPT-3.5
(OpenAI, 2023), and GPT-4o (OpenAI, 2024),
while our teacher model remains GPT-4o through-
out experimentation.

4.5 Metrics

We evaluate our results using 3 different metrics:

• Accuracy. Accuracy of the Student on the
given task. All datasets consist of 250 ques-
tions.

• AccN. Accuracy of the Student accounted for
unneeded API calls, which we refer to AccN .
The Student is considered to be incorrect if
they use an API on a question that was previ-
ously shown to not require an API, regardless
if their answer was correct or not.

1https://cloud.google.com/translate/docs/reference/rest
2https://developer.wolframalpha.com/
3https://www.microsoft.com/en-us/bing/apis/bing-web-

search-api
4https://www.mediawiki.org/wiki/API:Search
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Task - LLM Metric Baseline k (n = 32) n (k = 16)
4 32 8 64

PIQA Llama-3.1
Accuracy 0.536 0.516 0.512 0.536 0.496
API Calls 177 114 104 48 43
AccN 0.4 0.38 0.412 0.448 0.428

MLQA GPT 4o
Accuracy 0.912 0.832 0.832 0.884 0.868
API Calls 43 7 4 12 16
AccN 0.812 0.824 0.82 0.848 0.836

MLQA GPT 3.5
Accuracy 0.628 0.668 0.636 0.66 0.652
API Calls 137 16 17 9 14
AccN 0.432 0.652 0.636 0.652 0.64

PIQA GPT 3.5
Accuracy 0.756 0.792 0.772 0.776 0.756
API Calls 1 0 0 0 0
AccN 0.752 0.792 0.772 0.776 0.756

AQUA-RAT GPT 3.5
Accuracy 0.576 0.46 0.512 0.472 0.5
API Calls 67 22 18 31 23
AccN 0.514 0.448 0.508 0.448 0.488

Table 1: Baseline vs. SKT-Tool varying k and n, 250 Questions per task.

• API Calls. The total number of questions in
which the student used an API throughout an
entire task.

4.6 Baseline
To evaluate baseline results, we give the LLM ac-
cess to tools and prompt it to answer the dataset
with no additional instructions. The baseline per-
formance aims to evaluate the ability of LLMs to
decide on their own when to use tools.

4.7 Implementation Details
To test the generalizability of our model, we eval-
uate our metrics across two different variables: k
and n, where k is the number of samples from the
task given to the teacher before question genera-
tion, and n is the number of samples the teacher
generates. We test values of k ∈ {4, 32} while
keeping n = 32, and values of n ∈ {8, 64} while
keeping k = 16.

5 Results and Analysis

5.1 Across the Datasets
Our method significantly reduces unnecessary API
calls across multiple datasets. In MLQA, GPT-3.5
reduced API calls by up to 85%, while GPT-4o
achieved a 90% reduction. This suggests that the
model learns to answer multilingual questions in-
dependently rather than over-relying on translation
tools. However, accuracy improvements were in-
consistent, particularly for GPT-4o, where MLQA
accuracy slightly declined.

For PIQA, the impact was less pronounced. API
calls dropped by 73% for Llama3.1, but the rele-
vance of the synthetic conversation history varied,
leading to limited accuracy gains. Similarly, in

AQUA-RAT, API usage decreased, but accuracy
also declined—likely due to the teacher model gen-
erating misleading mathematical feedback. Further-
more, we noticed a significant difference in API
calls for PIQA during our ablation tests when vary-
ing k versus n. This could be due to the combina-
tion of RAG, the quality of synthetically generated
questions, and the LLM repeatedly calling the API
for undesirable results.

Overall, our framework successfully reduces re-
dundant API calls, demonstrating its effectiveness
in optimizing tool use. However, we observed
no consistent accuracy improvements. The rela-
tionships between accuracy, k, and n vary across
datasets, indicating the need for further experimen-
tation to refine synthetic question generation and
improve overall model performance.

6 Conclusion

We introduce a framework that helps LLMs as-
sess their API usage, reducing calls by up to 50%
while maintaining accuracy. After running mul-
tiple tests on the interaction history generated by
the teacher model, we found that each interaction
history appended incurred an average of 300 addi-
tional input tokens. The additional input tokens for
5 questions through RAG are not high enough to
exceed smaller models’ context windows. Though
accuracy improvements are limited, our approach
enables smaller models to use tools efficiently, low-
ering costs and expanding practical applications,
particularly for weaker, newly-developed LLMs.
We also believe that future work in refining the
prompting methods for teacher feedback will help
improve the student’s final accuracy.

153



7 Limitations and Future Work

The efficacy of SKT-Tool is heavily dependent on
the capability of the student model. Our method
relies on long question histories being appended
to prompts, and smaller models like Llama 3.1 8B
struggle due to the large context. This is especially
true for Math datasets. Our results also may signif-
icantly change when not using a powerful teacher
model such as GPT-4o, which we used. Due to
time constraints, we were unable to run full exper-
iments on "Multi" setting tests, but we plan to in
the future. We also believe the inconsistencies in
results indicate a flaw in our method of prompting
and implementation, which we aim to fix.

In the future, plan to further polish our frame-
work’s prompting methods to ensure optimal syn-
thetically generated questions that target concepts
within the task. We also aim to test the effects of
our frameworks on the "Multi" setting, and plan
to test our framework on more open-sourced mod-
els, a wider variety of tools, etc. to have a better
understanding of its efficacy.

Furthermore, we believe that, in future research,
more standardized benchmarks can be set for
LLMs’ decisions on whether or not tool usage is
necessary. We also believe that future research
should study how knowledge tracing can be a pow-
erful tool when applied to LLMs as scaffolding
rather than merely to humans.
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A Appendix

A.1 A. Datasets and Task Details

This section details the datasets used in our experi-
ments, including question distribution and prepro-
cessing.

A.1.1 General QA Datasets

Dataset Domain Sample Size

MLQA Multilingual QA 250
TriviaQA Knowledge-based QA 250
PIQA Physical Commonsense QA 250
HotpotQA Multi-hop Reasoning 250

General-Multi Mixed (Shuffled) 200 (50 each)

Table 2: General QA datasets used in experiments. Each
single dataset uses 200 samples, while the multi-task
setting takes 50 from each and shuffles them.

Dataset Domain Sample Size

AQUA-RAT Algebra, Arithmetic QA 250
GSM8K Grade-School Math QA 250
MathQA General Math QA 250
SAT-Math (AGIEval) Standardized Test Math 250

Math-Multi Mixed (Shuffled) 200 (50 each)

Table 3: Math QA datasets used in experiments. Each
single dataset uses 200 samples, while the multi-task
setting takes 50 from each and shuffles them.

A.1.2 Math QA Datasets
A.2 Prompt Templates

We used structured prompts for both the teacher
and student LLMs. Below, we provide an overview
of these templates.

A.2.1 Teacher Model Prompt For Generating
Synthetic Questions

Here’s the prompt we used to ask the teacher model
to generate test questions and their corresponding
answers:

You are a teacher with one student.
Your student is going to take a test.
Some of the questions in
the test require APIs, and
some are answerable by the student
itself.

Because we want to minimize API calls,
you will need to learn what questions
the student needs an API to answer,
and which it can answer itself.
We also want the student to answer
questions correctly.
To do this, you must learn what
questions can be solved by each API.

To do this, you will need to
learn the capabilities of the student.
For example, you will need to
learn the student's proficiency in
math to be able to determine in
which cases the student needs a
calculator API.

To learn the student's capabilities,
you will have the opportunity to
give your student a 'pre-test'.
You must generate question-answer
pairs for this pre-test such
that the student's answers teach you
about the student's capabilities
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and when it needs an API or not,
and also how specific APIs can
help solve types of questions.

To make sure that the pre-test
questions give relevant information,
you will be given a small sample
of the questions from the test.
You are not to copy the questions:
merely generate similar ones that
can be compared with.

The process for generating the
pre-test will consist of these steps:
1: You are given a sample of the
dataset, and the number of
questions to generate.
2: You will generate the required
number of questions to learn
the student's capabilities. In each
question, you should tell the
student which API to use, or
not to use one at all.

{Few-shot Examples}

Here is a description of the task:
{DESCRIPTION}

Here is a sample of the dataset:
{K SAMPLE QUESTIONS}

Here is the list of APIs that
the student has access to and
their descriptions:
{API List}

Generate {N} questions and do
not generate anymore. You can
write your thoughts but only include
them at the beginning and nowhere
else. When you write your questions,
start each question with a
singular newline so that the user
can use .split to get the text
for each question specifically.
Do not include any other newlines
except when before a question.

A.2.2 Student Model Prompt (Baseline)
Here’s our basic prompt for the student when es-
tablishing our baseline:

You are an AI-Student tasked with
answering questions to the best
of your ability.
You have access to tools (APIs)
but should only use them if
absolutely necessary.
Your goal is to minimize API
usage by answering questions
independently whenever possible.

### Rules for Deciding API Usage:
1. Only use an API if you cannot
answer the question without it.
2. Ensure the tool available is
relevant to the question.
3. Use only one API per question,
choosing the most suitable one.

Let’s begin!

A.2.3 Student Model Prompt (SKT-Tool)
In addition to the baseline prompt, we include the
interaction history during Phase 1 (3.1):

Here is a list of previous questions
you have answered, and some feedback
from an external teacher.
Use this information to determine
your own capabilities, and whether
to use an API on your next question.
Please only use it if you feel
that it's relevant. You may also use
it as an example for how to answer
questions. If you determine API
use is necessary, use one.

Here's the list of past interactions:
{Top 5 most similar synthetic questions}
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Abstract

Prompting methods for language models, such
as Chain-of-thought (CoT), present intuitive
step-by-step processes for problem solving.
These methodologies aim to equip models with
a better understanding of the correct procedures
for addressing a given task. Despite these ad-
vancements, CoT lacks the ability of reflec-
tion and error correction, potentially causing a
model to perpetuate mistakes and errors. There-
fore, inspired by the human ability for said
tasks, we propose Error Reflection Prompting
(ERP) to further enhance reasoning in language
models. Building upon CoT, ERP is a method
comprised of an incorrect answer, error recogni-
tion, and a correct answer. This process enables
the model to recognize types of errors and the
steps that lead to incorrect answers, allowing
the model to better discern which steps to avoid
and which to take. The model is able to gen-
erate the error outlines itself with automated
ERP generation, allowing for error recognition
and correction to be integrated into the reason-
ing chain and produce scalability and reliability
in the process. The results demonstrate that
ERP serves as a versatile supplement to con-
ventional CoT, ultimately contributing to more
robust and capable reasoning abilities along
with increased interpretability in how models
ultimately reach their errors.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance across numerous
NLP tasks (OpenAI, 2023). Yet scaling them is
costly, prompting interest in more efficient meth-
ods like Chain-of-Thought (CoT) (Wei et al., 2023),
which guides step-by-step reasoning. A key short-
coming of CoT, however, is that it lacks a mech-
anism to recognize and correct its own mistakes
(Turpin et al., 2023). This can lead models to per-
sist with errors, as they lack explicit guidance to
reflect on and revise flawed reasoning.

Figure 1: Example of Error Reflection Prompting with
a focus on misinterpretation.

Drawing on the human ability to self-reflect and
amend mistakes (Huang and Chang, 2023), we pro-
pose Error Reflection Prompting (ERP). ERP sup-
plies an incorrect answer alongside an explanation
of the errors, then presents the correct reasoning.
By exposing common pitfalls and clarifying why
they are wrong, ERP steers models away from these
errors in future reasoning. Evaluations on multiple
benchmarks with GPT-3.5 and GPT-4 confirm that
ERP consistently outperforms standard CoT, no-
tably lowering specific error types (e.g., algebraic
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and calculation mistakes) and balancing the overall
error distribution. Thus, ERP adds a complemen-
tary layer of self-correction to CoT, enhancing both
accuracy and transparency in model outputs.

Dataset Type of Reasoning Test
GSM8K Arithmetic 1319
AQuA Arithmetic 254
MATH Arithmetic 1000
CSQA Commonsense 1221

StrategyQA Commonsense 2290

Table 1: Problems used from each dataset. Note that
CSQA and StrategyQA’s test set answers are not pub-
licly available, so we follow (Wei et al., 2023) and eval-
uate performance on development (dev) datasets.

We propose Error Reflection Prompting
(ERP), which prompts an LLM with an incorrect
answer, explicit errors, and a corrected solution.
This strategy helps the model identify and avoid
known pitfalls:

1. Incorrect Answer. Provide a solution with
specific errors—ones the model commonly
makes (Gao et al., 2022)—ensuring the
prompt focuses on these weaknesses.

2. Error Reflection. Explain each error and why
it is incorrect, offering rationales to help the
model understand and avoid repeating them.

3. Correct Answer. Present the corrected chain
of reasoning, reinforcing the proper approach.

Formally, let E be a set of errors identified dur-
ing analysis, and Q ⊆ E be a subset of n errors.
For each example, we embed Q into the prompt
and provide corresponding explanations and the
correct solution.

In contrast to a single, general CoT prompt, ERP
may need unique prompts for each problem, which
can be time-consuming. To make ERP scalable, we
automate the process:

1. Prompt the model to generate n plausible er-
rors for a given question.

2. Construct an incorrect solution incorporating
those errors.

3. Incorporate the question, incorrect solution,
errors, and correct solution into the final
prompt.

By letting the model generate its own error out-
lines, ERP integrates recognition and correction
into the reasoning chain, making it more practical
for large-scale tasks.

2 Experiments

2.1 Experimental Setup

We focus our analysis on two types of reasoning:
commonsense and arithmetic. By using random
sampling, we ran tests on all shuffled datasets.

Dataset details are included in Table 1.
Arithmetic Dataset For arithmetic reason-

ing, we consider three of the following datasets:
GSM8K, a dataset for grade school math word
problems (Cobbe et al., 2021), AQuA, a dataset
consisting of algebraic word problems (Ling et al.,
2017), and MATH, a dataset with challenging com-
petition math problems (Hendrycks et al., 2021).
All datasets have been run on their respective test
sets except for MATH, for which we have limited
to 1000 test samples for a reasonable computing
limit.

Commonsense Datasets In regards to com-
monsense reasoning, we conduct tests on Strate-
gyQA, which requires models to infer solutions
to questions with implicit reasoning steps (Geva
et al., 2021), and CSQA, a dataset for common-
sense question answering (Talmor et al., 2019).

Models We use the OpenAI Chat Comple-
tions API, one of the most widely known and used
frameworks for accessing language models (Ge
et al., 2023). We use GPT-3.5 and GPT-4 for all
tests. Specifically, we use gpt-3.5-turbo-0613 and
gpt-4-1106-preview respectively for all tests. In ad-
dition, we employ 4-shot prompts for each dataset,
and each prompt is derived from previous works
in (Wei et al., 2023). All errors were created from
human annotators or generated using GPT-4 with
some slight modifications. Full prompts can be
found in Appendix A.

2.2 Analysis Evaluation

After collecting the results, we analyze the distri-
bution of errors according to different categories.
To accomplish our analysis of the model’s errors,
GPT-4 was used as an annotator. A sample of
100 errors from each dataset was pulled to evalu-
ate the effectiveness of GPT-4 as an error detector.
To categorize each error and understand the un-
derlying distribution, we separated errors into five
and four different classes for arithmetic and com-
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Prompting Method
Arithmetic Reasoning

GSM8K Accuracy AQuA Accuracy MATH Accuracy
GPT-3.5 with 5-shot Auto ERP 79.8% 48.0% ——–
GPT-3.5 with 4-shot CoT 74.6% 54.3% 40.2%
GPT-3.5 with 4-shot ERP 77.8% 58.7% 41.1%
GPT-4 with 4-shot CoT 95.4% 75.9% 54.1%
GPT-4 with 4-shot ERP 95.7% 76.7% 54.8%

Table 2: Results from a variety of math-based datasets

Prompting Method
Commonsense Reasoning

StrategyQA Acc. CSQA Acc.
GPT-3.5 with 4-shot CoT 65.3% 75.8%
GPT-3.5 with 4-shot ERP 66.1% 77.3%
GPT-3.5 with 4-shot ERP w/ Categories 62.9% ——

GPT-4 with 4-shot CoT 79.9% 85.3%
GPT-4 with 4-shot ERP 80.0% 86.3%
GPT-4 with 4-shot ERP w/ Categories 76.0% ——

Table 3: Results from commonsense-based datasets

monsense reasoning datasets respectively. For the
arithmetic datasets, we have Misinterpretation of
Question, Missed Steps, Logical/Commonsense
Error, Wrong Selection of Answer, and Alge-
braic/Calculation Error. For more details on
each of these categories, please see Table B in
the Appendix. As for the commonsense datasets,
we have taken a majority of our errors from the
categories presented in (Dou et al., 2022) being
Commonsense Error, Encyclopedic Error, and
Self-Contradiction Error. We have also added an
Assumption Error to better align with problem
solving tasks. We have chosen to analyze on all
datasets except for the MATH dataset (Hendrycks
et al., 2021) as the model may struggle to identify
errors due to the complexity of the problems. All
of these errors and their examples are displayed in
Table 4.

3 Results

3.1 Arithmetic Results

ERP demonstrates increases over conventional
CoT. Table 2 shows the differences between the
two prompting methods. The largest gain is in
AQuA, outperforming CoT by +4.4%. However,
with the automatic prompt generation, ERP is able
to outperform CoT by +5.2%. Though ERP out-
performs CoT on all three datasets, the MATH
(Hendrycks et al., 2021) dataset had the lowest per-

centage increase. It is the most difficult dataset
in terms of problem solving ability, and a strong
reasoning ability is required to score well on it.

The correlation between error complexity and
problem difficulty should be further researched to
understand whether or not ERP may be effective
with more complicated errors. Error outlining may
not have been effective at reflection due to the dis-
crepancy in difficulty and complexity.

3.2 Commonsense Results

ERP scores higher on commonsense data versus
CoT. GPT-4 + ERP had a slight increase over
conventional CoT in CSQA, outperforming it by
+1.0% while GPT-3.5 + ERP had an increase of
+1.5%. For commonsense reasoning, ERP appears
less effective than arithmetic reasoning. However,
experimentation with the types of errors presented
in the prompt may aid in reasoning.

4 Error Analysis

In this section, we explore how ERP affects the
distribution of errors in answering questions. Al-
though ERP scored higher than CoT (Wei et al.,
2023) for all the tests, the error distribution was not
the same. This discrepancy is analyzed to explain
ERP’s behavior in a LLM. Confidence values for
annotations were calculated by taking a subset of
fifty randomly sampled annotated errors from both
GPT-3.5 and GPT-4 inference errors and determin-
ing their validity. These values can be found in
Table 5. Let T = GPT-3.5 errors and let F = GPT-4
errors where both T = {0, 1} and F = {0, 1}:

1
100

(∑50
i=1 Ti +

∑50
i=1 Fi

)

4.1 Arithmetic Errors

Figure 2 shows a set of errors from the annotations
on math-based datasets. In each instance, ERP is
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Figure 2: Error annotations on arithmetic reasoning datasets.

Figure 3: Human annotations on GPT-4 errors in
GSM8K.

less prone to Algebraic/Calculation Errors versus
other types of errors. It is important to highlight
that the prompts used did not contain instances
of these errors, yet ERP exhibited a reduced oc-
curence of such mistakes. However, it is also no-
table that the frequencies for selecting the wrong
answer had also increased in a majority of cases.
Figure 3 shows a full set of human annotated errors
on GPT-4 on GSM8K (Cobbe et al., 2021). Indeed,
the degree of effectiveness in targeting specific er-
rors depends on the complexity of the prompt and
the model’s ability to comprehend the complexity
of the error and its implications. For example, Mis-
interpretation errors were decreased in ERP versus

CoT, although Missed Steps were less affected.

4.2 Commonsense Errors

Figure 4 illustrates the errors from commonsense
reasoning datasets. Interestingly, ERP’s utilization
of error categories yielded mixed results compared
to ERP without error categories and CoT (Wei et al.,
2023). Despite its performance, ERP with error cat-
egories exhibited a notable capability in balancing
error distribution, particularly evident in the case
of GPT-3.5 in StrategyQA (Geva et al., 2021). This
observation suggests that the incorporation of error
categories within the ERP framework offers poten-
tial benefits in error reduction in certain categories,
albeit with some trade-offs in overall performance
metrics. Effectively, ERP without error categories
highlights its potential utility in specific contexts
where error reduction is paramount.

5 Conclusion

By exploring how weighting errors in explanations
can enhance language models’ reasoning, we tack-
led some limitations of CoT. We found that high-
lighting and explaining common mistakes leads
to more accurate, coherent responses. Though
drawbacks remain—like overfitting to specific er-
rors or creating effective rationales—our results
show ERP’s versatility as a CoT extension: it not
only identifies errors but also uncovers the steps
that cause them. Future research into error-based
prompting may further boost reasoning abilities
and bring models closer to human-like thought pro-
cesses.
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6 Limitations

Although ERP shows promising results, it suffers
from overfitting (Schmidt, 2023) to a particular
dataset. The underlying issue lies in the prompt,
where each prompt has to be tailored towards a
specific task such as commonsense or arithmetic
based reasoning sub-tasks.

Furthermore, there exists diminishing returns
throughout the analysis of the results. ERP appears
to be less effective as the model’s number of param-
eters scales up (Qiu et al., 2023). Further tuning
with ERP, such as including more sophisticated and
complicated set of errors, could allow a larger LLM
to recognize more complex errors.

ERP is limited by the number of tokens it re-
quires. Being a supplement to CoT, the prompt
adds additional tokens that may increase costs, par-
ticularly when used in a few-shot setting. It’s im-
portant to recognize the cost-to-accuracy ratio and
whether or not ERP is sustainable in creating more
accurate reasoning paths.
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A Appendix A

PROMPTS FOR ERP – GSM8K and MATH
Input Model Output

Example 1
Question: There are 15 trees in the grove. Grove workers
will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant
today?
Incorrect A: There are initially 15 trees in the grove. To find
the number of trees planted, we can subtract 21 from 15. 15
- 21 = -6. Since the answer is negative, the grove workers
removed 6 trees from the grove, which means they planted 0.
The answer is 0.

Errors: 1. Incorrect Method - The wrong calculation is used.
Subtracting the final number of trees from the initial number
of trees is incorrect. The correct method is to subtract the
initial number of trees from the final number to find how
many were added. Correct A: There are 15 trees originally.
Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. The answer is 6.

Example 2
Question: There were nine computers in the server room.
Five more computers were installed each day, from Monday
to Thursday. How many computers are now in the server
room?
Incorrect A: There were 9 computers in the server room. Five
more computers are added each day, from Monday to Thurs-
day. To find the number of computers in the server room,
we can add 9 and 5. 9 + 5 = 14. Therefore, there are 14
computers in the server room. The answer is 14.

Errors: 1. Missed step - The incorrect answer only added the
computers from one day, not the computers added across four
days, which leads to an incorrect total.
Correct A: There were originally 9 computers. For each of 4
days, 5 more computers were added. So 5 * 4 = 20 computers
were added. 9 + 20 is 29. The answer is 29.

Example 3
Question: Shawn has five toys. For Christmas, he got two
toys each from his mom and dad. How many toys does he
have now?
Incorrect A: Shawn has 5 toys. He got 2 toys from his mom
and dad, so he has 5 + 2 = 7 toys now. The answer is 7.

Errors: 1. Misinterpretation Error - The incorrect answer
adds only 2 in total, mistakenly combining the toys from both
parents into a single gift. Shawn received 2 toys from his
mom and 2 from his dad.
Correct A: Shawn started with 5 toys. If he got 2 toys each
from his mom and dad, then that is 4 more toys. 5 + 4 = 9.
The answer is 9.

Example 4
Question: Michael had 58 golf balls. On Tuesday, he lost 23
golf balls. On Wednesday, he lost 2 more. How many golf
balls did he have at the end of Wednesday?
Incorrect A: Michael had 58 golf balls. He lost 23 golf balls
on Tuesday, so he has 58 - 23 = 35 golf balls left. The answer
is 35 golf balls.

Errors: 1. Missed Step - The answer fails to account for the
additional golf balls Michael lost on Wednesday. 2. Incorrect
Final Calculation - By not including the golf balls lost on
Wednesday, the final count of golf balls is incorrectly deter-
mined.
Correct A: Michael started with 58 golf balls. After losing
23 on Tuesday, he had 58 - 23 = 35. After losing 2 more, he
had 35 - 2 = 33 golf balls. The answer is 33.
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PROMPTS FOR ERP – AQuA
Input Model Output

Example 1
Question: Q: John found that the average of 15 numbers is 40.
If 10 is added to each number then the mean of the numbers
is? Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 64
Incorrect A: Adding 10 to each number will also add 10 to
the average, making it 50, which is the new average of the
numbers. Therefore, the answer is (c) 65.

Errors: Errors: 1. Wrong Selection of Answer - The incorrect
answer incorrectly identifies choice (c) 65 as the correct
answer when the right answer should have been choice (a) 50
following the logic given. Correct A: If 10 is added to each
number, then the mean of the numbers also increases by 10.
So the new mean would be 50. The answer is (a).

Example 2
Question: If a / b = 3/4 and 8a + 5b = 22, then find the value
of a. Answer Choices: (a) 1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e) 7/2
Incorrect A: To find the value of ’a’, we use the given ratio a
/ b = 3/4 to express ’b’ in terms of ’a’. We have b = (3a/4).
Substitute this value into the equation 8a + 5b = 22: 8a +
5(3a/4) = 22. 8a + 15a/4 = 22. (32a + 15a) / 4 = 22. 47a / 4 =
22. 47a = 88. a = 88 / 47. a = 1.87234. Therefore, since the
correct answer is not listed, there is no answer.

Errors: 1. Arithmetic/Calculation Error - Misused the ratio
to derive ’b’ from ’a’. Expressing ’b’ in terms of ’a’ should
have been b = (4a/3), not b = (3a/4).
Correct A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) =
22. This simplifies to 8a + 20a / 3 = 22, which means 44a / 3
= 22. So a is equal to 3/2. The answer is (b).

Example 3
Question: A person is traveling at 20 km/hr and reached his
destiny in 2.5 hr then find the distance? Answer Choices: (a)
53 km (b) 55 km (c) 52 km (d) 60 km (e) 50 km
Incorrect A: The person traveled 20 km/hr for 2.5 hr. There-
fore, he traveled 20 / 2.5 = 8 km. None of the answer choices
are 8 km, so the answer is none of the above.

Errors: 1. Incorrect Method Used - The incorrect answer
divides speed by time, which is not the correct operation for
finding distance. Distance should be calculated by multiply-
ing speed by time. 2. Logical/Commonsense Error - The
concept that speed divided by time would yield distance is
incorrect. Distance is the product of speed and time.
Correct A: The distance that the person traveled would have
been 20 km/hr * 2.5 hrs = 50 km. The answer is (e).

Example 4
Question: How many keystrokes are needed to type the num-
bers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c)
1480 (d) 1562 (e) 1788
Incorrect A: To determine the number of keystrokes needed
to type the numbers from 1 to 500, we need to consider the
number of digits in each number. 1. Count the number of
single-digit numbers: There are 9 single-digit numbers (1 to
9), and each requires 1 keystroke. 2. Count the number of
two-digit numbers: There are 90 two-digit numbers (10 to
99), and each requires 2 keystrokes. 3. Count the number
of three-digit numbers: There are 400 three-digit numbers
(100 to 500), and each requires 3 keystrokes. Now, we can
calculate the total number of keystrokes needed to type the
numbers from 1 to 500: 9 * 1 + 90 * 2 + 400 * 3 = 1389.
The correct answer is not among the provided choices. The
closest option is (b) 1392, but the correct answer is 1389
keystrokes.

Errors: 1. Logical/Commonsense Error - The count of three-
digit numbers is incorrect. There are 401 three-digit numbers
from 100 to 500, not 400. This is because 500 is also a three-
digit number, and it is included in the range.
Correct A: There are 9 one-digit numbers from 1 to 9. There
are 90 two-digit numbers from 10 to 99. There are 401 three-
digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392.
The answer is (b).
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PROMPTS FOR ERP – StrategyQA (With Error Categories)
Input Model Output

Example 1
Question: Do hamsters provide food for any animals?
Incorrect A: No, hamsters do not provide food for any ani-
mals because they are often kept as pets and are protected
by humans. They are too small to be considered an adequate
food source for any larger animal and therefore are not part
of the natural food chain.

Errors: 1. Commonsense Error - The reasoning that hamsters
do not provide food for any animals because they are kept as
pets is flawed. Being a pet does not remove an animal from
the food chain. Correct A: Hamsters are prey animals. Prey
are food for predators. Thus, hamsters provide food for some
animals. So the answer is yes.

Example 2
Question: Could Brooke Shields succeed at University of
Pennsylvania?
Incorrect A: Brooke Shields would not be able to succeed
at the University of Pennsylvania because her acting skills
have no relevance to academic success. The University of
Pennsylvania values only mathematical and scientific acu-
men, and given that Brooke Shields is prominent in the arts,
she would not possess the necessary skills to thrive in such
an environment. Furthermore, success at one Ivy League
institution does not translate to another, as each university
has a completely different set of criteria for success.

Errors: 1. Assumption Error - The assertion that Brooke
Shields’ acting skills have no relevance to academic success
is incorrect, as many universities, including the University
of Pennsylvania, have diverse programs where skills from
various disciplines, including the arts, are valued.
Correct A: Brooke Shields went to Princeton University.
Princeton University is about as academically rigorous as
the University of Pennsylvania. Thus, Brooke Shields could
also succeed at the University of Pennsylvania. So the answer
is yes.

Example 3
Question: Yes or no: Hydrogen’s atomic number squared
exceeds number of Spice Girls?
Incorrect A: Yes, hydrogen’s atomic number squared exceeds
the number of Spice Girls because when you square hydro-
gen’s atomic number, which is a gas element, it expands due
to the general properties of gases. As the atomic number
expands, it becomes larger than solid numbers, such as the
number of pERPle in a group like the Spice Girls. Since
gases can fill their containers, the squared atomic number
can be assumed to fill a container larger than the number 5,
which represents the Spice Girls.

Errors: 1. Commonsense Error - The answer is based on a
misunderstanding of the scientific concepts involved. Atomic
numbers do not expand like gases; they are constant and
represent the number of protons in the nucleus of an atom.
Correct A: Hydrogen has an atomic number of 1. 1 squared is
1. There are 5 Spice Girls. Thus, Hydrogen’s atomic number
squared is less than 5. So the answer is no.

Example 4
Question: Yes or no: Is it common to see frost during some
college commencements?
Incorrect A: No, frost is not common during college com-
mencements because commencements are celebrations, and
frost typically does not appear during festive events. PERPle
usually associate celebrations with warmth and joy, so frost
would not be present at such occasions. Additionally, com-
mencements are often held indoors, so even if it were cold
outside, the frost wouldn’t affect the ceremonies.

Errors: 1. Encyclopedic Error - We know that the statement
f̈rost typically does not appear during festive eventsïs in-
correct. Frost can occur during any event, regardless of its
nature.
Correct A: College commencement ceremonies can happen
in December, May, and June. December is in the winter, so
there can be frost. Thus, there could be frost at some com-
mencements. So the answer is yes.
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PROMPTS FOR ERP – StrategyQA (No Error Categories)
Input Model Output

Example 1
Question: Do hamsters provide food for any animals?
Incorrect A: No, hamsters do not provide food for any animals because they
are often kept as pets and are protected by humans. They are too small to be
considered an adequate food source for any larger animal and therefore are not
part of the natural food chain.

Errors: 1. The reasoning that hamsters do not provide food for any animals
because they are kept as pets is flawed. Being a pet does not remove an animal
from the food chain; it only means that specific individuals are cared for by
humans. 2. The claim that hamsters are too small to be considered an adequate
food source is incorrect. Many predators in the wild prey on small mammals,
including hamsters, such as snakes, birds of prey, and larger mammals. 3.
The assertion that hamsters are not part of the natural food chain is false.
Regardless of some being domesticated, as a species, hamsters are naturally
part of various ecosystems and thus have predators that would feed on them.
4. The overall logic ignores the existence of wild hamsters and their role in
the ecosystem, focusing only on domesticated hamsters. Correct A: Hamsters
are prey animals. Prey are food for predators. Thus, hamsters provide food for
some animals. So the answer is yes.

Example 2
Question: Could Brooke Shields succeed at University of Pennsylvania?
Incorrect A: Brooke Shields would not be able to succeed at the University of
Pennsylvania because her acting skills have no relevance to academic success.
The University of Pennsylvania values only mathematical and scientific acu-
men, and given that Brooke Shields is prominent in the arts, she would not
possess the necessary skills to thrive in such an environment. Furthermore,
success at one Ivy League institution does not translate to another, as each
university has a completely different set of criteria for success.

Errors: 1. The assertion that Brooke Shields’ acting skills have no relevance to
academic success is incorrect, as many universities, including the University
of Pennsylvania, have diverse programs where skills from various disciplines,
including the arts, are valued. 2. The claim that the University of Pennsylvania
values only mathematical and scientific acumen is incorrect. As an Ivy League
institution, it offers a range of programs in the humanities, social sciences,
business, and more, not just STEM fields. 3. The idea that success at one
Ivy League school does not translate to another due to completely different
criteria for success is flawed. While each institution is unique, all Ivy League
universities have high academic standards, and the skill set that allows a
person to thrive in one such environment is likely to be beneficial in another.
4. It is not considered to analyze Brooke Shields’ actual academic record,
which demonstrates her capability to succeed in an academically rigorous
environment, thus making it likely she could succeed at a similar institution. 5.
The conclusion drawn from this incorrect logic is flawed, as Brooke Shields
has demonstrated academic prowess by graduating from Princeton University,
and it is reasonable to assume she could succeed at an institution with similar
academic rigor, such as the University of Pennsylvania.
Correct A: Brooke Shields went to Princeton University. Princeton University
is about as academically rigorous as the University of Pennsylvania. Thus,
Brooke Shields could also succeed at the University of Pennsylvania. So the
answer is yes.

Example 3
Question: Yes or no: Hydrogen’s atomic number squared exceeds number of
Spice Girls?
Incorrect A: Yes, hydrogen’s atomic number squared exceeds the number of
Spice Girls because when you square hydrogen’s atomic number, which is a
gas element, it expands due to the general properties of gases. As the atomic
number expands, it becomes larger than solid numbers, such as the number of
pERPle in a group like the Spice Girls. Since gases can fill their containers,
the squared atomic number can be assumed to fill a container larger than the
number 5, which represents the Spice Girls.

Errors: 1. The answer is based on a misunderstanding of the scientific concepts
involved. Atomic numbers do not expand like gases; they are constant and
represent the number of protons in the nucleus of an atom. 2. Squaring an
atomic number is a mathematical operation and has nothing to do with the
physical properties of the element itself. 3. The analogy between the expansion
of gases and the mathematical operation of squaring a number is incorrect.
Mathematical operations do not behave like physical substances. 4. The
implication that a ’solid number’ is somehow fundamentally different from
other numbers in this context is false. Numbers are abstract concepts and do
not have physical states like solid, liquid, or gas.
Correct A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5
Spice Girls. Thus, Hydrogen’s atomic number squared is less than 5. So the
answer is no.

Example 4
Question: Yes or no: Is it common to see frost during some college commence-
ments?
Incorrect A: No, frost is not common during college commencements because
commencements are celebrations, and frost typically does not appear during
festive events. PERPle usually associate celebrations with warmth and joy, so
frost would not be present at such occasions. Additionally, commencements
are often held indoors, so even if it were cold outside, the frost wouldn’t affect
the ceremonies.

Errors: 1. The occurrence of frost is a weather phenomenon and has nothing
to do with human activities or celebrations. 2. Associating warmth and joy
with celebrations does not impact the actual weather conditions during the
time of a commencement ceremony. 3. The answer incorrectly assumes
that all commencement ceremonies are held indoors. While many are held
indoors, some are held outside, and even if the ceremony is indoors, frost
can still be common outside during the event in certain climates. 4. The
incorrect answer overlooks the fact that college commencements in some
regions may occur during colder months like December when frost is indeed
a common occurrence. 5. The answer fails to consider global differences in
weather patterns and seasons, which might lead to the presence of frost during
commencements in different parts of the world.
Correct A: College commencement ceremonies can happen in December, May,
and June. December is in the winter, so there can be frost. Thus, there could
be frost at some commencements. So the answer is yes.
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PROMPTS FOR ERP – CSQA
Input Model Output

Example 1
Question: What do pERPle use to absorb extra ink from a
fountain pen? Answer Choices: (a) shirt pocket (b) calligra-
pher’s hand (c) inkwell (d) desk drawer (e) blotter
Incorrect A: A desk drawer is used to store things, so it can
be used to absorb extra ink. So the answer is (d).

Errors: 1. Commonsense Error - The answer incorrectly
assumes that a desk drawer can absorb ink, which is not
possible. The answer should be an item that can absorb ink,
not store it. Correct A: The answer must be an item that can
absorb ink. Of the above choices, only blotters are used to
absorb ink. So the answer is (e).

Example 2
Question: What home entertainment equipment requires ca-
ble? Answer Choices: (a) radio shack (b) substation (c)
television (d) cabinet
Incorrect A: A substation is a type of home entertainment
equipment that requires cable. So the answer is (b).

Errors: 1. Encyclopedic Error - The answer incorrectly iden-
tifies a substation as a type of home entertainment equipment
that requires cable. A substation is not a home entertainment
equipment. Correct A: The answer must require cable. Of
the above choices, only television requires cable. So the an-
swer is (c).

Example 3
Question: The fox walked from the city into the forest, what
was it looking for? Answer Choices: (a) pretty flowers (b)
hen house (c) natural habitat (d) storybook
Incorrect A: A fox may be looking for chickens to eat, so it
was looking for a hen house. So the answer is (b).

Errors: 1. Assumption Error - The answer incorrectly as-
sumes that the fox was looking for chickens to eat. The
question does not imply that the fox was looking for food.
Correct A: The answer must be something in the forest. Of
the above choices, only natural habitat is in the forest. So the
answer is (c).

Example 4
Question: Sammy wanted to go to where the pERPle were.
Where might he go? Answer Choices: (a) populated areas
(b) race track (c) desert (d) apartment (e) roadblock
Incorrect A: The answer must be a place with a lot of pERPle,
so Sammy would go to the desert because it has a lot of
pERPle. So the answer is (c).

Errors: 1. Self-Contradiction Error - The answer contradicts
itself by stating that Sammy would go to the desert because it
has a lot of pERPle. Deserts typically have very few pERPle,
not a lot. 2. Assumption Error - The answer incorrectly
assumes that the desert has a lot of pERPle, which is not
true. Correct A: The answer must be a place with a lot of
pERPle. Of the above choices, only populated areas have a
lot of pERPle. So the answer is (a).
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Error Type Definition Example

Arithmetic Errors
Misinterpretation Misinterpretation of the ques-

tion’s information or tasks
Prompt: Timothy has 1

4 less
cookies... Model: Timothy has
1
4 as many...

Missed Steps Missing an extra step to com-
pletely solve the problem

Prompt: ...leave your answer in
hours Model: ...answer is 360
minutes.

Logical/Commonsense Logic does not follow natural
laws of the world

To solve this, we use d = r
t ...

Wrong Selection The presented answer is differ-
ent from the calculated one

...comes out to 56, which corre-
sponds to option (A). Therefore,
the answer is (B).

Algebraic/Calculation Arithmetic operations are wrong.
This includes operations in alge-
braic equations

102 + 56 = 160

Commonsense Errors
Self-Contradiction Answer’s reasoning is contradic-

tory
...a very bright environment, so
the dark would be suitable...

Assumption Assuming information that is not
given in the question

Assuming all animals like hot en-
vironments...

Encyclopedic Factual information that the an-
notator knows is wrong

Wallets are a specialized type of
water bottle

Commonsense The answer violates common-
sense and basic understanding of
natural laws

...the sun is as cold as ice cream.

Table 4: Error types used in analysis.
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C Annotation Confidence Values

GSM8K AQuA StrategyQA CSQA

CoT 0.60 0.76 0.75 0.79
ERP 0.63 0.63 0.70 0.80
ERP Classes – 0.69 – –

Table 5: Confidence values for GPT-4 annotation.

D Additional Error Annotations
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Figure 4: Error annotations on arithmetic reasoning datasets.
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Abstract

Evaluating an LLM’s robustness against nu-
merical perturbation is a good way to know
if the LLM actually performs reasoning or
just replicates patterns learned. We propose
a novel method to augment math word prob-
lems (MWPs), producing numerical variations
at a large scale utilizing templates. We also pro-
pose an automated error classification frame-
work for scalable error analysis, distinguishing
calculation errors from reasoning errors. Our
experiments using the methods show LLMs are
weak against numerical variations, suggesting
they are not fully capable of generating valid
reasoning steps, often failing in arithmetic op-
erations.

1 Introduction

Recent LLMs (Achiam et al., 2023; Dubey et al.,
2024; Team et al., 2023, 2024) have reported high
accuracy rates on mathematical reasoning bench-
marks, including GSM8K and MATH (Cobbe et al.,
2021; Hendrycks et al., 2021). However, a natural
concern is that the models just follow surface pat-
terns observed in their pretraining data rather than
performing mathematical reasoning (Levy et al.,
2024; Valmeekam et al., 2024a,b; Jiang et al., 2024;
Guo et al., 2024).

Perturbing superficial elements like names of
individuals or specific numbers does not change
how the problem should be solved. If an LLM can
perform reasoning in solving a math question, it
should give correct answers with similar reasoning
steps for both the original and its perturbed one.
Recent studies (Srivastava et al., 2024; Qian et al.,
2024; Li et al., 2024; Mirzadeh et al., 2024) evalu-
ated models’ robustness against the perturbations
based on this hypothesis.

These studies have the following limitations: a)
the size of the introduced variations was limited,
b) they did not discuss ranges of numerical val-
ues such as digit sizes, and c) they did not distin-

guish reasoning errors and computational errors
and could not explain the source of errors.

To address the limitations, we propose a scalable
method to augment a math word problem (MWP)
dataset by changing numerical values based on tem-
plate questions. To analyze the impact of digit sizes
on models’ mathematical reasoning, we generate
two distinct subsets by controlling the range of the
replaced values, one with questions containing a
small number of digits and the other with questions
containing a large number of digits. We construct a
new dataset, GSM-ALT, generating 2,000 variants
for each original question from GSM8K. Moreover,
we propose a novel framework for automated er-
ror analysis to distinguish two sources of errors:
logical reasoning and numerical calculation.

2 Related Work

Despite strong performance on math benchmarks,
researchers are questioning whether current bench-
marks can adequately evaluate the reasoning abili-
ties of language models.

Levy et al. (2024) expanded questions by adding
non-essential contents, showing that models’ per-
formance decreases when the number of tokens
in a problem increases. PlanBench (Valmeekam
et al., 2024a,b) is a benchmark to evaluate planning
and reasoning capabilities. Their findings suggest
that even the state-of-the-art models still struggle
with this. Srivastava et al. (2024) functionalized the
math questions to create a dynamic dataset, provid-
ing a robust evaluation metric against potential data
leakage to models’ pretraining. Jiang et al. (2024)
demonstrated that the models’ high accuracy de-
pends on a specific token bias, and the models’
reasoning capability depends on recognizing cer-
tain superficial patterns. Berglund et al. (2024) and
Guo et al. (2024) constructed reversal versions of
the original questions and showed that the current
models performed poorly on the reversal ones.
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3 Method

3.1 Question Template Development

To develop a new dataset to assess the model’s
robustness against numerical variations, we manu-
ally generate new variants based on templates (Fig-
ure 1) composed from the questions of an existing
dataset1.

A question from an existing dataset (e.g.,
GSM8K) has tuples of (question Q, solution S).
Q is a natural language text describing a question
to be solved. S contains the process P and the
final answer A. P shows a gold process for solving
the question Q step by step, including equations. A
stores a numerical value as a gold outcome from the
P . Given (Q,S), we first replace all the numerical
values in the Q with variables to get Qabs, which
is the abstracted Q. We apply the same operation
to S and get Sabs. We keep variables consistent be-
tween Qabs and Sabs. Sabs contains Pabs and Aabs,
representing the abstracted P and A. The Qabs and
Sabs constitute a question template T .

3.2 Variant Set Generation

Given a template T of an original question, we
generate variants by replacing the variables in T
with random values. ti denotes a variant generated
from T , consisting of question Qi, solution Si. Si
contains the process Pi and final answer Ai. To
ensure variant validity, we must replace the values
with satisfying some constraints (Figure 1). For
example, an answer should be positive and whole
when it represents the number of objects. Interme-
diate values appearing in the process Pi also need
to satisfy the constraints as well. We manually
define constraints for each template. Variants are
accepted only if they satisfy the constraints.

Suppose models conduct only superficial pattern-
based inference instead of reasoning. In that case,
they perform poorly in solving questions contain-
ing numbers that are rare in their training, such as
large digit numbers. To examine this hypothesis,
we control the replaced values within two ranges
for each question template, to obtain two variant
sets: 1-99 (namely, the Easy variant set) and 1-
9,999 (namely, the Hard variant set).

4 Experimental Settings

We use GSM8K as the base dataset for our experi-
ment. GSM8K consists of MWPs for primary and

1Appendix I discusses automation of this process.

Models GSM8K GSM-ALT
Base Easy Hard

Llama-3-8b-Instruct 0.880 0.646 0.289
Llama-3.1-8b-Instruct 0.908 0.736 0.345
Llama-3.1-70b-Instruct 0.972 0.888 0.521
Mistral-7b-Instruct-v0.3 0.620 0.373 0.194
Deepseek-math-7b-rl 0.964 0.808 0.467
Wizardmath-7b-v1.1 0.868 0.629 0.347

Table 1: Accuracy scores

secondary school students and involves only the
four basic arithmetic operations.

We randomly sample 250 questions from the
GSM8K training set to create 250 question tem-
plates manually. Given the templates, we generate
1,000 hard variants and 1,000 easy variants for each
template. As a result, our new dataset GSM-ALT
consists of the Hard and Easy variant set, each
containing 250,000 variants.

We use accuracy as a primary evaluation metric.
For the original instances from the base dataset
(original GSM8K), we use a standard accuracy.
For generated variants from our dataset, we first
calculate the accuracy for each template variant
set containing 1,000 variants, and then we average
them over all the 250 templates.

The target models to be evaluated include
generic models (Llama-3-8b-Instruct, Llama-3.1-
8b-Instruct, Llama-3.1-70b-Instruct, Mistral-7b-
Instruct-v0.3) and math models that were fine-
tuned on mathematical contents (Deepseekmath-
7b-rl, Wizardmath-7b-v1.1).

Regarding the generation settings, we use greedy
search to maximize the reproducibility and stability
of results. To minimize the influence of few-shot
examples while ensuring that the model can per-
form mathematical reasoning, we adopt the zero-
shot CoT prompting for solution generation and
extract the final answer in the same way as Kojima
et al. (2022) for generic models. As for math mod-
els, we adopt the specifically designed prompts,
which are recommended on their Web pages. The
prompts used in the experiment can be found in
Appendix E.2.

5 Results

Table 1 shows the results of each model’s accuracy
evaluated on the original GSM8K, and our GSM-
ALT. The lowest scores are highlighted in boldface.
GSM-ALT results show scores from the Easy vari-
ant set and the Hard variant set. All models showed
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Fabian is shopping at a nearby supermarket. He wants to buy 5 kg of 
apples and 3 packs of sugar. One kilogram of apples costs $2, and one 
pack of sugar is $1 cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Final Answer 𝑨: 13

Process 𝑷: The apples cost Fabian 5 kg * $2/kg = $<<5*2=10>>10.
One pack of sugar costs $2 - $1 = $<<2-1=1>>1.
So, Fabian will pay $1/pack * 3 = $<<1*3=3>>3 for sugar.
In total, Fabian needs to pay $10 + $3 = $<<10+3=13>>13.

Original Template

Fabian is shopping at a nearby supermarket. He wants to buy x kg of 
apples and y packs of sugar. One kilogram of apples costs $z, and one 
pack of sugar is $p cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Process 𝑷𝒂𝒃𝒔: The apples cost Fabian x kg * $z/kg = $(x*z).
One pack of sugar costs $z - $p = $(z-p).
So, Fabian will pay $(z-p)/pack * y = $((z-p)*y) for sugar.
In total, Fabian needs to pay $(x*z) + $((z-p)*y) = $(x*z + (z-p)*y).

Final Answer 𝑨𝒂𝒃𝒔: x*z + (z-p)*y

z – p > 0Constraints: In this question template, we have the constraint that the 
price of one pack of sugar should be a positive number, thus

Solution 𝑺

Question 𝑸 Question 𝑸𝒂𝒃𝒔

Solution 𝑺𝒂𝒃𝒔

Figure 1: Example of Question Template Development

a significant performance drop in GSM-ALT from
the base GSM8K. The drop was observed in both
the Easy and the Hard variant sets. Even the two
math-specialized models, especially Wizardmath-
7b-v1.1, showed lower scores by more than 0.2 on
the Easy and more than 0.5 on the Hard.

This result shows that numerical variations al-
ways degrade performance in both the Hard and the
Easy variant sets. The fact that the Easy variant set
degrades the performance indicates that the models
are weak even against the numbers whose range is
similar to the base GSM8K. Moreover, we found
clearer score drops from the GSM8K scores in the
Hard variant set than in the Easy variant set, sug-
gesting the computational difficulty affects models’
reasoning.

6 Error Analysis on Solutions

To identify the source of errors, we classify errors
into two types: calculation errors and reasoning
errors. If an incorrect solution only contains fail-
ures in calculations, we call it a calculation error. If
an incorrect solution contains incorrect reasoning
steps, we label it a reasoning error regardless of its
incorrect calculations.

As GSM-ALT will be larger than its original
dataset, manually checking each generated solu-
tion is not practical, and thus, we propose a novel
framework that automatically classifies errors into
calculation or reasoning errors.

6.1 Error Analysis Framework

To classify errors, we first transform a predicted
solution Ŝi into its abstracted form Ŝi

abs, which con-
tains the abstracted P̂ i

abs and Âi
abs. If Ŝi is incorrect

because of a reasoning error, its transformed P̂ i
abs

should contain a reasoning error resulting in incor-
rect Âi

abs. If Ŝi contains a calculation error with
correct reasoning steps, P̂ i

abs and Âi
abs should be

correct. Thus, checking if Âi
abs is correct should

give a proxy to determine the sources of errors.
In our framework, an LLM transforms a Ŝi into

the Ŝi
abs, as shown in Figure 2. Then, we can au-

tomatically check if Âi
abs is correct by comparing

it with its gold answer Aabs from our templates.
An input to the LLM is a model’s predicted solu-
tion Ŝi, its question Qi, and its abstracted ques-
tion Qabs available from our templates. We auxil-
iaryly input the Qabs guiding the LLM to use vari-
ables consistently, inspired by Gaur and Saunshi
(2023). An output from the LLM is an abstracted
solution Ŝi

abs. We show our prompt for this frame-
work in Appendix G. We employ Qwen2-math-72b-
instruct (Yang et al., 2024) for this transformation.

We confirmed the LLM could obtain the ab-
stracted solutions at 90% success rate on average
in our preliminary experiment (Appendix F).

6.2 Results

Table 2 shows the results of error classification by
our framework. Values in the table indicate the pro-
portion of solutions classified as calculation errors
or reasoning errors out of all solutions predicted by
the models. Values in parentheses indicate the pro-
portion of solutions classified as calculation errors
or reasoning errors out of incorrect solutions.

In the Base set, most incorrect solutions are due
to reasoning errors. However, they changes to cal-
culation errors in the Easy and Hard variant sets
except for the Mistral. This trend is especially evi-
dent in the Hard variant set, where more than 69%
come from calculation errors. This result suggests
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Template

Buy X pens of $Y.
How much in total?

Question Solution
Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃!"#

Answer 𝐴!"#

Buy 4 pens of $3.
How much in total?

Question

Variant LLM

Predicted solution

Solution
Each pen costs $3.
So, total expense is 
$3*4=$12.

12

Process 𝑃#$
Answer 𝐴$$

Abstracted solution

Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃#!"#$

Answer 𝐴$!"#$

Match? Reasoning
error

Calculation
error

Yes
No

𝑆"! 𝑆""#$!

𝑄! 𝑄"#$
𝑆"#$

Figure 2: Error classification framework

Base set Easy variant set Hard variant set
calculation err. reasoning err. calculation err. reasoning err. calculation err. reasoning err.

Llama-3-8b-Inst. .024 (20.0%) .096 (80.0%) .185 (52.3%) .169 (47.7%) .491 (69.1%) .220 (30.9%)
Llama-3.1-8b-Inst. .020 (21.7%) .072 (78.3%) .153 (57.9%) .111 (42.1%) .487 (74.4%) .168 (25.6%)
Llama-3.1-70b-Inst. .012 (42.9%) .016 (57.1%) .070 (62.5%) .042 (37.5%) .399 (83.3%) .080 (16.7%)
Mistral-7b-Inst.-v0.3 .096 (25.3%) .284 (74.7%) .279 (44.5%) .348 (55.5%) .406 (50.4%) .400 (49.6%)
Deepseek-math-7b-rl .012 (33.3%) .024 (66.7%) .131 (68.2%) .061 (31.8%) .413 (77.5%) .120 (22.5%)
Wizardmath-7b-v1.1 .032 (24.2%) .100 (75.8%) .255 (68.5%) .117 (31.5%) .489 (74.9%) .164 (25.1%)

Macro avg. .033 (25.0%) .099 (75.0%) .179 (59.0%) .141 (41.0%) .448 (71.6%) .192 (28.4%)

Table 2: Error rate per error type and variant set

that the limited capability of arithmetic calcula-
tion is indeed a major issue of LLMs in solving
mathematical problems rather than the reasoning
capability of generating a valid process of solving
steps when the numerical values in the questions
are large.

Looking at the reasoning errors, all the models
get more errors in both the Easy and Hard variant
sets than the Base set. The same as calculation
errors, the trend is evident in the Hard variant set.
This result suggests that variants also introduce
harmful changes in reasoning steps in addition to
complex calculations, which result in incorrect so-
lutions. Moreover, variants with larger digit sizes
are more likely to introduce errors in reasoning
steps.

Mistral shows different behavior from the oth-
ers because its performance is considerably worse
(Table 2). Mistral is the worst in mathematical
reasoning. Note that a calculation error is consid-
ered only when a solution has valid reasoning steps.
Thus, a lower number of calculation errors does not
necessarily mean Mistral is good at calculation.

7 Conclusion

We proposed a novel method to augment MWP
datasets, which produces a dataset for evaluating

LLMs’ robustness against numerical variations at a
large scale. Using our templates, anyone can easily
generate thousands of variants from one original
question in the GSM8K, which was not possible
with any preceding proposals. We also proposed
an automated error classification framework for
detailed error analysis, distinguishing calculation
errors from reasoning errors.

Using the methods, we empirically showed that
the six LLMs we tested were weak against numeri-
cal variations, especially when the numerical val-
ues were large. This finding is consistent with
previous studies (Srivastava et al., 2024; Qian et al.,
2024; Li et al., 2024; Mirzadeh et al., 2024), but
we confirm it with more variants. Our error analy-
sis uniquely identified that calculation errors con-
tributed to a substantial proportion of incorrect solu-
tions, suggesting LLMs’ incapability of arithmetic
operations is the main source of limited capabilities
in math word problems. Moreover, we found that
LLMs still fail in their reasoning steps, especially
when they encounter variants with larger numer-
ical values. Given our findings, it is still hard to
say that current LLMs are robust against numerical
variations.
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8 Limitations

Variant Generation As we do not manually
check every single variant generated from our tem-
plate, our variants can contain some combinations
of numbers that are not necessarily realistic in our
real-world common sense. For example, there
might be an apple that sells for more than 1,000
dollars. In our experiment, we accepted such vari-
ants. The reasons we made the compromise are:
a) In some question templates, it is hard to gener-
ate enough variants if we strictly follow common
sense. b) We believe that in the background of
mathematical reasoning, models should strictly fol-
low the conditions stated in the questions instead
of common sense. c) Through a check on sam-
pled solutions generated by models, we found that
common sense issues will not affect the model’s
reasoning in most cases.

Another limitation is that the number of possi-
ble variants is limited in some of the templates,
so there are some duplicated variants for such a
template. This limitation is especially evident in
the Easy variant set, where the range of numerical
variation is more limited than the Hard variant set.
We present the full results in the main body of the
paper and put the results of the templates with no
duplications in Appendix A.

Error Analysis Framework When we manually
inspected the generated solutions, we found differ-
ent reasoning patterns depending on the numerical
variations. Moreover, we also observe different
groups of reasoning patterns specific to one of the
sets (Easy or Hard)2.

Our error analysis framework is based on a clas-
sification approach, distinguishing between calcu-
lation errors and reasoning errors. Thus, it can-
not identify what kind of failures happen within
the reasoning errors. We also could not identify
any reasonable clusters and their interpretations be-
cause it required a lot of human resources. It is an
interesting future direction to extend our automatic
error analysis framework, enabling it to cluster and
aggregate the reasoning patterns, mitigating the
limitation of our classification-based analysis.
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A Results of the templates with no
duplications

Models GSM8K GSM-ALT
Base Easy Hard

Llama-3-8b-Instruct 0.840 0.507 0.156
Llama-3.1-8b-Instruct 0.880 0.604 0.193
Llama-3.1-70b-Instruct 0.978 0.819 0.355
Mistral-7b-Instruct-v0.3 0.587 0.238 0.104
Deepseek-math-7b-rl 0.957 0.706 0.307
Wizardmath-7b-v1.1 0.891 0.489 0.223

Table 3: Accuracy scores (for 92 templates without
duplications)

As explained in Section 8, duplicated varia-
tions might be generated for some templates. We
counted the number of duplicated variants gener-
ated per template. We found that most templates
have a small number of duplications, and only 92
templates (in 250 templates) contain no duplicated
variants. To make our conclusions more rigorous,
we removed those templates with duplications and
presented the results of the remaining templates
here (Table 3 and Table 4). According to the fil-
tered results, we could get the same findings and
conclusions as in Section 5 and Section 6.2.

B Dataset Lisence

The original GSM8K was distributed under the
MIT license. We plan to make our templates pub-
licly available under the MIT License.

C Computational Environment

All of our experiments were conducted on a GPU
server implementing AMD EPYC 9654 2.4GHz
× 2 Socket, 768GiB RAM, NVIDIA H100 SXM5
94GB HBM2e × 4. Our project’s total hours spent
on the server were approximately 480 hours, in-
cluding preliminary experiments.

D Large Language Models

We list all of the LLMs used in our experiments.
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Base set Easy variant set Hard variant set
calculation err. reasoning err. calculation err. reasoning err. calculation err. reasoning err.

Llama-3-8b-Inst. .033 (20.0%) .130 (80.0%) .279 (56.6%) .214 (43.4%) .573 (67.9%) .271 (32.1%)
Llama-3.1-8b-Inst. .033 (27.3%) .087 (72.7%) .252 (63.6%) .144 (36.4%) .601 (74.5%) .206 (25.5%)
Llama-3.1-70b-Inst. .000 (00.0%) .022 (100.0%) .125 (69.1%) .056 (30.9%) .516 (80.0%) .129 (20.0%)
Mistral-7b-Inst.-v0.3 .098 (23.7%) .315 (76.3%) .385 (50.5%) .377 (49.5%) .477 (53.2%) .419 (46.8%)
Deepseek-math-7b-rl .011 (25.0%) .033 (75.0%) .217 (73.8%) .077 (26.2%) .529 (76.4%) .163 (23.6%)
Wizardmath-7b-v1.1 .043 (40.0%) .065 (60.0%) .383 (75.0%) .128 (25.0%) .586 (75.4%) .191 (24.6%)

Macro avg. .036 (24.8%) .109 (75.2%) .274 (62.3%) .166 (37.7%) .547 (70.4%) .230 (29.6%)

Table 4: Error rate per error type and variant set (for 92 templates without duplications)

Generic LLMs

• Llama-3-8b-Instruct
https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

• Llama-3.1-8b-Instruct
https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

• Llama-3.1-70b-Instruct
https://huggingface.co/meta-llama/
Llama-3.1-70B-Instruct

• Mistral-7b-Instruct-v0.3
https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

LLMs for mathematical domain

• Deepseekmath-7b-rl
https://huggingface.co/deepseek-ai/
deepseek-math-7b-rl

• Wizardmath-7b-v1.1
https://huggingface.co/WizardLMTeam/
WizardMath-7B-V1.1

E Prompt Design

E.1 Zero-shot or Few-shot?
We used zero-shot CoT prompting to generate the
solutions. The reasons are as follows: a) In our
preliminary experiments, we found that few-shot
examples do not necessarily improve the model’s
performance on mathematical reasoning, some-
times even degrading the accuracy. This might
be because today’s LLMs have already been suf-
ficiently trained on similar MWPs, so providing
random few-shot examples is just a kind of con-
straint and hinders the model’s reasoning (Tam
et al., 2024). b)The influence of few-shot exam-
ples on the model’s reasoning is difficult to assess.
For example, if two models perform differently

Generation Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.

Figure 3: The prompt for generic models (generating
solutions)

Answer Extraction Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.
ASSISTANT: {model’s completion}

USER: Therefore, what is the final answer? Only write the final 
answer without any texts.

Figure 4: The prompt for generic models (extracting
final answer)

under the same prompt and few-shot examples, it
might be because this set of examples works for one
model but not for the other. Therefore, we consider
that few-shot CoT is not suitable for evaluation.

E.2 Prompts used for main experiments
For the generic LLMs, we developed prompts for
solution generation (Figure 3) and answer extrac-
tion (Figre 4) based on the prompts used in Kojima
et al. (2022).

For Deepseekmath-7b-rl and Wizardmath-7b-
v1.1, we employed prompts based on templates
suggested on their web pages. Figure 5 and 6 show
them. In extracting answers from solutions gen-
erated by the two math models, we could simply
use regular expressions since they always generate
solutions in a fixed format.

F Performance of Transformation to
Abstracted Solutions

To validate the performance of our error analysis
framework, we had to know how well Qwen2-math-
72b-Instruct could correctly transform a model’s
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Error Types OverallCalculation Reasoning

Llama-3-8b-Instruct 93% (26/28) 68% (15/22) 82% (41/50)
Llama-3.1-8b-Instruct 95% (38/40) 80% (8/10) 92% (46/50)
Llama-3.1-70b-Instruct 97% (38/39) 91% (10/11) 96% (48/50)
Mistral-7b-Instruct-v0.3 100% (23/23) 59% (16/27) 78% (39/50)
Deepseek-math-7b-rl 97% (38/39) 91% (10/11) 96% (48/50)
Wizardmath-7b-v1.1 97% (37/38) 83% (10/12) 94% (47/50)

Macro avg. 96% 79% 90%

Table 5: Abstracted solution transformation success rate

Generation Prompt – Deepseekmath-7b-rl

USER: {question} 
Please reason step by step and put your final answer within 
\boxed{}.

Figure 5: The prompt for Deepseekmath-7b-rl (geneart-
ing solutions)

Generation Prompt – Wizardmath-7b-v1.1

USER: Below is an instruction that describes a task. Write a 
response that appropriately completes the request.
### Instruction:
{question}
### Response: 
Let's think step by step.

Figure 6: The prompt for Wizardmath-7b-v1.1 (generat-
ing solutions)

solution into an abstracted form.
For this preliminary experiment, we constructed

a small dataset for each LLM we employed in our
main experiment (Section 4). For each model, we
randomly sampled 50 incorrect solutions obtained
from the results of the main experiment and man-
ually categorized them into calculation errors or
reasoning errors. For the evaluation, we manually
checked whether the LLM could correctly trans-
form the models’ original solutions into abstracted
forms according to the following criteria: a) the
abstracted process exactly reflects the reasoning
process in the original solution, b) the variable
assignment in the abstracted solution should be
correct, c) the abstracted final answer correctly rep-
resents the abstracted process.

The results are shown in Table 5. The table
shows the success rate (percentages) of Qwen2-
math-72b-Instruct’s transformation on solutions
predicted by different models in terms of the error
type we manually categorized. Fractions in paren-
theses indicate the specific number we checked (the
numerator is the number of successful transforma-
tions, and the denominator is the total number). It

Transformation Prompt

SYSTEM: Given the numeric version of a math question and its solution as 
references, you are a helpful assistant designed to copy the numeric solution to get 
a solution to the symbolic version of that question.
Instructions:
- Symbolic solution should strictly copy the numeric solution no matter whether it 
is correct or not.
- After completion of the solution, output the final answer with "###". The final 
answer should be a sole mathematical expression represented by variables appear 
in the symbolic question.
- Mathematical expression in the symbolic solution should not be represented in 
the format of LaTeX.

{few-shot examples}

USER: {target solution}

Figure 7: The prompt for solution transformation

demonstrates that Qwen2-math-72b-Instruct can
correctly obtain symbolic solutions and answers
from 90% of the instances overall. Based on the
results, we consider our method to be reasonably
valid for our purpose.

G Prompt Design for Error Analysis
Framework

Figure 7 presents the prompt used to transform a
predicted solution into the abstracted form.

H Case Study in Error Analysis

Through our manual inspection of the generated so-
lutions for variants generated from the template, we
identified that there were groups of reasoning pat-
terns due to numerical variations. Figure 8 shows
an example of the reasoning patterns we observed.
This example is taken from outputs from Llama-
3.1-70b-Instruct. The solutions in the figure show
the different typical reasoning patterns identified
by the underlined fonts. The performance of the
easy variants generated from the same template of
the example was 66.6% of accuracy (666 correct
solutions), and there were 334 incorrect solutions
consisting of 286 calculation errors and 48 reason-
ing errors. For its Hard set variants, accuracy was
at 0%. Its incorrect solutions consist of 145 calcu-
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Question: At a laundromat, it costs $50 for a washer and a quarter for every 3 minutes in the dryer. Samantha does 23 
loads of laundry in the wash and then divides all the washed clothes equally into 21 separate dryers. If she lets the dryers 
run for 28 minutes each, how much does she spend altogether?

Process: To find the total cost, let's break it down into steps.
1. First, we need to find the cost of washing 23 loads of laundry. Since it costs $50 for a washer, the total cost for 
washing is 23 * $50.
Total washing cost = 23 * $50 = $1150

2. Next, we need to find the cost of drying the clothes. Since Samantha divides the clothes
equally into 21 separate dryers, each dryer will have 23 / 21 loads. However, the cost of drying is based on the number 
of dryers and the time they run, not the number of loads. So, we'll focus on the number of dryers and the time. Since 
there are 21 dryers, and each dryer runs for 28 minutes, we need to find the total number of 3-minute intervals for all the 
dryers. We can do this by dividing the total minutes by 3.
Total minutes = 21 dryers * 28 minutes = 588 minutes
Total 3-minute intervals = 588 minutes / 3 = 196 intervals
Since it costs a quarter for every 3 minutes, we multiply the total intervals by the cost per
interval.
Total drying cost = 196 intervals * $0.25 = $49

3. Finally, we add the total washing cost and the total drying cost to find the overall cost. Total cost = Total washing cost
+ Total drying cost
Total cost = $1150 + $49
Total cost = $1199
So, Samantha spends $1199 altogether.

Example of Variant from Easy set

Example of Variant from Hard set
Question: At a laundromat, it costs $5274 for a washer and a quarter for every 2 minutes in the dryer. Samantha does 
8762 loads of laundry in the wash and then divides all the washed clothes equally into 8968 separate dryers. If she lets 
the dryers run for 8314 minutes each, how much does she spend altogether?

Process: To find the total cost, we need to calculate the cost of the washer and the cost of the dryer separately, then add 
them together.
1. The cost of the washer: Since Samantha does 8762 loads of laundry, and it costs $5274 for a washer, we can assume 
that the cost of the washer is a one-time payment. So, the cost of the washer is $5274.

2. The cost of the dryer: Samantha divides the clothes into 8968 separate dryers. Each dryer runs for 8314 minutes. The 
cost of the dryer is a quarter for every 2 minutes.

First, let's find the total number of minutes for all dryers:
8968 dryers * 8314 minutes = 74,555,072 minutes

Since the cost is a quarter for every 2 minutes, we need to divide the total minutes by 2:
74,555,072 minutes / 2 = 37,277,536 quarters

Now, let's convert the quarters to dollars (1 dollar = 4 quarters):
37,277,536 quarters / 4 = 9,319,384 dollars

Now, we add the cost of the washer and the cost of the dryer:
$5274 + $9,319,384 = $9,324,658
So, Samantha spends $9,324,658 altogether

Figure 8: Example of typical patterns in evaluation datasets

lation errors and 855 reasoning errors. The variants
of the template in the Hard variant set cause a clear
reasoning degradation.

We observed similar phenomena across other
models besides Llama-3.1-70b-Instruct. We hy-
pothesize that the reason why numerical variation
could cause such changes in reasoning patterns was
in the sizes of digits. As variants in the Hard vari-

ant set have more digits, LLMs get questions with
more tokens, which makes their output different.

I Necessity of Manual Operations in
Creating Question Templates

Although we have considered using regular expres-
sions and rule-based approaches to automate tem-
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plate creation, they have the following problems:
a) Not all numerical values in the original instance
are “symbolizable.” Some numbers in the instance
are specific; altering them would make the instance
ill-defined. b) As shown in Figure 1, when generat-
ing the template, it is necessary to keep the usage
of variable consistent between Qabs and Sabs. It is
hard to catch the relationship with rule-based re-
placement and requires human insight. Therefore,
we created the question templates manually.
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