
The Sixth Workshop on Insights from Negative Results in NLP, pages 24–33
May 4, 2025 ©2025 Association for Computational Linguistics

Corrective In-Context Learning:
Evaluating Self-Correction in Large Language Models

Mario Sanz-Guerrero1 and Katharina von der Wense1,2
1Johannes Gutenberg University Mainz, Germany

2University of Colorado Boulder, USA
{msanzgue, k.vonderwense}@uni-mainz.de

Abstract
In-context learning (ICL) has transformed the
use of large language models (LLMs) for NLP
tasks, enabling few-shot learning by condition-
ing on labeled examples without finetuning.
Despite its effectiveness, ICL is prone to errors,
especially for challenging examples. With the
goal of improving the performance of ICL, we
propose corrective in-context learning (CICL),
an approach that incorporates a model’s incor-
rect predictions alongside ground truth correc-
tions into the prompt, aiming to enhance classi-
fication accuracy through self-correction. How-
ever, contrary to our hypothesis, extensive ex-
periments on text classification tasks demon-
strate that CICL consistently underperforms
standard ICL, with performance degrading as
the proportion of corrections in the prompt in-
creases. Our findings indicate that CICL intro-
duces confusion by disrupting the model’s task
understanding, rather than refining its predic-
tions. Additionally, we observe that presenting
harder examples in standard ICL does not im-
prove performance, suggesting that example
difficulty alone may not be a reliable criterion
for effective selection. By presenting these neg-
ative results, we provide important insights into
the limitations of self-corrective mechanisms in
LLMs and offer directions for future research.1

1 Introduction

In-context learning (ICL; Brown et al., 2020) has
emerged as a powerful paradigm for leveraging
large language models (LLMs) for various NLP
tasks, including text classification. Unlike tradi-
tional approaches that require finetuning on task-
specific data, ICL allows models to make pre-
dictions based on a small number of examples
presented in the prompt, effectively transforming
LLMs into flexible tools for few-shot learning.
This paradigm has demonstrated remarkable perfor-
mance in numerous scenarios, often approaching

1Code and data are available at https://github.com/
mario-sanz/CICL.

Text: Oh, great, another Monday.
Predicted label: positive
Correct label: negative

Text: This is the worst movie ever!
Predicted label: negative
Correct label: negative

Text: I've seen worse.
Predicted label: negative
Correct label:

Corrective In-Context
Learning

Text: Oh, great, another
Monday.
Label: negative

Text: This is the worst
movie ever!
Label: negative

Text: I've seen worse.
Label:

Standard In-
Context Learning

Figure 1: CICL prompt example. The model is tasked
with predicting the correct label based on its own pre-
diction, using examples that include both the prediction
and its correction.

or surpassing finetuned models on specific tasks
(Brown et al., 2020).

Although effective, ICL is susceptible to errors,
particularly with difficult examples. We set out
to further improve ICL by introducing a novel ex-
tension of it, which we term corrective in-context
learning (CICL). Our approach is based on the idea
that providing the model with its initial predictions
alongside the correct ground truth labels can serve
as a feedback mechanism, enabling the model to
refine its understanding and improve subsequent
predictions.

CICL builds on the intuition that LLMs, when
exposed to their own errors in conjunction with
the correct answers, might learn from these mis-
takes within the confines of a single interaction.
For instance, if a model predicts “positive” for a
sentence that is actually “negative,” presenting this
prediction–error pair could prompt the model to
recalibrate its internal representations and make
better-informed predictions for similar inputs.

However, our empirical evaluation reveals a dif-
ferent story. While the approach is theoretically
promising, our experiments show that CICL fails
to deliver the anticipated improvements. In some
cases, performance even deteriorates compared to
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standard ICL. This underscores the complexity of
self-correction in LLMs and the importance of rig-
orously evaluating intuitive extensions to ICL.

In this paper, we present a detailed investigation
of CICL for text classification tasks. We outline
our methodology, describe the experimental setup,
and analyze the results, focusing on understand-
ing why this approach falls short of expectations.
By sharing these negative results, we aim to con-
tribute to the growing discourse on the limitations
of LLMs and to inspire future research to develop
more effective self-correction mechanisms.

2 Related Work

In-Context Learning Introduced by Brown et al.
(2020), ICL enables LLMs to perform tasks via
few-shot prompting without parameter updates.
Subsequent work has explored factors influencing
ICL performance, including example selection (Liu
et al., 2022) and ordering (Lu et al., 2022), raising
questions about its robustness to errors or ambigu-
ous examples. To enhance ICL, prompt tuning
methods (Lester et al., 2021; Li and Liang, 2021)
optimize soft prompts, improving adaptation while
maintaining frozen model parameters, bridging the
gap between ICL and finetuning.

Self-Correction in LLMs Prior work ex-
plores self-correction through iterative refinement
(Madaan et al., 2023), finetuning on self-generated
data (Huang et al., 2023), or reinforcement learning
(Kumar et al., 2024). These approaches, however,
require multi-step processes, parameter updates,
or external rewards. In contrast, we investigate
whether LLMs can self-correct in-context by di-
rectly incorporating corrections into the prompt.
Closest to our setting, Monea et al. (2024) show
that LLMs struggle to improve from binary reward
signals (correct/incorrect) in ICL scenarios. While
their feedback is implicit, we extend this observa-
tion to explicit ground truth corrections and simi-
larly find degraded performance.

3 Methodology

3.1 Standard In-Context Learning

ICL leverages the few-shot capabilities of LLMs by
conditioning predictions on a prompt constructed
from a small set of labeled examples. Formally,
given a dataset of examples {xi, yi}, where xi rep-
resents a text input and yi is a class label verbalized
as one of the possible labels in the set L, the model

M predicts the label for a query x using a context
prompt Ck of k examples:

ŷ = argmax
y∈L

PM (y | Ck, x) (1)

ICL operates under the assumption that the few-
shot examples encapsulate task-relevant patterns,
allowing the model to generalize to unseen queries.
This paradigm has demonstrated remarkable versa-
tility and competitive performance across numer-
ous tasks and datasets (Brown et al., 2020). How-
ever, its effectiveness is heavily dependent on the
quality and representativeness of the examples in
the prompt (Liu et al., 2022). Furthermore, biases
in the selection or ordering of examples, as well as
the inherent biases of the model, can significantly
influence predictions, posing challenges for consis-
tent and reliable performance (Zhao et al., 2021).

In this study, standard ICL is the baseline against
which we compare the proposed CICL approach,
providing insights into whether iterative feedback
mechanisms can address some of these challenges.
The structure of the ICL prompt, along with an
example, is provided in Appendix B.1.

3.2 Corrective In-Context Learning

CICL extends the standard ICL paradigm by intro-
ducing a second round of predictions informed by
feedback from the first round. The algorithm is as
follows:

1. Initial prediction: A prompt is constructed
from k randomly selected examples from the
training data, each consisting of an input–
output pair (xi, yi), for i ∈ 1, ..., k. This
prompt is used to generate prediction ŷ for
the test input x via standard ICL.

2. Feedback incorporation: We perform ICL for
the k examples selected in Step 1, getting
the model’s predictions ŷi for each example
(xi, yi), with the remaining k − 1 examples
acting as few-shot examples. Using these
predictions, a feedback-augmented prompt
(CICL) is constructed from triplets of the form
(xi, ŷi, yi), where xi is the input text, ŷi is the
predicted label, and yi is the true label. These
triplets explicitly highlight the model’s errors
(when ŷi ̸= yi) and correct predictions (when
ŷi = yi), providing the model with a context
to learn from its earlier outputs.
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Figure 2: Diagram of the CICL methodology. For each test instance x, k few-shot examples (x1, y1), . . . , (xk, yk)
are selected. Standard ICL generates predictions ŷ1, . . . , ŷk for these examples, which are used to build the CICL
prompt. This, combined with the initial ICL prediction ŷ for x, allows the model to predict the corrected label ỹ.

3. Corrective prediction: To perform the CICL
prediction for the input x, the feedback
prompt built in Step 2 is expanded to include
x along with its initial prediction ŷ (obtained
in Step 1). The task for the model is then to
predict a corrected label ỹ for x, leveraging
the feedback triplets to generalize how errors
were corrected in the few-shot examples.

This iterative setup allows the model to “see” its
own mistakes and explicitly incorporate the correct
answers during the second round, hypothesizing
that this feedback mechanism can improve its per-
formance. Figure 2 shows a diagram of the pro-
posed methodology for CICL, and the structure
of the CICL prompt, along with an example, is
provided in Appendix B.2.

4 Experiments

4.1 Experimental Setup
Datasets We evaluate CICL using 17 text classi-
fication datasets widely adopted in previous work.
These datasets span a variety of tasks, including
sentiment analysis, topic classification, and more.
Further details are provided in Appendix A.

Models To explore the effectiveness of CICL
across different models and ensure findings are not
model-specific, we use four recent LLMs: Llama-
3.1 (8B; Dubey et al., 2024), GPT-J (6B; Wang
and Komatsuzaki, 2021), Mistral 7B v0.3 (Jiang
et al., 2023) and Qwen2.5 (7B; Qwen et al., 2024).
The choice of these relatively small-sized models
allows for extensive experimentation while main-
taining computational feasibility. However, pre-
liminary experiments with the larger 70B version

of Llama-3.1 yielded similar results to the smaller
versions.

Implementation Details Following prior work
on ICL for text classification, we use simple and
unified templates for all datasets and do not include
task instructions, keeping human engineering to a
minimal level (Min et al., 2022; Fei et al., 2023).
Also following prior work, we set k = 8 few-shot
examples, which enables incorporating a fair num-
ber of corrections in the prompt while keeping com-
putational costs manageable. Preliminary experi-
ments with larger k values showed similar results,
so we stick with k = 8 for simplicity.

To assess how CICL performs with different lev-
els of corrected examples, we introduce varying
proportions of corrected examples in the CICL
prompt, ranging from 0% (no corrected examples)
to 100% (all examples corrected) in increments of
25%. Each proportion determines how many of the
k examples in the CICL prompt are corrected (i.e.,
their initial ICL prediction was incorrect). This
approach allows us to evaluate how the ratio of
corrected feedback influences the model’s ability
to refine its predictions. To minimize the impact
of randomness in the results, every experimental
configuration is run using 5 different random seeds.

Metric We compare standard ICL and CICL per-
formance using macro-F1 score, which accounts
for class imbalance.

4.2 Results

Figure 3 compares the performance of standard
ICL and CICL across different models. The re-
sults present the mean and standard deviation of
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(a) Llama-3.1 (8B). (b) GPT-J (6B). (c) Mistral 7B v0.3. (d) Qwen2.5 (7B).

Figure 3: Mean Macro-F1 (± Std Dev) across all datasets for each model, comparing standard ICL (blue) and CICL
(orange). As the proportion of corrected examples increases (x-axis), the performance of CICL decreases (y-axis).

Macro-F1 scores across all datasets, evaluated for
varying proportions of corrected examples in CICL.
Detailed results are available in Appendix C.

Contrary to our hypothesis, CICL consistently
underperforms standard ICL. When the proportion
of corrected examples is 0%—or even 25% for
some models—both methods yield equivalent per-
formance, as the “corrective” task essentially re-
duces to replicating the previously predicted label.
However, as the proportion of corrected examples
increases, CICL’s performance deteriorates further,
highlighting the model’s struggle to integrate feed-
back from corrected examples effectively.

Our findings suggest that the corrective nature
of CICL introduces confusion rather than guiding
the model towards improved predictions. Swap-
ping (correcting) labels in the few-shot examples
appears to disrupt the model’s internal represen-
tations, making it harder to generalize and refine
predictions, especially when encountering harder
examples.

4.3 Statistical Analyses

To assess the significance of these performance
differences, we conduct statistical tests. A Shapiro-
Wilk test for normality reveals no statistical evi-
dence supporting normality in the distributions of
ICL and CICL results. Therefore, we employ non-
parametric tests to evaluate the impact of correction
proportions on performance.

A Wilcoxon signed-rank test is used to determine
the threshold at which ICL becomes statistically su-
perior to CICL. As shown in Table 1, from a correc-
tion proportion of 25% onward, ICL demonstrates
statistically significant superiority over CICL, rein-
forcing our conclusion that CICL’s self-corrective
mechanism is ineffective.

Additionally, a Kruskal-Wallis test is conducted
to examine variation in performance across cor-
rection proportions (for CICL) and example con-
ditions (for ICL). Table 2 highlights significant

Corrected Proportion Statistic P-value

0% 178.00 0.7916
25% 9453.00 4e-03*
50% 20439.00 7e-04*
75% 13553.00 1e-16*
100% 984.00 9e-54*

Table 1: Wilcoxon signed-rank test results for different
correction proportions. * indicates significant differ-
ences at the 0.01 level.

Method Statistic P-value

ICL 12.18 0.02
CICL 677.54 3e-145*

Table 2: Kruskal-Wallis test results for ICL and CICL.
* indicates significant differences at the 0.01 level.

variation in CICL performance as the proportion of
corrected examples increases, whereas ICL shows
minimal variation across differing example con-
ditions. These results underscore the robustness
of ICL across diverse contexts, contrasting with
CICL’s instability under varying correction levels.

5 Impact of Harder Examples on ICL

Although not the primary objective of this study,
an intriguing finding emerges from our results. As
shown in Figure 3, increasing the proportion of
incorrectly classified examples (i.e., higher “cor-
rected proportions”) in the few-shot context does
not improve the performance of standard ICL. In
fact, for some models, performance slightly de-
clines as the corrected proportion increases.

Intuitively, one might expect that presenting
the model with harder examples—those it initially
misclassified—would enhance performance. The
rationale is that such examples could help refine the
model’s decision boundaries and establish clearer
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classification thresholds, improving overall accu-
racy. However, our results do not support this.

When examining the performance trends of stan-
dard ICL (blue lines in Figure 3), we observe that
including harder examples in the few-shot context
fails to yield any consistent improvement. In some
cases, performance remains unchanged or even de-
creases slightly. Furthermore, statistical analysis
using the Kruskal-Wallis test reveals no significant
variation in standard ICL performance across differ-
ent corrected proportions (Table 2, first line). These
findings suggest that simply exposing the model to
harder examples does not provide the anticipated
benefits for few-shot classification tasks.

This observation warrants further investigation
into how example difficulty interacts with ICL, par-
ticularly in understanding why harder examples
fail to contribute to improved model calibration or
decision-making in this context.

6 Conclusion

In this paper, we introduced CICL, a novel ap-
proach aimed at leveraging incorrect model pre-
dictions to improve performance through self-
correction. By including misclassified examples
along with their correct labels in the prompt, CICL
sought to refine the model’s predictions in text clas-
sification tasks. However, contrary to our initial hy-
pothesis, CICL consistently underperformed ICL
across all models and datasets. Our findings re-
vealed that the corrective nature of CICL often led
to confusion rather than improvement. The swap-
ping of labels in the few-shot examples disrupted
the model’s understanding of the task, resulting
in degraded performance as the proportion of cor-
rected examples increased.

Additionally, we explored an auxiliary finding
regarding the impact of harder few-shot examples
on standard ICL performance. Despite the expecta-
tion that presenting harder, misclassified examples
could enhance the model’s decision-making, our
results showed no significant improvement across
varying proportions of examples that required cor-
rection. This challenges the assumption that harder
examples inherently contribute to better generaliza-
tion in few-shot learning.

Overall, our study highlights the challenges
of incorporating self-corrective mechanisms into
LLMs through ICL and demonstrates that harder
examples are not necessarily more useful than eas-
ier ones in standard ICL. These findings provide

valuable insights for the development of more ro-
bust and effective few-shot learning methods with
LLMs.

Limitations

Despite the intuitive appeal of CICL, our findings
indicate that it performs worse than standard ICL
for text classification tasks. Several factors may
contribute to this result. First, our experiments are
restricted to small-scale open-source LLMs due to
computational constraints. Larger models may ex-
hibit stronger reasoning and adaptation capabilities,
potentially improving CICL performance. While
preliminary experiments with the 70B version of
Llama-3.1 yielded similar results to the smaller
models, the impact of even larger models remains
an open question. Second, CICL may be more
effective for tasks requiring multi-step reasoning,
e.g., via chain-of-thought prompting, where the
model can benefit from explicit corrective feed-
back to refine intermediate steps. Third, LLMs are
highly sensitive to prompt design. It is possible
that alternative prompt formats or different ways of
structuring corrective feedback could lead to better
results.
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A Datasets Details

Our experiments utilize 17 datasets spanning vari-
ous text classification tasks, all of which are com-
monly used in prior research (Min et al., 2022; Lu
et al., 2022; Zhao et al., 2021; Fei et al., 2023).
All datasets are accessed through the HuggingFace
Datasets library (Lhoest et al., 2021). For eval-
uation, we use the provided test sets when avail-
able. If no test set is provided, we create a strati-
fied development set by sampling from the training
data, ensuring the class distribution is preserved.
Detailed dataset information, including task type,
class counts, and data distribution, is summarized
in Table 3.

As shown in Table 3, most datasets are imbal-
anced. To account for this, we use macro F1 as the
evaluation metric, as it equally weighs all classes
and ensures a fair assessment of the model’s perfor-
mance across both frequent and rare classes.

B Prompt Formats

B.1 In-Context Learning Prompt

Text: {example_1}
Label: {ground_truth_1}

Text: {example_2}
Label: {ground_truth_2}
...
Text: {example_k}
Label: {ground_truth_k}

Text: {input_text}
Label:

Figure 4: Prompt format for standard ICL, showing
ground truth labels for k examples.

Example

Below is an example of a standard ICL prompt for
the TREC dataset with k = 8 few-shot examples.

Text: What is the name of the tallest
mountain in the world?
Label: location

Text: How many eyes does a bat have?
Label: numeric

Text: What does Ms., Miss, and Mrs. stand
for?
Label: abbreviation

Text: What does IQ stand for?
Label: abbreviation

Text: What were the achievements of
Richard Nixon?
Label: entity

Text: What is the C programming language?
Label: description

Text: Who was considered to be the father
of psychology?
Label: human

Text: What are the top five oil-producing
countries in the world?
Label: location

Text: What are the stars made of?
Label:
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Dataset # Classes Balanced

Sentiment and topic classification
SST-2 (Socher et al., 2013) 2 ✓

SST-5 (Socher et al., 2013) 5 ✗

MR (Pang and Lee, 2005) 2 ✓

CR (Hu and Liu, 2004) 2 ✓

financial_phrasebank (Malo et al., 2014) 3 ✗

poem_sentiment (Sheng and Uthus, 2020) 4 ✗

Subj (Pang and Lee, 2004) 2 ✗

AG News (Zhang et al., 2015) 4 ✓

DBpedia (Zhang et al., 2015) 14 ✓

TREC (Voorhees and Tice, 2000) 6 ✗

Detection
tweet_eval-hate (Barbieri et al., 2020) 2 ✗

tweet_eval-irony (Barbieri et al., 2020) 2 ✗

tweet_eval-offensive (Barbieri et al., 2020) 2 ✗

tweet_eval-stance_atheism (Barbieri et al., 2020) 3 ✗

tweet_eval-stance_feminist (Barbieri et al., 2020) 3 ✗

hate_speech18 (Barbieri et al., 2020) 2 ✗

ethos-binary (Barbieri et al., 2020) 2 ✗

Table 3: Full dataset information.

B.2 Corrective In-Context Learning Prompt

Text: {example_1}
Predicted label: {predicted_label_1}
Correct label: {ground_truth_1}

Text: {example_2}
Predicted label: {predicted_label_2}
Correct label: {ground_truth_2}
...
Text: {example_k}
Predicted label: {predicted_label_k}
Correct label: {ground_truth_k}

Text: {input_text}
Predicted label: {predicted_label}
Correct label:

Figure 5: Prompt format for CICL, showing predicted
and ground truth (“correct”) labels for k examples.

Example
Below is an example of a CICL prompt for the
TREC dataset. There are k = 8 few-shot examples,
with 50% being corrected examples. This means
4 examples are correctly predicted by ICL (in
positions 2, 4, 6, and 7), and 4 are corrected
examples (in positions 1, 3, 5, and 8). The final

instance represents the current input, where ICL
predicted the label “description.” The task of the
LLM is to predict the correct label based on the
input text, the predicted label, and the corrections
made in previous examples. The true label for this
instance is “entity,” and the goal of CICL is to
make this correction.

Text: What is the name of the tallest
mountain in the world?
Predicted label: entity
Correct label: location

Text: How many eyes does a bat have?
Predicted label: numeric
Correct label: numeric

Text: What does Ms., Miss, and Mrs. stand
for?
Predicted label: description
Correct label: abbreviation

Text: What does IQ stand for?
Predicted label: abbreviation
Correct label: abbreviation

Text: What were the achievements of
Richard Nixon?
Predicted label: human
Correct label: entity
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Text: What is the C programming language?
Predicted label: description
Correct label: description

Text: Who was considered to be the father
of psychology?
Predicted label: human
Correct label: human

Text: What are the top five oil-producing
countries in the world?
Predicted label: numeric
Correct label: location

Text: What are the stars made of?
Predicted label: description
Correct label:

C Detailed Results

Table 4 presents the detailed results for all com-
binations of models, datasets, corrected example
proportions, and approaches (ICL and CICL). Each
configuration is evaluated five times using differ-
ent random seeds to ensure diverse selections of
examples, minimizing the impact of randomness
on the results. The table reports the mean and stan-
dard deviation for each configuration, providing
a comprehensive view of the performance across
variations.
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Dataset
Corrected
Proportion

Llama-3.1 Mistral 7B Qwen2.5 GPT-J
ICL CICL ICL CICL ICL CICL ICL CICL

AG News

0% 87.31.6 87.31.6 85.51.0 85.51.0 83.41.7 83.61.6 73.94.4 73.94.4
25% 83.74.0 84.03.6 86.61.0 86.50.7 85.31.1 85.71.2 74.20.8 74.20.8
50% 84.13.4 83.04.4 85.02.3 76.413.0 83.22.4 82.02.4 73.97.3 70.57.8
75% 68.720.2 56.024.0 80.93.9 47.622.8 80.06.1 70.48.7 75.92.4 47.67.3
100% 83.62.8 13.52.1 85.03.2 12.22.2 85.11.9 15.35.1 77.13.8 14.62.0

CR

0% 93.20.5 93.20.5 93.20.4 93.20.4 93.20.5 93.10.5 87.62.0 87.62.0
25% 92.01.3 91.81.5 92.00.7 91.50.7 91.81.8 92.00.8 87.82.7 84.87.9
50% 93.50.7 83.67.3 91.71.9 89.51.0 91.41.4 91.50.9 87.12.3 84.55.4
75% 91.11.9 55.718.9 87.26.7 71.814.1 89.25.7 75.318.2 84.35.6 58.220.3
100% 91.11.0 8.00.8 91.41.0 7.80.6 84.37.5 14.95.3 86.25.8 11.94.4

DBpedia

0% 85.61.4 85.61.4 82.62.4 82.62.4 75.72.2 75.82.1 77.41.0 77.41.0
25% 84.03.0 84.22.9 80.70.9 81.01.3 75.51.4 76.91.3 75.11.6 74.72.2
50% 80.51.1 84.61.8 76.27.1 79.15.3 74.11.4 81.46.0 75.12.4 73.34.7
75% 81.61.1 86.63.2 78.01.0 79.34.6 71.21.9 74.76.3 73.81.7 59.011.2
100% 78.82.1 12.83.4 66.111.8 9.64.4 68.83.4 13.64.8 72.82.6 12.33.8

ethos-binary

0% 72.83.3 72.83.3 79.63.6 79.63.6 80.62.2 80.62.2 56.99.5 56.69.3
25% 63.210.8 62.710.7 76.15.7 73.14.6 77.74.1 77.93.9 44.615.0 45.314.6
50% 67.64.6 62.67.8 69.27.0 60.817.6 77.53.0 77.81.8 58.78.4 57.410.9
75% 55.616.2 46.715.7 70.612.9 55.014.8 78.93.7 71.89.8 55.814.4 53.118.8
100% 51.47.3 30.82.8 64.313.8 26.74.5 77.92.3 23.83.4 36.30.0 30.10.0

financial_phrasebank

0% 77.98.3 77.98.3 84.10.9 84.10.9 85.43.1 85.23.0 59.512.0 59.512.0
25% 78.64.8 78.74.8 82.51.2 82.41.3 82.44.3 82.42.9 58.012.0 57.612.3
50% 74.99.3 68.88.5 83.51.3 83.31.7 84.21.2 83.61.8 61.911.1 61.89.7
75% 79.48.8 43.410.4 82.23.0 70.311.9 84.71.5 82.32.5 50.28.3 17.36.0
100% 81.15.5 10.54.3 78.55.3 25.97.8 84.14.0 23.214.9 49.613.8 13.87.9

hate_speech18

0% 53.54.1 53.54.1 67.51.8 67.51.8 68.42.1 68.32.1 38.913.1 38.712.9
25% 47.98.8 47.48.6 57.26.2 51.313.0 66.02.5 65.72.6 37.210.0 34.410.8
50% 46.411.1 46.110.7 62.25.0 60.95.7 63.43.3 64.92.1 38.14.6 37.54.6
75% 36.95.5 39.812.5 52.814.0 49.218.1 64.23.5 58.37.3 37.511.7 42.917.2
100% 42.813.9 34.36.8 57.84.7 24.24.9 63.62.1 21.44.6 45.53.0 15.811.4

MR

0% 93.60.5 93.60.5 93.80.4 93.80.4 92.60.7 92.60.7 90.71.0 90.71.0
25% 93.11.3 93.01.0 94.10.3 94.00.4 93.00.6 92.70.6 88.62.8 88.32.6
50% 93.10.9 89.83.7 93.90.6 92.71.4 92.40.5 91.00.8 81.68.4 81.88.1
75% 91.74.1 44.58.3 91.62.9 79.410.4 92.60.5 69.014.0 76.021.6 62.715.7
100% 81.811.3 14.86.9 80.721.7 13.39.7 90.24.2 9.83.0 75.119.1 17.77.9

poem_sentiment

0% 39.43.6 39.43.6 54.05.6 54.05.6 54.03.5 54.03.5 13.04.2 13.04.2
25% 42.27.1 42.27.1 53.411.3 53.910.3 50.96.6 51.46.3 20.711.0 22.111.1
50% 41.712.8 40.612.6 57.86.1 57.24.9 53.65.9 54.55.6 22.58.0 28.02.2
75% 47.212.0 25.19.0 49.511.1 50.39.7 51.57.9 47.06.1 40.44.9 27.712.5
100% 54.78.6 9.83.6 57.711.6 17.87.8 52.07.0 21.64.2 25.411.7 28.55.0

SST-2

0% 91.61.3 91.61.3 92.41.5 92.41.5 93.81.0 93.81.0 83.09.0 83.09.0
25% 91.21.1 90.71.8 91.10.9 91.10.8 91.92.8 92.72.6 72.517.6 73.918.0
50% 90.21.5 86.34.0 89.82.1 89.02.6 92.41.1 94.50.5 80.88.4 80.75.4
75% 85.29.3 40.58.6 86.17.1 68.821.6 92.03.0 86.05.6 68.920.1 41.223.6
100% 86.05.0 12.93.8 87.94.5 11.43.3 90.61.1 9.90.4 71.77.8 21.04.2

SST-5

0% 45.42.4 45.42.4 42.64.3 42.64.3 42.02.1 42.02.1 31.59.8 31.59.8
25% 43.72.1 43.61.5 39.04.6 38.94.7 41.52.2 41.62.2 27.43.4 23.67.2
50% 39.04.4 40.04.7 40.54.3 39.83.9 42.34.2 38.13.4 34.56.3 31.98.6
75% 43.32.4 39.43.9 38.84.6 37.32.7 39.16.0 42.03.5 33.23.1 28.37.2
100% 41.42.2 26.31.2 44.34.1 31.94.2 41.16.6 29.61.9 28.24.5 20.95.2

Subj

0% 87.17.9 87.17.9 75.319.5 75.319.5 79.76.3 79.46.3 43.012.0 43.012.0
25% 86.93.3 86.03.2 68.313.3 62.414.2 80.83.7 70.63.9 55.718.3 42.914.1
50% 83.64.5 57.213.2 59.019.0 51.521.2 82.12.4 68.43.6 57.215.4 49.811.4
75% 82.06.8 25.07.2 37.44.9 54.818.1 78.46.8 47.812.7 70.43.6 44.314.7
100% 82.49.3 15.25.9 47.920.3 28.28.1 84.42.6 14.61.9 39.99.7 32.81.2

TREC-6

0% 75.07.3 75.07.3 56.67.6 56.67.6 74.73.6 74.73.6 51.27.7 51.27.7
25% 74.67.4 74.57.7 56.912.2 57.212.2 81.63.9 81.13.6 46.83.6 47.03.3
50% 75.83.5 75.62.9 60.14.9 59.43.0 74.85.0 77.13.3 49.97.1 49.42.2
75% 77.73.0 69.68.4 49.916.4 52.26.7 81.71.9 63.910.3 48.77.7 44.79.9
100% 66.89.0 13.46.0 50.613.6 22.67.2 77.02.6 9.14.3 42.96.4 20.91.5

tweet_eval_atheism

0% 21.210.1 21.210.1 27.610.3 27.610.3 34.04.3 34.04.3 12.11.3 12.11.3
25% 26.64.8 28.33.1 33.211.5 33.211.5 37.15.9 37.75.6 20.110.6 21.57.7
50% 31.59.0 34.48.1 33.76.5 35.88.0 40.97.9 37.96.0 16.65.6 23.110.7
75% 42.57.0 38.410.8 37.47.3 30.07.1 36.611.7 36.611.1 18.46.1 23.04.3
100% 41.08.1 22.54.9 39.010.9 16.83.6 35.28.1 23.53.2 17.57.1 29.14.4

tweet_eval_feminist

0% 48.710.1 48.710.1 56.36.0 56.36.0 55.64.2 55.64.2 25.68.5 28.77.2
25% 39.610.8 39.610.8 41.87.0 42.77.8 62.13.7 61.63.1 25.57.7 26.17.0
50% 37.76.5 41.25.2 41.116.4 43.913.9 56.83.7 57.73.3 28.47.7 23.810.0
75% 43.58.5 47.36.0 43.412.2 51.68.9 56.74.1 56.92.9 27.78.8 21.06.8
100% 44.45.6 33.812.0 49.79.5 29.111.7 47.36.1 33.96.8 37.77.5 16.92.1

tweet_eval_hate

0% 52.35.3 52.35.3 67.53.6 67.53.6 61.31.8 61.31.8 40.45.1 40.35.2
25% 51.04.5 50.94.5 66.54.5 60.712.4 61.14.0 61.53.9 46.26.5 43.86.5
50% 51.88.5 49.97.5 66.74.2 52.08.5 62.42.3 64.81.6 46.66.7 34.24.5
75% 44.75.2 53.57.7 54.27.5 51.65.2 55.710.1 62.41.6 42.611.5 47.010.5
100% 51.011.6 37.16.6 52.77.9 35.92.8 51.14.8 40.04.5 43.39.7 36.15.5

tweet_eval_irony

0% 57.01.9 57.01.9 58.93.2 58.93.2 63.62.6 63.62.6 49.62.6 49.62.6
25% 51.07.3 50.97.2 56.48.6 55.510.2 63.03.8 63.23.4 51.13.1 52.22.9
50% 48.66.8 43.58.1 51.212.4 43.010.7 62.63.6 65.32.4 47.98.2 46.47.8
75% 46.77.2 40.35.5 53.89.8 43.98.3 59.36.3 55.38.4 47.25.1 43.64.7
100% 43.78.1 32.31.3 51.68.0 35.32.4 52.19.3 34.70.7 44.56.4 43.06.4

tweet_eval_offensive

0% 59.44.8 59.44.8 64.51.4 64.51.4 65.01.8 65.11.8 53.25.3 53.25.4
25% 62.72.0 62.72.0 60.04.5 59.94.5 66.20.9 66.41.1 60.35.9 62.73.0
50% 60.24.9 58.04.8 62.82.2 61.53.2 65.71.9 67.01.7 60.46.8 61.64.3
75% 55.013.8 39.45.7 53.512.0 48.75.8 56.513.9 63.23.7 56.614.4 56.97.7
100% 54.49.1 35.92.6 61.12.9 32.92.7 60.53.7 36.44.3 60.96.6 31.53.4

Table 4: Results (Macro-F1) across datasets, models, and corrected proportions for ICL and CICL.
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