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Abstract

Few shot in-context learning (ICL) typically
assumes access to large annotated training sets.
However, in many real world scenarios, such
as domain adaptation, there is only a limited
budget to annotate a small number of samples,
with the goal of maximizing downstream per-
formance. We study various methods for se-
lecting samples to annotate within a predefined
budget, focusing on token classification tasks,
which are expensive to annotate and are rela-
tively less studied in ICL setups. Across var-
ious tasks, models, and datasets, we observe
that no method significantly outperforms the
others, with most yielding similar results, in-
cluding random sample selection for annota-
tion. Moreover, we demonstrate that a rela-
tively small annotated sample pool can achieve
performance comparable to using the entire
training set. We hope that future work adopts
our realistic paradigm which takes annotation
budget into account.

1 Introduction

In-context learning (ICL) has emerged as a highly
efficient and robust method for various textual tasks.
In this paradigm, a large language model (LLM)
is exposed to a small number of annotated sam-
ples, termed demonstration examples, which are
provided as part of the prompt, before the sample
which the model is required to annotate, which
we will refer to as inference sample henceforth.
While the reasons for ICL’s success are still con-
tested (Min et al., 2022; Liu et al., 2022), it has
been observed that ICL prompts commonly outper-
form zero-shot prompts, where no demonstration
examples are provided (Brown et al., 2020).

Furthermore, a recent line of work has found
that the choice of demonstration examples can lead
to improved results over random demonstration
selection. For example, Liu et al. (2022) found that
choosing the nearest neighbors of the inference

sample in the training set leads to improvements
over random demonstration selection on 6 tasks,
such as sentiment analysis or question answering.
In all of these, the demonstration examples are
chosen from large annotated training sets, ranging
from 3.5K samples up to 78K samples.

In this work, we address the following research
question: How can we maximize ICL performance
on a given annotation budget? This question is par-
ticularly relevant for real-world domain adaptation
settings, where a large pool of annotated samples is
unavailable for selecting demonstration examples.
Instead, there are large sets of unannotated samples
(e.g., raw text in the target domain), and a fixed
budget to annotate only a small portion of them.
As depicted in Figure 1, we define the task as pool
selection, i.e., selecting a small pool of k examples
out of a large corpus of raw texts. These samples
are annotated and serve as the available pool for
demonstration examples.

We implement several methods for pool selec-
tion, e.g., clustering the train set and selecting a
representative example from each cluster, and test
them on three token classification tasks: named
entity recognition, dependency parsing, and part-
of-speech tagging. We select these tasks as they
are relatively understudied in the context of ICL
and are expensive to annotate due to the need
for linguistic expertise and domain-specific knowl-
edge (Chen et al., 2015; Zhang et al., 2017).

We evaluate several state-of-the-art LLMs on
token classification benchmarks. We observe that
none of the methods consistently outperforms the
others, and, surprisingly, randomly selecting sam-
ples for the annotation pool performs comparably
to more carefully designed approaches in certain
scenarios. Furthermore, we find that a relatively
small pool (∼200 samples) allows LLMs to per-
form over 88% as when demonstrations are se-
lected from the full training set.

We hope that our paradigm is adopted in future
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Figure 1: Our proposed approach for ICL on a budget, illustrated in four steps: (1) we assume a large pool of raw
train and potentially test texts in the target domain; (2) a pool selection strategy chooses a subset of k train texts
to maximize downstream ICL performance; (3) annotations are collected for the selected pool; (4) an inference
prompt is instantiated by choosing the nearest examples in the pool to the inference sample. We focus on step (2),
experimenting with various pool selection strategies.

work in order to report more realistic ICL perfor-
mance, and explore new methods for sample selec-
tion for other tasks and domains.

2 ICL on a Budget

Here we propose a conceptual framework for ICL
in a realistic domain adaptation setting (depicted
in Figure 1), where there are no apriori annotated
datasets for the target task. Instead, we assume
that there is a large corpus of raw texts in the tar-
get domain, and a fixed budget for annotating a
small portion of them, such that they can serve as
potential demonstration examples during inference.
Intuitively, the goal of the annotation process is to
maximize downstream ICL performance.

Below we formalize the task of pool selection,
and describe 4 selection strategies, which aim to
maximize different aspects, e.g., coverage of the
training set versus coverage of the test set. In the
following section we evaluate these approaches for
token classification tasks.

2.1 Pool Selection: Task Definition

Formally, a pool selection strategy is a function:

Sk : P(D) 7→ Dk (1)

Where D represents an unannotated distribution
(e.g., all texts in a certain domain), P(D) is the
power set of D, and k ∈ N+ is the annotation
budget, i.e., the number of samples to annotate.
Intuitively, S maps raw sample sets to k train sam-
ples (the pool), which are then annotated. In all
that follows we denote the input samples set by
D ∈ P(D). Typically, k << |D|, indicating that

the annotation budget for a new domain can only
annotate a small portion of its available texts.

Furthermore, we assume a similarity function ϕ:

ϕ :
(
D ×D

)
7→ R (2)

In the scope of this work (similar to previous
work (Liu et al., 2022)) samples are embedded into
Rm, where m is the text embedding dimension,
and ϕ is the cosine similarity of these vectors. In
particular, we use a sentence transformer (Reimers
and Gurevych, 2019) trained over MPNet (Song
et al., 2020).

2.2 Pool Selection Strategies

Below we describe 4 pool selection strategies
which follow the definition in Equation 1.

Central. Select the k samples from D that are
closest to the Euclidean center of D.

Cluster. Cluster D into k clusters and for each
cluster center choose the most similar sample from
D. This method aims to maximize the coverage
of the expected training distribution. This strategy
was proposed in Chang et al. (2021) for selecting
examples for fine-tuning.

Vote-k (Su et al., 2022). Selects a k-sized subset
of D such that the samples are diverse and dissim-
ilar from one another, through a two-step process
which uses the LLM’s confidence to bucket the
different samples. See Su et al. (2022) for more
details.

Random. Randomly select k samples from D.
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Figure 2: Results for NER (top), dependency parsing (center), and POS tagging (bottom) using Claude 3 Haiku
(left), GPT4 (middle) and Gemini 1.5 Pro (right), as a function of the size of sample pool. In methods with a random
component we run 3 trials and plot error bars showing the standard deviation. Oracle: using the full training set as
the pool.

3 Evaluation

We focus on token classification tasks, as they are
both understudied in the context of ICL, while tra-
ditionally expensive to annotate at scale. Impor-
tantly, as is commonly done in active learning sce-
narios (e.g., Shen et al., 2018; Liu et al., 2020), we
use existing datasets to simulate the process shown
in Figure 1, where instead of collecting manual an-
notations, we sample from the existing annotations.

3.1 Experimental Setup

Tasks, datasets, and models. We test three tasks
using two English datasets: Ontonotes 5.0 for
NER (Hovy et al., 2006), and the Universal De-
pendencies corpus for dependency parsing and
POS tagging (UD; Nivre et al., 2016).1 Both

1We use the HuggingFace versions for both datasets with
the english_v12 configuration for Ontonotes and the en_ewt
configuration for UD.

datasets contain texts from various domains, includ-
ing news, conversational, weblogs, web forums,
and more. Due to budget constrains we limit the
size of each test set by randomly sampling 1000
samples. We experiment with a diverse set of 9 dif-
ferent LLMs, ranging from open to closed models
in various parameter sizes: Llama-2 (Touvron et al.,
2023), Mistral (Jiang et al., 2023), Starling (Zhu
et al., 2023), Vicuna (Chiang et al., 2023), Mix-
tral (Jiang et al., 2024), phi-2 (Javaheripi et al.,
2023), GPT-4 (Achiam et al., 2023), Claude 3
Haiku,2 and Gemini 1.5 Pro (Reid et al., 2024).

Prompt and evaluation metric. For each task,
we prompt the models by describing the task and
the expected output format, followed by 5 demon-
stration examples and the current inference sam-
ple. Since POS tagging serves as a precursor to
dependency parsing, both tasks are handled using

2www.anthropic.com/news/claude-3-family
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a shared prompt. Following Zhao et al. (2021), we
sort the examples such that the most similar exam-
ple is the last one, based on the similarity function
ϕ described in Equation 2. See Appendix A for the
full prompt templates.

For NER evaulation we use strict match-
ing (Segura-Bedmar et al., 2013), where a predicted
entity is considered correct if it matches both exact
span boundaries and entity type. For dependency
parsing we use labeled attachment score (LAS),
which measures the accuracy of both the correct
head and dependency label for each token. For
POS tagging, we use the POS accuracy.

Pool sizes. We experiment with sample pools of
size 0.1% - 10% of the maximum pool size, de-
fined as the number of unique samples used when
considering the full training set as the sample pool.

Oracle. As a reference, we report the perfor-
mance of using the full training set for each dataset
and model, compared to our budget-constrained
approach.

3.2 Results

Results for the three best-performing models
(Claude 3 Haiku, GPT-4, and Gemini 1.5 Pro) on all
tasks are presented in Figure 2. The other smaller
models we test are not able to produce outputs
of the requested format in more than 50% of the
cases, and hence cannot be meaningfully compared
against these models, which adhere to the correct
format in roughly 97% of the cases. We now dis-
cuss findings reflected in these results and conduct
further analysis.

The choice of few-shot examples matter in token
classification tasks. We observe a large variation
in performance when selecting different demonstra-
tion examples in all configurations. While this was
observed in other tasks (Zhang et al., 2022), to the
best of our knowledge, this is the first time this was
shown for token classification tasks.

Most pool selection methods perform similarly,
random is surprisingly good. None of the four
methods consistently outperform the others. Sur-
prisingly, we note that random performs similarly
to other methods.

Very small pool sizes can approximate the full
training corpus. All sampling methods require
a pool of only 220 samples for Ontonotes, and 138

NER DP POS

Central 67 40 96
Cluster 75 41 96
Vote-k 78 44 96
Random 78 41 96

Table 1: GPT-4 percentage in performance out of the
state-of-the-art, when using 5% of the samples used in
the fully labeled train set method.

samples for UD, to achieve over 88% of the oracle
performance across all configurations.

ICL on a budget lags behind state-of-the-art.
We compare the ICL results to state-of-the-art re-
sults in Table 1. In NER and dependency pars-
ing, fine-tuned methods vastly outperforms using a
limited annotation budget. In POS tagging which
is considered an easier task, using 138 samples
achieves 96% of the state-of-the-art.

4 Related Work

Similar to pool selection, active learning (Shen
et al., 2017) also aims to select samples for annota-
tion rather than assuming all samples are annotated.
However, active learning operates during training
and relies on access to an oracle or intermediate
model results (e.g., confidence scores), whereas
pool selection assumes no access to the model dur-
ing training and only relies on observing the out-
puts of the model.

Recently, Su et al. (2022) introduced a pool se-
lection method as a method for improving down-
stream performance, which we evaluate as one of
our approaches for annotation pool selection (clus-
ter). Our work is conceptually different in that it
proposes a realistic paradigm under which to exam-
ine ICL performance where there are no annotated
samples. Subsequently, we differ from them in that
we study three different token level tasks, different
pool selection methods, and particularly focus on
the effect of the pool size on downstream perfor-
mance.

5 Conclusion

We proposed the framework of ICL on a budget
and studied different methods for pool selection,
focusing on token classification tasks. We hope
this work will inspire more realistic assumptions
on the amount of labeled data used in different ICL
settings.
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6 Limitations

We tested our ICL on a budget approach on a single
class of tasks (token classification), because it has
high annotation cost and it was relatively less stud-
ied in the context of ICL. It is possible that other
tasks will show different trends, hence we stress
that the contribution here is the methodological ap-
proach, rather than advocating for one particular
sampling strategy.
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A Prompt Template

In this section we describe the prompt templates
we use in our experiments.

A.1 NER task description
You are an NER classifier that identifies the
following entities: Person __PER__, Organi-
zation __ORG__, Geo-Political __GPE__,
Location __LOC__, Facility __FAC__,
Work-of-Art __WOA__, Event __EVE__,
Product __DUC__, Language __ANG__
use angle brackets to tag in-line, please don’t
include any additional information other than
the annotated sentence and keep original spac-
ing.

A.2 Dependency parsing and POS tagging
task description

Your task is to parse the input sentence into a
dependency tree by providing a (token, part-of-
speech tag, head, deprel) for each token. In the
input sentence, tokens are separated by spaces.
Possible part-of-speech tags are:

VBN, WDT, GW, NN, TO, IN, JJR, WP,
EX, VB, HYPH, JJ, SYM, :, RBR, MD, VBP,
JJS, LS, WP$, $, VBD, VBZ, NFP, PRP,
NNPS, CC, XX, „ “, NNP, -RRB-, CD, VBG,
-LRB-, RP, NNS, PDT, AFX, RB, PRP$, UH,
., WRB, DT, FW, RBS, ADD, POS, ”

Output the parse and nothing else. Here are
some examples:

A.3 Prompt design
We first describe the task in question, as outlined
above. Next, we add the demonstration examples.
For GPT and Claude we add the demonstration
examples as follows. For each demonstration ex-
ample, we use LangChain’s3 HumanMessage class
for the original sentence, followed by an AIMes-
sage for the annotated sentence. Finally, we add
the inference sample as a HumanMessage.

3langchain.com
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Task 
description

Demonstration 
examples

Inference
sample

Figure 3: An example NER prompt used in our study.

In Gemini, for which these classes are not imple-
mented, we choose a different strategy: for each
demonstration example, we add the original sen-
tence followed by the separator token ([TAGS] for
NER, [PARSE] for dependency parsing and POS
tagging), and then the annotated sentence. Finally,
we add the inference sample, followed by the sepa-
rator token. Figures 3 and 4 demonstrates an NER
and dependency parsing prompts for Gemini, re-
spectively.

B Performance-Diversity Correlation

Min et al. (2022) study the factors that impact per-
formance in ICL and find that the coverage of the
label space by the demonstration examples has a
strong effect on performance. Drawing inspiration
from their findings, we examine whether the di-
versity in the labels of demonstration examples is
correlated with performance. To this end, for each
dataset, pool selection method and pool size, we
count how many instances of each label (entity for
NER, dependency label for dependency parsing,
POS tag for POS tagging) were presented in the
demonstration examples in the sample pool, and
compute the entropy of these counts as a proxy for
diversity. For each model, we then compute the
Pearson correlation between these entropy values
and the model’s scores. Table 2 presents the corre-
lations. Correlation is high (> 0.5) for all models

GPT Claude Gemini

NER 0.54 0.36 0.46
DP 0.64 0.62 0.64
POS 0.53 0.63 0.80

Table 2: Pearson correlation of performance with label
diversity in the sample pool, as measured by the entropy
of entities. All results are significant.

in the dependency parsing and POS tagging tasks.
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Figure 4: An example dependency parsing prompt used in our study.
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