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Abstract

Open domain question answering systems fre-
quently rely on information retrieved from
large collections of text (such as the Web) to
answer questions. However, such collections of
text often contain conflicting information, and
indiscriminately depending on this information
may result in untruthful and inaccurate answers.
To understand the gravity of this problem, we
collect a human-annotated dataset, Question
Answering with Conflicting Contexts (QACC),
and find that as many as 25% of unambigu-
ous, open domain questions can lead to con-
flicting contexts when retrieved using Google
Search. We evaluate and benchmark three pow-
erful Large Language Models (LLMs) with our
dataset QACC and demonstrate their limitations
in effectively addressing questions with con-
flicting information. To explore how humans
reason through conflicting contexts, we request
our annotators to provide explanations for their
selections of correct answers. We demonstrate
that by finetuning LLMs to explain their an-
swers, we can introduce richer information into
their training that guide them through the pro-
cess of reasoning with conflicting contexts. We
publicly release our dataset and code to pro-
mote research along this line1.

1 Introduction

Large language models (LLMs) have shown im-
pressive capabilities on question answering tasks.
In an open domain setting, a typical approach in-
volves (1) retrieving relevant documents as contexts
from the web or knowledge bases, and (2) using
LLMs to generate the answer with the guide of the
context. However, retrieved contexts from the web
could often present conflicting information: e.g.,
22.62% pregnant women reported to find conflict-
ing medical information from different websites in

*Work done during internship at AWS AI Labs
1https://github.com/amazon-science/

qa-with-conflicting-context

Figure 1: Google search results when querying the ques-
tion "When did Kendrick Lamars first album come out?".
We can see that here different answers (July 2, 2011 /
June 17, 2003 / end of the 2010s) are suggested by
Google and it is difficult for a language model to decide
which to believe in.

a survey (Hämeen-Anttila et al., 2014), such con-
flicts can lead to undesirable consequences when a
language model relies indiscriminately on them to
answer questions.

Previous work has explored different aspects of
conflicts in the field of Natural Language Process-
ing (NLP), including having different perspectives
(Chen et al., 2019; Liu et al., 2021), fake news
and misinformation (Chen et al., 2022b; Pan et al.,
2023), conflicts due to ambiguous or inadequate
questions (Min et al., 2020; Zhang and Choi, 2021),
knowledge that changes over time (Kasai et al.,
2023), and conflicts between knowledge encoded in
the parameters and provided in the contexts (Long-
pre et al., 2021; Chen et al., 2022a; Xie et al., 2024).

In this work, we target the conflicts among con-
texts when retrieving from the web with an un-
ambiguous query and study their impact on the
downstream question answering task. Figure 1
shows the results of querying "when did kendrick
lamars first album come out?" on Google2. We
observe that in the top-10 returned results, there is
evidence suggesting different answers to the ques-

2Results were queried in June 2024.
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tion, and such inconsistencies may confuse the lan-
guage models when they refer to the contexts to
answer the question. Earlier work studied this is-
sue of conflicting contexts through perturbations
with entity-substitution (Chen et al., 2022a; Hong
et al., 2024), machine-generation (Pan et al., 2023;
Wan et al., 2024; Hong et al., 2024), rule-based
templates (Kazemi et al., 2023), or on controver-
sial, multi-perspective questions (Liu et al., 2021;
Wan et al., 2024). However, none of them examine
the scenario where realistic, unambiguous open do-
main questions can also lead to conflicting contexts
on the web and its effect in downstream question
answering.

To quantify how often conflicting contexts occur
on the web, we construct our dataset named QACC
(Question Answering with Conflicting Contexts).
We consider unambiguous open domain questions
from AmbigQA (Min et al., 2020) and use Google
Search API3 to retrieve up to 10 results for each
question. We then use Amazon Mechanical Turk
and ask human annotators to determine whether
there exists different answers in the contexts. We
find that about 25% of the unambiguous open do-
main questions will yield conflicting evidence from
Google. We evaluate three popular LLMs (GPT-4o,
Claude-3, and Phi-3) on our dataset with different
prompting and finetuning strategies and establish
that conflicting contexts can lead to substantial per-
formance degradation in them. To understand how
humans reason through conflicting contexts, we
ask our annotators to select from a pre-defined set
of reasons when deciding on the answer. Our find-
ings indicate that humans often adhere to majority
vote (i.e. selecting the most popular answer) when
seeing conflicting contexts. In addition, we also
request our annotators to provide a single sentence,
natural language explanation for their answers. We
find that by finetuning LLMs to explain their an-
swers, we can introduce richer information into
their training that guide them through the process
of reasoning with conflicting contexts and improve
their performance in both QACC and a perturbed
NQ-Open dataset (Lee et al., 2019).

To summarize, our contributions in this work are
the following:

• We construct a human-annotated dataset
QACC and find that about 25% of unambigu-
ous, open domain questions can lead to con-

3https://developers.google.com/custom-search/
v1/overview

flicting contexts when queried with Google
Search.

• We benchmark open domain question answer-
ing with conflicting contexts with our dataset
QACC and demonstrate the limitations of cur-
rent LLMs under this scenario.

• We show that when finetuning with human ex-
planations, LLMs can improve their abilities
to answer questions correctly with conflicting
contexts.

2 Related Work

2.1 Retrieval Augmented Question Answering

Open-domain question answering (ODQA) aims
to answer factoid questions with a large collection
of documents (Voorhees and Tice, 2000). With the
new advances in large language models (LLMs),
a typical approach to OPQA involves a two-stage
framework: (1) first retrieve a small subset of pas-
sages where some of them contain the answer to
the question, and then (2) use a LLM to answer the
question using the retrieved passages as contexts
(Chen et al., 2017; Karpukhin et al., 2020; Guu
et al., 2020; Khandelwal et al., 2020; Izacard and
Grave, 2021; Borgeaud et al., 2022; Zhong et al.,
2022). Retrievers augment question answering by
retrieving up to 100 passages and set new state-
of-the-art for ODQA (Izacard and Grave, 2021);
however, we believe that with such large amount of
passages retrieved as context, it’s frequent for them
to contain conflicting information, and such con-
flicts will confuse the downstream language models
in question answering. In this work, we validate
this hypothesis and show that for a retriever like
Google Search, 25% of the time it will return con-
flicting contexts in its top ten results when queried
with a realistic, unambiguous question. We further
demonstrate the limitations of current LLMs under
this scenario of conflicting contexts through our
experiments.

2.2 Knowledge Conflicts

Parametric v.s. Contextual One line of work
studies knowledge conflicts in the setting of para-
metric v.s. contextual knowledge. Parametric
knowledge refers to the knowledge a model learns
during pre-training, and contextual knowledge
refers to the contextual information a model sees
at inference time. Longpre et al. (2021) proposes
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Figure 2: Data Collection Pipeline. The left side shows an example input given to the annotators, and the right
side shows an example annotated result. During the annotation process, we ask the annotators to identify different
possible answers given each context, and decide there is a conflict if there is more than one possible answer.
In addition, we ask the annotators to select from a pre-defined list of reasons, and provide a natural language
explanation of their decision. In this example, the annotators believe there are three possible answers, and they think
0.615 earth years is the correct answer because it’s validated by most trustworthy sources.

a entity-substitution framework that identifies QA
instances with named entity answers and then sub-
stitutes mentions of the entity in the gold docu-
ment with an alternate entity to create entity-based
knowledge conflicts. Chen et al. (2022a) expands
the study to consider multiple evidence passages
and shows that when some passages are perturbed
not to support an answer, language models largely
ignore semantic perturbations and outputs poten-
tial answer entity in the retrieved passages. Xie
et al. (2024) proposes another new framework to
elicit the parametric memory of LLMs in order to
construct the corresponding counter-memory and
shows that with both supportive and contradictory
evidence to their parametric memory, LLMs show
a strong confirmation bias and tend to cling to their
parametric memory. (Liu et al., 2024) proposes a
machine-generated dataset of knowledge conflicts
and studies different strategies to enable LLMs to
resolve conflicting knowledge.

Contextual v.s. Contextual Another line of
work focuses on the scenario when a language
model is given conflicting contexts as in our setting.
Some previous work create conflicting contexts
with perturbations, including entity-substitution
(Chen et al., 2022a; Hong et al., 2024) and machine-
generation (Pan et al., 2023; Wan et al., 2024; Hong
et al., 2024), and some other work define conflicts
over rule-based templates (Kazemi et al., 2023).

However, most of these previous work are built on
synthetic data, whereas our dataset are real-world
search results of unambiguous questions. Wan et al.
(2024) also uses Google Search to extract conflict-
ing contexts, but they focus specifically on contro-
versial and contentious questions and analyze the
linguistic features in the text that affect language
models’ predictions, whereas we show that realistic,
unambiguous questions can also lead to conflict-
ing contexts from Google and finetuning LLMs on
our human written explanations can teach them to
reason through the conflicts.

3 Question Answering with Conflicting
Contexts

In this section, we discuss our exploration of the
problem: question answering with conflicting con-
texts. We first suggest our definition of what consti-
tutes as conflicting context, then introduce how we
collect a our dataset QACC for the analysis, and
lastly share our findings and analysis of QACC.

3.1 Problem Definition

Given a question q, a list of retrieved contexts C =
{c1, c2, ..., ci}, and a question answering system
ϕ, we can get a list of individual answers A =
{a1, a2, ..., ai}, where ai = ϕ(q, ci). We state that
the question q has conflicting evidence if and only
if ∃(ai, aj ∈ A)(ai ̸= aj). In other words, at each
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step a question answering system (a human or a
language model) is given the question and only
one of the context in order to answer the question.
Iterate this through all of the contexts, and we state
that there are conflicting contexts if and only if
there are different answers generated when given
different contexts.

Our research problem is constrained to factual,
unambiguous questions. Specifically, each ques-
tion in our dataset is expected to have a single,
definitive factual answer. Subjective questions,
unanswerable questions, or questions with multiple
answers are beyond the scope of this work. In addi-
tion, note that our definition of conflict here differs
from the definition of contradiction in traditional
Natural Language Inference (NLI) tasks. Here we
define conflict in a way that is less restricting than
contradictory texts in NLI to further exploit its ap-
plicability in our target domain, open domain QA
with Retrieval-Augmented Generation (RAG). For
instance, in a RAG scenario, retrievers can often
retrieve contexts that contain seemingly correct an-
swers (e.g. neutral texts in the case of NLI), and
such different/conflicting answers may also con-
fuse the downstream LLMs. We believe that our
definition of conflict and the resulted dataset can
therefore better support us towards our goal.

3.2 QACC Dataset
Ambiguous questions can frequently lead to multi-
ple different answers (Min et al., 2020). However,
we believe that even when questions are unambigu-
ous, it is still common to see conflicting evidence
on the web. To this end, we consider AmbigQA
(Min et al., 2020), a dataset with questions labeled
as either ambiguous or unambiguous, and take only
questions that are labeled as unambiguous as the
the questions in our dataset. We then use Google
Search API to retrieve top-10 search results as the
contexts for each question, and use Amazon Me-
chanical Turk to collect annotations for each ques-
tion and its associated contexts. The statistics of
our dataset QACC is shown in Table 1, and QACC
is in English language.

3.3 Human Annotation
We employ a rigorous human annotation pipeline
with a qualification exam before the main anno-
tation task, a strategy commonly used to ensure
the collection of high-quality datasets (Han et al.,
2021; Dasigi et al., 2021). Only annotators that
have passed our qualification exams can participate

in the main annotation task. We use Amazon Me-
chanical Turk (MTurk) to collect the annotations
and CROWDAQ to design the annotation interface
(Ning et al., 2020). All of our annotators were
MTurk workers who self-reported as being located
in the U.S., and we specifically hired workers with
the “Masters” qualification4 on MTurk. Other de-
mographic details about the annotators were un-
specified and unavailable. To ensure fair compen-
sation, we adhered to the U.S. Federal Minimum
Wage of 7.25 US Dollar per hour. Initially, we
launched a pilot batch of annotations, compensat-
ing annotators 0.5 US Dollar per task. From this pi-
lot, we observed that the average time to complete
an annotation task was 2 minutes and 29 seconds.
Based on this estimate and the federal minimum
wage, we adjusted the compensation to 0.35 US
Dollar per annotation task for the rest of the an-
notations. The average time spent on these tasks
was later measured at 2 minutes and 49 seconds,
supporting our conclusion that the compensation
rate aligns with fair pay standards. Each question
is annotated by one annotator, and examples of our
annotation instruction, qualification and annotation
interfaces are shown in Appendix D.

Qualification Exam Since the annotation task
requires critical thinking and an attention to detail,
we design interactive tutorials and request the anno-
tators to review them before the qualification exams.
We first show them instructions and our definition
of conflicting contexts for a question, and then ask
them to complete a set of tutorial questions where
we display the expected answers and reasons once
they answer them. After they understand the goals
and formats of the annotations, we request them
to complete a set of 12 random, multiple-choice
qualification questions. Only workers with more
than 90% accuracy on the exam can pass and get
the qualification to participate in our main anno-
tation task. We allow only the workers that have
a master’s qualification to take the exam, and 12
among 41 of them (29%) have passed our exam
and participate in our main annotation.

Main Annotation Following our definition of
the problem, we ask the annotators to identify the
conflict in the contexts by finding different possible
answers. In each Human Intelligence Task (HIT),
we show the annotator an open domain question, a

4Amazon Mechanical Turk award workers master’s quali-
fications only if they have demonstrated superior performance
over a period of time across thousands of annotations.
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Split # of QAs % QAs with Conflicts
Train 394 29%
Dev 303 19%
Test 813 25%

Table 1: The statistics of QACC.

list of contexts retrieved by Google Search, as well
as the website domains these contexts are from. We
then ask the annotators the following questions: 1.
Is there more than one possible answer when look-
ing at the question and each context individually
(conflict identification)? 2. Which of the contexts
support which of the different answers (answer at-
tribution)? 3. Which answer do you think is the
correct answer (question answering)? 4. why do
you think the answer you choose is correct (QA
with explanation)?. The fourth question here in-
cludes both a multiple-choice question that asks
them to select a reason from a pre-defined set and
a free-form question that asks them to explain their
reasoning in a single sentence. These procedures
result in a rich annotation of QACC that can also
support other QA-related tasks not covered in the
scope of this work, like answer attribution. An ex-
ample of the dataset and the data collection process
is shown in Figure 2 in Appendix.

3.4 Expert Verification

To evaluate the quality of the annotations, one of
the authors randomly selects 50 examples from
QACC for expert verification. A prior internal pilot
study with expert annotations demonstrated high
agreement among five team members, supporting
the use of a single author for this verification pro-
cess. We compare our annotations with those of
the annotators across two tasks: 1. determining
whether there is a conflict, and 2. assessing whether
our suggested correct answer aligns with that of the
annotators. We exclude the reasons our annotators
selected from the predefined list and the annotators’
natural language explanations from inter-annotator
agreement assessment, as these aspects involve sub-
jective human judgments, which can naturally vary
among individuals. Comparing our annotations
with those provided by MTurk workers, we observe
a Cohen’s kappa agreement of 0.615 for the first
task, and find that 88% of our suggested correct an-
swers align with those of the annotators, indicating
a high level of annotation quality in our dataset.

Figure 3: Reasons of annotators selecting one correct
answer over the others when there are conflicts. "Major-
ity" means the answer is supported by the most contexts.
"Source" means the annotator trust the contexts more
because they come from trustworthy sources. "Common
Sense" means the answer matches their own memory
and common sense. "Time" means they think one an-
swer is correct since it’s the most up-to-date.

3.5 Statistics and Analysis

Table 1 shows the statistics of our dataset. We
can see that about 25% of all the unambiguous,
open domain questions in our dataset have conflict-
ing contexts when retrieved using Google Search.
Among the questions identified as having conflict-
ing contexts, the average number of distinct an-
swers is 2.47. Specifically, 25% of all questions
exhibit conflicts (i.e., they have at least two dif-
ferent answers), 10% have at least three distinct
answers, and 3% have at least four. Furthermore,
within the subset of questions with conflicting con-
texts, 29% have one answer supported by at least
half of the contexts.

To better understand humans’ reasoning process
when presented with conflicting evidence, we ask
the annotators to choose from a pre-defined list of
reasons that can best categorize why they think one
of the answers is correct. We allow them to choose
more than one option since different factors can
simultaneously affect one’s decision in choosing
the correct answer. Figure 3 shows their reasons
when the question is labeled by them as having
conflicting contexts. We find that humans favor an-
swers that are the most popular in the contexts the
most, and also refer to the sources of the context
(trustworthy or not) and their own intuitions and
common sense about the question when deciding
on the answer. On the other hand, fewer annota-
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Figure 4: Different types of questions in our dataset that
have conflicts.

tors select correct answers based on the time the
information was published.

We also conduct data analysis to study the dif-
ferent types of questions in our dataset that lead to
conflicting contexts. In Figure 4, we see that most
of the questions in our dataset are Who questions.
This type of question has about 20% of times that
lead to conflicting contexts. How questions, on the
other hand, can lead to conflicting contexts almost
40% of the time. This aligns with our hypothesis
since questions that start with How are typically
open-ended questions with a more complex answer
and can involve different perspectives.

Another characteristic about QACC that we ob-
serve is that the most prominent type of conflicts
between different answers is the mismatch of enti-
ties, i.e., different names, time, and places. This is
largely due to the fact that we source our questions
from AmbigQA and Natural Questions, where the
expected answers are short phrases that are mostly
entities.

4 Experiments

In this section, we benchmark the problem of ques-
tion answering with conflicting contexts with three
popular LLMs. We demonstrate that teaching lan-
guage models to explain its answer can guide their
inference process and improve their performance
in QACC, and such improvement can generalize to
another perturbed NQ-Open dataset.

4.1 Datasets

We run our experiments on two datasets. The first
is the QACC dataset we collect, and the second is a

Model EM F1
Few-shot Exp & Ans 52.64 66.84
Finetuned Exp & Ans 54.74 67.19
Few-shot Ans & Exp 51.41 65.78
Finetuned Ans & Exp 53.75 67.24

Table 2: Experiments on the order of explanation and an-
swer on Phi-3-Medium evaluated on QACC. We observe
only slight differences in terms of the performance.

perturbed NQ-Open dataset. For our QACC dataset,
we use the validation set to find the best instruction
and prompt formats for the LLMs, and report their
results on the test set. For the perturbed NQ-Open
dataset, we use an entity-substitution method to
replace the answer in the contexts to other named
entities of the same type in order to create con-
flicts among the contexts, following (Longpre et al.,
2021). We construct this perturbed dataset over the
test split of NQ-Open with 3,610 questions. We
retrieve top ten results from Google as the contexts
for these questions and apply the entity-substitution
algorithm with different perturbation ratio. The
higher the perturbation ratio means the more con-
texts in a question are perturbed.

4.2 Methods
Retrieval Augmented QA Language models can
leverage contexts to answer open domain questions
(Izacard and Grave, 2021; Zhong et al., 2022). We
prompt LLMs with question and contexts retrieved
from Google and instruct them that "Given the fol-
lowing contexts, provide a direct, concise answer
to the question".

Majority Vote As shown in Figure 3, humans
are inclined to choose the majority answer when
there is conflicting evidence. Therefore, we prompt
LLMs question and contexts and instruct them to
"use majority vote to decide which context to trust
if there are conflicting contexts".

Discern and Answer Hong et al. (2024) pro-
poses to explicitly instruct the model to first discern
the counterfactual, perturbed passages and then ig-
nore them to answer the question. We follow the
same strategy and instruct the models to "Find the
perturbed passages if there are any, and ignore
them when eliciting the correct answer" with ques-
tion, contexts, and an example message indicating
which of the contexts are "perturbed", using the
annotations in QACC that attribute correct/wrong
answers to their supporting contexts.
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Model Prompt EM-C EM-NC EM-T F1-C F1-NC F1-T

GPT-4o-few-shot

Context 42.51 54.13 51.17 59.29 70.06 67.32
+ Majority & Ans 40.58 53.96 50.55 57.35 69.03 66.05
+ Discern & Ans 39.13 52.15 48.83 56.33 67.81 64.88

+ Exp & Ans 38.65 54.29 50.31 57.43 69.19 66.2

Claude-3-few-shot

Context 35.75 53.14 48.71 53.76 67.9 64.3
+ Majority Vote 37.68 52.64 48.83 54.75 67.85 64.51

+ Dis & Ans 31.4 43.89 40.71 48.52 58.48 55.95
+ Exp & Ans 40.1 54.29 50.68 57.41 69.28 66.26

Phi-3-few-shot

Context 42.51 51.98 49.57 56.65 67.30 64.59
+ Majority Vote 44.93 55.12 52.52 58.29 69.18 66.41

+ Dis & Ans 43.96 54.79 52.03 58.41 68.51 65.94
+ Exp & Ans 43.48 55.78 52.64 59.57 69.32 66.84

Phi-3-finetuned

Context 44.44 51.32 49.57 56.24 64.6 62.47
+ Majority Vote 44.44 55.94 53.01 57.26 67.94 65.22

+ Dis & Ans 38.16 49.01 46.25 49.99 61.86 58.84
+ Exp & Ans 47.34 57.26 54.74 59.61 69.79 67.19

Table 3: Few-shot and finetuned results of models and methods tested on our QACC dataset. EM-C means the
Exact Match (EM) score of the set of QA pairs with conflicting contexts, EM-NC means the EM score of QAs
with non-conflicting contexts, and EM-T means the total EM score of all the QAs in the test set. Same notation
applies to the F1 score. "Context" means LLMs are given both the question and contexts retrieved from google.
"+ Majority Vote" means LLMs are given question, contexts and the instruction to take majority vote. "+ Dis &
Ans" indicates LLMs are given question, contexts, the instruction to discern and answer, and either an in-context
example or finetuning data indicating which contexts are perturbed. "+ Exp & Ans" represents results of LLMs with
question, contexts, the instruction to explain and answer, and in-context example of explanation or finetuning data
of explanation. The bolded numbers represent the best results across all few-shot models or finetuned models, and
the underlined numbers represent the best result in a single model.

Explain and Answer Prompting with explana-
tions introduces richer information that can guide
the inference process. Recent work have shown that
letting the language model “explain itself” through
in-context learning gains more insights into predic-
tions and improves their performances in a variety
of reasoning tasks, including question answering
(Lampinen et al., 2022b; Ye and Durrett, 2022;
Nye et al., 2021; Wei et al., 2023; Lampinen et al.,
2022a). We believe answering question with con-
flicting contexts requires similar reasoning abilities
and therefore can benefit from eliciting explana-
tions during inference. We instruct the models to
"Explain the reasons and then provide a direct, con-
cise answer" with question, contexts, and a natural
language explanation as in-context example in few-
shot and training input in finetuning. Table 2 shows
our experiments of comparing Explain then An-
swer to Answer then Explain. Similar to previous
work, we observe only slight impact of the orders
of explanation in their performances.

4.3 Experiment Setup

We conduct experiments on three popular
instruction-tuned large language models from dif-
ferent families: GPT-4o-mini, Claude3-Sonnet, and
Phi-3-Medium-Instruct (14B), with zero-shot infer-
ence, few-shot inference, and finetuning. We find
that LLMs greatly benefit from in-context exam-
ples (few-shot) compared to zeroshot (See Table 5)
when answering open domain questions, so we only
present few-shot inference and finetuning results in
Table 3.

For few-shot inference experiments, we include
one in-context example of expected input-output
pair when prompting the three language models.
For finetuning experiments, we finetune Phi-3-
Medium-Instruct using LoRA (Hu et al., 2021)
with language modeling loss (SFT). We first find
the best hyperparameters of finetuning using the
validation set of QACC and then train on both the
training and validation set and report results in the
test set. We also use the validation set of QACC to
find the best prompt and instruction format for each
methods and use them for both few-shot inference
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Model Prompt
Perturbation Ratio

0 % 25 % 50 %
EM F1 EM F1 EM F1

Phi-3
Zeroshot Context 15.60 33.08 14.49 31.68 13.21 29.81
Few-shot Context 30.25 44.21 28.59 42.40 25.93 39.84

Phi-3-finetuned
Context 34.24 47.22 32.27 45.34 29.67 42.80
Majority Vote 34.29 46.67 32.71 45.07 29.72 42.31
Dis & Ans 32.44 44.26 30.61 42.60 28.22 40.16
Exp & Ans 37.31 50.29 35.76 48.57 33.18 46.20

Table 4: Zeroshot, few-shot and finetuned results on perturbed NQ-Open test set. The higher the perturbation ratio,
the more contexts in a question are perturbed with entity-substitution.

Phi-3 Size Instruction EM F1
Mini 0-SHOT-CONTEXT 32.67 54.95
Mini 1-SHOT-CONTEXT 47.6 63.51

Medium 0-SHOT-CONTEXT 45.14 63.45
Medium 1-SHOT-CONTEXT 49.57 64.59

Table 5: Zeroshot v.s. few-shot for Phi-3 on QACC.

and finetuning. More details of experiment settings
are discussed in Appendix A.

We follow conventions and use Exact Match and
F1 scores as the metrics for all our evaluations.
The answers in our dataset are predominantly short
phrases consisting of only a few words, so we be-
lieve that Exact Match and F1 are sufficiently effec-
tive in our evaluation. Exact Match returns positive
if the generated answer is identical to the reference
and negative if otherwise, whereas F1 score is more
forgiving and measures the word overlap between
the generated and reference answers. We note that
LLMs are prone to long generations, so we specif-
ically instruct all of the models to answer with as
few words as possible in the prompts (see examples
of the prompts in Appendix C).

4.4 Experiment Results

QACC Table 3 exhibits our experiment results
in QACC. We can see that all LLMs that we evalu-
ate inevitably experience worse performance when
there are conflicting contexts, comparing their re-
sults on EM-C and EM-NC, as well as their results
on F1-C and F1-NC. We also find that in different
LLMs, their best prompting methods in the few-
shot setting are also different. GPT-4o has the best
performance when prompted with just the contexts
when seeing conflicting contexts, Claude-3 gives
the best results when instructed to first explain and

then answer the question, and Phi-3 presents com-
parable performances when instructed to take ma-
jority vote and explain then answer. In addition, we
perform an additional rule-based context filtering
experiment and find that relying solely on context
from trusted sources does not yield any improve-
ments (See details in Appendix B).

We also demonstrate that by instructing the
model to explain its answer and finetuning with our
human-written explanations, Phi-3 can improve its
performance on question answering with conflict-
ing contexts. We observe an improvement of 2.9%
on EM and 3.37% on F1 comparing the models
finetuned with just the contexts (Context) and with
contexts and the explanations (+Exp & Ans). In-
terestingly, we find that by finetuning Phi-3 with
contexts and the instruction to take Majority Vote,
the model cannot further improve its performance,
and finetuning with Discern and Answer instruc-
tion and examples hurts the model and diminishes
its performance. We hypothesize the reason is that
by finetuning with the instruction to take Major-
ity Vote, we are not introducing any new learning
signals to the models besides the format, which it
already learns from in-context examples, and some
QA examples, which Phi-3 may have already seen
during its pre-training. On the other hand, finetun-
ing with Discern and Answer data hurts the perfor-
mance since, although we can attribute the answers
to their supporting contexts to create finetuning
data for it, our conflicting contexts are naturally
existing conflicting information on the web, rather
than synthetic perturbed data with only a few enti-
ties replaced. This discrepancy re-emphasizes the
usefulness of our dataset with naturally conflicting
contexts.
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Perturbed NQ-Open We observe that, similar to
real-world scenarios, LLMs tend to perform worse
when there are more conflicting contexts in this syn-
thetic dataset. In addition, the improvements we
observe from finetuning Phi-3 on human-written
explanations can generalize to perturbed data and
general open-domain question answering as well.
Table 4 exhibits the performance of zeroshot and
few-shot Phi-3 models on perturbed NQ-Open, as
well as Phi-3 finetuned on QACC and evaluated
on perturbed NQ-Open. As illustrated in Table
4, Phi-3 finetuned with explanation data consis-
tently outperforms other finetuned models under
different ratio of perturbation. We believe that
the extra finetuning signals of natural language ex-
planations improve Phi-3’s reasoning abilities in
general, therefore demonstrating its consistent im-
provements across all perturbation ratio, including
regular open domain QA (0%) and when there are
perturbed contexts (25% and 50%).

4.5 Analysis

Figure 5 shows the performance of few-shot GPT-
4o on the set of questions in QACC that have
conflicting contexts. We can see that LLMs like
GPT-4o can answer open domain questions reason-
ably well even with conflicting contexts when the
questions are asking about a person (Who types
of question). However, GPT-4o fails significantly
more when the question is asking about a time
(When), about a place (Where), or when the ques-
tion is open-ended (How). We hypothesize that this
may relate to the pretraining corpus of LLMs and
the frequency that different entities appear in the
pretraining corpus: popular people names that ap-
pear frequently in LLMs’ pretraining corpus allow
them to utilize their parametric knowledge to distin-
guish the answers among the conflicting contexts,
whereas the different timestamps and places exist
more sparsely in the corpus (as well as on the web),
making it more difficult for the LLMs to discern.

5 Conclusion

In this work, we construct a dataset named QACC
to study open domain question answering with con-
flicting contexts. We find that unambiguous, open
domain questions are exposed to conflicting evi-
dence on the web: 25% of the questions will lead to
conflicting contexts when retrieved using Google,
and popular LLMs are very brittle to such conflicts.
We show that by finetuning on natural language ex-

Figure 5: Few-shot GPT-4o performance on the test
set of QACC that has conflicting contexts. The x-axis
indicates the different types of questions and the y-axis
denotes the F1 score for each type.

planations, we can improve the reasoning abilities
of Phi-3 and improve its performances when there
are conflicting contexts as well as open domain
question answering in general. We will release our
dataset and code to promote further research along
this line.

Limitations Our study and dataset are con-
strained to factual, unambiguous questions. Specif-
ically, each question in QACC is expected to have
a single, definitive factual answer. Subjective ques-
tions, unanswerable questions, or questions with
multiple answers are beyond the scope of this work.
We encourage future research to explore these areas
further to gain deeper insights.

For limitations of our data: the pre-defined rea-
sons we ask our annotators to select from may not
cover all possible reasons, and these reasons as
well as their natural language explanations can be
subjective, rather than factual evidence. For eval-
uation, we adhere to standard conventions by em-
ploying Exact Match and F1 scores. While these
metrics may be less effective for assessing long,
open-ended answers, they are well-suited for our
task since the answers in our dataset consist primar-
ily of short phrases.

In addition, eliciting natural language explana-
tions from LLMs have several limitations. Previ-
ous work has shown that explanations generated by
LLMs can be unreliable and can lead to wrong in-
terpretations of the models. However, in this work,
we focus on the improvement of reasoning abilities
of LLMs when finetuning with explanation data,
rather than interpreting their explanations.
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Prompt F1-C F1-NC F1-T
Context 59.26 70.06 67.32

Trusted Context 57.47 63.57 62.02

Table 6: GPT4o-mini few-shot experiments on rule-
based, context filtering baseline.

B Additional Experiment Results

As suggested by one of our ARR reviewers, we
perform a rule-based context filtering experiment
to understand whether exclusively using contexts
from trusted sources can be a simple solution.
Specifically, we only include contexts from our list
of trusted sources, i.e., Wikipedia, URLs with top-
level government domain extensions, and URLs
with .edu top-level domain extensions as the con-
texts for each question. There are about 5% of ques-
tions do not have any context from these sources,
and we include all original contexts for these ques-
tions. As shown in Table 6, we observe that a
simple context filtering baseline does not yield any
improvements. One potential reason is that it is
difficult to define a thorough list of trusted sources
that can apply to all open domain questions span-
ning different domains like entertainment, history,
and science, etc. This finding highlights again the
challenge of building conflict-aware systems that
can distinguish across conflicting evidence.

C Example Prompt

We present an example of the prompt and in-
context example we use for running our experi-
ments in Figure 6. We preserve the same format
and instruction in our finetuning experiments for
consistency.

D Human Annotation Examples
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Figure 6: One example of our prompts

Figure 7: Instruction example 1.
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Figure 8: Instruction example 2.

Figure 9: Instruction example 3.
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Figure 10: Instruction example 4.

Figure 11: Qualification example 1.
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Figure 12: Qualification example 2.

Figure 13: Annotation example 1.

Figure 14: Annotation example 2.
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Figure 15: Annotation example 3.
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