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Abstract

Radiology report generation (RRG) has shown
great potential in assisting radiologists by au-
tomating the labor-intensive task of report writ-
ing. While recent advancements have im-
proved the quality and coherence of generated
reports, ensuring their factual correctness re-
mains a critical challenge. Although genera-
tive medical Vision Large Language Models
(VLLMs) have been proposed to address this
issue, these models are prone to hallucinations
and can produce inaccurate diagnostic informa-
tion. To address these concerns, we introduce
a novel Semantic Consistency-Based Uncer-
tainty Quantification framework that provides
both report-level and sentence-level uncertain-
ties. Unlike existing approaches, our method
does not require modifications to the underly-
ing model or access to its inner state, such as
output token logits, thus serving as a plug-and-
play module that can be seamlessly integrated
with state-of-the-art models. Extensive experi-
ments demonstrate the efficacy of our method
in detecting hallucinations and enhancing the
factual accuracy of automatically generated
radiology reports. By abstaining from high-
uncertainty reports, our approach improves
factuality scores by 10%, achieved by reject-
ing 20% of reports using the Radialog model
on the MIMIC-CXR dataset. Furthermore,
sentence-level uncertainty flags the lowest-
precision sentence in each report with an 82.9%
success rate. Our implementation is open-
source and available at https://github.com/BU-
DEPEND-Lab/SCUQ-RRG.

1 Introduction

RRG is gaining importance as healthcare demands
grow, placing substantial pressure on radiolo-
gists to interpret medical images swiftly and ac-
curately. Automating the report-writing process
holds the potential to alleviate this burden, improv-
ing both efficiency and diagnostic precision. Vi-
sion Large Language Models (VLLMs) have in-

troduced new possibilities in this area by gener-
ating detailed and coherent reports from medical
images, providing significant assistance to radiolo-
gists (Thawkar et al., 2023; Pellegrini et al., 2023).
However, despite these advancements, challenges
persist—particularly in ensuring the factual accu-
racy of these generated reports. A notable issue
with VLLMs is their tendency to produce “halluci-
nations”, or information that is ungrounded in the
visual data or inconsistent with established medi-
cal knowledge. For example, a model might incor-
rectly generate findings such as a diagnosis of pneu-
monia when none is present (Hartsock and Rasool,
2024), or fabricate prior medical history that does
not exist (Ramesh et al., 2022; Tanida et al., 2023;
Hyland et al., 2023). Such hallucinations can lead
to inaccurate or misleading diagnostic information,
posing significant risks in clinical settings.

Recent studies have explored various methods
to address hallucinations in radiology report gener-
ation. Ramesh et al. (2022) utilize a GPT-3-based
rewriting technique and a BioBERT-based token
classification system to remove references to non-
existent prior reports. Banerjee et al. (2024) em-
ploy Direct Preference Optimization (DPO) to sup-
press hallucinated prior exams, significantly reduc-
ing such errors while maintaining clinical accuracy.
However, these methods remain limited in scope,
focusing solely on specific hallucinations, namely
hallucinated prior exams, and do not enhance the
broader factual accuracy of diverse clinical entities
critical for dependable diagnostics. Bannur et al.
(2023, 2024) tackle hallucinations by integrating
current and prior images with detailed report sec-
tions, thereby improving the alignment between
generated text and visual data to reduce errors and
enhance report consistency. These approaches of-
fer a more comprehensive solution than methods
targeting specific hallucination types. However,
they rely on specialized architectures and addi-
tional training resources, limiting their flexibility
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and applicability across diverse models.
Addressing the limitations of prior approaches,

our framework provides a plug-and-play solution
that mitigates hallucinations through uncertainty
quantification (UQ), requiring no architectural
modifications or additional training. Broadly com-
patible with diverse VLLM-based RRG models,
it emphasizes semantic consistency between gen-
erated content and sampled counterparts. Specifi-
cally, our UQ framework assesses the consistency
of clinical entities within generated reports, assign-
ing high uncertainty to content with low factual
precision. We measure this consistency by com-
paring clinical facts from the original report with
those in multiple sampled reports generated from
the same query, relying solely on API-level ac-
cess to broaden applicability. By abstaining from
high-uncertainty reports, we enhance the clinical
efficacy of generated outputs. Additionally, by flag-
ging high-uncertainty sentences, we guide radiolo-
gists to areas needing further validation, reducing
their workload and supporting more accurate in-
terventions. In summary, our contributions are as
follows:
(1) We propose a plug-and-play UQ framework

that does not require modifications to the inter-
nal mechanisms of the model and can be easily
integrated with state-of-the-art RRG systems.

(2) We propose two domain-specific uncer-
tainty quantification methods for report- and
sentence-level analysis to identify clinical con-
tent with low semantic consistency, improving
the factual accuracy of the generated report.

(3) Our framework improves factuality by abstain-
ing from high-uncertainty reports, achieving
a 10% boost in factuality scores by rejecting
20% of reports using the Radialog model. Ad-
ditionally, it flags sentences with the highest
uncertainty, accurately identifying those with
the lowest factual precision at 82.9%.

(4) We evaluate our framework’s effectiveness in
detecting non-existent prior exams and investi-
gate its alignment with factuality across various
pathology subgroups.

2 Preliminaries

2.1 RRG with VLLMs

In RRG using VLLMs, the input is a medical image
x ∈ RD, where D is the dimension of the image,
and the output is a generated report r̂ ∈ V⋆, with
V⋆ represents the space of token sequences. To

produce this report, the model processes the image
through a series of transformations across three
main components.

First, the image encoder extracts the visual
tokens fx = Enc(x) from the image x. Next,
an Alignment Module generates an embedding
z = g(fx) to map these visual tokens to a text-
compatible space. This alignment allows the visual
data to be effectively interpreted by the language
model (LM). Finally, the aligned embeddings z are
passed to a Large Language Model (LLM), M,
which generates the radiology report as a sequence
of tokens r̂ ∈ V⋆.

The quality of the generated report r̂ is evalu-
ated against a reference report r using a correctness
function A(r̂, r), which measures lexical or seman-
tic similarity, assessing how well the generated
report aligns with the ground truth.

2.2 Rank Calibration

Rank Calibration (Huang et al., 2024) is designed
to evaluate the alignment between the uncertainty
levels of an LM’s predictions and their actual
(in)correctness. An uncertainty measure is consid-
ered rank-calibrated if predictions with higher un-
certainty are more likely to be incorrect. Given N
predictions by the LM, each associated with an un-
certainty score ui for i = 1, 2, . . . , N , these scores
are evenly partitioned into B intervals {Ib}Bb=1,
such that each interval contains approximately
N/B scores. Using a regression function reg to
map the uncertainty score u from any interval Ib
to the accuracy of predictions in that interval, the
Empirical Rank-Calibration Error (RCE) assesses
the alignment between uncertainty and accuracy
as below. Lower Empirical RCE values indicate
better calibration.

RCE =
1

B

B∑

b=1

∣∣∣∣∣

∑B
b′=1
b′ ̸=b

1

[
∑

u′∈Ib′
reg(u′) ≥ ∑

u∈Ib

reg(u)

]

B − 1

−

∑B
b′=1
b′ ̸=b

1

[
∑

u′∈Ib′
u′ ≤ ∑

u∈Ib

u

]

B − 1

∣∣∣∣∣ (1)

2.3 VRO (Variation Ratio for Original
Prediction)

The VRO metric (Huang et al., 2023b) measures
uncertainty by comparing the model’s original pre-
diction with the predictions generated from multi-
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1.The lungs are clear without focal consolidation.(0.525) 
2.No pleural effusion or pneumothorax is seen.(0.1) 
3.The cardiac and mediastinal silhouettes are unremarkable. 
(0.775) 
4.No pulmonary edema is seen.(0.7) 

X-ray image

VLLM
1.The lungs are clear without focal consolidation.  
2.No pleural effusion or pneumothorax is seen. 
3.The cardiac and mediastinal silhouettes are 
unremarkable.  
4.No pulmonary edema is seen.

Frontal and lateral views of chest were obtained.  
No focal consolidation, pleural effusion, or 
evidence of pneumothorax is seen. 
The cardiac silhouette is normal in size.  
The mediastinal and hilar contours are stable.

…

Semantic Parser

Original report

Sampled report

Report with Report- and Sentence-Level Uncertainty

The uncertainty of i-th report = 0.7

Figure 1: Pipeline of proposed Uncertainty Quantification Framework. Given an X-ray image xi, the LLM
generates an original report r̂i and sampled reports {r̃ti}Tt=1. These reports are first processed by a semantic parser g,
which extracts entity-label pairs for each sentence in r̂i. The uncertainty quantification module evaluates semantic
consistency at both the report and sentence levels, providing a comprehensive, layered view of uncertainty for the
generated report.

ple stochastic inferences. It is calculated as:

V RO = 1− 1

T

T∑

i=1

(1− dist(pi, pLM )) (2)

where T is the number of inferences, pi is the pre-
diction from the i-th inference, and pLM is the
original prediction from the model. The function
dist(·) measures the distance between two predic-
tions. Lower VRO values indicate greater consis-
tency between the original and sampled predictions,
signifying lower uncertainty in the model’s output.

2.4 Radgraph
RadGraph (Jain et al., 2021) structures chest X-
ray reports by extracting clinical entities and their
relationships as multiple triplets. Entities in-
clude Anatomy (ANAT-DP) and three types of
Observation: Definitely Present (OBS-DP), Un-
certain (OBSU), and Definitely Absent (OBS-DA).
Anatomy refers to body parts like “lung,” while
Observations describe features or diagnoses, such
as “effusion” or “increased.” Relations between en-
tities are categorized as Suggestive Of, Located
At, or Modify, indicating how observations are in-
ferred, located, or modified. To perform this extrac-
tion, PubMedBERT (Gu et al., 2021), a pre-trained
biomedical language model, was fine-tuned on the
RadGraph dataset. It processes radiology report

text to automatically label entities and relations,
enabling structured analysis of the clinical content.

2.5 Natural Language Inference based
Uncertainty Quantification

A Natural Language Inference (NLI) model takes
a pair of sentences (a premise and a hypothesis) as
input and outputs logits for the labels—entailment,
contradiction, or neutral—indicating the likelihood
of each relationship. Kuhn et al. (2023); Lin et al.
(2023) leverage these pairwise similarity scores
to assess the consistency between response pairs
and use them for subsequent uncertainty estima-
tion. Zhang et al. (2024a) use an off-the-shelf
DeBERTa-v3-large model (He et al., 2021) to
compute NLI-based uncertainty for each sentence
sj in a response. They calculate the probability of
"entailment" by normalizing the entailment logit le
over the sum of entailment and contradiction logits:

P (entail | sj , r′) =
exp(le)

exp(le) + exp(lc)
(3)

In this way, sentence-report similarity can be cal-
culated to enable UQ.

3 Method

In RRG, given an LLM M, we use r̃ti = Mt(xi)
to denote t-th sampled report given a Chest X-
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ray image xi in contrast to r̂i = M(xi) as orig-
inal report. An uncertainty measure is defined as
UM : V⋆× 2V

⋆ → R, takes the original report and
a set of sampled reports as input and outputs a real
value representing the uncertainty. Our core princi-
ple is that higher uncertainty should correspond to
lower quality in generated outputs. Therefore, we
follow the approach as described in Section 2.2 to
evaluate the alignment between UM and the pre-
diction correctness indicated by a clinical metric F
via Equation 1 by defining the regression function
as reg(u) = E[F |UM = u]. However, the long-
form nature of RRG poses the following challenges
in designing the uncertainty measurement U1.
(a) High Similarity Across Responses: long texts

often yield high similarity across response
pairs (Zhang et al., 2024a), limiting UQ meth-
ods based on response-level similarity (Kuhn
et al., 2023; Lin et al., 2023). Applying sim-
ilarity at the component level requires extra
effort to align corresponding parts, as sampled
responses may reorder or omit claims.

(b) Lack of Domain-Specific NLI Models:
Zhang et al. (2024a) propose using NLI models
for nuanced similarity assessments; however,
RRG lacks a specialized NLI model. Gen-
eral NLI models often struggle with the do-
main’s subtle distinctions, causing error prop-
agation. While Bannur et al. (2024) lever-
age the in-context learning abilities of GPT-
4 and Llama3-70B for entailment verifica-
tion—potentially making them viable as UQ
methods in RRG—these models are imprac-
tical for real-time UQ due to high computa-
tional demands. See further discussion in Ap-
pendix B.

(c) Limitations of Self-Evaluation-Based UQ:
Self-evaluation UQ methods (Kadavath et al.,
2022; Lin et al., 2023) attempt to verbalize
confidence through handcrafted prompts, en-
abling models to express uncertainty in natural
language. However, this approach is currently
unavailable for VLLM-based RRG models(Gui
et al., 2024), with failure cases demonstrated
in the Appendix B.

To overcome these challenges, we propose to
quantify uncertainty by evaluating semantic sim-
ilarity between paired reports with clinical met-
ric F . By focusing on semantic consistency, our
method more effectively captures semantic equiva-

1Will omit M when the choice of the LM is clear.

lence, leading to improved uncertainty estimation.
In addition, we apply VRO (Huang et al., 2023b),
which calculates the similarity between the original
and sampled predictions, to enhance computational
efficiency. In contrast to previous methods (Zhang
et al., 2024a; Kuhn et al., 2023) that require O(n2)
calls to NLI models for pairwise comparisons, our
approach reduces this complexity to O(n) calls for
consistency measurement while maintaining good
performance in UQ with different granularity. In
Section 3.1 we will provide details on report-level
UQ, while Section 3.2 details sentence-level UQ.

3.1 Report-Level Uncertainty Quantification
Our report-level uncertainty quantification lever-
ages the approach in Equation 2 , where we use a
factual metric in RRG as the distance function. In
this setup, r̂i is treated as the original prediction,
and r̃ti represents the t-th sampled prediction. The
uncertainty is computed as:

U
report
VRO (r̂i, {r̃ti}Tt=1) =

1

T

T∑

t=1

(
1− F

(
r̂i, r̃

t
i

))

(4)
We leverage GREEN (Ostmeier et al., 2024), a
state-of-the-art evaluation metric that aligns with
radiologist preferences, to implement F . GREEN
calculates factual alignment by comparing findings
and error counts between reports. Here, the origi-
nal report serves as the prediction, and the sampled
reports are references, effectively capturing seman-
tic equivalence between the original generated and
sampled reports. Further details on GREEN are in
the Appendix A.

3.2 Sentence-Level Uncertainty
Quantification

While report-level uncertainty quantification is use-
ful, it can obscure variations in certainty across
multiple facts within a report, making sentence-
level quantification more appropriate. Zhang et al.
(2024a) calculates sentence-to-report entailment
scores across all sampled reports increases classi-
fier complexity and computational demands, mak-
ing it inefficient for real-world deployment. To
overcome these challenges, we propose a novel
method leveraging the RadGraph (Jain et al.,
2021) parser. Assume that each report, r̂i =
{si1, si2, si3...siki}, consists of multiple sentences,
where ki indicates the number of sentences within
the report. We utilize the RadGraph parser, denoted
as g : V⋆ → V , which map sequence(s) to the
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set of node-label pairs V = {(vk, vkL)}k∈[1..|V |]
where each pair represents an entity and its associ-
ated label. An entity vk is a continuous text span
(potentially multi-word) that represents either an
Anatomy or an Observation. The label vkL for each
entity vk indicates one of the four possible entity
categories describe in Section 2.4. Using this struc-
tured output, we calculate an uncertainty value for
each sentence sij , where sij is the j-th sentence in
the generated report r̂i.

U sentence
VRO

(
sij , {r̃ti}Tt=1

)
=

1

T

T∑

t=1

(
1−

∣∣g (sij) ∩ g
(
r̃ti
)∣∣

|g (sij)|

)

=
1

T

T∑

t=1


1−

∣∣∣V ij ∩ V
t
i

∣∣∣
∣∣V ij

∣∣




(5)

where V ij represents the set of node-label pairs
in the original sentence sji , and V t

i is the set of node-
label pairs in the sampled report r̃ti . The term |V ij∩
V

t
i| denotes the number of entity-label pairs from

the original sentence V ij that are also present in V
t
i.

Additionally,
∣∣V ij

∣∣ represents the total number of
node-label pairs in the original sentence sji , which
bounds the uncertainty value between 0 and 1.

4 Experiments

In this section, we aim to answer the following
research questions: RQ1. How well does our pro-
posed UQ align with the factual correctness of the
generated reports? RQ2. Can our UQ enhance the
radiologist’s intervention process to improve the
factual accuracy of generated reports? RQ3. Can
our UQ detect content referring to non-existent
prior information?

4.1 Setup
Datasets. Following previous works, we conduct
our experiments on MIMIC-XCR (Johnson et al.,
2019). We follow the original train-val-test splits.
Models. We use RaDialog (Pellegrini et al., 2023)
as the base model for our uncertainty quantifica-
tion experiments. This model was selected due to
its clean architecture, strong performance on the
ReXRank (Zhang et al., 2024c) online benchmark,
and ease of reproducibility without data restrictions.
To further validate our approach, we also apply
our method to CheXpertPlus_mimiccxr (Cham-
bon et al., 2024), a top-performing model on the
MIMIC-CXR benchmark. For this model, we as-
sume only API access to demonstrate the flexibility,

plug-and-play nature, and generalizability of our
proposed uncertainty quantification framework to
different vision-language model-based radiology
report generation systems.

4.2 RRG Evaluation

We evaluate our RRG models using four metric
categories from the ReXRank benchmark (Zhang
et al., 2024c), supplemented by the state-of-the-art
GREEN evaluation. We use lexical metrics such
as BLEU and embedding-based BERTScore to as-
sess token-level and semantic similarity. To evalu-
ate pathological and entity-based consistency, we
apply factuality metrics, including Semb Score
and RadGraph Precision, Recall, and F1.
We further assess clinical accuracy with RadCliQ,
which combines RadGraph F1 and BLEU scores,
and the GPT-based evaluator GREEN, which eval-
uates clinical accuracy by matching findings and
counting errors between generated and reference
reports. For detailed descriptions of each metric,
see Appendix C.

4.3 UQ Evaluation

In this section, we show how UQ can be evaluated
in radiology report generation. In contrast to typi-
cal question-answering tasks where the correctness
of a model’s prediction is binary, radiology report
generation typically involves long-form generation
which requires more nuanced evaluation methods
for UQ.
Pearson correlation coefficient. The Pearson cor-
relation coefficient can be used to assess how well
uncertainty quantification aligns with the factual
correctness of generated reports. By measuring
the linear relationship between model uncertainty
and report quality, Pearson’s coefficient provides
insight into whether higher uncertainty corresponds
to lower factual accuracy. The Pearson correlation
ranges between −1 and 1, where a negative value
indicates an inverse relationship. In our setting, we
use Pearson’s coefficient to evaluate this relation-
ship, with a strong negative correlation suggesting
that higher uncertainty signals lower report cor-
rectness, aligning with the intended behavior of
uncertainty quantification.
Rank calibration error. RCE assesses the consis-
tency in ranking, ensuring higher uncertainty corre-
sponds to lower correctness, regardless of a linear
relationship. We use the Empirical RCE (Huang
et al., 2024), which divides uncertainty values into
B = 20 bins. For each bin, we calculate the ex-
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pected correctness level and average uncertainty.
The Empirical RCE is computed by averaging the
rank differences between correctness and uncer-
tainty across these bins as Equation 1, offering a
principled approach to measure the alignment be-
tween uncertainty and correctness without relying
on arbitrary thresholds.
Abstention. Abstention allows uncertainty quan-
tification to enhance factual accuracy by rejecting
high-uncertainty reports, directing radiologists to
focus on certain content. Traditionally, abstention
is measured by metrics like AUARC (Huang et al.,
2024), which evaluates improvement by abstaining
from uncertain cases. However, binary metrics like
AUARC are inadequate for the nuanced nature of
RRG. To address this, we evaluate abstention at the
report level, measuring improvements in factuality
scores while balancing the trade-off with coverage.
This strategy enables targeted intervention by ra-
diologists, focusing their review on areas where
factual accuracy may be compromised.
Uncertainty Precision Alignment. To evaluate
sentence-level UQ in RRG, we calculate a factual
precision score for each generated sentence using
RadGraph (details in Appendix C). We then assess
how well high uncertainty scores correspond to
sentences with low factual precision within each
report. Specifically, we measure the alignment rate
between the sentence with the highest uncertainty
and the sentence with the lowest factual precision.
This alignment metric supports targeted interven-
tions, enabling radiologists to focus on sentences
that may require closer review due to potential fac-
tual inaccuracies.

4.4 Hallucination Detection

In RRG, references to prior exams are a common
form of hallucination (Banerjee et al., 2024). In
this section, We empirically investigate whether
our UQ can effectively detect and flag these hallu-
cinations by assigning them high uncertainty. Fol-
lowing Banerjee et al. (2024), we define 43 sub-
strings commonly associated with references to
prior exams. For report-level uncertainty, we ana-
lyze the changes in the percentage of reports with
prior exam references and the average number of
hallucinated substrings per report before and after
applying different levels of abstention.

4.5 UQ Baselines

We compare our method with the previous uncer-
tainty quantification method. Following Kuhn

et al. (2023), we use predictive entropy, length-
normalised predictive entropy (Malinin and Gales,
2020) and lexical similarity (Zhang et al., 2024a;
Fomicheva et al., 2020). We do not compare
with methods involving NLI classifiers and self-
evaluation-based UQ due to their unavailability in
RRG, as discussed in Appendix B. For all experi-
ments, we use the default temperature value 1 and
sample 10 responses to calculate UQ.

5 Results

5.1 Alignment with Factuality (RQ1)

Table 1 demonstrates that our proposed
VRO-GREEN exhibits stronger negative
Pearson correlations with factuality metrics
across both the Radialog Model and the
CheXpertPlus_mimiccxr Model when com-
pared to baseline UQ methods. In particular,
VRO-GREEN achieves high negative corre-
lations on GREEN (-0.5292 for Radialog,
-0.4726 for CheXpertPlus_mimiccxr) and
RadCliQ-v0 (-0.4137 for Radialog, -0.3743
for CheXpertPlus_mimiccxr). This indicates
VRO-GREEN’s superior capability in aligning
uncertainty with factual correctness in radiology
report generation. Furthermore, we grouped sam-
ples based on the presence of specific pathology
findings to examine the correlation between UQ
and GREEN for each subgroup for the Radialog
Model. Subgroup analysis in Table 3 reveals
variation in correlation strength, particularly in the
Pneumothorax subgroup, where the correlation
is notably weaker at −0.08, likely due to the
underrepresentation of Pneumothorax cases
(around 1% of positive cases in the training set).

Table 2 further validates VRO-GREEN’s
alignment effectiveness using Empirical RCE,
where it achieves the lowest RCE values
on both GREEN (0.015 for Radialog, 0.02
for CheXpertPlus_mimiccxr) and Negative
RadCliQ-v0 (0.02 for Radialog, 0.025 for
CheXpertPlus_mimiccxr). These results confirm
VRO-GREEN’s superior consistency in aligning
uncertainty with factual correctness across multiple
metrics.

At the sentence level, the Pearson correlation be-
tween sentence-level uncertainty (VRO-RadGraph)
and factual precision is strong for both models,
with -0.52 for the Radialog model and -0.55 for
the CheXpertPlus_mimiccxr model, indicating ef-
fective alignment with factuality at sentence level.
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Uncertainty Method BLEU Score BERTScore Semb Score RadGraph Recall RadGraph Precision RadGraph Combined GREEN -RadCliQ-v0 -RadCliQ-v1

Radialog Model

VRO-GREEN (Ours) -12.15 -40.92 -30.71 -19.95 -34.15 -27.88 -52.92 -41.37 -39.46
Predictive Entropy -0.79 -28.77 -21.03 -2.78 -22.35 -12.25 -32.84 -27.72 -25.18
Normalized Entropy -8.43 -22.32 -19.00 -10.58 -16.78 -13.60 -36.34 -23.19 -22.04
Lexical Similarity -12.42 -38.13 -26.80 -16.67 -31.46 -24.95 -38.75 -37.21 -35.62

CheXpertPlus Model

VRO-GREEN (Ours) -9.39 -34.00 -29.72 -22.70 -30.20 -27.62 -47.26 -37.43 -35.51
Lexical Similarity -15.17 -31.48 -25.25 -23.30 -27.32 -26.38 -34.91 -32.95 -32.11

Table 1: Pearson correlation values (expressed as percentages) for various metrics with different UQ methods
across two models: Radialog and CheXpertPlus_mimiccxr. Stronger negative values indicate better perfor-
mance. Negative RadCliQ metric are used to align with other metrics in Pearson correlation calculations. For
CheXpertPlus_mimiccxr, we assume API-only access to the model, so only lexical similarity is compared in the
table.

UQ Method RCE(GREEN) RCE(-RadCliQ-v0)
Radialog Model

VRO-GREEN (Ours) 0.015 0.02
Predictive Entropy 0.045 0.09
Normalized Entropy 0.045 0.145
Lexical Similarity 0.045 0.04

CheXpertPlus Model
VRO-GREEN (Ours) 0.02 0.025
Lexical Similarity 0.03 0.03

Table 2: Empirical RCE results for various UQ metrics
measured on GREEN and Negative RadCliQ-v0 correct-
ness, with results presented separately for Radialog and
CheXpertPlus_mimiccxr models.

5.2 Enhancing RRG Intervention(RQ2)

Figure 2: Effect of Report Abstention on Factuality
Score across UQ for the RaDialog model. The per-
centages in boxes represent the improvement(only top-2
visualized) in factuality score after abstention, relative
to the initial performance without abstention.

Figure 2 and Figure 5 illustrate the impact
of report-level abstention on factuality scores
(GREEN) for the Radialog and CheXpertPlus
models, respectively. By excluding the top 20%
most uncertain reports, our UQ method achieves no-
table factuality improvements: 10% for Radialog
and 9.2% for CheXpertPlus, demonstrating con-
sistent gains across models. These results high-
light our method’s effectiveness in enhancing re-
port quality and supporting radiologists in focusing

on more reliable reports.
At the sentence level, uncertainty-precision

alignment results reveal that for the Radialog
model, the highest-uncertainty sentence aligns with
the lowest factual precision at a rate of 82.9%,
while the lowest-uncertainty sentence aligns with
the highest factual precision at only 59.1%. For the
CheXpertPlus model, these rates are 81.2% and
59.6%, respectively, closely mirroring the trend
observed in Radialog. This discrepancy indi-
cates that while our sentence-level UQ method ef-
fectively flags low-precision sentences with high
uncertainty, it performs poorly in cases of low-
uncertainty sentences, highlighting the presence of
confidently hallucinated sentences that our method
struggles to capture. This limitation underscores
a key challenge in our current approach and sug-
gests an avenue for future work. More details are
discussed in Section 8.

5.3 Detection of Hallucinations of Prior
Exams (RQ3)

Figure 3 and Figure 6 demonstrate the effective-
ness of our report-level uncertainty quantification
in detecting hallucinations of prior exams for the
Radialog and CheXpertPlus models, respectively.
Rejecting high-uncertainty reports leads to a clear
decrease in the percentage of reports with prior
references and the average number of prior-related
substrings, significantly improving hallucination
detection. In contrast, the random baseline, av-
eraged over 5 seeds, shows no reduction in these
metrics.

5.4 Qualitative Analysis.

In this section, we analyze the qualitative aspects of
our UQ framework for radiology report generation.
Specifically, we explore (1) the effect of increasing
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Figure 3: Effect of VRO-GREEN Guided Abstention
on Prior References and Substrings for the Radialog
model. Solid lines represent VRO-GREEN Guided Ab-
stention, with dashed red lines as the baseline perform-
ing random abstention.

the number of sampled reports on UQ performance
and (2) a case study showcasing the practical utility
of our framework in identifying low factual correct-
ness and guiding radiologist interventions.
Number of sampled reports. Research on short
question-answer tasks and long-form generation
has shown that increasing the number of sampled
responses can enhance the performance of uncer-
tainty quantification. We extend this investigation
to radiology report generation, exploring whether
the same holds true in this domain. As illustrated in
Figure 7, our findings align with previous research,
showing that the performance of UQ improves with
more samples and converges when using seven sam-
ples.
Case Study. Figure 4 illustrates our UQ frame-
work’s ability to identify low factual correctness
and assist radiologists in targeted review. In Fig-
ure 4(a), report-level UQ assigns the highest un-
certainty score to a nonsensical report with zero
factual correctness. Figure 4(b) shows sentence-
level UQ, ranking sentences by uncertainty to guide
radiologist intervention: the high-uncertainty (red)
sentence references a non-existent prior exam, the
moderate-uncertainty (orange) sentence is partially
correct, and the low-uncertainty (green) sentence
is fully accurate.

6 Related Work

Multimodal Foundation Models, such as VLLMs,
augment large language models (LLMs) with vi-
sual inputs (Antropic, 2024; OpenAI, 2023). These
models are typically pre-trained on diverse datasets
(Erhan et al., 2010; Chen et al., 2020; Li et al., 2022;
Lin et al., 2024; Alayrac et al., 2022) before applied
to specialized tasks, reducing the requirements for
domain-specific data. VLLMs have been evaluated
in medical applications such as medical image inter-
pretation and radiology report generation (Litjens
et al., 2017; Esteva et al., 2021; Moor et al., 2023;
Srivastav et al., 2024), and have demonstrated per-
formance comparable to previous supervised meth-
ods (Rajpurkar, 2017; Qin et al., 2018), and in
some cases, even rival medical experts (Tiu et al.,
2022). However, there are challenges that hinder
establishing trust in multimodal foundation mod-
els in clinical practice (Truhn et al., 2024; Freyer
et al., 2024; Ong et al., 2024). These challenges in-
clude ensuring the quality and transparency of the
training data (Koçak, 2022; Celi et al., 2022; Chen
et al., 2023), effective collaboration between ma-
chine learning experts and medical professionals
(Cai et al., 2019), and more effective and meaning-
ful evaluation measurements (Wornow et al., 2023).
Our paper focuses on the factuality of VLLMs’ pre-
dictions in radiology applications where ensuring
accuracy and trustworthiness are critical for clinical
decision-making (Bates et al., 2021).
Hallucination in Foundation Models (Rawte
et al., 2023; Ji et al., 2023) can lead to non-factual
predictions, and this issue persists regardless of
the model’s size (Lee et al., 2023; Jeblick et al.,
2024; Xu et al., 2024; Zhang et al., 2024b). Studies
(Zheng et al., 2023; Lu et al., 2023) have shown that
a lack of domain-specific knowledge in assigned
tasks can cause foundation models to produce hal-
lucinated outputs, a behavior that is often difficult
for the models to correct on their own (Huang et al.,
2023a). A large body of research has focused on
addressing this issue by filling the knowledge gaps
with additional oracle labels (Kim et al., 2024;
Shinn et al., 2024; Gou et al., 2024; Banerjee et al.,
2024; Bannur et al., 2024). However, as Feng et al.
(2024) points out, the knowledge gaps will always
exist because knowledge is continually evolving.
Moreover, in radiology, filling these gaps requires
expertise-intensive labeling of data such as medi-
cal imaging data (Koyyada and Singh, 2023; Kim
et al., 2022) and Electronic Health Records (EHR)
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1. In comparison with the study of ___, there is 
little overall change.  

2. Again there is extensive opacification at the 
right base consistent with pleural effusion 
and compressive atelectasis.  

3. The left lung is relatively clear.

 There is a very tiny right apical pneumothorax following 
removal of the right-sided chest tube.  There is persistent 
elevation of the right hemidiaphragm with atelectasis at the 
right lung base and a right-sided pleural effusion.  A 
rounded opacity is seen in the right suprahilar region and is 
stable.  The left lung is relatively clear aside from 
atelectasis at the left lung base and a small left-sided 
pleural effusion.

X-ray image

The hallucination of prior exams 

Partially correct

Accurate sentence
(b) Sentence-level UQ case study 2

(a) Report-level UQ case study 1

PA and lateral views of the chest ___ 
at 10:30 are submitted.

In comparison with study of ___, there is little change and 
no evidence of acute cardiopulmonary disease.  Cardiac 
silhouette is mildly prominent, but there is no vascular 
congestion, pleural effusion, or acute focal pneumonia.

Generated Report Ground-Truth Report

Factual correctness = 0
Report-level uncertainty = 1 
 

Figure 4: Two separate analyses of report- and sentence-level UQ in radiology report generation using MIMIC-CXR
data. (a) The report-level UQ study assigns an uncertainty score to the entire report. (b) The sentence-level
UQ study ranks individual sentences by uncertainty, with red (1.0) indicating high uncertainty, orange (0.75)
indicating moderate uncertainty, and green (0.47) indicating low uncertainty. This color-coded ranking helps inform
radiologists on which sentences may require closer attention.

data (Mc Cord et al., 2019).

Uncertainty Quantification (UQ) has been ex-
tensively studied in conventional ML (Gupta et al.,
2006; Shafer and Vovk, 2008; Vaicenavicius et al.,
2019; Tibshirani et al., 2019; Abdar et al., 2021),
and is receiving increasing attention due to its po-
tential to mitigate hallucinations in foundation mod-
els (Xiao and Wang, 2021; Fadeeva et al., 2024).
Straightforward methods include querying models
about their confidence (Xiong et al., 2023; Joshi
et al., 2017), and using Perplexity score (Jelinek
et al., 1977). Recent research on semantic uncer-
tainty (Kuhn et al., 2023; Zhang et al., 2024a) draw
insights from the coherence of model predictions
by using an additional NLI (MacCartney, 2009)
classifier. Calibration methods and conformal pre-
diction techniques (Liu and Wu, 2024; Quach et al.,
2024; Gui et al., 2024) can offer statistical guar-
antees on the factuality of the outputs, provided
that there is a held-out dataset for extracting neces-
sary information. UQ in radiology report genera-
tion poses unique challenges to existing methods
by involving image inputs and long-form radiolo-
gist reports as outputs (Koçak, 2022; Jeblick et al.,
2024; Smit et al., 2020). Our method is related
to RadGraph (Jain et al., 2021), which structures
radiology reports by extracting pre-defined clini-
cal entities and their relations. Prior works that
used RadGraph for UQ involve an additional rein-
forcement learning step (Delbrouck et al., 2022).
However, our approach does not involve such step.

7 Conclusion

In this paper, we tackle the challenge of hallucina-
tions in RRG through a novel UQ approach. Our
plug-and-play framework introduces both report-
level and sentence-level UQ to detect low-factuality
reports and identify non-existent prior hallucina-
tions, supporting more effective radiologist inter-
vention. Applied to the MIMIC-CXR dataset, our
method achieved a 10% improvement in factual-
ity by rejecting 20% of high-uncertainty reports
using the Radialog model. Additionally, sentence-
level UQ flagged sentences with the lowest factual
precision at 82.9% accuracy, enabling targeted in-
tervention. Future work will focus on exploring
supervised uncertainty measures to improve factu-
ality, particularly addressing cases where the UQ
framework assigns low uncertainty to hallucinated
predictions generated by VLLMs. Additionally,
integrating uncertainty directly into the generation
process could guide models toward more factual
outputs by conditioning generation on uncertainty
thresholds, thus enhancing both the reliability of
UQ and overall model trustworthiness.
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Limitations

In this section, we outline the limitations of our
work and potential areas for improvement.

First, while we demonstrate the effectiveness of
our method across different model architectures
using the MIMIC-CXR dataset, our evaluation
is limited to this dataset. Expanding our experi-
ments to other datasets, such as IU X-Ray (Demner-
Fushman et al., 2016) or the recently published
CheXpert Plus (Chambon et al., 2024), could fur-
ther validate the generalizability of our approach.

Second, due to challenges outlined in Section 3,
we were only able to compare our method against
three relatively simple baselines. As UQ techniques
continue to evolve within this domain, the develop-
ment of domain-specific models, such as tailored
NLI models for RRG, could enable a more compre-
hensive comparison in future work.

Third, while our sentence-level uncertainty quan-
tification effectively aligns high-uncertainty sen-
tences with low factual precision, it struggles to
align low-uncertainty sentences with high factual
precision, revealing a gap in detecting confidently
hallucinated sentences. This limitation suggests the
need for enhanced UQ techniques and the potential
benefit of incorporating a fact-checking module to
improve reliability and distinguish factual inaccu-
racies.

Finally, our current sentence-level UQ is de-
signed with intervention in mind, focusing solely
on the factual precision of generated reports. How-
ever, this approach overlooks factual completeness,
meaning it does not account for important factual
information that may be omitted from the generated
report. Future work could address this by designing
UQ methods that consider both factual precision
and completeness, providing a more balanced eval-
uation of report quality.

These limitations highlight opportunities for fur-
ther refinement and experimentation in UQ method-
ologies for radiology report generation
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A GREEN

Given a generated report as the hypothesis and a
ground truth report as the reference, the GREEN
evaluation framework assesses clinical accuracy by
analyzing both error counts across various clini-
cally significant categories and counts of matched
findings. Specifically, GREEN categorizes errors
as follows:
(a) False report of a finding in the candidate.
(b) Missing a finding present in the reference.
(c) Misidentification of a finding’s anatomic loca-
tion/position.
(d) Misassessment of the severity of a finding.
(e) Mentioning a comparison that isn’t in the refer-
ence.
(f) Omitting a comparison detailing a change from
a prior study. The GREEN score is then calculated
as:

GREEN =
# matched findings

# matched findings +
∑(f)

i=(a)# error i

B Challenges in Applying Other UQ
Methods to RRG

NLI-based UQ

The lack of domain-specific NLI models in RRG
makes this approach infeasible. Although Bannur
et al. (2024) leverage in-context learning with large
models like GPT-4 and Llama3 for entailment veri-
fication in RRG, they are mainly designed to evalu-
ate generated reports against ground-truth reports.

Their study reports that RadFact’s entailment verifi-
cation with Llama3-70B requires a single compute
node with four A100 GPUs, taking approximately
17 seconds per comparison, while GPT-4, hosted
on Microsoft Azure, takes around 27 seconds. Con-
sidering the computational requirements discussed
in Section 3, a single report-level UQ with GPT-4
would require around 675 seconds for five sampled
reports, and Llama3’s GPU needs make it too costly
for UQ applications. All of the above highlights
the challenges of applying NLI-based methods for
UQ in radiology report generation RRG. Therefore,
we call for the development of RRG-tailored NLI
models to better support UQ in this domain.

Pathology Finding Pearson Correlation (%)
No Finding -68.44
Enlarged Cardiomediastinum -42.37
Cardiomegaly -35.07
Lung Opacity -38.84
Lung Lesion -41.47
Edema -34.01
Consolidation -43.60
Pneumonia -38.26
Atelectasis -42.91
Pneumothorax -8.09
Pleural Effusion -27.82
Pleural Other -40.04
Fracture -46.36
Support Devices -42.27

Table 3: Pearson correlation (as percentages) between
UQ and GREEN (The overall correlation is -0.52 )
across various subgroups of pathology findings.

Figure 5: Effect of Report Abstention on Factual-
ity Score across UQ for the CheXpertPlus_mimiccxr
model. The percentages in boxes represent the improve-
ment in factuality score after abstention, relative to the
initial performance without abstention. We assume API-
only access to the model, so only lexical similarity is
compared in the figure.

Self-Evaluation-Based UQ
We demonstrate failure as shown in Figure 8 cases
when applying Self-Evaluation-Based UQ to the
RaDialog model in RRG. These limitations likely
stem from the model’s smaller size, making it less
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Figure 6: Effect of VRO-GREEN Guided Absten-
tion on Prior References and Substrings for the
CheXpertPlus_mimiccxr model. Solid lines represent
VRO-GREEN Guided Abstention, with dashed red lines
as a baseline performing random abstention.

capable of self-probing compared to larger models
like GPT-4.

C Evaluation

RRG Evaluation

These metrics are organized into four categories:
Lexical Metrics. We apply traditional Natural Lan-
guage Processing (NLP) metrics such as BLEU (Pa-
pineni et al., 2002) to measure token-level similar-
ity between the generated and ground-truth reports.
In addition, we leverage the embedding-based sim-
ilarity metric BertScore (Zhang et al., 2019) to
capture more nuanced relationships between the
texts.
Factuality Metrics. To assess factual consis-
tency between the generated and ground-truth re-
ports, we use two key approaches. First, Semb
Score is calculated by passing both reports through
the CheXbert model (Smit et al., 2020), which
extracts present/absent/uncertain labels for 14
CheXpert pathological observations (Irvin et al.,
2019). Cosine similarity between the resulting em-
beddings is then computed. Additionally, we eval-
uate RadGraph Precision, Recall, and F1
using the RadGraph model (Jain et al., 2021),
which parses reports into graphs of clinical enti-
ties (anatomical references and observations) and
their relations, followed by calculating the overlap

Figure 7: The effect of different number of samples on
the Pearson correlation values with VRO-GREEN.

between the entities and relations in the generated
and reference reports.
RadCliQ Metrics. RadCliQ integrates RadGraph
F1 and BLEU scores to estimate the clinical error
rate, providing a holistic quality assessment of the
generated report. This metric closely aligns with
radiologists’ evaluations of report quality. For eval-
uation, we report both version 0 and version 1 of
RadCliQ.
GPT-based Evaluator. The GREEN metric is an
open-source evaluation framework for radiology
report generation. It calculates matching findings
and error counts between the generated report and
the ground-truth report, providing clinical accuracy
scores, while using a smaller language model for
efficiency.

Sentence Factual Precision
We use RadGraph to compute the sentence-level
factual precision score for UQ evaluation. Follow-
ing the notation from Section 3, we calculate the
precision for each sentence sij , where sij repre-
sents the j-th sentence in the generated report r̂i.

Psentence (sij , ri) =
|g (sij) ∩ g (ri)|

|g (sij)|

=

∣∣V ij ∩ V i

∣∣
∣∣V ij

∣∣ (6)

For edge cases in our experimented LLM model,
such as the sentence "The patient is status post ster-
notomy," RadGraph fails to parse and returns an
empty pair set. We flag these cases with a preci-
sion score of negative one 2, indicating the lowest

2Correspondingly, we assign an uncertainty score of u=1
for these sentences during uncertainty calculation.
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Figure 8: Example of Failure Cases in Applying Self-Evaluation-Based UQ to the RaDialog Model

Sentence Removal BLEU Score↑ BERTScore↑ Semb Score↑ RadGraph Recall↑ RadGraph Precision↑ RadGraph Combined↑ GREEN↑ RadCliQ-v0↓ RadCliQ-v1↓

Original Report 0.1836 0.3995 0.4075 0.1801 0.2150 0.1874 0.2942 3.3838 1.1520
3% Removed 0.1814(0.1800) 0.3994(0.3915) 0.4082(0.4014) 0.1787(0.1751) 0.2166(0.2154) 0.1875(0.1842) 0.2936 3.3810(3.4217) 1.1513(1.1752)
5% Removed 0.1792(0.1763) 0.3990(0.3893) 0.4092(0.3982) 0.1778(0.1720) 0.2185(0.2154) 0.1878(0.1822) 0.2929 3.3782(3.4348) 1.1506(1.1845)
7% Removed 0.1758(0.1722) 0.3983(0.3869) 0.4091(0.3943) 0.1763(0.1681) 0.2202(0.2156) 0.1876(0.1795) 0.2924 3.3786(3.4508) 1.1522(1.1957)
9% Removed 0.1713(0.1693) 0.3971(0.3857) 0.4106(0.3942) 0.1753(0.1655) 0.2237(0.2169) 0.1877(0.1782) 0.2904 3.3758(3.4545) 1.1524(1.1994)
11% Removed 0.1678(0.1653) 0.3963(0.3827) 0.4116(0.3863) 0.1736(0.1611) 0.2263(0.2153) 0.1875(0.1749) 0.2889 3.3742(3.4805) 1.1530(1.2162)
13% Removed 0.1650(0.1615) 0.3959(0.3805) 0.4121(0.3843) 0.1717(0.1584) 0.2287(0.2165) 0.1871(0.1736) 0.2882 3.3729 (3.4905) 1.1536(1.2236)

Table 4: Comparison of various metrics across different levels of pruning guided by sentence uncertainty. Values
in bold indicate metrics that improve the most compared to the original reports. An up arrow (↑) signifies that a
higher value is better for the metric, while a down arrow (↓) indicates that a lower value is preferable. Values in
parentheses show results from a baseline of random pruning at the same level.

possible precision. This approach is reasonable, as
such sentences typically refer to non-existent prior
exams.

Sentence Abstention

Given the positive results of report-level UQ in im-
proving factual accuracy through report abstention,
we extended this approach to sentence-level absten-
tion to assess whether removing high-uncertainty
sentences across the dataset could improve perfor-
mance across various metrics. Table 4 presents the
results.

As the percentage of sentence abstention in-
creases, we observe a drop in lexical scores such
as BLEU and RadGraph recall, while GREEN re-
mains consistent. Notably, RadGraph precision and
RadCliQ metrics demonstrate improvement, indi-
cating that selectively removing high-uncertainty
sentences leads to higher factual precision in these
aspects. Compared to the baseline of random sen-
tence removal at the same levels, our uncertainty-
guided abstention consistently yields superior re-

sults, indirectly demonstrating that our sentence-
level UQ effectively identifies sentences with low
factual accuracy.

However, unlike report-level abstention,
sentence-level abstention may be less practical due
to the complex nature of radiology reports, where
sentences often contain multiple clinical claims.
Removing entire sentences risks omitting relevant
information, making this approach too coarse for
practical application. In future work, we aim to
integrate sentence-level UQ into the generation
process itself, enabling more granular control to
enhance factual accuracy without the need for
sentence removal.
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