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Abstract

In-context learning (ICL) has emerged as a ca-
pability of large language models (LLMs), en-
abling them to adapt to new tasks using pro-
vided examples. While ICL has demonstrated
its strong effectiveness, there is limited under-
standing of its vulnerability against potential
threats. This paper examines ICL’s vulnera-
bility to data poisoning attacks. We introduce
ICLPoison, an attacking method specially de-
signed to exploit ICL’s unique learning mecha-
nisms by identifying discrete text perturbations
that influence LLM hidden states. We propose
three representative attack strategies, evaluated
across various models and tasks. Our exper-
iments, including those on GPT-4, show that
ICL performance can be significantly compro-
mised by these attacks, highlighting the urgent
need for improved defense mechanisms to pro-
tect LLMs’ integrity and reliability.

1 Introduction

In-context learning (ICL) (Brown et al., 2020; Min
et al., 2022) has emerged as an important capa-
bility of large language models (LLMs). Unlike
traditional machine learning algorithms that require
extensive retraining or fine-tuning to adapt to new
tasks (Hoi et al., 2021; Zhang and Yang, 2021;
Zhuang et al., 2020), ICL enables LLMs to make
predictions based on a few examples related to a
specific task, without changing the model param-
eters. For example, consider the task of predict-
ing a person’s nationality and the prompt consists
of examples, e.g. “Albert Einstein was German;
Isaac Newton was English;”, followed by the query
“Thomas Edison was”, an LLM such as GPT-4
will predict “American” accurately. The efficiency
and flexibility of ICL have drawn significant atten-
tion and revolutionized various real-world applica-
tions, ranging from LLM-based few-shot health-
care agents (Shi et al., 2024) to knowledge tagging
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in the education domain (Li et al., 2024), where
demonstrations are utilized to handle specific tasks.

Despite the success of ICL, studies have shown
that the ICL performance is sensitive to certain
characteristics of demonstrations, such as the exam-
ple selection strategy and the quality of examples
(Wang et al., 2023; Min et al., 2022). Therefore,
it naturally raises a question: Is ICL vulnerable
to potential data poisoning attacks? Unlike the
traditional data poisoning attack (Steinhardt et al.,
2017) where attackers manipulate the training data
to corrupt the model trained on the poisoned data,
we focus on the perturbations in examples utilized
in ICL while keeping the LLMs untouched.

This paper aims to answer the above question
by exploring data poisoning attacks in ICL and
uncovering the vulnerability of ICL when facing
these attacks. We consider the standard pipeline of
ICL, where examples are randomly selected from a
data set for the corresponding downstream task. In
terms of the attack, we assume that the adversary
deliberately inserts some poisoned examples in this
data, and their goal is to ensure that the learning
process is adversely affected and the overall ICL
prediction performance decreases. This scenario
can be both significant and practical. For instance,
LLMs and ICL are used in medical systems (Shi
et al., 2024) for multiple tasks including diagnosis
and cost computation. Healthcare providers such
as hospitals and physicians may manipulate elec-
tronic health records (EHR) to increase revenue
(Finlayson et al., 2018).

Technically, data poisoning in ICL faces both
unique challenges specific to ICL and common
obstacles in traditional data poisoning. First, in
contrast to traditional learning algorithms with ex-
plicit training objectives, ICL enables LLMs to
learn from demonstrations without explicit training
(Brown et al., 2020; Min et al., 2022). Since tradi-
tional poisoning strategies are designed specifically
to target the training process and exploit loss func-
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tions in conventional models (Biggio et al., 2012;
Steinhardt et al., 2017; Geiping et al., 2020; He
et al., 2023), they are not directly applicable to
ICL. Conducting effective data poisoning attacks
for ICL requires a thorough understanding of the
unique learning mechanism of ICL. Second, similar
to traditional attacking methods, data poisoning for
ICL also requires creating samples that are imper-
ceptible to humans yet disruptive. These poisoned
examples must seamlessly integrate with the other
data to harm the learning process subtly. More-
over, one extra challenge of poisoning ICL arises
from the discrete vocabulary of language models,
making it hard to manipulate inputs for effective
disturbance (Lei et al., 2019; Xu et al., 2023).

To tackle the above challenges, we introduce a
novel and versatile attacking method, ICLPoison,
to exploit the unique learning mechanism of ICL.
In particular, previous research (Xie et al., 2021;
Hendel et al., 2023; Liu et al., 2023; Wang et al.,
2023) has shown a strong correlation between ICL
performance and the hidden states within LLMs.
ICLPoison distorts these hidden states through
strategic text perturbations, despite the attacker’s
limited ability to alter only the demonstration ex-
amples. We further design three strategies for in-
stantiating and optimizing poisoning attacks un-
der the ICLPoison method. Extensive and com-
prehensive experiments across various LLMs and
tasks demonstrate the effectiveness of our meth-
ods, highlighting the vulnerability of ICL. Notably,
we have successfully degraded the performance of
ICL in advanced models, including GPT-4 (a 10%
decrease in ICL accuracy). Our study enhances
the understanding of ICL’s vulnerability to data
poisoning, which helps improve the security and
reliability of LLMs.

2 Related Works

2.1 Data Poisoning Attack

Data poisoning attacks (Biggio et al., 2012; Stein-
hardt et al., 2017) usually occur during the data
collection phase of machine learning model train-
ing, where the training data is tampered with to
induce malicious behaviors in the resulting mod-
els (He et al., 2023). These malicious behaviors
include causing a poisoned model to have a poor
overall accuracy (Steinhardt et al., 2017; Fowl et al.,
2021; Huang et al., 2021), misclassifying a speci-
fied subset of test samples (Shafahi et al., 2018; Zhu
et al., 2019), or inserting backdoors (Chen et al.,

2017; Gu et al., 2019). The data poisoning on tra-
ditional NLP models is widely explored. CARA
(Chan et al., 2020) inserts backdoors into text classi-
fiers by generating poisoned samples by utilizing a
conditional adversarially regularized autoencoder;
(Yang et al., 2021; Schuster et al., 2020) poison
the embeddings space of NLP models; (Chen et al.,
2021) investigates different triggers to evaluate the
effectiveness of backdoor attacks on NLP tasks.

With the development of LLMs, poisoning at-
tacks have also drawn the attention of the whole
community, and studies have examined the vul-
nerability of LLMs against corruption in the pre-
training and fine-tuning data. For example, Bad-
Prompt (Cai et al., 2022) inserts backdoors during
prompt-tuning and selects effective triggers to max-
imize the poisoning effect; POISONPROMPT (Yao
et al., 2024) focuses on a similar setting and lever-
ages a bi-level optimization objective to optimize
the trigger while maintaining utility on clean sam-
ples; NOTABLE (Mei et al., 2023) considers the
transferability of backdoors and injects backdoors
into the encoder to adapt the attack to different
downstream tasks and prompting strategies. (Wan
et al., 2023) further explores the threat during in-
struction tuning of LLMs and shows that attackers
can manipulate model predictions whenever a de-
sired trigger phrase appears in the input. However,
these attacks still focus on altering the pre-training
or fine-tuning data, and the threat of poisoning ex-
amples in ICL remains unexplored.

2.2 Attacking In-context Learning (ICL)
ICL is considered an efficient way to adapt down-
stream tasks with a few examples, thus the poten-
tial safety issue with regard to ICL is of great im-
portance. For instance, (Qiang, 2024) optimizes
adversarial suffixes of examples to mislead the gen-
eration of LLMs; (Wei et al., 2023) also employs
harmful demonstrations to induce LLMs to pro-
duce harmful responses. (Kandpal et al., 2023)
first explores the threat of backdoor attacks on ICL.
In particular, they insert backdoors in pre-training
LLMs via fine-tuning on a poisoned dataset. Then
when the prompt consists of examples from the
target task, the backdoored LLM will misclassify
the test sample containing the trigger as the mali-
cious label. Following works (Zhao et al., 2024a,
2023) propose to directly add triggers into the
demonstrations to avoid the computation cost of
pre-training or fine-tuning. However, these works
require the insertion of obvious triggers that can
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be easy to detect. In this work, we study more
practical scenarios in which imperceptible pertur-
bations are added to demonstrations, and attackers
aim to compromise the ICL’s overall effectiveness.
This presents unique challenges due to the implicit
learning mechanism of ICL.

3 Preliminary

In this section, we introduce ICL and its hidden
states, along with the necessary notations.

ICL. ICL is a paradigm that allows LLMs to
learn tasks given a few examples in the form of
demonstrations (Brown et al., 2020). To mathemat-
ically define the notation of ICL, suppose that we
have a pre-trained LLM f , which takes in an input
prompt p and outputs a response y, i.e. f(p) = y1.
Given a task t ∈ T from the ICL task set T , we
assume (x, y) ∼ Dt where x ∈ Xt and y ∈ Yt. We
further assume a prompt set Dt = {(xi,t, yi,t)}Ni=1,
where (xi,t, yi,t) ∼ Dt. To conduct an ICL predic-
tion for a query xquery ∈ Xt under task t, the user
first randomly selects k input-output pairs from
Dt and concatenates them as a demonstration S,
i.e. S = [(xi,t, yi,t)]

k
i=1. The demonstration is

combined with query xquery as an input prompt,
and this prompt is sent to the LLM. We define the
prediction of ICL as ŷqueryICL = f([S, xquery]). In
this work, we consider classification tasks such as
sentiment analysis and text classification.

Hidden states of ICL. Extensive studies are
conducted to understand the mechanisms of ICL
(Xie et al., 2021; Hendel et al., 2023; Von Oswald
et al., 2023; Garg et al., 2022; Bai et al., 2023). Re-
searchers have demonstrated that the hidden states
(represented as h), which are defined as the repre-
sentations of the last token of the input prompt at
different layers of the model (as indicated by var-
ious studies (Hendel et al., 2023; Liu et al., 2023;
Todd et al., 2023)), plays a critical role in ICL.
The hidden states can encode the latent concepts
in the examples corresponding to the task, which
further guides the prediction. In particular, con-
sider a model f composed of L transformer layers,
where each layer produces a vector representation
hl(p, f) ∈ Rd for the last token of the input prompt
p and l ∈ [L]. It has been observed that the LLMs
can make correct predictions conditioning on hid-
den states hl extracted from certain intermediate
layers (Hendel et al., 2023). The hidden states of

1Since the main focus of this paper is not on the generation
of LLMs, we adopt the default generation scheme for each
LLM.

LLMs provide numerical representations and con-
dense the information from the examples (Liu et al.,
2023; Todd et al., 2023), which inspires our design
of ICLPoison, as illustrated in the next section.

4 ICLPoison

In this section, we introduce a novel attacking
method, ICLPoison, to conduct data poisoning
by distorting hidden states of LLMs during ICL.

4.1 Threat Model

We assume the attacker’s goal is to compromise the
ICL performance when adapting the downstream
tasks using examples from the poisoned dataset as
the demonstrations. We assume the attacker can
insert poisoned data into the dataset. Crucially,
attackers are unaware of the details of the ICL pro-
cess, including the test data, the Large Language
Models (LLMs) employed, and specific ICL con-
figurations such as the number of examples and the
templates used for demonstrations. Despite these
limitations, the attackers can leverage open-source
LLMs to generate poisoned data. In real practice,
there are many possible scenarios where the attack
can insert the poisoned data into the target data set.
For instance, attackers can insert misinformation
into the database used in a system where data is col-
lected from various sources (Zou et al., 2024); the
attackers can also manipulate third-party APIs to
insert poisoned examples into the demonstrations
(Zhao et al., 2024b). These threats bring safety and
ethical concerns for the real applications of ICL
in safety-critic domains like healthcare (Shi et al.,
2024; Joe et al., 2021), finance (Loukas et al., 2023;
Paladini et al., 2023), education (Li et al., 2024).

4.2 ICLPoison Design

As highlighted in Section 3, ICL differs from tradi-
tional learning algorithms since it lacks an explicit
training objective that can be directly targeted by
data poisoning attacks. To address this unique chal-
lenge, we draw inspiration from the understand-
ing of hidden states in Section 3 and introduce
ICLPoison, a novel data poisoning attack specif-
ically designed for the ICL process. ICLPoison
strategically alters examples in demonstrations to
distort the hidden states for the poisoning goal.

The details of ICLPoison are as follows. We
focus on a surrogate LLM f with L layers and
(x, y) ∼ Dt. Our objective is to reduce the ICL
accuracy for the task t by maximizing the distor-
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tion of hidden states of (x, y). We propose per-
turbing the input x ∼ Xt using a transformation
δ : Xt → Xt while keeping the label y unchanged.
The perturbation δ must be imperceptible to hu-
mans, hence it is constrained within a set ∆ of
imperceptible mappings. Details of δ will be dis-
cussed in Section 4.3. For each example (x, y)
possessed by the attacker, we extract its hidden
states. Since the attacker lacks the knowledge of
the test data, we use a dummy query xqueryt ∼ Xt

as a stand-in as suggested in (Hendel et al., 2023).
We then concatenate (x, y) with xqueryt to create a
demonstration and denote hl(x, f) as the represen-
tation of the last token in the lth layer of model f .
Since our focus is on perturbing x, we omit y in the
following discussion. The representations from all
L layers of model f regarding input x are denoted
as H(x, f) := {hl(x, f)}Ll=1, representing the hid-
den states for x under model f . For the perturbed
input, the hidden states are H(δx(x), f), with δx
being the specific perturbation for x.

To maximize the poisoning effect, we aim to
maximize the minimum difference across all lay-
ers between the original and perturbed hidden
states. To normalize differences across layers
with varying scales, we use the normalized L2

norm to measure the distance of the hidden state
between the original example and the perturbed
one for each layer: ld(hl(x, f), hl(δx(x), f)) =

∥ hl(x,f)
∥hl(x,f)∥2 − hl(δx(x),f)

∥hl(δx(x),f)∥2 ∥2. The distortion be-
tween x and δi(x) is further defined as:

Ld(H(x, f), H(δx(x), f))

= min
l∈[L]

ld(hl(x, f), hl(δx(x), f)).
(1)

The attacking objective of ICLPoison is

max
δx∈∆

Ld(H(x, f), H(δx(x), f)). (2)

In other words, Ld(H(x, f), H(δx(x), f)) denotes
the minimum changes (or lower bound of the dis-
tortion) caused by the perturbation δx across all the
layers of the model. This approach ensures that
the perturbation δx introduces the most substantial
change to the hidden states in the LLM during ICL.
By optimizing the objective in Equation 2 for each
accessible example (x, y), the attacker can create a
poisoned example set Dp

t .

4.3 Attacking Algorithms

To design the perturbation δ, as required in com-
mon NLP attacks (Ebrahimi et al., 2017; Jin et al.,
2020; Xu et al., 2023; Li et al., 2018), δ is supposed

to be imperceptible to humans while effective in
manipulating the performance. In addition to the
above requirements, an additional challenge to con-
sider in the optimization is the discrete nature of the
objective in Eq.2. To address these requirements
and challenges as well as showcase the versatility
of our method, we introduce three representative
perturbations: synonym replacement, character re-
placement, and adversarial suffix. These methods
demonstrate the adaptability of ICLPoison across
different levels of text manipulation: Synonym re-
placement evaluates the word-level vulnerability of
ICL and subtly changes the semantics; character re-
placement involves minimal but precise alterations,
making it less noticeable to human reviewers (see
examples in Appendix A.4); and adversarial suffix
test token-level vulnerabilities in ICL. The opti-
mization of these perturbations is managed through
a greedy search method, proven effective in similar
contexts (Lei et al., 2019; Bao et al., 2022).

Synonym Replacement. This approach in-
volves substituting words in a text with their syn-
onyms, aiming at preserving the semantic mean-
ing and grammatical structure (Jin et al., 2020;
Xu et al., 2023). Within our method, we limit
the number of word replacements (denoted as
k) to maintain the perturbation’s imperceptibility.
For a text composed of a sequence of n words
x = [w1, ..., wn], δ(x) is defined as [s1, ..., sn],
where si is either a synonym of wi (if selected for
replacement) or remains as wi (if not replaced). To
identify which words are to be replaced and which
synonyms are suitable, we follow a strategy similar
to (Jin et al., 2020). We adopt a two-step optimiza-
tion process. First, we calculate an importance
score for each word, selecting the top-k words with
the highest scores for replacement. The importance
score for word wi is computed as the distortion (in
Eq.1) before and after deleting wi, expressed as:

Iwi = Ld(H(x, f), H(x\wi , f)) (3)

where x\wi denotes the text after the removal of
wi. In the second step, we use a greedy search
method that iteratively replaces each selected word
while keeping others fixed (Yang et al., 2020; Lei
et al., 2019). For each word, we find synonyms
using GloVe embeddings (Pennington et al., 2014),
selecting those with the highest cosine similarity
to the original word. Each synonym is temporarily
substituted into the text, and the loss function in
Eq.2 is evaluated. The synonym that maximizes the
loss is chosen as the final replacement. This process
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is repeated for all selected words. We present the
detailed algorithm in Algorithm. 1.

Character Replacement. This method is sim-
ilar to the synonym replacement approach but fo-
cuses on replacing individual characters instead
of whole words (Ebrahimi et al., 2017; Xu et al.,
2023). When changing only a few letters, this
method can be less detectable to humans and main-
tain the word’s pronunciation and basic structures
(Ebrahimi et al., 2017). We limit character replace-
ments to k to keep perturbations subtle. The op-
timization process involves two steps: first, we
calculate an importance score for each character,
similar to Eq.3 but focusing on individual character
removal rather than words. The top-k characters
with the highest scores are selected for replacement.
Second, we use a greedy search strategy, similar
to synonym replacement, to find the best replace-
ments for these characters. Note that our character
set encompasses uppercase and lowercase letters,
digits, punctuation marks, and whitespace, in line
with the sets in (Kim et al., 2016; Ebrahimi et al.,
2017). The detailed algorithm and its implementa-
tion are shown in Algorithm 2 in Appendix A.1.

Adversarial Suffix. The concept of an adver-
sarial suffix, referred to as adding additional to-
kens at the end of the original text, has shown con-
siderable effectiveness in misleading LLMs (Zou
et al., 2023). Thus, in addition to synonym and
character replacement, we also adapt this perturba-
tion to evaluate the token-level vulnerability of the
ICL process. To ensure imperceptible to humans,
we restrict the number of additional tokens when
adapting to our method. For a given text x that
can be tokenized into a sequence of tokens x =
[t1, ..., tn], we define δ(x) as [t1, ..., tn, t

′
1, ..., t

′
k]

where t′1, ..., t
′
k are adversarial suffices. Our goal

is to identify the optimal suffixes that maximize
the objective in Eq 2. We also employ a greedy
search approach and iteratively select each suffix
token from t′1 to t′k one by one which results in
the maximum increase in the loss. The detailed
implementation and optimization process for this
approach is in Algorithm 3 in Appendix A.1.

5 Experiments

We conduct extensive experiments to validate the
effectiveness of the proposed method ICLPoison,
particularly with three perturbations introduced in
Section 4.3.

5.1 Experiments setting

Datasets. We conduct experiments on different
types of classification tasks. SST2 (2 classes) and
Cola (2 classes) are from GLUE dataset (Wang
et al., 2019); Emo (Wang et al., 2023) (4 classes)
is an emotion classification dataset; AG’s new (4
classes) (Zhang et al., 2015) is a topic classification
dataset; Poem (3 classes) (Sheng and Uthus, 2020)
is a sentiment analysis dataset of poem. Details of
these datasets are presented in Appendix A.2.

Models. We use open-source models including
Llama2-7B (Touvron et al., 2023), Pythia (2.8B,
6.9B) (Biderman et al., 2023), Falcon-7B (Al-
mazrouei et al., 2023)2, and API-only models GPT-
3.5 and GPT-4.

Baselines. Since we are the first to study poi-
soning attacks in ICL, we compare our methods
with clean ICL and random label flip (Min et al.,
2022). For the baseline random label flip, we re-
place the true label of the example with a random
label uniformly selected from the label space.

Metrics. Our main focus is on ICL accuracy.
For every dataset, we generate perturbations for
examples in the training data and randomly select
examples from it to conduct ICL prediction for ev-
ery sample in the test data. We repeat for 5 runs
and report the average ICL accuracy. We also in-
clude perplexity scores, which are defined as the
average negative log-likelihood of each of the to-
kens appearing, showing whether the perturbations
are imperceptible or not.

Experimental settings.3. We limit perturbations
(also known as budget) to 5 to ensure minimal per-
ceptibility. During the poisoning process, we apply
the template: “{input}→{output}\n{query}→",
and extract the hidden states as the representation
of the last token “→". For evaluation, we adopt the
same template and conduct ICL predictions on 5
examples in default. The impact of templates and
example numbers is explored in Appendix A.3.

5.2 Effectiveness of ICLPoison

In this subsection, we first validate the effective-
ness of the idea of corrupting the hidden states in
ICLPoison across various LLMs and tasks. To
eliminate the potential impact on random sampling
of poisoned/clean examples, we consider the ex-

2Two additional models GPT-J-6B (Wang and Komat-
suzaki, 2021), MPT-7B (Team, 2023) in Appendix A.3

3Code can be found in https://anonymous.4open.
science/r/ICLPoison-70EE
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Table 1: Main results for attacking LLMs. Average ICL accuracy on clean data and poisoned data (5 independent runs) as well
as standard error are reported (in percentage), where lower accuracy represents a stronger poisoning effect. The lowest accuracy
for each row is highlighted in blue.

Model Dataset Clean Random label Synonym Character Adv suffix
Cola 55.2±1.8 49.3±2.1 10.4±2.1 17.6±1.1 13.8±1.3
SST2 82.8±1.4 79.4±1.9 19.4±1.8 23.8±1.9 22.7±1.6
Emo 70.3±2.3 39.4±2.2 12.5±1.1 14.7±1.4 10.4±1.5
Poem 56.2±1.8 43.1±2.3 12.3±1.5 17.9±1.2 13.8±1.1

Pythia-6.9B

AG 66.5±2.1 47.9±1.7 13.8±1.3 17.3±1.5 12.9±1.7
Cola 63.8±1.9 55.5±2.0 15.3±1.7 22.7±2.1 13.6±1.4
SST2 88.6±1.5 82.1±3.2 18.5±2.0 26.8±1.7 20.4±1.7
Emo 73.1±1.3 43.6±1.9 11.9±1.8 17.5±1.4 12.7±1.3
Poem 62.9±1.8 51.4±2.3 18.1±1.9 23.3±1.6 17.2±1.1

Llama2-7B

AG 73.2±2.0 57±2.6 13.6±2.2 19.4±1.3 11.9±1.2
Cola 65.2±1.5 44.8±1.7 12.7±1.9 16.5±1.7 10.8±1.4
SST2 83.8±2.5 83.1±2.5 20.1±1.6 25.8±1.3 22.7±1.7
Emo 61.1±1.7 52.6±1.9 10.8±1.5 14.1±1.9 9.9±1.1
Poem 55.2±1.4 42.9±1.5 10.5±1.9 17.3±1.5 13.6±1.3

Falcon-7B

AG 75.2±1.8 50.8±1.3 11.2±2.3 14.9±1.7 12.8±1.2

Cola 75.6±0.7 76.3±0.6 58.1±0.5 62.6±0.4 59.7±0.4
SST2 93.8±0.3 89.7±0.5 76.8±0.2 78.3±0.5 74.2±0.9
Emo 73.8±0.5 72.4±0.8 65.4±0.4 63.1±0.7 61.3±0.5
Poem 51.4±0.9 53.3±0.6 39.7±0.6 45.2±0.6 43.9±0.4

GPT-3.5-turbo

AG 85.6±0.3 80.7±0.4 76.2±0.5 73.8±0.2 69.4±0.7
Cola 85.8±0.2 82.1±0.3 73.1±0.5 75.8±0.3 69.6±0.4
SST2 95.1±0.4 92.5±0.5 81.5±0.2 86.1±0.2 82.3±0.5
Emo 84.9±0.1 81.7±0.2 80.9±0.6 78.1±0.5 78.3±0.4
Poem 72.4±0.2 63.8±0.7 56.7±0.9 60.9±0.7 57.1±0.3

GPT-4

AG 90.4±0.3 87.3±0.3 83.2±0.5 83.1±0.4 84.7±0.5

Figure 1: Experimental results of transferring poisoned data from Llama2-7B to other models. The Y-axis represents the ICL
accuracy (a smaller value represents a stronger poisoning effect), while the X-axis denotes different models.

treme case of 100% poisoning rate4. A more prac-
tical attacking scenario with small poisoning rates
is discussed in Section 5.3.

Attacking open-source models. We first ex-
amine open-source models. For each, we craft
poisoned samples utilizing the model’s own archi-
tecture and assess the ICL accuracy. Partial results
are shown in Table 1 and full results can be found
in Table 7 in Appendix A.3. In the table, a lower
accuracy indicates a stronger poisoning effect, and
the lowest performance is highlighted. One can
see that ICL performs well on clean data, espe-
cially for the SST2 dataset and Llama2-7B model,
achieving more than 88% accuracy. Besides, the
random labeling can only decrease the accuracy
marginally, less than 7%, which is aligned with
observations by (Min et al., 2022). In contrast, our
ICLPoison method significantly reduces ICL ac-
curacy, achieving drops to below 10% for some

4This is an extreme case but still practical. For instance,
the victim downloads a whole poisoned data set generated by
the attacker for ICL prediction.

models and datasets such as Falcon-7B with the
Emo dataset. Notably, the effectiveness of ICLPoi-
son implies that ICL is vulnerable to data poisoning
attacks that corrupt the hidden states.

In addition, among the three variants of ICLPoi-
son, synonym replacement and adversarial suffix
perturbations pose more severe threats to ICL ac-
curacy compared to character replacement. This
disparity may arise because, within the same per-
turbation budget, different types of perturbations
induce varying degrees of change in the hidden
states. Character changes typically do not alter
the semantic content as significantly as synonym
replacements or adversarial suffixes, which can in-
troduce more substantial shifts in the hidden states
and disrupt the model’s prediction more effectively.
We present some poisoned examples from three
methods in Appendix A.4 for human evaluation.

Attacking API-only models. For API-only models
like GPT-3.5-turbo and GPT-4, we lack direct ac-
cess to their internal model representations. There-
fore, we employ Llama2-7B as a surrogate to gener-

1685



ate poisoned samples and assess the ICL accuracy
using the provided APIs. The outcomes, detailed
in Table 1, reveal that our approach using Llama2-
7B effectively reduces the ICL accuracy of these
cutting-edge models by about 10% for both GPT-
3.5 and GPT-4. This not only validates the effec-
tiveness of our method but also confirms its utility
in real-world applications with advanced LLMs.
Additionally, we observe that compromising such
models poses greater challenges than open-source
models, potentially due to their larger scale and the
use of surrogate models (because of the black-box
nature). Furthermore, these models display varying
degrees of vulnerability to different perturbation
intensities. Notably, GPT-4 exhibits particular sus-
ceptibility to character replacement, suggesting a
heightened sensitivity to minor textual variations.

Transferbility. We adopt the Llama2-7B model
as the surrogate model and test ICL performance
on other models to evaluate the transferability of
our poisoning approach across different models,
including black-box models. This evaluation val-
idates the transferability of proposed ICLPoison
and reveals factors influencing the transferability
such as perturbation type and model size.

Initial results, presented in Figure 1, focus on the
SST2 dataset, with a comprehensive analysis of all
five datasets available in Appendix A.3. The results
indicate that while the effectiveness of the poison-
ing attack diminishes when moving from the surro-
gate (Llama2-7B) to other models, the impact re-
mains significant. Our ICLPoison method—across
its three variants—leads to over a 30% decrease
in accuracy for open-source models. This under-
scores the substantial threat posed by these attacks.
Our analysis also reveals differences in how vari-
ous perturbations transfer across models. Synonym
replacement and adversarial suffixes demonstrate
a stronger poisoning effect compared to character
replacement, likely because they introduce more
disruption to the model’s hidden states. Further-
more, smaller models, such as Pythia-2.8B and
GPT-J-6B, are more susceptible to these poisoning
examples, whereas larger models exhibit some re-
sistance. This suggests that the effectiveness of our
approach can be affected by the size and complex-
ity of the target model.

The above experimental results confirm that dis-
tortions in hidden states can significantly compro-
mise ICL predictions. Synonym replacements and
adversarial suffixes cause greater changes in hid-
den states, leading to stronger poisoning effects.

Figure 2: Results for practical ICLPoison. The X-axis repre-
sents the poison rate while Y-axis represents the ICL accuracy.

These distortions are also transferable, with smaller
models being more affected. These insights under-
score the critical link between hidden states and
ICL predictions, emphasizing the effectiveness of
data poisoning via manipulating hidden states.

5.3 Practical Attacks

To align with the threat model in Section 4.1, we
consider practical attacking scenarios when attack-
ers only insert some poisoned data into datasets.
This usually happens when the victim collects data
from various sources and mixes the poisoned data
uploaded by the attacker with other clean data
(Steinhardt et al., 2017; Carlini et al., 2024). In
our experiments, we mix the poisoned data with
clean training data, and the poisoning rate varies
(10%, 20%, 50%, and 100%). We test with the
Llama2-7B model and GLUE-SST2 dataset. The
results, shown in Figure 2, reveal that ICLPoison
is still a threat even when only a small set of poi-
soned data is injected into the clean prompt set. At
a small poisoning rate such as 10% and 20%, we
can observe a significant decrease in ICL perfor-
mance by over 10% and 19% respectively, under-
scoring the efficacy of our proposed ICLPoison.
These findings highlight the vulnerability of ICL
to subtle data poisoning attacks, where even a lim-
ited number of malicious inputs can significantly
disrupt the ICL process. Additionally, similar to
the observations in Table 1, the results show that
perturbation strategies like synonym replacement
and adversarial suffix, which introduce more pro-
nounced textual changes within a fixed poisoning
budget, more severely affect ICL performance com-
pared to character replacement.

5.4 Potential Defenses

Since the attackers are not aware of how victims
leverage the poisoned data and some naive defenses
may be applied, it is necessary to evaluate the ro-
bustness of an attack method. To examine the ro-
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bustness of ICLPoison, we evaluate three represen-
tative defenses: perplexity filtering, paraphrasing
(Jain et al., 2023), and grammar check. We also
take 100% poisoning rate as the illustration and
apply each defense.

Table 2: Average perplexity scores for clean and poisoned data
with standard error reported. Focus on model Llama2-7B.

Dataset Clean Synonym Character Adv suffix
Cola 4.66±1.06 5.22±1.00 7.37±0.89 9.58±1.08
SST2 5.48±1.16 6.66±0.73 7.45±0.70 7.75±1.13
Emo 5.02±1.02 5.79±0.67 7.27±0.79 7.31±0.75
Poem 5.39±0.85 6.32±0.62 8.64±0.49 9.27±1.09
AG 2.37±0.41 3.12±0.29 3.84±0.50 3.68±0.35

Perplexity filtering. The perplexity score mea-
sures the average negative log-likelihood of tokens
in a text. Perturbations to the original text can
increase this score, making them potentially de-
tectable (Jain et al., 2023). We present the per-
plexity scores of generated poisoned data using the
Llama2-7B model; higher scores suggest a greater
chance of detection and defense. Table 2 displays
these scores for poisoned data across various mod-
els and datasets, following the calculation method
in Section 4.1 of (Jain et al., 2023). Among pertur-
bations, synonym replacement results in perplexity
scores closest to clean data, while adversarial suf-
fixes yield the highest scores.

Paraphrasing. Paraphrasing is a preprocessing
technique that uses a language model to rewrite
text, aiming to preserve original meanings while
removing adversarial perturbations. We use GPT-4
to paraphrase poisoned data and assess ICL perfor-
mance on these inputs with the Llama2-7B model.
Table 3 shows that paraphrasing effectively neutral-
izes adversarial suffixes but largely retains the ef-
fects of synonym replacements. To explain this, ad-
versarial suffixes add irrelevant content, while syn-
onym replacements preserve semantic integrity5.

Table 3: ICL accuracy when paraphrased by GPT-4. Original
results are included in brackets.

Datasets Clean Random label Synonym Character Adv suffix
Cola 65.2(63.8) 53.9(55.5) 36.5(15.3) 50.6(22.7) 58.5(13.6)
SST2 83.1(88.6) 85.4(82.1) 52.1(18.5) 60.2(26.8) 80.2(20.4)
Emo 75.5(73.1) 48.2(43.6) 40.7(14.9) 48.3(17.5) 66.8(12.7)
Poem 63.7(62.9) 52.1(51.4) 34.3(18.1) 43.7(23.3) 55.2(17.2)
AG 70.6(73.2) 55.7(57) 38.2(13.6) 47.2(19.4) 64.3(11.9)

These findings indicate that defenses enhance ICL’s
robustness against data poisoning, but their effec-
tiveness varies by perturbation type. Token-level
perturbations like adversarial suffixes are easier
to counter, whereas word-level synonym replace-
ments are more challenging due to subtle semantic
changes. Character-level perturbations are mod-
erately detectable but become more severe with

5Paraphrased text examples are provided in Appendix A.5.

larger attack budgets. These results highlight the
need for more robust ICL defenses.

Grammar check defenses. We evaluate the
performance of ICLPoison against typo-corrector
(Pruthi et al., 2019) and popular grammar-checking
tools–Grammarly and Microsoft Editor. We con-
duct experiments on SST2 dataset and Llama2-7B
model with all three attacking strategies. For typo-
corrector, we report the average ICL accuracy; for
Grammarly, we report the ratio of correctness er-
rors (CER) over the total number of words; for
Microsoft Editor, we report the ratio of spelling er-
rors (SER) and the ratio of grammar errors (GER)
over the total number of words. As shown in Table
4, the proposed attack can bypass the grammar/typo
detection method, especially the synonym replace-
ment strategy. This highlights the stealthiness of
ICLPoison.

Table 4: Attacking performance against detection defenses on
model Llama2-7B and SST2 dataset.

Defenses Clean Synonym Adv Suffix Character
Grammarly
(CER (↓)) 4.89 5.04 11.97 10.31

Microsoft editor
(SER/GER (↓)) 2.72/0.62 2.68/0.65 10.08/0.63 7.25/0.68

Typo-corrector
(ICL accuracy (↓)) 90.2 23.7 41.4 35.8

5.5 Ablation studies

We present ablation studies with regard to the num-
ber of perturbations. Due to the page limit, we
provide more ablation studies in Appendix A.3
including token length, prompt template, computa-
tion cost, etc. We vary the number of perturbations
from 0 to 5, on the SST2 dataset and Llama2-7B
model. As shown in Table 5, increasing the number
of perturbations will enhance the poisoning effect.
Moreover, even for a small number of perturba-
tions, such as 2, we can significantly compromise
the accuracy of ICL by at least 30%.

Table 5: Ablation on the number of perturbations, model
Llama2-7B and SST2 dataset.

Budget 0(clean) 1 2 3 4 5
Adversarial suffix 88.6 69.3 50.8 34.9 25.1 20.4
Char replacement 88.6 73.5 57.2 46.8 32.7 26.8

Synonym replacement 88.6 70.1 52.9 39.1 26.4 18.5

6 Conclusion

In this study, we introduce ICLPoison, a novel
method devised to assess the vulnerability of ICL
in the face of data poisoning attacks. We use the
dynamics of hidden states in LLMs to craft our
attack objectives. Furthermore, we implement our
method through three distinct and practical algo-

1687



rithms, each employing a different method of dis-
crete perturbation. Our research exposes previously
unidentified susceptibilities of the ICL process to
data poisoning. This discovery emphasizes the
urgent need for enhancing the robustness of ICL
implementations.

7 Limitations

In this work, we investigate the vulnerability of
in-context learning (ICL) facing data poisoning at-
tacks. In specific, we develop a method ICLPoison
to evaluate the vulnerability. The proposed method
needs access to the hidden states of LLMs, and thus
can not be directly applied to API-only models. We
only test on GPT-3.5 and GPT-4, and more API-
only models need to be tested. Moreover, attacking
methods that only require black-box access are to
be investigated to directly attack API-only models.
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A Appendix

A.1 Details of Algorithms

In this section, we present detailed algorithms, including synonym replacement in Algorithm 1, character
replacement in Algorithm 2 and adversarial suffix in Algorithm 3.

Algorithm 1. Algorithm 1 describes the whole process of conducting ICLPoison with synonym replace-
ment. For each example xpi,t in the accessible prompting set Dp

t , it first selects words to be replaced based
on an importance score (step (1)-(3)): the importance score for every word in xpi,t is computed via Eq.3
which is the distortion between the text before and after removing the word (step (2)); then the score for
every word is sorted in descending order and k words with largest scores are chosen (step (3)). Secondly
(step (4)-(8)), we greedily search for the optimal replacement for selected words within their synonyms:
first extract m synonyms based on cosine similarity of GloVe embeddings (step (4)); then each selected
word is replaced with its synonyms and evaluates the distortion with the original text via Eq. 1 (step
(5)-(6)); the synonym causing the largest distortion is chosen as the final replacement.

Algorithm 2. Algorithm 2 describes the whole process of conducting ICLPoison with character replace-
ment. For each example xpi,t in the accessible prompting set Dp

t , it first selects characters to be replaced
based on an importance score (step (1)-(3)): the importance score for every character in xpi,t is computed
via Eq.3 which is the distortion between the text before and after removing the character (step (2)); then
the score for every character is sorted in descending order and k words with largest scores are chosen (step
(3)). Secondly (step (4)-(7)), we greedily search for the optimal replacement for selected characters within
the character set C: each selected word is replaced with characters inside C and evaluates the distortion
with the original text via Eq. 1 (step (4)-(5)); the character causing the largest distortion is chosen as the
final replacement.

Algorithm 3. Algorithm 3 describes the whole process of conducting ICLPoison with adversarial suffix.
For each example xpi,t in the accessible prompting set Dp

t , it first randomly initializes the k suffices (step
(2)). We greedily search for the optimal token for each suffix within the vocabulary set V : each suffix is
replaced with tokens inside V and evaluates the distortion with the original text via Eq. 1 (step (3)-(4));
the character causing the largest distortion is chosen as the final replacement.
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Algorithm 1 ICLPoison + Synonym replacement
Input Clean prompting set Dp

t = {(xpi,t, y
p
i,t)}Ni=1, surrogate model f consisting of L layers, attacking

budget k, number of synonyms m.
Output Poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1

for i = 1, ..., N do
Step 1: Select words to replace with importance scores
(1) Decompose input text xpi,t into a sequence of words [w1, ..., wn]
(2) Compute importance score Iwj for each word wj with Eq. 3
(3) Sort scores in descending order Iw(1)

≥ Iw(2)
≥ · ≥ Iw(n)

and select top-k words: w(1), ..., w(k)

Step 2: Select optimal synonyms for each selected word
for w ∈ [w(1), ..., w(k)] do

(4) Obtain top-m synonyms [s(1), ..., s(m)] with highest cosine similarity with w based on GloVe
word embeddins.
for s ∈ [s(1), ..., s(m)] do

(5) Replace w with s obtaining x′w = [w1, ..., s, ..., wn]
(6) Evaluate the distortion of hidden states after replacement with Eq.1:
Ld(H(xpi,t, f), H(x′w, f))

end for
(7) Select the synonym causing the largest distortion to replace w.

end for
(8) Obtain perturbed input δi(x

p
i,t)

end for
Return poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1

Algorithm 2 ICLPoison + Character replacement
Input Clean prompting set Dp

t = {(xpi,t, y
p
i,t)}Ni=1, surrogate model f consisting of L layers, attacking

budget k, character set C.
Output Poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1

for i = 1, ..., N do
Step 1: Select characters to replace with importance scores
(1) Decompose input text xpi,t into a sequence of characters [c1, ..., cn]
(2) Compute importance score Icj for each word cj with Eq. 3
(3) Sort scores in descending order Ic(1) ≥ Ic(2) ≥ · ≥ Iw(n)

and select top-k words: c(1), ..., c(k)
Step 2: Select optimal character for each selected character from the whole character set.
for c ∈ [c(1), ..., c(k)] do

for c′ ∈ C do
(4) Replace c with c′ obtaining x′c = [c1, ..., c

′, ..., cn]
(5) Evaluate the distortion of hidden states after replacement with Eq.1:
Ld(H(xpi,t, f), H(x′c, f))

end for
(6) Select the character causing the largest distortion to replace c.

end for
(7) Obtain perturbed input δi(x

p
i,t)

end for
Return poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1
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Algorithm 3 ICLPoison + Adversarial suffix
Input Clean prompting set Dp

t = {(xpi,t, y
p
i,t)}Ni=1, surrogate model f consisting of L layers, attacking

budget k, token vocabulary V .
Output Poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1

for i = 1, ..., N do
(1) Tokenize text xpi,t into sequence of tokens [t1, ..., tn]
(2) Random initialize the adversarial suffix and concatenate with the original text: δ(xpi,t) =
[t1, ..., tn, t

′
1, ..., t

′
k]

for j ∈ [k] do
for v ∈ V do

(3) Replace t′j with v obtaining x′t = [t1, ..., tn, t
′
1, ..., v, ..., t

′
k]

(4) Evaluate the distortion of hidden states after replacement with Eq.1:
Ld(H(xpi,t, f), H(x′t, f))

end for
(5) Select the token causing the largest distortion to replace t′j .

end for
(6) Obtain perturbed input δi(x

p
i,t)

end for
Return poisoned prompting set {(δi(xpi,t), y

p
i,t)}Ni=1

A.2 Details of datasets
• Stanford Sentiment Treebank (SST2) dataset from the GLUE benchmark (Wang et al., 2019) is a

sentiment analysis dataset consisting of sentences from movie reviews and human annotations of
their sentiment in 2 classes

• Corpus of Linguistic Acceptability (Cola) dataset from GLUE is a linguistic analysis dataset consist-
ing of English acceptability judgments collected from linguistic books, labeled with “acceptable" or
“unacceptable"

• Emo dataset (Wang et al., 2023) focuses on emotion classification consisting of Twitter messages
labeled in 4 classes

• AG’s new (AG) corpus (Zhang et al., 2015) is a topic classification dataset gathered from news
sources and labeled in 4 classes

• Poem Sentiment (Poem) (Sheng and Uthus, 2020) is a sentiment analysis dataset of poem verses
from Project Gutenberg, classified into 3 classes

A.3 Additional Experiments
In this section, we present additional experimental results, including full results on attacking open-source
models in Table 7, full results of transferability in Table 9, full results of perplexity scores in Table 11, full
results on various templates in Table 8 and the number of examples in Table 10.
Attack open-source models. In Table 7, we include more results on additional models such as Pythia-2.8B
and MPT-7B. Our observation is consistent with the analysis in Section 5.2.
Transferbility. In Table 9, results on all 5 datasets are presented, and we notice that the transferability of
three perturbations varies. This may be because of the capacity of models and the complexity of datasets.
A detailed investigation can be an interesting future direction.
Practical attacks. We provide the full results of practical attacks with different poison rates in Table 6.
Perplexity scores. Table 11 covers perplexity scores on various datasets and models. It is obvious that
synonym replacement is more stealthy than the other 2 methods.
Impact of templates. We test 3 different templates on various datasets and models. Our results in Table 8
reveal that our poisoned examples remain effective across templates.
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Table 6: Full results of practical attacks.

Poisoning rate Clean Random label Synonym Character Adv suffix
100% 88.6 82.1 18.5 26.8 20.4
50% 88.6 84.6 46.3 50.1 43.5
20% 88.6 87.5 67.1 70.8 65.9
10% 88.6 88.1 75.6 77.5 73.2

Impact of the number of examples. Our results about different numbers of examples in Table 10 show
that more examples can improve ICL performance, while also leading to easier manipulation and stronger
poisoning effect.

Table 7: Full results on attacking open-source models

Model Dataset Clean Random label Synonym Character Adv suffix
Cola 64.1±1.6 59.4±1.6 12.3±1.2 17.6±1.4 14.2±1.3
SST2 76.5±1.5 70.2±1.7 17.5±1.1 24.3±1.2 18.1±2.1
Emo 67.2±1.3 48.1±2.8 10.9±1.8 15.7±1.7 12.3±1.7
Poem 57.1±1.7 31.8±1.9 10.5±1.6 16.4±1.6 9.7±1.2

Pythia-2.8B

AG 59.4±1.1 46.5±1.7 15.7±1.0 20.3±1.3 14.6±1.4
Cola 55.2±1.8 49.3±2.1 10.4±2.1 17.6±1.1 13.8±1.3
SST2 82.8±1.4 79.4±1.9 19.4±1.8 23.8±1.9 22.7±1.6
Emo 70.3±2.3 39.4±2.2 12.5±1.1 14.7±1.4 10.4±1.5
Poem 56.2±1.8 43.1±2.3 12.3±1.5 17.9±1.2 13.8±1.1

Pythia-6.9B

AG 66.5±2.1 47.9±1.7 13.8±1.3 17.3±1.5 12.9±1.7
Cola 63.8±1.9 55.5±2.0 15.3±1.7 22.7±2.1 13.6±1.4
SST2 88.6±1.5 82.1±3.2 18.5±2.0 26.8±1.7 20.4±1.7
Emo 73.1±1.3 43.6±1.9 11.9±1.8 17.5±1.4 12.7±1.3
Poem 62.9±1.8 51.4±2.3 18.1±1.9 23.3±1.6 17.2±1.1

Llama2-7B

AG 73.2±2.0 57±2.6 13.6±2.2 19.4±1.3 11.9±1.2
Cola 65.2±1.5 44.8±1.7 12.7±1.9 16.5±1.7 10.8±1.4
SST2 83.8±2.5 83.1±2.5 20.1±1.6 25.8±1.3 22.7±1.7
Emo 61.1±1.7 52.6±1.9 10.8±1.5 14.1±1.9 9.9±1.1
Poem 55.2±1.4 42.9±1.5 10.5±1.9 17.3±1.5 13.6±1.3

Falcon-7B

AG 75.2±1.8 50.8±1.3 11.2±2.3 14.9±1.7 12.8±1.2
Cola 57.8±1.3 49.1±2.5 13.7±1.7 17.2±1.8 11.8±0.9
SST2 85.4±1.6 82.8±2.1 14.8±2.0 18.9±1.5 11.4±1.1
Emo 58.7±1.1 46.2±1.7 11.7±1.8 13.8±1.3 9.6±0.7
Poem 57.6±1.5 46.7±1.4 12.6±2.4 14.2±2.2 10.3±1.3

GPT-J-6B

AG 63.2±1.7 53.4±1.9 11.9±1.5 16.8±1.8 12.5±1.1
Cola 53.4±1.2 45.3±1.2 15.6±1.6 17.4±1.9 14.1±1.4
SST2 89±1.5 82.9±2.3 20.4±1.9 25.6±2.5 19.8±1.3
Emo 59.7±1.3 41.8±1.7 9.6±1.5 11.5±1.6 10.4±0.8
Poem 69±1.8 56.2±2.5 14.9±1.4 16.3±1.5 12.7±1.2

MPT-7B

AG 70.6±1.6 55.3±1.9 13.9±1.7 17.1±1.9 15.2±1.6

Calibration and selection methods. We conduct additional experiments with two representative calibra-
tion and selection methods, contextual calibration (Zhao et al., 2021) and similarity sampling (Margatina
et al., 2023), on the SST2 dataset with Llama2-7B. This is because the victims can apply these pre-
processing methods. According to the results in Table12, calibration and selection methods can improve
the clean accuracy. However, these methods are still vulnerable to the proposed poisoning attack, with a
test accuracy of less than 20%. This may be because the contextual calibration only focuses on the poten-
tially imbalanced distribution of the output label but does not consider the hidden states during calibration.
The similarity selection selects demonstrations based on embedding similarity (Sentence-BERT as in
(Margatina et al., 2023)), which may also be affected by the poisoning.
Scalability to context length and demonstration size. We additionally summarize the average token
length of each dataset (to represent ‘context length’) used in the experiments. We use the tokenizer of

1695



Table 8: Evaluating data poisoning attacks on different ICL templates. F1, F2, F3 denote 3 different templates, and
ICL accuracy on various dataset is reported.

Dataset ICL format Clean Random label Synonym Character Adv suffix

Cola
F1 63.8 55.5 15.3 22.7 13.6
F2 55.1 47.5 14.6 20.9 13.9
F3 59.5 53.3 13.8 19.4 12.5

SST2
F1 88.6 82.1 18.5 26.8 20.4
F2 92.5 84.7 17.9 30.6 21.7
F3 90.3 79.2 18.2 28.5 19.3

Emo
F1 73.1 43.6 14.9 17.5 12.7
F2 66.7 37.6 11.6 12.9 9.2
F3 69.1 39.8 12.8 15.6 11.3

Poem
F1 62.9 51.4 18.1 23.3 17.2
F2 57.1 45.2 13.7 20.1 12.8
F3 61.9 49.5 16.3 21.5 13.7

AG
F1 73.2 57.6 13.6 19.4 11.9
F2 68.6 54.6 11.7 18.2 10.3
F3 75.8 67.2 14.1 19.3 12.6

Llama2-7B as the example and present results in Table 13. According to the above results, there is no
obvious relationship between the attacking performance and the context length. This indicates that our
method is robust to the context length.
Computation cost. We provide the average running time per example (in seconds) when poisoning
dataset SST2 on model Llama2-7B with all three methods under different numbers of perturbations (1,3,5
perturbations). As shown in Table 14, adversarial suffix and synonym replacement can be time-consuming,
while character replacement is much more efficient. This can be due to the size of the search space, as
there are more tokens and words than characters. However, since the poisoning process is offline, attackers
can take enough time to generate poisoned examples.

A.4 Poisoned Text Examples
In this section, we provide some poisoned examples in Table 15 for human evaluation. The additional
tokens (for adversarial suffix) and substitutions (for synonym and character replacement) are highlighted
in red. It is obvious that adversarial suffixes can introduce irrelevant or non-sense content to the original
text, thus can be easily detected. On the contrast, synonym and character replacements introduce more
subtle changes to the text.

A.5 Paraphrased texts
To clarify about paraphrasing, we prompt the model to paraphrase the whole sentences. As a result, it is
not a token-level replacement, and it is also hard to quantify how many tokens are changed. We present
some examples in Table 16. According to the above table, the paraphrased sentence is different from
the original text as it does not only change words but also changes the sentence structure. Besides, as in
the third example, when adding some irrelevant content to the input, paraphrasing can remove it. This
indicates that the paraphrasing defense is strong compared to attacks.
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Table 9: Full results for testing poisoned examples generated by Llama2-7B on other models.

Dataset Clean Random label Synonym Character Adv suffix
Cola 64.1 59.4 31.9 34.0 34.8
SST2 76.5 70.2 38.5 33.9 36.6
Emo 67.2 48.1 26.3 32.8 30.3
Poem 57.1 31.8 33.3 27.1 24.3

Pythia-2.8B

AG 59.4 46.5 31.7 31.6 35.6
Cola 55.2 49.3 26.7 34.7 34.2
SST2 82.8 79.4 39.5 41.0 41.3
Emo 70.3 39.4 18.9 24.1 20.9
Poem 56.2 43.1 29.0 28.1 26.2

Pythia-6.9B

AG 66.5 47.9 32.1 33.9 27.2
Cola 65.2 44.8 23.4 24.8 25.0
SST2 83.8 83.1 37.7 35.8 34.7
Emo 61.1 52.6 28.6 30.5 27.1
Poem 55.2 42.9 25.1 27.3 25.6

Falcon-7B

AG 75.2 50.8 24.7 24.8 24.2
Cola 57.8 49.1 29.7 28.5 29.1
SST2 85.4 82.8 31.7 31.8 30.2
Emo 58.7 46.2 22.3 24.1 19.3
Poem 57.6 46.7 26.7 28.6 23.3

GPT-J-6B

AG 63.2 53.4 29.4 29.5 29.8
Cola 53.4 45.3 22.6 23.2 19.3
SST2 89 82.9 29.8 29.6 28.8
Emo 59.7 41.8 21.1 25.4 25.1
Poem 69 56.2 26.2 24.5 23.5

MPT-7B

AG 70.6 55.3 31.0 34.2 27.8
Cola 75.6 76.3 58.1 62.6 59.7
SST2 93.8 89.7 76.8 78.3 74.2
Emo 73.8 72.4 65.4 63.1 61.3
Poem 51.4 53.3 39.7 45.2 43.9

GPT-3.5-turbo

AG 85.6 80.7 76.2 73.8 69.4
Cola 85.8 82.1 73.1 75.8 69.6
SST2 95.1 92.5 81.5 86.1 82.3
Emo 84.9 81.7 80.9 78.1 78.3
Poem 72.4 63.8 56.7 60.9 57.1

GPT-4

AG 90.4 87.3 83.2 83.1 84.7

Table 10: Full results for different number of examples in the demonstration. Focus on model Llama2-7B.

Dataset num_examples Clean Random label Synonym Character Adv suffix

Cola
3 63.2 59.2 16.5 21.8 12.8
5 63.8 55.5 15.3 22.7 13.6
7 63.1 54.6 14.8 22.5 13.2

SST2
3 84.5 80.2 14.3 29.4 19.6
5 88.6 82.1 18.5 26.8 20.4
7 92.7 86.1 19.3 32.1 21.7

Emo
3 58 35.2 11.5 14.6 7.9
5 73.1 43.6 14.9 17.5 12.7
7 79.2 47.4 11.7 15.8 11.3

Poem
3 61 48.6 16.9 20.4 15.6
5 62.9 51.4 18.1 23.3 17.2
7 66.7 55.2 19.5 22.6 18.3

AG
3 66.9 52.8 12.9 17.5 9.5
5 73.2 57 13.6 19.4 11.9
7 78 60.1 13.2 18.9 11.6
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Table 11: Perplexity scores for poisoned texts across different models and datasets. A lower value means more logical and fluent
expression, and fewer grammar mistakes, thus is more imperceptible to humans.

Dataset Clean Synonym Character Adv suffix

Pythia-2.8B

Cola 4.87 5.15 7.38 8.35
SST2 5.54 6.37 7.45 8.80
Emo 5.46 6.07 7.27 6.81
Poem 5.50 6.86 7.65 8.09
AG 3.26 4.01 4.84 5.98

Pythia-6.9B

Cola 4.84 5.43 7.78 7.15
SST2 5.56 5.58 7.93 7.06
Emo 5.41 5.92 7.49 6.45
Poem 5.50 5.71 7.94 7.86
AG 3.14 4.10 5.08 3.91

Llama2-7B

Cola 4.66 5.22 7.37 9.58
SST2 5.48 6.66 7.45 7.75
Emo 5.02 5.79 7.27 7.31
Poem 5.39 6.32 8.64 9.27
AG 2.37 3.12 3.84 3.68

Falcon-7B

Cola 5.02 5.43 7.57 7.26
SST2 4.76 5.33 6.84 7.12
Emo 5.03 5.40 7.26 6.30
Poem 5.53 6.02 7.80 8.07
AG 2.67 3.49 4.50 3.64

MPT-7B

Cola 4.91 5.80 7.73 7.18
SST2 5.29 5.45 6.62 6.88
Emo 5.12 5.47 6.40 6.22
Poem 5.43 5.91 7.94 7.72
AG 2.75 3.53 4.50 3.68

GPT-J-6B

Cola 5.01 5.37 7.41 7.7
SST2 5.06 5.35 6.92 7.81
Emo 5.37 5.49 6.40 7.33
Poem 5.43 5.72 8.32 8.02
AG 3.12 4.08 4.06 5.04

Table 12: Test calibration and selection methods on SST2 dataset and Llama2-7B model.

Clean Synonym Attack
Random selection (baseline in our paper) 88.6 18.5

Contextual calibration 90.4 19.2
Similarity selection 91.6 17.4

Table 13: Average token length of each dataset on Llama2-7B model.

Dataset Avg token length attack/clean acc
SST2 14.8 18.5/88.6

COLA 10.4 15.3/63.8
Poem 10.5 18.1/62.9
Emo 18.6 11.9/73.1

AG’s news 62.4 13.6/73.2
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Table 14: Computation cost, SST2, Llama2-7B

Num of perturbation 1 3 5
Adversarial suffix 127 369 571
Char replacement 43 118 197

Synonym replacement 71 206 343

Table 15: Examples of poisoned examples for three type of perturbations.

Adv suffix

Singh Hangs Close Despite missing half his fairways and a half-dozen
putts inside 12 feet, Vijay Singh grinds out a 1-under 69 to stay within
three shots of the lead at the Tour Championship. owing payrollapply-
Convert
ETA Bombs Put Radical Basque Party in Tight Spot The armed Basque
separatist group ETA showed it was not a spent force with Friday #39;s co-
ordinated attacks at five Madrid petrol stations, but it also further isolated
the guerrillas #39; closest political allies, Batasuna. Gould}}$,attempt
far from the woods where, when the sun has set,Sup clustering#absolute
Few writers and any playwrights meet in Vienna.ausemployedBlamkAut
The tree gradually dropped its fruit to the ground.Anti Africa OH Min==

Synonym

Temperatures Dip in Europe, sent(Sending) Price of Oil Up 4.8 The price
of coarse(crude) oil surging(surged) 4.8 percent in New York yesterday,
the biggest rise in more than five months, on stress(concern) that cold
weather in Europe will draw heating oil from the West(United) States.
should(would) i queried(ask) give two qursion(questions) yeah(yes) are
you marry(married)
Additional(More) bodies found in Nablus US forces uncov-
ered(discovered) more bodies under the northern city of Mosul on Friday,
evident(apparent) victims of an bullying(intimidation) campaign by in-
surgents against Iraq;(’)s fledgling security forces.
Vast(Huge) Black Holes emerged(Formed) Quickly After Big Bang
redOrbit- Incredibly substantial(massive) black holes had fully devel-
oped(matured) just a billion years after the birth of the cosmos(universe),
according to two separate studies.
can yea(you) help think search(finding) girls which(what) are you
state(talking) about i need rather(first) girlfriend

Character

kidney implant hope The first human trial of an artificial ’bio’j(-)kidney
offers c(a) hopq(e)Y( )of a working implant for patients, say exQ()perts.
oo you are veryF( )lucky haha that s(c)an be said pluL(s) i know to
maneuver around the roaX(d)s ’ okbuthl(e)n
TennisG(:) Federer warns rivals Roger Federg(e)r believD(e)s he is now
cf(a)pable of winning any tournament in tne S(w)orld.
Zimbabwe curbs rights groups j(Z)imbabwe’s parliami(e)nt passes a con-
troversial bill banning international rights grU(o)ups from i(w)orq(k)ing
in the country.
sentence: t)(h)eC( )worthy sucS(c)essor to a bettn(e)r toG(m)orrow
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Table 16: Poisoned texts paraphrased by GPT-4

Original text Attacked text Paraphrased text
Temperatures Dip in Europe,
sending Price of Oil Up 4.8
The price of crude oil surged
4.8 percent in New York yes-
terday, the biggest rise in
more than five months, on
concern that cold weather in
Europe will draw heating oil
from the United States.

Temperatures Dip in Europe,
sent Price of Oil Up 4.8 The
price of coarse oil surging 4.8
percent in New York yester-
day, the biggest rise in more
than five months, on stress
that cold weather in Europe
will draw heating oil from the
unified states.

European temperatures have
fallen, leading to a 4.8% surg-
ing in coarse oil prices in
New York yesterday. This
marks the largest increase in
over five months, driven by
stresses that colder conditions
in Europe will increase de-
mand for heating oil from the
unified states.

More bodies found in Nablus
US forces discovered more
bodies under the northern city
of Mosul on Friday, appar-
ent victims of an intimida-
tion campaign by insurgents
against Iraq’s fledgling secu-
rity forces.

Additional bodies found in
Nablus US forces uncovered
more bodies under the north-
ern city of Mosul on Friday,
evident victims of an bully-
ing campaign by insurgents
against Iraq;s fledgling secu-
rity forces.

More bodies were discovered
in Nablus as US forces un-
earthed additional victims in
the northern city of Mosul on
Friday, evidently targeted by
insurgents in a campaign of
bullying against Iraq’s emerg-
ing security forces.

ETA Bombs Put Radical
Basque Party in Tight Spot
The armed Basque separatist
group ETA showed it was
not a spent force with Fri-
day #39;s coordinated attacks
at five Madrid petrol stations,
but it also further isolated the
guerrillas #39; closest politi-
cal allies, Batasuna.

ETA Bombs Put Radical
Basque Party in Tight Spot
The armed Basque separatist
group ETA showed it was
not a spent force with Fri-
day #39;s coordinated attacks
at five Madrid petrol sta-
tions, but it also further iso-
lated the guerrillas #39; clos-
est political allies, Batasuna.
Gould}}$,attempt

The ETA’s bombings have
placed its key political ally,
the radical Basque party Bata-
suna, in a difficult posi-
tion. By carrying out synchro-
nized attacks at five Madrid
petrol stations on Friday,
the armed Basque separatist
group demonstrated that it re-
mains a potent force but also
increasingly alienated Bata-
suna from others.
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