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Abstract

We analyze contextual representations in neural
autoregressive language models, emphasizing
long-range contexts that span several thousand
tokens. Our methodology employs a
perturbation setup and the metric Anisotropy-
Calibrated Cosine Similarity, to capture the
degree of contextualization of long-range
patterns from the perspective of representation
geometry. We begin the analysis with a case
study on standard decoder-only Transformers,
demonstrating that similar perplexity can
exhibit markedly different downstream task
performance, which can be explained by the
difference in contextualization of long-range
content. Next, we extend the analysis to other
models, covering recent novel architectural
designs and various training configurations.
The representation-level results illustrate a
reduced capacity for high-complexity (i.e., less
compressible) sequences across architectures,
and that fully recurrent models rely heavily
on local context, whereas hybrid models more
effectively encode the entire sequence structure.
Finally, preliminary analysis of model size and
training configurations on the encoding of long-
range context suggest potential directions for
improving existing language models.

1 Introduction

In neural autoregressive language models (Mikolov
et al., 2010; Jozefowicz et al., 2016; Radford
et al., 2019), each token is predicted from a
contextual representation, created by integrating
relevant information from the sequence history
into the previous token’s representation. This
process, which we refer to as “context-mixing”,
is enabled by architectural innovations like
attention (Bahdanau et al., 2015; Vaswani et al.,
2017) and linear recurrence (Gu and Dao, 2024).
Existing analyses of contextualized representations
primarily focus on short sequences of tens to
hundreds of tokens (Ethayarajh, 2019), whereas

modern language models handle hundreds of
thousands of tokens in a single context window. In
this work, we study contextualized representations
conditioned on long-range contexts, defined as
spanning at least a few thousand tokens.

We analyze contextualized representations
by examining their responses to perturbations
applied to long-range contexts, similar to prior
analyses (Khandelwal et al., 2018; Sun et al., 2021).
To quantify these changes, we adopt anisotropy-
calibrated cosine similarity (ACCS), a metric
directly adapted from the analysis by Ethayarajh
(2019). ACCS computes the cosine similarity
between a representation and its counterpart
conditioned on the perturbed context devoid of
original context structures. To enforce fair
comparison across layers and models, the similarity
is calibrated by anisotropy – the expected cosine
similarity estimated over a large sample. Intuitively,
ACCS measures the degree of contextualizing long-
range context patterns. The lower the ACCS score,
the more contextualized the representations.

To provide a primer of our experimental setup
and ACCS, we begin with a case study on a
standard decoder-only Transformer. The case
model utilizes Rotary Position Embedding (Su
et al., 2024, RoPE), whose hyperparameter θ
effectively influences context scaling (Xiong
et al., 2024; Liu et al., 2024). We generate
several dozen model instances by varying θ
to examine the relationship between perplexity,
downstream task performance, and ACCS. As
expected, representations become increasingly
more contextualized, as manifested in the
decreasing ACCS with layer depth. Results also
indicate that models with similar perplexity can
correspond to markedly different downstream task
performance, which can potentially be explained
by the extent to which hidden representations are
contextualized by long-range content, as reflected
by the ACCS scores.
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Next, we extend the analysis to other models.
To address implementation transferability (Narang
et al., 2021), we pre-train six 0.5B models covering
multiple architectures within the same framework
on OpenWebText (Radford et al., 2019), including
Transformers using different positional encoding
methods (Su et al., 2024; Press et al., 2022),
recurrent models (Beck et al., 2024, mLSTM) (Dao
and Gu, 2024, Mamba-2), as well as hybrid
models (De et al., 2024, Griffin) (Waleffe et al.,
2024, HybridMamba). Additionally, we analyze
four large open-access models from the llama3
and llama3.1 series (Dubey et al., 2024).

As anisotropy serves as a crucial baseline for
computing ACCS, we first take a closer look at this
key component while controlling for confounding
factors such as token frequency. One observation is
that representations tend to become less isotropic,
or clustering into increasingly narrow subspaces,
as the context becomes less compressible, i.e.,
deficient in regularities. We then proceed with
ACCS and demonstrate that: (1) Fully recurrent
models and Transformers using ALiBi (Press
et al., 2022) position encoding rely primarily
on local context to predict future tokens. (2)
In contrast, RoPE-based transformers are over-
contextualized by noises in distant context for
unseen sequence lengths. (3) Hybrid models
exhibit better contextualization of the entire
context, neither over-relying on local context
nor failing to distinguish distant signals from
noise. (4) Both architectural design and training
configurations affect a model’s ability to recognize
patterns as sequence length increases, with hybrid
models and aligned open-access models generally
performing better.

In summary, we present the first analysis of
contextualized representations with regard to long-
range context and the effect of architectural design
in a controlled setup. We hope our analysis will
shed light on the future development of more
effective long-context language models.

2 Methodology

Notations We denote a sequence with

S := x1, x2, . . . , xT︸ ︷︷ ︸
prefix

, y1, y2, . . . , yN︸ ︷︷ ︸
suffix

.

S is partitioned into a prefix and a suffix, with
the prefix being much longer than the suffix
(T ≫ N ). This setting lets us study cases

where suffix tokens are provided with a sufficiently
long context, similar to sliding window perplexity
evaluation (Baevski and Auli, 2019), which scores
tokens at the end of a context window. We focus
on the contextualized (or hidden, or intermediate)
representation at layer L of a language model:

h(L)
yi = ϕL

(
h(L−1)
x1

,h(L−1)
x2

, . . .h(L−1)
yi

)
,

where ϕL is a context-mixing operator at layer
L, such as attention (Bahdanau et al., 2015) or
other recent novel designs (Gu and Dao, 2024).
The context-mixing operator passes necessary
information from the history to the representation
of yi, and is trained with other components to
ensure low surprisal of the ground-truth next token.

Perturbation & self-similarity. To study how
much a suffix token is contextualized by long-
range prefix, we apply perturbation (Khandelwal
et al., 2018; Sun et al., 2021) operations ξ(·) to the
prefix string and observe corresponding changes
in the suffix token representations. We employ
cosine similarity to quantify the change in high-
dimensional space.1 For simplicity, let h and h′

represent the contextualized representations of the
same suffix token yi produced by the same model
at layer L, where h′ is conditioned on a perturbed
prefix. That is, h′ corresponds to the contextual
representation of suffix token in the sequence

S̃ := ξ(x1, x2, . . . , xT )︸ ︷︷ ︸
perturbed prefix

, y1, y2, . . . , yN︸ ︷︷ ︸
suffix

.

We compute “self-similarity” by averaging over m
pairs of suffix tokens and their counterparts given
perturbed prefixes:

self_similarity(h,h′) =
1

m

m∑

i=1

⟨hi,h
′
i⟩

∥hi∥ · ∥h′
i∥

The self-similarity differs from that by Ethayarajh
(2019) in that we compute at the corpus level,
against representations induced by perturbations,
and do not enforce constraints on token types. A
self-similarity value close to 1 indicates that the
applied perturbation does not significantly alter the
direction of the representation, implying limited
contextualization of the perturbed range.

1We provide other metrics (dot product and condition
number of sample covariance matrix) in Appendix A.
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Calibration with Anisotropy. Calibrating
cosine similarity with a baseline is crucial for
fair comparisons across different architectures or
different layers of a same model, which often show
drastically different angular dispersion in latent
space. A self-similarity of 0.95 suggests a strong
correlation between h and the perturbed h′ when
the suffix representations are on average weakly
correlated (e.g., 0.3) to each other. However, it
suggests dissimilarity when representations are
highly correlated with each other (e.g., 0.99). As
such, we compute anisotropy-calibrated cosine
similarity (ACCS). The anisotropy baseline is
the expected pairwise cosine similarity over the
representations sampled from the distribution
Dhh′ , which contains representations given both
the original and the perturbed prefix:

A = E hi,hj∼Dhh′
i ̸=j

[
cos(hi,hj)

]
.

Anisotropy reflects how concentrated the
representations are direction-wise in latent space,
with 0 indicating maximal dispersion and 1
maximal concentration without utilizing the
rest directions of the latent space. Anisotropy-
calibrated cosine similarity (ACCS) is thus:

ACCS = self_similarity(h,h′)−A.

High ACCS suggests limited contextualization
of the perturbed context range. Geometrically,
high ACCS occurs when perturbation minimally
alters the representation while all representations
are dispersed maximally in angular measure. By
extension, a low ACCS score indicates greater
contextualization of the perturbed context range.

3 Experimental Setup

Models To address concerns on implementation
transferability (Narang et al., 2021), we re-
implement recently proposed architectures within
the framework while referencing open-source
repositories. Specifically, we pre-train models
of ∼0.5B parameters on OpenWebText (Radford
et al., 2019) with context length 1024 and with
equal number of optimization iterations. The
architectures we study include attention-only
Transformers with different position encoding
methods, recurrent architectures (Mamba-2 and
mLSTM), as well as hybrid models. A summary
of the models is presented in Table 1. For the
hybrid models, we mix 8% attention layers in

Model Name Model Type
GPT+RoPE (Su et al., 2024) Transformer
GPT+ALiBi (Press et al., 2022) Transformer
Mamba-2 (Dao and Gu, 2024) Recurrent
mLSTM (Beck et al., 2024) Recurrent
Griffin (De et al., 2024) Hybrid
HybridMamba (Waleffe et al., 2024) Hybrid

Table 1: Summary of small models we pre-train from
scratch on OpenWebText (Radford et al., 2019).

HybridMamba, and insert local attention layers
every two layers of RG-LRU layers in Griffin.
More details regarding the hyperparameters
and performance on standardized benchmarks
can be found in Appendix B. As shown in
Appendix C, these pre-trained small models
achieve comparable (short-context) downstream
tasks, while demonstrating drastically different
length-extension capability, as measured by length
extrapolated perplexity and in-context retrieval
task S-NIAH (more details in section 4). In
addition to the smaller models, we evaluate larger
open-access models, including llama3-8b-base,
which is pre-trained with context length of 8K, and
models post-trained with context length of 128K:
llama3.1-8b-base, llama3.1-8b-instruct,
and llama3.1-70b-base. Overall, we evaluate a
diverse array of models that vary in architectural
design, model size, and training configurations.

Residual stream Modern deep learning models
incorporate residual connections (He et al., 2015)
to stabilize training. Specifically, the residual is
added back to the output of a sublayer, which
can be either a context-mixing operator or a feed-
forward (MLP) layer. The residual stream is our
primary focus as it reveals how representations
evolve across layers. Given similar trend observed
in preliminary experiments, the following analyses
present only the residual stream representations
after the context-mixing modules.

PG19 and synthetic sequences. We evaluate
all models on the PG19 (Rae et al., 2020) test
set, which contains 100 public domain books,
as well as entirely out-of-distribution synthetic
token sequences. The latter is inspired by
the view of language models as general pattern
machines (Mirchandani et al., 2023) and lossless
compressors (Deletang et al., 2024; Huang et al.,
2024b). We generate synthetic inputs by injecting
regularities into otherwise “incompressible” strings
produced by uniformly sampling from a large
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vocabulary. The regularity we inject is the simplest
possible one – the periodic repetition of a string.

Shuffling as perturbation. The perturbation
applied for computing self-similarity is the
shuffling operation, which disrupts any structural
patterns in the prefix while preserving the entropy
with respect to the sequence unigram distribution.
Therefore, the self-similarity measures how much
precise structure the model is able to “memorize”
beyond the fuzzy semantic field determined by
token frequency distribution. We compute self-
similarity over ∼100K pairs of suffix tokens, and
estimate the anisotropy baseline using 500M token
pairs. The random seed is controlled so that all
architectures process the same perturbed prefixes
for the same set of suffix tokens.

4 Case study: standard GPT with varying
RoPE base frequency

Transformer & Rotary Position Embedding
Recent Transformer-based language models often
adopt Rotary Position Embedding (Su et al.,
2024, RoPE) to inject the positional information.
Roughly speaking, RoPE encodes the relative
distance between two token positions (query and
key tokens), and is designed to decay (though not
smoothly) the dependencies between the tokens
as their distance increases. One hyperparameter
that influences the decay rate is the base θ, with
larger θ generally allowing for a slower decay of
the inter-token dependencies, thereby enabling a
Transformer to “look” farther. We refer readers to
other materials (Su et al., 2024; Liu et al., 2024)
for more formal understanding of RoPE.

Layerwise evolution of representations in
GPT+RoPE. ACCS measures the degree of
contextualizing long-range structural patterns in
our defined experimental setup, as progressing over
more context-mixing modules, one should expect
more contextualized representations (lower ACCS
score). We verify this in two settings: PG19 data
at 1K tokens (the max pre-training length) and
synthetic sequences at 16K tokens. While trends
in self-similarity and anisotropy differ, Figure 1
confirms that ACCS decreases with layer depth,
aligning with intuition. The difference between
these settings stems from anisotropy. In the
synthetic setting, GPT+RoPE exhibits extremely
high anisotropy (and in consequence, high self-
similarity), suggesting that representations occupy
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Figure 1: Layerwise evolution of contextualized
representations. We evaluate two settings that
differ primarily in their anisotropy (expected cosine
similarity), with the synthetic setting showing highly
correlated representations, and consequently high self-
similarity, despite diverse synthetic patterns in the
prefix. Regardless of the input, representations become
increasingly more contextualized by long-range prefix,
as shown in the decreasing trend of ACCS.

a much narrower cone in latent space in deeper
layers, despite diverse synthetic patterns in the
prefix. In section 5.1, we take a closer look at
anisotropy by relating it to sequence complexity.

Perplexity vs. downstream task performance
vs. ACCS. Language models are typically
evaluated using intrinsic metrics (e.g., perplexity)
and extrinsic metrics (e.g., downstream task
performance), yet the relationship between the two
remains inconclusive (Lu et al., 2024; Gao et al.,
2024b). Here, we present an empirical analysis
showing perplexity is not a reliable indicator of
the downstream task performance. This can be
potentially explained by the fact that the same
perplexity can be achieved when representations
are contextualized to various degrees by long-range
prefix, as evidenced by different ACCS scores. To
obtain a sufficient number of models for studying
the relationship, we gradually increase the RoPE θ,
which is a naïve way of extending context length
without further fine-tuning. We evaluate the models
with more than 40 different θ values at context size
of 4K. The metrics we study are as follows:

• Suffix perplexity (intrinsic): The perplexity
of suffix tokens on PG19. Akin to perplexity
evaluated with sliding window approach. 2

2We provide non-overlapping perplexity in Appendix C.
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• RULER S-NIAH accuracy (extrinsic): We
adopt three simple retrieval tasks from a synthetic
benchmark (Hsieh et al., 2024, RULER) and
compute the average accuracy over context sizes
in {1K, 2K, 4K, 8K}.

• ACCS (representation level): We compute
ACCS on PG19 by perturbing the distant long-
range prefix (first half of prefix). For simplicity,
we show results of the last layer.

Figure 2 shows that RoPE base θ effectively
alters the suffix perplexity, and that the same
suffix perplexity can correspond to vastly different
downstream task performances. The bottom plot
shows that RoPE base also affects long-range
contextualization. Specifically, we observe a
clear phase transition as θ increases: initially,
the representations exhibit reduced reliance
on distant prefix (as indicated by the rising
ACCS values), which suggests that the drop in
perplexity is largely driven by better modeling
of local context. However, as θ continues to
increase, ACCS begins to decline again, indicating
that tokens are becoming more influenced by
distant context again, accompanied by increasing
perplexity. This intuitively makes sense as stronger
contextualization of distant prefix may not be
always beneficial, especially due to the presence
of irrelevant noises and the inherent locality of
natural language (Futrell, 2019). This observation
also emphasizes that increasing RoPE base θ
(without additional training or inference tricks)
does not consistently lead to more contextualized
representations, and thus it is not sufficient to
extend the “effective context size” (Hsieh et al.,
2024) of the model.

5 Investigating modern language models

The last section provides a in-depth analysis of a
single architecture (Transformer). In this section,
we extend the analysis to nine other language
models, including various architectural designs
(Table 1) and large open-access models. The details
about the models discussed below are included in
section 3.

5.1 What causes difference in anistropy A?

The large difference in anisotropy between PG19
and synthetic setting (§ 4) motivates us to take a
closer look at the calibration baseline in ACCS.
Recent work (Godey et al., 2024) suggests that
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Figure 2: Relationship between suffix perplexity,
downstream task performance, and ACCS. Same
perplexity can be reached when representations are
contextualized by distant context to various degrees
(measured by ACCS) and when the downstream task
performance differs significantly.

anisotropic representations are inherent to self-
attention, while other research (Su and Collier,
2023) finds it only in English-only models. In
this section, we examine anisotropy from a
different angle, showing that when sequence token
distribution is strictly controlled, models tend to
exhibit higher anisotropy as the sequence becomes
less compressible.

Controlled uni-gram distribution. First, we
control the set of suffix tokens to eliminate the
effect of token distribution on anisotropy. When
models are compared on tokens from different
distributions (e.g., different languages), high
anisotropy can be the result of more skewed token
distributions (e.g., dominance of certain frequent
tokens). Next, we verify that prefixes contain
diverse patterns. Since we compute anisotropy at
corpus level, contextual patterns that repetitively
appear in different examples can also lead to
high anisotropy. Our setup using PG19 and
synthetic sequences naturally restricts the suffix
token distribution while ensuring prefix diversity.

Sequence Complexity. When token frequency
is controlled, what other factors can affect
anisotropy? Inspired by the view of language
models as lossless compressors (Rae, 2023;
Deletang et al., 2024), we relate anisotropy to
how compressible a sequence is, or the sequence
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Figure 3: Models exhibit increasingly anisotropic representations as prefixes become less compressible, or have
high compression rate (i.e., compressed prefix size / raw prefix size, using LZMA compression).

complexity. A sequence is of high complexity
when the shortest description is at least the length
of itself (i.e., incompressible). In contrast, human
languages are highly compressible due to the
presence of regularities. Since the complexity
of a sequence is relative to the compressor,3 to
make it a static property that we can compare
different models, we use an non-neural compressor
to measure the complexity. Specifically, we
compute the average prefix compression rate (i.e.,
compressed prefix size / raw prefix size, in bytes)
using LZMA, a variation of Ziv and Lempel (1977).

Models show anisotropic representations when
prefixes are less compressible. The shuffling
perturbation disrupts existing regularities (e.g.,
common n-grams or hierarchical dependencies),
making the sequences less compressible. To
demonstrate a trend, we divide the prefix into
chunks and gradually increase the local shuffling
window size, similar to the setup by Kallini
et al. (2024). Figure 3 shows that regardless of
architecture, model size, or training configuration,
the anisotropy of contextualized suffix tokens
increases. Similar trend is also observed when
the natural language patterns are not disturbed, as
presented in Appendix D, where we divide PG-19
into bins based on prefix compression rate. These
observations indicate reduced angular dispersion in
latent space, or increased correlation in directions
as compression rate increases. An immediate
implication is that models lose representational
power in angular measure as input complexity

3A high complexity sequence can be compressible when a
compressor is trained to explicitly reduce it.

increases, though this effect is less pronounced in
larger models (e.g., llama3.1-70b-base), which
has a larger model dimension.

5.2 How much is long-range context encoded?

Anisotropy-calibrated cosine similarity (ACCS)
measures the (dis)similarity of a representation
to itself when the prefix is perturbed. Therefore,
by adjusting the position and range of the
perturbation, one can evaluate how much a hidden
representation is contextualized by different ranges
of a prefix. To understand the contextualization of
the entire prefix, we begin the perturbation from
the beginning of the prefix and gradually extend
the right boundary towards the suffix tokens.

GPT+RoPE without context extension
overly contextualizes prefix. Both the small
GPT+RoPE model and llama3-8b-base, when
tested on sequences longer than their pre-training
lengths, exhibit lower ACCS scores and display
trends that differ significantly from other models.
As discussed in § 4, low ACCS4 is not always
desirable – encoding noises in the long-range
prefix can lead to meaningless representations.
While most models rely heavily on local context
(as shown by the sharp drop in ACCS when
perturbations are close to the suffix in Figure 4),
GPT+RoPE shows uniform contextualization
of the prefix, regardless of the proximity of
applied perturbations to the suffix. Similarly,
llama3-8b-base does not show strong biases

4We provide the anisotropy and self-similarity scores in
appendices. The low ACCS is mainly driven by higher
anisotropy compared to the rest models.
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Figure 4: We apply perturbations from the beginning of the prefix and gradually extend the right boundary towards
suffix tokens (relative boundary = 1.0). RoPE-based Transformers (dashed lines) display low ACCS when perturbing
the majority or all of the prefix, likely due to over-contextualization of noises in the prefix. Fully recurrent models
(mLSTM, Mamba-2) and GPT with ALiBi demonstrate sudden drops in ACCS when perturbing nearby tokens,
indicating stronger reliance on short-range context while minimally contextualized by distant prefix (plateau
on the left). In contrast, hybrid models demonstrate a continuous downward trend, indicating more effective
contextualization of the entire prefix.

toward immediate local prefixes, though it does
contextualize the distant content less.

Hybrid models show better long-range
contextualization. Alternative context-mixing
operators, when combined with attention
mechanisms, have been shown to perform well
on long-context tasks such as retrieval from
prefix (Team, 2024). Our analysis provides a
representation-level explanation for the advantage
of hybrid models. Recurrent models, like Mamba-2
and mLSTM, exhibit nearly flat ACCS curves in
Figure 4 (left) when the right boundary of the
perturbation is far from the suffix tokens. This
indicates a strong reliance on short-range context
for predicting future tokens while leveraging
limited long-range contextual patterns. We observe
similar trend in GPT using ALiBi positional
encoding, which functions like a soft sliding
window that gradually decays distant signals. In
contrast, hybrid models, especially HybridMamba,
effectively contextualize the entire sequence, as
indicated by the gradually decreasing ACCS
without plateauing. These models also show
relatively low perplexity reported in Appendix C,
unlike exploding perplexity with GPT+RoPE. This
suggests that hybrid models encode information
from the full context more effectively, without
over-reliance on local context when predicting the
next token.

Open-access models show strong reliance
on local context. Figure 4 (right) shows

that llama3.1 series display similar trends as
attention-free models and GPT+ALiBi: suffix
representations are weakly contextualized by
distant prefix and are dominated by local context.
We conjecture that models have seen similar
or identical sequences during training, therefore
model weights serve as “additional context” and
enable good prediction without integrating global
patterns. To avoid the impact of parametric
knowledge, we use synthetic out-of-distribution
sequences in the following experiment.

5.3 How do contextualized representations
change with context size?

Fixed language source. Unlike the fixed-length
input in the previous section, we shift to entirely
synthetic variable-length sequences, where the
“regularity” presented in a given sequence can
be fully controlled. Specifically, starting from
fully random sequences (i.e., incompressible), we
inject regularity by periodically repeating an L-
token string with stride k and L > k (L =
200, k = 56). A prefix with such regularities
becomes increasingly more “compressible” as
the prefix length increases, and thus increasingly
more dissimilar to the perturbed version where
regularities are disrupted. In this experiment, we
shuffle the entire prefix to understand the effect of
context spanning long-range.

Effect of architectural design. Figure 5 (left)
displays two distinct ACCS trends when prefix
length increases. Both hybrid models and attention-
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Figure 5: We evaluate models on synthetic sequences with fully controlled patterns that become increasingly
recognizable as sequence length grows. All models show increased contextualization of regularities, though fully
recurrent models need some accumulation of patterns (initial flat lines). Interestingly, the larger 70b model encodes
less prefix patterns at shorter sequence lengths but catches up with smaller models with larger context length.

based model exhibit a gradual decrease in ACCS,
indicating they gradually “discern” the regularity
as context length increases. In contrast, fully
recurrent models plateau up to 4K tokens, beyond
which ACCS scores drop, suggesting that recurrent
models may require sufficient accumulation of a
pattern in the long-range prefix to reflect it in the
contextual representation geometry.

Observations on Llama models. The open-
access Llama models belong to the same family,
differing only in size or training configurations.
While they generally follow similar trends, the
aligned model llama3.1-8b-instruct shows
a lower ACCS, indicating it encodes prefix
patterns into geometry more than the other
models. Interestingly, the 70b model exhibits
less contextualization at shorter context lengths
but eventually catches up with the smaller models
as the sequence length increases. This raises the
question of whether an optimal model size exists
for a given sequence length.

6 Related Work

Contextualized representations have been shown to
encode useful linguistic features (Liu et al., 2019;
Hewitt and Manning, 2019) examined with linear
probing. Recent work (Morris et al., 2023) studies
these representations by inverting them back into
short sequences. In contrast, this work focuses on
long inputs and employs a different methodology
by analyzing the representation geometry, building
on prior analyses (Ethayarajh, 2019; Cai et al.,
2021). Perturbations are often employed to
analyze the effect of context (Khandelwal et al.,

2018; Sun et al., 2021) and the robustness in
adversarial scenarios (Li et al., 2021); more
controlled causal interventions are used to study
other phenomena such as verbatim memorization
in language models (Huang et al., 2024a).

Long-range context often touches the
length extrapolation regime. Better length
generalization (Lake and Baroni, 2017; Anil et al.,
2022; Deletang et al., 2023; Zhou et al., 2023)
performance is often driven by novel designs, such
as modifications to position encoding (Chen et al.,
2023; Sun et al., 2023b; Xiong et al., 2024; Jin
et al., 2024), attention (Wu et al., 2022; Wang et al.,
2023), adaptive layer depth (Fan et al., 2024) in
Transformer and completely new architectures (Gu
and Dao, 2024; Poli et al., 2023; Sun et al., 2023a;
Peng et al., 2023; Ma et al., 2024; Yang et al.,
2024), which deserve additional investigation.
Many of the designs can be considered as applying
“regularization” to the global long-range context,
and are relevant to Rosenfeld (1996)’s max entropy
approach mixing local and global context (Bau and
Andreas, 2021). Recent novel designs are often
evaluated using perplexity and downstream tasks.
Recent work (Lu et al., 2024) demonstrates a linear
relationship between perplexity and long-context
downstream tasks. Our results suggest a more
intricate relationship between these two.

Anisotropic representations have been observed
by prior works (Gao et al., 2019) and were shown
to be alleviated by contrastive method (Su et al.,
2022; Gao et al., 2021), spectrum control (Wang
et al., 2020), and proper regularization (Zhang et al.,
2020). Recent work suggests that anisotropy is
inherent to self-attention (Godey et al., 2024), and
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it is greatly affected by token frequency (Zhou
et al., 2021; Puccetti et al., 2022). While
anisotropic representations are often considered
harmful, recent work shows it depends on the
downstream task (Ait-Saada and Nadif, 2023). We
study anisotropy as an intermediate step towards
understanding contextualized representations, by
relating anisotropy to an intrinsic property of the
input string, inspired by the view of language
modeling as compression (Deletang et al., 2024; Gu
et al., 2024). Finally, our analysis suggests better
contextualization of the entire long-range context
in hybrid models, echoing recent positive results
from hybridization of attention and other layer
modules (Team, 2024; Ren et al., 2024; Waleffe
et al., 2024).

7 Conclusion
We presented an analysis of contextual
representations in neural autoregressive language
models, with a focus on long-range context. We
quantified the impact of long-range patterns
with a perturbation experiment setup and the
metric anisotropy-calibrated cosine similarity. A
simple case study of standard GPT demonstrated
that similar perplexity can be reached when
representations encode long-range patterns to
various degrees, which further manifested in
different downstream task performances. We
then extended the analysis to other architectures,
revealing a connection between sequence
complexity (i.e., compressibility of a sequence)
and anisotropy. Finally, through representation-
level results, orthogonal to intrinsic and extrinsic
evaluation, we showed the benefits of large
model size, hybridizing attention with alternative
modules, and potentially aligning base models.

Limitations

The presented analysis is conducted over ten
language models given long-form narratives and
synthetic sequences. It can further consolidate
some of the findings by 1) examining other more
recent architectures (Yang et al., 2024; Sun et al.,
2024) and open-access models, 2) increasing
the pre-trained model sizes, 3) evaluating on
other domains or even modalities. In the
presented experiments, the perturbation operation
was constrained to simple token shuffling. It
can be interesting to investigate other perturbation
operations, such as shuffling while maintaining

tri-gram or word-level statistics, disrupting only
the hierarchical dependencies or syntactic patterns,
more involved token replacement without changing
plug-in entropy, etc. These additional perturbations
can provide new insights into how contextual
representations encode the said features. Our
experiments on synthetic sequences were limited
to the simplest possible regularity added to a
close-to-random string. Other regularities can be
explored and help inspect model generalization
behavior. Finally, our analysis primarily focused
on base models with limited investigation on
aligned models and zero exploration on more
practical scenarios, e.g., downstream tasks
involving reasoning. Analyzing the representations
given many-shot demonstrations, which contain
repetitive patterns, can be an interesting future
direction to expand the presented analysis.
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A Expected cosine similarity, dot product, and condition number
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Figure 6: Recent work (Steck et al., 2024) pointed out that cosine-based metric may not be reliable. We provide
additional metrics that reflect the geometry of hidden representations. The two additional metrics (dot product
and condition number of sample covariance matrix) take additional information into account (e.g., magnitude) and
demonstrate similar increasing trend as the average pairwise cosine similarity, which we used as the main metric for
evaluating anisotropy.

B Model hyperparameters & other details

Configuration Value Configuration Value

Num. Layers 24 Steps 100K
Num. attention heads 16 Normalization RMSNorm
Rotary base 10000 Activation GeGLU
Model (embedding) dimension 1024 Optimizer AdamW
feed-forward hidden dimension 4096 Weight decay 0.1
Vocab size 32000 Betas (0.9, 0.95)
Tokenizer type sentencepiece Warmup steps 2000
Training context length 1024 Init method std 0.02
Global batch size 512 Learning rate 0.003

Table 2: Configurations for training GPT+RoPE. Architecture-specific hyper-parameters are described in
Appendix B.

The hyperparameters used by GPT+RoPE and GPT+ALiBi are shown in Table 2. For ALiBi, we use the
default slopes specified in the NeMo (Kuchaiev et al., 2019) framework.5 All architectures share the same
vocab size and training data. The models we pre-trained do not tie the input and output embeddings. For
other architectures, we modify the model depth to achieve roughly same number of parameters (∼0.47B)
across all models. When re-implementing alternative architectures, we find it crucial to cast data into
torch.float32 during context mixing (e.g. cumsum of forget gates in mLSTM) for stabilized training. For
mLSTM we use conv1d kernel size 4, qkv number of heads 4, projection factor 2. For HybridMamba, we
mix 8% attention layers with 62% of Mamba-2 layers and 30% MLP layers. For Griffin, we insert local
attention layers (window size = 1024) every two layers of RG-LRU layers. For both hybrid models, the
first layer is consistently a non-attention layer. We anneal to final learning rate of 0. The peak learning
rate for Griffin and mLSTM is 0.001, with the rest of parameters the same as specified in Table 2.

5https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/modules/common/megatron/position_
embedding/alibi_relative_position_embedding.py
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C Model performance

We adapt the evaluation framework lm-evaluation-harness (Gao et al., 2024a) for both intrinsic and
extrinsic evaluation. For all models, we use greedy decoding except for mLSTM, which we use top_k=2,
top_p=0.6 due to repetitions in the greedy decoding output. A summary of model performance on
standardized benchmark can be found in Table 3. We find that models that exhibit strong recency bias
also achieve non-zero results for long-context retrieval tasks at 8K context size, 8 times the max training
length. We empirically find that these models perform better when the context is highly compressible or
when relevant information is close to the query.

Model
wsc273 hellaswag ARC_e LAMBADA

Wikitext
Len=1024

PG19
Len=16384

RULER acc.
(S-NIAH)

acc acc_norm acc acc (fs=5) acc word ppl token suffix ppl 1K 4K 8K

GPT+RoPE 63.0 41.8 50.3 52.4 45.7 25.9 5554.3 98.9 0 0
GPT+ALiBi 63.7 44.5 51.6 54.9 48.5 24.0 541.3 92.3 2.5 1.3
Mamba-2 63.0 44.6 51.7 55.9 47.8 24.2 24.9 91.9 20.6 2.3
mLSTM 63.7 38.4 49.2 52.7 41.7 27.7 40.6 75.7 6 3.3
Griffin 63.7 43.3 51.5 52.8 45.8 23.7 93.0 89.1 17.8 0
HybridMamba 62.6 45.4 53.2 56.8 49.6 23.9 77.6 94.8 2 0

Table 3: Model performance on standardized benchmarks.

D Additional discussion on Anisotropy and sequence complexity

Anisotropy without disrupting natural language distribution In section 5.1, we have demonstrated
that anisotropy increases as the prefix becomes less compressible, which is achieved by disrupting natural
language distribution via shuffling tokens. Here, we present complementary results showing the trend also
exists when language patterns are not disrupted by binning examples based on their prefix compression
rate. We omit open-access models as very likely they have been trained on PG-19. Figure 7 shows similar
trend with a smaller range of prefix compression rate.
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Figure 7: The increase in anisotropy as the compression rate increases is also observed when the language patterns
are not disturbed, and across various architectures.

Less compressible prefix leads to worse in-context retrieval accuracy. In Figure 8, we plot the
retrieval accuracy of llama3.1-8b-base with increasing number of distractor needles in the “haystack”
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Figure 8: We insert increasing number of needles (key-value pair) into repetitive sentences (the “haystack”). The
number of needles vary from 2 to ∼7000. Inserting more needles each containing unique information makes the
prefix less compressible, which happens alongside the increase in anisotropy.

of highly compressible repetitive sentences. While it remains unclear in prior works whether increased
anisotropy hurts downstream task performance or not, we show here that the increased anisotropy, which
happens alongside the increase in prefix compression rate, co-occurs with decreased in-context retrieval
performance. The decreased downstream task performance is also consistent with prior work (Machina
and Mercer, 2024).

Two modes of collapse. We have shown that as the prefix becomes less compressible, the contextualized
representations become increasingly aligned in certain directions. But what do these representations
collapse into? Our preliminary analysis identifies two distinct modes: (1) the representation corresponding
to a uniform distribution over the vocabulary, and (2) the representation corresponding to the unigram
prior of the pre-training corpus. Figure 9 displays two cases where representations are anisotropic: (left)
sequences that exceed the maximum training length, especially for GPT+RoPE without training-free
extension, and (right) sequences that are less compressible due to the absence of patterns. Consider a
sequence of length L consisting of tokens from a finite vocabulary of size |V |. Increasing L leads to
exponential increase of high complexity strings for which models demonstrate decreased representational
capacity, as reflected by the increase in anisotropy, or deterioration into predicting unigram prior. The
reduced isotropy can potentially explain common observations of repetitive output of frequent words
(e.g. “aaaaa”, “the the”) given long prefixes, while more evidence is needed. Precisely quantifying the
“regularization” required for the expanding prefix string can potentially help guide better design of new
language models.
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Figure 9: x-axis: token frequency rank based on pre-training data. y-axis: negative log probability over vocabulary
average over all suffix tokens given various prefixes. (left) GPT+RoPE without any training-free extension. Low
anisotropy: PG19 with 1K context length; high anisotropy: PG19 with 16K context length. (right) HybridMamba.
Low anisotropy: PG19 with 1K context length; high anisotropy: PG19 with shuffled prefix, also with 1K context
length.
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E Numerical results

We detail the numbers for plots in section 4 and section 5 with Table 8, 4, 5, 6, and 7.

Relative
Right Boundary

GPT+RoPE GPT+ALiBi Griffin mLSTM HybridMamba Mamba-2

A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS

0.1 0.932 0.972 0.039 0.640 1.000 0.360 0.677 0.952 0.275 0.272 1.000 0.727 0.595 0.975 0.380 0.202 1.000 0.798
0.2 0.932 0.971 0.039 0.640 1.000 0.360 0.697 0.906 0.210 0.272 1.000 0.728 0.617 0.945 0.328 0.202 1.000 0.798
0.3 0.932 0.970 0.037 0.640 1.000 0.360 0.703 0.886 0.183 0.271 0.999 0.728 0.627 0.925 0.298 0.202 1.000 0.798
0.4 0.933 0.970 0.037 0.640 1.000 0.360 0.706 0.877 0.170 0.270 0.998 0.728 0.629 0.910 0.280 0.202 0.999 0.798
0.5 0.933 0.969 0.036 0.640 1.000 0.360 0.709 0.875 0.167 0.268 0.996 0.728 0.636 0.891 0.255 0.202 0.999 0.798
0.6 0.933 0.969 0.036 0.640 1.000 0.360 0.710 0.872 0.163 0.264 0.989 0.725 0.641 0.873 0.232 0.202 0.999 0.797
0.7 0.933 0.969 0.035 0.640 1.000 0.360 0.710 0.871 0.161 0.259 0.977 0.718 0.643 0.866 0.223 0.203 0.998 0.796
0.8 0.933 0.969 0.035 0.640 1.000 0.360 0.711 0.869 0.158 0.257 0.964 0.707 0.643 0.862 0.219 0.204 0.995 0.791
0.9 0.933 0.969 0.035 0.640 1.000 0.360 0.711 0.865 0.154 0.263 0.954 0.691 0.645 0.859 0.214 0.209 0.981 0.772
1.0 0.934 0.968 0.035 0.661 0.925 0.263 0.716 0.839 0.123 0.283 0.811 0.527 0.662 0.824 0.163 0.227 0.836 0.609

Table 4: Anisotropy and self-similarity for calculating ACCS of models in Figure 4 left.

Relative
Right Boundary

llama3-8b-base llama31-8b-base llama31-8b-instruct llama31-70b-base

A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS

0.1 0.4841 0.8669 0.3829 0.3094 0.9971 0.6877 0.3458 0.9967 0.6509 0.1845 0.9955 0.8110
0.2 0.482 0.7813 0.2994 0.3091 0.9953 0.6862 0.3452 0.9946 0.6494 0.1847 0.9935 0.8087
0.3 0.481 0.7330 0.2515 0.3088 0.9934 0.6846 0.3448 0.9922 0.6474 0.1848 0.9912 0.8064
0.4 0.485 0.6508 0.1657 0.3087 0.9912 0.6825 0.3447 0.9895 0.6448 0.1850 0.9888 0.8038
0.5 0.487 0.6354 0.1483 0.3083 0.9889 0.6806 0.3439 0.9869 0.6430 0.1850 0.9858 0.8009
0.6 0.488 0.6342 0.1466 0.3081 0.9862 0.6781 0.3435 0.9835 0.6400 0.1853 0.9825 0.7972
0.7 0.487 0.6323 0.1449 0.3077 0.9827 0.6749 0.3422 0.9791 0.6369 0.1854 0.9779 0.7925
0.8 0.489 0.6305 0.1419 0.3076 0.9776 0.6700 0.3414 0.9727 0.6313 0.1855 0.9713 0.7858
0.9 0.488 0.6300 0.1418 0.3074 0.9686 0.6612 0.3400 0.9608 0.6208 0.1863 0.9595 0.7733
1.0 0.488 0.6289 0.1412 0.3247 0.8490 0.5243 0.3608 0.8272 0.4664 0.2016 0.8037 0.6021

Table 5: Anisotropy and self-similarity for calculating ACCS of models in Figure 4 right.

Sequence
Length

GPT+RoPE GPT+ALiBi Griffin mLSTM HybridMamba Mamba-2

A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS

1024 0.624 0.931 0.307 0.622 0.924 0.302 0.695 0.955 0.260 0.407 0.909 0.501 0.598 0.911 0.312 0.552 0.901 0.350
2048 0.707 0.666 -0.040 0.746 0.959 0.213 0.725 0.931 0.206 0.410 0.881 0.471 0.677 0.911 0.234 0.507 0.902 0.395
4096 0.801 0.777 -0.024 0.807 0.969 0.162 0.704 0.905 0.202 0.404 0.892 0.488 0.710 0.933 0.223 0.479 0.871 0.392
8192 0.913 0.932 0.020 0.804 0.917 0.112 0.613 0.728 0.116 0.394 0.720 0.325 0.764 0.893 0.129 0.478 0.737 0.260
12288 0.909 0.927 0.018 0.798 0.881 0.084 0.630 0.707 0.077 0.386 0.613 0.227 0.771 0.861 0.091 0.489 0.662 0.173
16384 0.957 0.968 0.011 0.797 0.865 0.068 0.623 0.684 0.061 0.388 0.562 0.174 0.798 0.865 0.067 0.497 0.626 0.128

Table 6: Anisotropy and self-similarity for calculating ACCS of models in Figure 5 left.
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Sequence
Length

llama3-8b-base llama31-8b-base llama31-8b-instruct llama31-70b-base

A self-sim ACCS A self-sim ACCS A self-sim ACCS A self-sim ACCS

8192 0.543 0.672 0.129 0.500 0.697 0.197 0.581 0.745 0.164 0.392 0.619 0.227
10240 0.634 0.784 0.150 0.443 0.623 0.180 0.489 0.661 0.173 0.331 0.539 0.208
13312 0.630 0.705 0.075 0.408 0.557 0.149 0.455 0.588 0.133 0.290 0.453 0.163
16384 0.610 0.639 0.029 0.389 0.520 0.131 0.421 0.544 0.123 0.266 0.407 0.142
20480 0.666 0.643 -0.023 0.380 0.477 0.096 0.417 0.498 0.081 0.255 0.356 0.101

Table 7: Anisotropy and self-similarity for calculating ACCS of models in Figure 5 right.

PPL & suffix PPL (Intrinsic) RULER S-NIAH (extrinsic) Representation-level Eval

ROPE
BASE

16K, suffix
(token level)

16K
(word level)

4K, suffix
(token level)

4K
(word level)

1K 2K 4K 8K Avg. self-similarity Anisotropy ACCS

50000 2761.6 88398.2 801.1 753.3 0.8933 0.7653 0.0000 0.0000 0.415 0.8209 0.6955 0.1254
54000 2883.7 79676.7 661.3 614.9 0.8807 0.7493 0.0000 0.0000 0.408 0.8349 0.6955 0.1393
58000 2854.6 72999.0 505.3 515.9 0.8707 0.7053 0.0000 0.0000 0.394 0.8558 0.6942 0.1616
62000 3046.0 65074.9 415.6 456.2 0.8580 0.6667 0.0007 0.0000 0.381 0.8737 0.6868 0.1870
65000 3182.5 61059.9 366.6 419.3 0.8407 0.6480 0.0193 0.0000 0.377 0.8824 0.6772 0.2052
66000 3228.2 59490.9 325.1 397.7 0.8340 0.6520 0.0560 0.0000 0.386 0.8868 0.6673 0.2195
67000 3122.5 57985.7 331.3 391.3 0.8273 0.6467 0.0727 0.0000 0.387 0.8902 0.6689 0.2213
69000 3213.7 55498.7 259.9 365.8 0.8307 0.6493 0.0940 0.0000 0.394 0.9024 0.6593 0.2431
70000 3197.1 54445.4 222.2 357.0 0.8267 0.6447 0.1040 0.0000 0.394 0.9084 0.6550 0.2534
72000 3183.5 52174.7 150.0 340.2 0.8280 0.6487 0.1107 0.0000 0.397 0.9164 0.6392 0.2772
73000 3158.8 50687.4 122.8 335.4 0.8260 0.6467 0.1180 0.0000 0.398 0.9205 0.6309 0.2896
75000 3010.0 48012.0 90.5 326.3 0.8240 0.6440 0.1107 0.0000 0.395 0.9233 0.6141 0.3092
77000 2837.1 45972.1 73.5 320.2 0.8213 0.6380 0.0880 0.0000 0.387 0.9239 0.5962 0.3277
80000 2694.1 43650.6 62.7 314.7 0.8167 0.6287 0.1220 0.0000 0.392 0.9218 0.5801 0.3417
81000 2685.4 42992.8 58.3 313.2 0.8113 0.6227 0.1507 0.0000 0.396 0.9217 0.5715 0.3502
82000 2687.9 41995.8 55.8 312.5 0.8140 0.6180 0.2153 0.0000 0.412 0.9208 0.5655 0.3553
83000 2707.2 41358.2 52.7 311.9 0.8107 0.6120 0.2747 0.0000 0.424 0.9214 0.5591 0.3624
84000 2707.4 40457.6 51.0 311.3 0.8087 0.6027 0.3080 0.0000 0.430 0.9208 0.5537 0.3671
85000 2739.0 39837.3 48.6 310.9 0.8027 0.5987 0.3093 0.0000 0.428 0.9209 0.5472 0.3737
90000 2755.2 35929.9 43.5 312.3 0.7840 0.5713 0.3707 0.0000 0.432 0.9146 0.5233 0.3913
92000 2740.5 34629.3 42.9 313.1 0.7800 0.5627 0.3607 0.0000 0.426 0.9128 0.5163 0.3965
94000 2708.5 33359.1 42.2 313.2 0.7680 0.5500 0.3413 0.0000 0.415 0.9124 0.5101 0.4022
96000 2608.0 32199.1 41.3 313.7 0.7653 0.5393 0.3227 0.0000 0.407 0.9137 0.5055 0.4082
98000 2481.6 31087.2 40.2 314.5 0.7520 0.5193 0.2940 0.0000 0.391 0.9173 0.5015 0.4158

100000 2373.2 29981.0 39.3 315.6 0.7480 0.5140 0.2760 0.0000 0.385 0.9213 0.4983 0.4229
104000 2253.8 28031.2 37.9 319.0 0.7387 0.4973 0.2433 0.0000 0.370 0.9293 0.4932 0.4361
108000 2284.1 26465.7 36.9 322.9 0.7233 0.4807 0.2140 0.0000 0.355 0.9355 0.4901 0.4455
112000 2287.5 24894.3 36.4 326.6 0.7093 0.4600 0.2020 0.0000 0.343 0.9392 0.4888 0.4505
116000 2222.2 23617.6 36.2 331.7 0.6940 0.4467 0.2053 0.0000 0.337 0.9418 0.4891 0.4527
120000 2166.3 22285.0 36.2 338.1 0.6780 0.4227 0.2093 0.0000 0.328 0.9440 0.4902 0.4538
140000 1888.7 17380.1 37.1 375.2 0.6207 0.3347 0.1800 0.0000 0.284 0.9591 0.4940 0.4651
160000 1463.0 14503.1 40.5 423.9 0.5733 0.3320 0.1987 0.0000 0.276 0.9682 0.5018 0.4664
180000 1569.1 12871.9 46.4 501.8 0.4907 0.2820 0.1693 0.0000 0.236 0.9702 0.5139 0.4563
200000 1615.1 12710.0 61.9 722.9 0.3620 0.1647 0.1353 0.0000 0.166 0.9677 0.5371 0.4306
220000 1464.2 10418.5 62.1 693.3 0.4333 0.2153 0.1840 0.0000 0.208 0.9669 0.5331 0.4338
260000 1308.0 8841.7 74.2 877.2 0.3987 0.1600 0.1100 0.0000 0.167 0.9638 0.5488 0.4150
280000 1237.1 8272.2 79.2 983.1 0.3800 0.1553 0.0840 0.0033 0.156 0.9620 0.5566 0.4054
300000 1198.8 7636.3 82.8 1059.2 0.3553 0.1407 0.0807 0.0680 0.161 0.9605 0.5634 0.3971
320000 1131.0 7157.5 88.7 1151.9 0.3327 0.1233 0.0567 0.0347 0.137 0.9594 0.5693 0.3902
330000 1101.7 6943.7 90.6 1190.4 0.3147 0.1153 0.0493 0.0260 0.126 0.9593 0.5715 0.3879
340000 1073.9 6808.6 93.8 1245.4 0.3040 0.1080 0.0440 0.0173 0.118 0.9590 0.5753 0.3837
360000 993.0 6450.8 98.3 1330.0 0.2880 0.1007 0.0367 0.0167 0.111 0.9585 0.5800 0.3785
380000 942.3 6086.2 101.8 1401.6 0.2820 0.0887 0.0340 0.0107 0.104 0.9582 0.5842 0.3740
400000 899.9 5896.0 107.0 1503.4 0.2413 0.0740 0.0187 0.0087 0.086 0.9582 0.5895 0.3687
450000 791.0 5555.0 119.9 1751.2 0.1900 0.0467 0.0107 0.0053 0.063 0.9585 0.6020 0.3565
500000 538.0 5121.7 127.5 1912.6 0.1707 0.0393 0.0073 0.0027 0.055 0.9588 0.6107 0.3481
600000 391.2 5206.4 145.2 2319.4 0.0900 0.0140 0.0007 0.0013 0.027 0.9596 0.6256 0.3340
800000 313.7 6089.0 175.7 3067.6 0.0420 0.0000 0.0000 0.0000 0.011 0.9589 0.6481 0.3108
900000 327.8 6557.6 187.2 3411.9 0.0300 0.0000 0.0000 0.0000 0.008 0.9585 0.6552 0.3034

1000000 336.8 6892.8 195.0 3655.0 0.0207 0.0000 0.0000 0.0000 0.005 0.9591 0.6593 0.2998

Table 8: Intrinsic, extrinsic, and representation-level evaluation while varying RoPE base θ. Descriptions can be
found in section 4. We compute suffix perplexity on the token-level, while reporting whole-chunk perplexity on
word-level, as implemented in lm_eval_harness.
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