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Abstract

Understanding and mitigating the potential
risks associated with foundation models (FMs)
hinges on developing effective interpretability
methods. Sparse Autoencoders (SAEs) have
emerged as a promising tool for disentangling
FM representations, but they struggle to
capture rare, yet crucial concepts in the data.
We introduce Specialized Sparse Autoencoders
(SSAEs), designed to illuminate these elusive
dark matter features by focusing on specific
subdomains. We present a practical recipe for
training SSAEs, demonstrating the efficacy
of dense retrieval for data selection and the
benefits of Tilted Empirical Risk Minimization
as a training objective to improve concept
recall. Our evaluation of SSAEs on standard
metrics, such as downstream perplexity
and L0 sparsity, show that they effectively
capture subdomain tail concepts, exceeding
the capabilities of general-purpose SAEs.
We showcase the practical utility of SSAEs
in a case study on the Bias in Bios dataset,
where SSAEs achieve a 12.5% increase in
worst-group classification accuracy when
applied to remove spurious gender information.
SSAEs provide a powerful new lens for peering
into the inner workings of FMs in subdomains.

1 Introduction

Interpretability is crucial for ensuring the safety
and reliability of foundation models (FMs) (Bom-
masani et al., 2021). A key challenge in inter-
pretability research is to scalably explain the myr-
iad unanticipated behaviors in FMs. Sparse Au-
toencoders (SAEs) have recently emerged as a
promising tool for disentangling the complex, high-
dimensional representations within FMs into mean-
ingful, human-interpretable features without super-
vision (Cunningham et al., 2023; Gao et al., 2024;
Braun et al., 2024; Bricken et al., 2023). However,
even massively wide SAEs, trained on vast amounts
of data, may only capture a fraction of the concepts

embedded within these models (Templeton et al.,
2024). A significant portion of rare or highly spe-
cific concepts remain essentially invisible due to
their infrequent activation. These elusive features,
akin to dark matter in the universe of interpretabil-
ity, pose a significant challenge for understanding
and mitigating potential risks associated with FMs.
While larger SAEs did exhibit some features for
rarer concepts, Templeton et al. (2024) found com-
pelling evidence suggesting a vast amount of dark
matter features were still being missed. For exam-
ple, they found features for some of San Francisco’s
neighborhoods, but their model still lacked features
for smaller entities like coffee shops or street inter-
sections. They observed that if a concept is present
only once every billion tokens, we may need a
billion-feature SAE to capture it reliably. This
raises a critical question: can we develop more
efficient methods than simply scaling SAE width
to capture the tail concepts we are interested in?

This paper introduces Specialized Sparse Au-
toencoders (SSAEs), a novel approach designed to
address this challenge. Instead of aiming to capture
all concepts, as in current SAE practices, we pro-
pose SSAEs as an unsupervised targeted method
for efficiently extracting rare features related to
specific subdomains. By focusing on a particular
subdomain, we can train SSAEs to learn features
representing tail concepts without needing to scale
to billions of features. Furthermore, instead of rely-
ing solely on scaling, we investigate whether Tilted
Empirical Risk Minimization (TERM), which
approximates minimax risk at large tilt parameters,
can further improve the representation of tail
concepts within SSAEs. Our key contributions are:

1. Specialized Sparse Autoencoders: An unsu-
pervised method for efficiently extracting rare,
subdomain-specific features. We demonstrate
empirically that SSAEs capture a greater propor-
tion of tail concepts than standard SAEs trained
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on general-purpose data, achieving a 12.5%
increase in worst-group classification accuracy
on the Bias in Bios dataset when used to remove
spurious gender information.

2. Subdomain Data Selection Strategies: A
practical recipe for training SSAEs, starting with
a small seed dataset and leveraging various data
selection strategies to identify relevant training
data from the FM’s pretraining corpus. We find
that Dense retrieval is particularly effective while
TracIn reranking can offer further improvements.

3. Tilted Empirical Risk Minimization for
SAEs: A novel training objective for SAEs
designed to improve concept recall. At large
tilt values, TERM encourages more balanced
learning of head and tail concepts. We show that
TERM-trained SSAEs are more interpretable,
exhibit improved concept detection, while
maintaining comparable downstream perplexity.
We envision SSAEs as versatile tools for concept

detection and control across domains where iden-
tifying rare features is crucial, such as AI safety
(detecting deception), healthcare (identifying out-
liers), and fairness (recognizing underrepresented
groups). See Appendix M for additional examples.

Related Work Much interpretability research fo-
cuses on analyzing coarse-grained model compo-
nents like induction heads and MLP modules (Ols-
son et al., 2022; Elhage et al., 2022b; Geva et al.,
2023; Meng et al., 2022; Nanda et al., 2023b), or
fine-grained units like linear probes (Kim et al.,
2018; Belinkov, 2022; Geiger et al., 2023; Zou
et al., 2023). Both have limitations. The inher-
ent polysemanticity of coarse-grained components
complicates interpretation. Fine-grained analysis,
while potentially more precise, is constrained by
reliance on curated datasets that isolate behavior,
limiting generalizability to unknown mechanisms.
Feature disentanglement methods, such as SAEs
(Bricken et al., 2023; Cunningham et al., 2023), of-
fer a promising unsupervised alternative, aiming to
identify human-interpretable directions in an FM’s
latent space. For additional work see Appendix A.

2 Methodology

2.1 Sparse Autoencoders (SAE)

The superposition hypothesis in FMs suggests
that a limited number of neurons encode a much
larger number of concepts, leading to complex and
overlapping representations (Elhage et al., 2022b).

Superposition, while efficient, makes it challenging
to interpret individual neuron representations or
directions in representation space. Sparse autoen-
coders (SAEs) offer a potential solution by learning
to reconstruct FM representations at a layer using
a sparse set of features in a higher-dimensional
space, disentangling superposed features and
revealing more interpretable representations
(Elhage et al., 2022a; Olshausen and Field, 1997).
In a well-trained SAE, individual features in the
hidden dimension align with underlying sparse,
semantically meaningful features (Donoho, 2006).

SAEs decompose a model’s activation x ∈ Rn

into a sparse, linear combination of feature di-
rections: x ≈ x0 +

∑M
i=1 fi(x)di, where di are

M ≫ n latent unit-norm feature directions, and
the sparse coefficients fi(x) ≥ 0 are the corre-
sponding feature activations for x. The right-hand
side of this equation has the structure of an au-
toencoder: an input activation x is encoded into
a (sparse) feature activations vector f(x) ∈ RM ,
which is then linearly decoded to reconstruct x.
We parameterize a single-layer autoencoder (f, x̂)
as follows: f(x) := ReLU(Wenc(x) + benc) and
x̂(f) := Wdecf + bdec where Wenc ∈ RM×n and
Wdec ∈ Rn×M are the encoding and decoding
weight matrices, and benc ∈ RM and bdec ∈ Rn are
the bias vectors. The training objective combines a
reconstruction loss and a sparsity penalty:

L(x) = ∥x− x̂(f(x))∥22 + λ∥f(x)∥1 (1)
where λ > 0 is a hyperparameter controlling

the trade-off between reconstruction fidelity and
sparsity. We constrain the columns of Wdec to have
unit norm during training (Bricken et al., 2023).

In existing work, SAEs for FMs are trained on
the same large, general-purpose dataset used to
train the underlying FM (Bricken et al., 2023; Cun-
ningham et al., 2023; Rajamanoharan et al., 2024;
Gao et al., 2024). This approach ensures that the
SAE captures a wide array of concepts present in
the general language domain. However, this can
result in the SAE learning features that are frequent
in the pretraining data but miss concepts within
specific domains of interest, especially those that
are rare by frequency in the pretraining data.

2.2 Specialized Sparse Autoencoders (SSAE)
Specialized Sparse Autoencoders are designed to
learn features representing rare concepts within
specific subdomains. To train SSAEs, our approach
begins with a small seed concept dataset, compris-
ing either a specific concept or limited data from
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the target subdomain (e.g., toxicity). We then ex-
pand this seed dataset using a high-recall retrieval
strategy that leverages the seed data to identify and
retrieve subdomain-relevant examples from the
base FM’s pretraining corpus. We then finetune a
pretrained general-purpose SAE (GSAE) on this cu-
rated subdomain data using Equation 1. The GSAE
is initially trained to reconstruct activations on a
large, general-purpose dataset, enabling it to cap-
ture a broad range of concepts. Finetuning on the
subdomain data allows the SAE to specialize and
learn features that may be infrequent in the general
domain but prevalent within the target subdomain.

To evaluate the quality of the trained SAEs, we
use L0 and Perplexity with SAE (Bricken et al.,
2023). L0 measures the sparsity of the SAE and
is defined as the average number of active features
on a given input, i.e. Ex∼D∥f(x)∥0. Perplexity
with SAE measures the reconstruction fidelity of
the SAE and is the average cross-entropy loss of
the language model on an evaluation dataset, when
the SAE’s reconstructions are spliced into it. A bet-
ter SAE recovers more of the base model’s perfor-
mance. All other things being equal, a better SAE
needs fewer features (L0) to explain model perfor-
mance on a given datapoint. Unlike existing works
that evaluate SAEs on subsampled training data,
we evaluate SSAE generalization using both in-
distribution and out-of-distribution test sets drawn
from the same subdomain. This dual evaluation
approach assesses the SSAE’s ability to both accu-
rately capture concepts within the specific training
data distribution and generalize to unseen data, re-
flecting the capability to learn broader subdomain
concepts. Additionally, we perform automated in-
terpretability scoring and qualitative analysis, to
verify the interpretability of the learned features.

2.3 Subdomain Data Selection Strategies

SSAE effectiveness depends on the quality and
relevance of the selected subdomain data used for
finetuning. We study several selection strategies
to identify data points from a larger corpus (FM’s
pretraining data) most relevant to the seed data:

Sparse Retrieval: Okapi BM25 (Robertson and
Zaragoza, 2009), a TF-IDF variant, ranks docu-
ments based on query relevance, considering term
frequency, inverse document frequency, and doc-
ument length. We use the seed dataset as query to
retrieve relevant documents from the larger corpus.

Dense Retrieval: Contriever (Izacard et al.,
2022), a dual-encoder dense retriever, generates se-
mantically meaningful embeddings for queries and
documents. We embed the seed dataset and candi-
date documents, using cosine similarity to retrieve
documents most similar to the seed concepts.

SAE TracIn: Training data Influence Score
(TracIn) (Pruthi et al., 2020) quantifies training ex-
amples’ influence on model predictions. We adapt
TracIn to SAEs by calculating the dot product of the
loss gradients with respect to the training data and
seed data: TracIn (z, z′) = ∇Lw (z) · ∇Lw (z′)
where z is a training data point, z′ is the seed
dataset, w are the pretrained SAE weights, and
Lw(·) is the SAE loss (Equation 1). We use a two-
stage approach to identify influential data: Initial
Filtering with Sparse/Dense retrieval, then TracIn
Reranking to select points for SSAE training.

2.4 Tilted Empirical Risk Minimization for
Enhanced Detection

Finetuning with Empirical Risk Minimization
(ERM) tends to prioritize learning features for the
most frequent head concepts in the subdomain
data. However, for many applications such as
safety, capturing rare tail concepts is often crucial.
These rare features may represent potential risks
or safety violations and are often overlooked by
standard ERM as it focuses on minimizing the
average loss. To capture these rare, potentially
dangerous features we need an objective that is not
minimizing the average loss, but rather minimizing
the maximum risk. Tilted Empirical Risk Mini-
mization (TERM) (Li et al., 2020; Beirami et al.,
2018) provides a framework for approximating
this minimax risk, encouraging the model to learn
features that better represent these tail concepts.

TERM modifies the standard ERM objective
by introducing a tilt parameter (t) that controls the
emphasis on different parts of the loss distribution:
L̃(t;w) = 1

t log
(

1
N

∑
i∈[N ] e

t·Lw(zi)
)

where
Lw(zi) is the standard SAE loss (Equation 1) for
data point zi in a minibatch with N points and
SAE parameters w. TERM generalizes ERM as the
0-tilted loss recovers the average loss, while it also
recovers other alternatives such as the max-loss
(t → +∞) and min-loss (t → −∞). In this work
we use large tilt parameters (t ≫ 0) to effectively
minimize the maximum loss, encouraging the SAE
to learn features that better represent the tail of
the data distribution at a given sparsity. Minimax
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losses are also known to enhance robustness to
OOD data, which is relevant for detecting rare
concepts often underrepresented in training data
(Ye et al., 2021; Sagawa et al., 2019).

Incorporating TERM during finetuning leads
to a more balanced representation of both head
and tail concepts within the subdomain. This shift
reflects a fundamental trade-off between precision
and recall in TERM-trained and ERM-trained
SAEs. Standard ERM prioritizes precision,
yielding highly specialized features that allow for
fine-grained control over concepts but may miss
rare ones. TERM prioritizes recall, sacrificing
some control for broader concept coverage, partic-
ularly of rare concepts, making it advantageous for
detecting potentially harmful behaviors. TERM en-
courages the SAE to learn compositional features
leading to more interpretable representations (see
Appendix L for a formal argument).

3 Experiments And Results

3.1 Specialized Sparse Autoencoders (SSAEs)
3.1.1 Data Selection Strategies
In this section, we evaluate the effectiveness of var-
ious data selection strategies for training SSAEs.

Experimental Setup We use the pretrained
Gemma-2b (Team et al., 2024) residual
stream GSAE (gemma-2b-res-jb checkpoint
at blocks.12.hook_resid_post layer) (Bloom, 2024).
These SAEs have feature width 16384 and were
pretrained on OpenWebText (OWT) (Gokaslan
et al., 2019). For the Pareto front, we sweep 8
L1 penalty coefficients, selecting the best model
on validation for each L1 value, then evaluating
on the held-out test split. SAEs are trained using
Adam (Kingma and Ba, 2015) with lr 5e-5, token
batch size 4096, data shuffled within a batch buffer
of size 4, and linear lr decay over the last 1000
steps. Experiments complete in under 12 hours
using 4 A6000 GPUs. We use SAELens (Bloom
and Chanin, 2024) for training and analysis.

Computational Requirements A key advantage
of our approach is its scalability and accessibility.
The computational overhead of indexing the
pretraining data is a one-time cost that can be
amortized across many different subdomain
datasets. Furthermore, indexing a large corpus
using a dense retriever is significantly more
efficient than pretraining a wide SAE. Using a
relatively compact model like Contriever (100M

params), the primary computational expense lies
in indexing the corpus; this takes approximately
2 hours on a single A6000 GPU and costs roughly
$5. The retrieval process itself is highly efficient,
requiring less than an hour on CPUs, leveraging
the FAISS library for fast approximate nearest
neighbor search. This low computational barrier
makes our method accessible to researchers even
with limited access to high-performance computing
resources, such as those using consumer-grade
GPUs. In stark contrast, pretraining a Gemma-2B
SAE from scratch is considerably more demanding,
requiring an estimated 3-4 days on A100 GPUs,
with an associated cost of approximately $200. We
anticipate that this difference in computational cost
will become even more pronounced as we consider
wider SAEs and larger base models.

SSAE for Physics We start with a seed concept
dataset (Validation) consisting of 9.2K tokens sam-
pled from the arXiv Physics dataset (Anonymous,
2024). Using BM25, Dense Retrieval, and SAE
TracIn, we expand this to 13.9M tokens from OWT.
The SSAE is trained by finetuning the GSAE for
1000 iterations on this expanded set. For SAE
TracIn, we first reduce OWT to 1% using BM25
or Dense retrieval, then rerank using TracIn scores
and select 13.9M tokens. We call these methods
BM25 TracIn and Dense TracIn, respectively.

We train an SSAE for each strategy and com-
pare its performance to a baseline SAE finetuned
on the full OWT dataset across various sparsity
coefficients (λ). We evaluate the models on two
test splits: 4.8M tokens from arXiv Physics (in-
distribution) and 700K tokens from Physics in-
struction tuning (Group, 2024)(out-of-distribution).
Testing on instruction data helps measure whether
the SAEs are overfitting to the specific template of
the text as opposed to identifying concepts. Figure
1 and 9 show the patched perplexity vs. L0 curves
for these experiments.

We measure performance using area under the
curve for a range of L0 from 60 to 140 i.e., a selec-
tion strategy with lower perplexity (SSAE spliced
in) is better. Our findings show Dense TracIn and
BM25 TracIn achieve comparable performance,
surpassing Dense retrieval alone, which in turn out-
performs BM25 retrieval. Training on the full OWT
dataset yields the lowest performance. We observe:
(a) Dense retrieval consistently outperforms BM25.
SSAEs trained with Dense Retrieval achieve lower
perplexity for a given L0 than those with BM25,
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Figure 1: Pareto curves for Physics SSAE trained with various data selection strategies as the sparsity coefficient λ is varied
on arXiv Physics test data. We plot (Left) Perplexity with spliced in SSAE relative to GSAE baseline and (Right) Absolute
Perplexity with spliced in SSAE. Dense TracIn and BM25 TracIn achieve comparable performance, performing slightly better
than Dense retrieval, which outperforms BM25 retrieval and OWT Baseline. All curves are averaged over 3 SAE training seeds.

Figure 2: Proportion of tokens with SAE features vs. Token
frequency in Physics arXiv data. SSAE trained with dense
retrieval captures more tail tokens (concepts) in its features.

both in and out of distribution. (b) BM25 exhibits
poor out-of-distribution generalization. While
BM25 performs reasonably well in-distribution,
its performance degrades significantly on the out-
of-distribution test set. (c) Multiple passes on
seed data (Validation) during SSAE training im-
prove in-distribution performance but degrade out-
of-distribution performance. This suggests multi-
ple passes can overfit to the structure or template of
the seed dataset. (d) While TracIn reranking after
Dense retrieval yields a marginal performance gain,
Dense retrieval alone remains highly competitive.

SSAE for Toxicity We observe similar results
when repeating the experiment on the Pile Toxicity
dataset (Korbak, 2024) in Appendix C. Dense
retrieval outperforms BM25 and TracIn shows a
marginal improvement over Dense retrieval alone.

3.1.2 Probing Tail Concept Learning
To probe tail concept learning we use convergent
validity (Campbell and Fiske, 1959) with the Logit

Lens (Bloom and Lin, 2024). Figure 2, uses the
unembedding matrix as a logit lens to analyze the
top-10 token logits associated with each SSAE fea-
ture. For each frequency bucket in the Physics
arXiv test data, we calculate the percentage of to-
kens that appear among the top-10 logits for at least
one feature. Assuming the logit lens correctly inter-
prets the token-level representations of each feature,
this measures the extent to which SSAE features
represent tokens across different frequency ranges.

We compare two SSAEs at test L0 of 100: one
finetuned on full OWT dataset, another using Dense
retrieval. The Dense retrieval finetuned SSAE cap-
tures a significantly higher proportion of tail to-
kens in its features compared to the OWT finetuned
SSAE. Moreover, these captured tail tokens often
correspond to physics-specific concepts, suggest-
ing that SSAEs are indeed learning to represent
rare, domain-relevant concepts. Similar results are
obtained for toxicity data in Figure 11.

3.1.3 Case study: Removing Spurious
Features in Bias in Bios Classifier

Having shown the effectiveness of ERM-trained
SSAEs in capturing tail concepts for finer
control, we now apply SSAEs to Spurious
Human-interpretable Feature Trimming (SHIFT)
(Marks et al., 2024). SHIFT addresses the issue
of FM classifiers relying on unintended signals
(e.g., spurious features) by modifying their
generalization through feature circuit editing.
Unlike approaches that rely on disambiguated
labeled data, SHIFT operates even when such data
is unavailable (Zech et al., 2018; Ngo et al., 2022;
Casper et al., 2023; Hase et al., 2024). We show
that replacing the GSAE with our SSAE in SHIFT
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further enhances its editing capabilities.

Method. SHIFT operates as follows, given
labeled training data D = (xi, yi), classifier C
trained on D, and SAEs for components of C:
1. Compute a feature circuit (see Appendix H) ex-

plaining C’s accuracy on inputs (x, y) ∼ D (us-
ing metric m = − logC(y|x)).

2. Manually or automatically inspect and evaluate
each feature’s task-relevancy.

3. Ablate features deemed task-irrelevant to obtain
a modified classifier C ′.

4. (Optional) Finetune (retrain) C ′ on data from D
to potentially restore performance.

Experimental Setup. We use the Bias in Bios
dataset (BiB) (De-Arteaga et al., 2019) to illustrate
SHIFT with SSAEs. BiB contains professional bi-
ographies and the task is to classify an individual’s
profession, with gender being a spurious feature.
Two subsets are created from BiB: the ambiguous
set (male professors and female nurses) and the
balanced set (equal numbers of male professors,
male nurses, female professors, and female nurses)
(Marks et al., 2024). The ambiguous set represents
a worst-case scenario where the unintended signal
(gender) perfectly predicts training labels (profes-
sion). Our goal is to achieve accurate profession
classification on the balanced set using only the
ambiguous set for training.

Our base model is a Pythia-70M linear classifier
(Biderman et al., 2023), trained on the ambiguous
set (training details in subsection G.1). SHIFT
is applied by discovering a circuit using the
zero-ablation variant (Appendix H). Instead of
using human judgement to ablate features, we
employ Feature skyline (Marks et al., 2024),
sweeping across 1-200 circuit features most
causally implicated in spurious feature accuracy on
the balanced set. The number of features to ablate
is chosen based on best profession classification
performance on the dev set.

We use GSAEs (width 32768) for the MLP out-
put, attention output, and residual stream for each
layer, pretrained on 2B tokens (first 128 tokens
of random documents) from The Pile (Gao et al.,
2020). The SSAE is trained by retrieving 8M to-
kens from The Pile using a dense retriever, guided
by 5 BiB examples, and finetuning all the GSAEs
in every layer on this data for one epoch. We use
λ = 0.1 and learning rate 10−4 throughout.

We also conduct a Compression experiment,
where we slice the GSAE to width 4096 by tak-

ing only the first 4096 rows of the decoder (Comp.
GSAE). This examines a worst-case scenario where
the GSAE may not capture all relevant subdomain
features. Comp. SSAE is initialized with Comp.
GSAE before finetuning on the retrieved tokens.

In addition to the Oracle (trained on ground-truth
labels from the balanced set) and Original (trained
on ground-truth labels from the ambiguous set)
classifiers, we include the following baselines:

• Concept Bottleneck Probing (CBP): Adapted
from Yan et al. (2023) (see subsection G.2).

• Neuron skyline: Sweeps over number of neu-
rons to ablate (1-200) and mean-ablates those
most implicated in spurious feature accuracy.

Accuracy

Method ↑Prof. ↓Gen. ↑Worst

Original 61.9 87.4 24.4
CBP 83.3 60.1 67.7
Neuron skyline 75.5 73.2 41.5
GSAE SHIFT 88.5 54.0 76.0
SSAE SHIFT 90.2 53.4 88.5
GSAE SHIFT+retrain 93.1 52.0 89.0
SSAE SHIFT+retrain 93.4 51.9 89.5

Comp. GSAE SHIFT 80.5 68.2 48.6
Comp. SSAE SHIFT 89.6 52.2 78.8
Comp. GSAE SHIFT+retrain 80.0 68.8 57.1
Comp. SSAE SHIFT+retrain 93.2 52.1 88.5

Oracle 93.0 49.4 91.9

Table 1: Balanced set accuracies for intended (profession)
and unintended (gender) labels. Worst refers to lowest profes-
sion accuracy among male professors, male nurses, female pro-
fessors, and female nurses. Comp.: Compressed SAE (sliced
to 1/8th width). Best results per method category are bolded.

Results. As shown in Table 1, GSAE SHIFT ef-
fectively reduces the classifier’s dependence on
gender compared to baselines such as CBP, with
Step 3 (feature ablation) providing the most sub-
stantial improvement. Applying SHIFT with neu-
rons (Neuron skyline) performs worse than SHIFT
with SAEs, likely due to the polysemantic nature
of individual neurons (Marks et al., 2024).

SHIFT with SSAEs further improves classifier
performance on the balanced set, achieving a 1.7%
increase in profession accuracy, a 12.5% increase
in worst-group accuracy, and a decrease in spurious
gender accuracy, demonstrating its superiority to
GSAEs in fine-grained control. These gains persist
even after retraining the classifier probe, albeit to a
smaller extent. The improvement can be attributed
to the SSAE activating more sundomain-relevant
features. For instance, at an activation threshold
of 0.01, the SSAE activates 908 features compared
to 602 in the GSAE. These additional features, as
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explored in Appendix H, play a crucial role in the
sparse feature circuits of the classifier, explaining
more of the variance previously attributed to error
nodes by the GSAE.

In the Compression experiment, the performance
of the Comp. GSAE with missing features drops
significantly compared to the GSAE. Retraining the
classifier probe fails to mitigate this performance
loss, and SHIFT is ineffective at removing spurious
features with Comp. GSAE. However, the Comp.
SSAE recovers most of this lost performance, even
surpassing GSAE SHIFT by 1.1% in profession
accuracy. Retraining the probe with Comp. SSAE
restores nearly all lost performance.

3.2 Tilted ERM for Enhanced Detection
3.2.1 Motivating Example: TERM-trained

GSAEs on TinyStories
ERM-trained GSAEs prioritize learning frequent
concepts in the data. In this section, we examine
features in TERM-trained GSAEs, showing that
TERM improves feature recall at the expense of
feature control.

Experimental Setup. We use the 8-layer, 1M pa-
rameter base model TinyStories-1M (Eldan and
Li, 2023). SAEs of width 64 are trained on the
residual stream of the 7th layer using both ERM
and TERM (tilt=109). We use batch size 64, lr
10−3, λ = 0.01, and train for 1 epoch on the
roneneldan/TinyStories dataset. This dataset
allows us to interpret nearly all features while
demonstrating the benefits of the TERM loss. We
report results on checkpoints with L0 of 16.
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Figure 3: Reconstruction error vs. token rank for TERM-
trained and ERM-trained GSAEs. TERM exhibits lower error
variance and maximum error for tail tokens.

Results Figure 3 plots the reconstruction error
for tokens ranked by frequency, showing that
TERM reduces reconstruction error and error vari-
ance for tail tokens compared to ERM. Similarly,

from the the distribution of reconstruction error for
the TERM-trained GSAE (Figure 22), we see that
TERM minimizes max error at the cost of slightly
higher average error.

We also analyze decoder feature vector coverage
using three approaches. A UMAP visualization
of token activations and decoder features for both
GSAEs, reveals a greater dispersion of decoder
directions for the TERM-trained GSAE, indicating
broader coverage (Figure 19). Similarly the
distribution of cosine similarities between decoder
directions, with the TERM-trained GSAE showing
lower overall similarity, suggesting greater cover-
age (Figure 20). The TERM-trained GSAE also
requires more PCA components to explain variance
in decoder feature directions (40) compared to the
ERM-trained GSAE (21) (Figure 21). Taken to-
gether, this shows that TERM-trained SAEs cover
a wider range of features than ERM-trained SAEs.

Figure 4: Feature diversity score distributions for TERM-
trained and ERM-trained GSAEs. TERM leads to both higher
and lower diversity features. Lower diversity features special-
ize in tail concepts, while higher diversity features capture a
broader range of concepts.

Figure 4 presents diversity score distributions for
TERM- and ERM-trained GSAE feature explana-
tions, capturing the variety of examples explainable
by each feature using Claude 3.5 Sonnet (examples
in Section Appendix Q and N.6). TERM-trained
GSAEs exhibit both higher and lower diversity fea-
tures compared to ERM, with lower diversity fea-
tures specializing in tail concepts and higher diver-
sity features capturing a broader range of concepts,
both frequent and rare.

Figure 5 shows that TERM-trained GSAE fea-
tures exhibit stronger activations and lower entropy
compared to ERM-trained GSAE on the data. This,
combined with their high recall, suggests a strategy
for rare concept detection: tag features strongly
associated with rare concepts during pretraining,

1610



Figure 5: TERM feature activation patterns. (Left) TERM
token activation entropy is lower, suggesting more specialized
features. (Right) TERM max feature activations per token
are higher. These characteristics, from minimizing max risk,
contribute to TERM’s enhanced tail concept detection.

and at test time, strong activation of these tagged
features triggers further investigation. This is more
effective than using SAE error with ERM-trained
SAEs for rare concept detection, as error nodes do
not disambiguate types of rare features.

3.2.2 TERM-trained SSAE Performance
While ERM-trained SSAEs improve tail concept
coverage compared to GSAEs, they still prioritize
learning frequent subdomain concepts. TERM-
trained GSAEs could potentially offer better tail
concept representation, but training SAEs from
scratch is computationally expensive (Lieberum
et al., 2024). Therefore, we investigate whether
finetuning SSAEs with TERM on the retrieved data
(using hyperparameters from Sec 3.1.1) can achieve
similar properties to TERM-trained GSAEs.

Figure 6: Cumulative proportion of tokens with SAE features
vs. cumulative percentage of tokens in Physics arXiv data,
normalized per model so that the cumulative proportion of
tokens with features is 1 over the entire dataset. SSAE trained
with dense retrieval and larger tilt captures more tail tokens
(concepts) in its features.

Enhanced Tail Concept Capture with TERM
Figure 6 plots the cumulative proportion of tokens
with SSAE features (identified using the logit lens
approach) versus the cumulative percentage of to-
kens in the Physics arXiv data for different SSAEs.
We normalize the curves per model at a validation
L0 of 100, so that the cumulative proportion of
tokens with features is 1 over the entire dataset. Re-

sults show that SSAEs trained with Dense retrieval
and tilt capture a greater proportion of tail tokens
on the low frequency end (on the left) compared
to Dense retrieval alone, with this effect increasing
with tilt. Figure 14 shows a similar trend for the
Toxicity dataset.

Figure 7: Feature activation count vs. feature rank for
SSAEs trained on the Physics arXiv dataset using different
strategies: full OWT, Dense retrieval, and Dense retrieval with
tilt. Tilt encourages the learning of more broadly activating
features, indicating increased concept coverage and recall.

Feature activation counts Figure 7 plots feature
activation count vs. feature rank, showing that
TERM with large tilt encourages learning more
broadly activating features with increased concept
recall. This represents a fundamentally different
mechanism for feature learning compared to
standard ERM, promoting more compositional
features that capture tail concepts.

We see similar trends in the distribution of
differences in feature activation counts between
SSAEs (ERM and TERM-trained) and the OWT
baseline on the Physics arXiv test set. A peak at
0 indicates that SSAEs retain some similarity to
the baseline in their activation patterns. The ERM-
trained SSAE exhibits greater probability mass on
the right, indicating a focus on frequent concepts,
while the TERM-trained SSAEs shift probability
mass leftward as tilt increases, suggesting a
stronger emphasis on representing domain-specific
tail concepts (See Figures 17 and 18).

Downstream perplexity We also find that
TERM-finetuned SSAEs achieve comparable
downstream perplexity to ERM-finetuned SSAEs
within the typical L0 regime used (see Figures 12
and 13). However at very large or low L0, train-
ing with Adam can lead to higher average risk or
many inactive features. Adaptive penalty schemes
offer a promising solution to this challenge (more
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discussion in Appendix E).

3.2.3 Automated Interpretability

Figure 8: Automated interpretability: F1 score distribu-
tions for predicting feature activation on Physics arXiv, using
only FM-generated explanations. An LM is given examples ac-
tivating a feature and asked to generate an explanation, which
is then used to predict activations on new examples. Dense
retrieval with tilt produces more predictive explanations than
both the OWT baseline and Dense retrieval alone.

We employ a sequence-level classification task
to evaluate interpretability (Bills et al., 2023; Tem-
pleton et al., 2024). Instead of predicting feature
activation at each token, an FM is tasked with iden-
tifying whether entire sequences contain a given
feature. This simplifies the task, producing reli-
able scores even with smaller, faster FMs (Juang
et al., 2024). Using Claude 3.5 Sonnet (Anthropic,
2024) as both the Interpreter and the Predictor, our
framework tasks the Interpreter with generating ex-
planations for each feature based on the top 10 ac-
tivating examples (see Appendix J). The Predictor
then receives these explanations along with 10 ex-
amples (5 activating, 5 non-activating) and predicts
whether each example activates the feature (see Ap-
pendix K for prompts). We measure explanation
interpretability using the F1 score between the Pre-
dictor’s predictions and the true feature activations.

Fig 8 shows that TERM-trained SSAEs achieve
higher F1 scores than the OWT baseline and
ERM-trained SSAEs, indicating their explanations
are more effective in predicting activation on new
examples. Interestingly, despite superior down-
stream perplexity vs. L0, ERM-trained SSAEs
did not yield more interpretable explanations than
the baseline. This aligns with findings in O’Neill
et al. (2024), where interpretability decreased
with increasing SAE width attributed to less
interpretable fine-grained features. As TERM
encourages coarser, more compositional features,

its explanations are more readily interpretable.

4 Discussion

Our work focuses on an automated retrieval-based
approach for data selection, rather than relying on
large, expert-curated datasets. While a sufficiently
large, carefully curated dataset (human-generated
or synthetic) could potentially yield excellent
results, this approach presents significant prac-
tical challenges. The creation of such datasets,
particularly in specialized domains or for safety-
relevant tasks, is often prohibitively expensive and
time-consuming. For instance, the WMDP dataset,
consisting of only 3,668 questions, required over
$200,000 to develop (Li et al., 2024b). Our results
demonstrate that a high-recall retrieval strategy,
using dense retrieval with a similarity threshold
for relevance verification, provides a practical
and effective alternative particularly for academic
research labs with limited resources. Moreover, our
experiments (e.g., Figure 1) show that even small,
carefully selected seed datasets, when combined
with our retrieval method, can outperform models
trained on larger, randomly sampled datasets,
and avoid the overfitting issues associated with
multiple passes over a small, fixed dataset.

5 Conclusion and Future Work

This work introduces SSAEs for interpreting rare,
subdomain features in FMs. SSAEs trained with
Dense retrieval and TERM, outperform standard
SAEs in capturing tail concepts and yield more
interpretable features. Future work could explore
their application to targeted concept unlearning.
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7 Limitations

While our work demonstrates the effectiveness of
SSAEs in enhancing interpretability and tail con-
cept capture across diverse domains like Physics
and Toxicity, there are several areas for further ex-
ploration:

Computational Efficiency of TERM. Training
SAEs with TERM, while effective in enhancing
concept recall and yielding more interpretable
features, can be computationally more demanding
than standard ERM. The TERM objective requires
computing the exponent of the loss for each data
point, which is more computationally intensive
than in ERM. This can potentially lead to numeri-
cal instability and slower convergence, particularly
at high tilt values. The benefits of TERM in
improving interpretability and fairness encourage
further research to reduce its computational cost
for broader adoption and scalability.

Dependence on Seed Data. The effectiveness of
SSAEs hinges on the quality and representativeness
of the initial seed dataset used for retrieval. While
we demonstrate strong results even with remark-
ably small seed datasets (see subsubsection 3.1.1),
low-quality, unrepresentative, or extremely limited
seed data could lead to SSAEs that fail to cap-
ture the full scope of relevant subdomain concepts
or, worse, exhibit biases present in the seed data.
Specifically, a seed dataset that is too narrow or
focuses on only the most common aspects of a sub-
domain might cause the retrieval process to miss
important, rarer concepts. For instance, a single-
sentence physics seed containing only common
terms like “energy” or “force” would likely be in-
sufficient. Mitigating this limitation requires care-
ful seed selection and, ideally, validation of the
retrieved data’s diversity and relevance.

Generalizability Across Domains and Appli-
cations. Our experiments with the Physics,
Toxicity, Bias in Bios, and TinyStories datasets
demonstrate the effectiveness of SSAEs across di-
verse domains. While we have no reason to believe
our findings won’t generalize, further empirical
validation across an even broader range of tasks
and datasets would strengthen our conclusions.
We are particularly interested in evaluating SSAEs
in settings where rare concepts play a crucial
role, such as AI safety, healthcare, and fairness.
These applications would further solidify SSAEs

as powerful and versatile tools for enhancing
interpretability and control in foundation models.

8 Ethical Considerations

The ability to interpret and analyze rare concepts
within foundation models, particularly those related
to sensitive attributes, carries significant ethical
implications that warrant careful consideration.

Potential for Misuse and Dual-Use Concerns.
The techniques presented in this work, while
intended for enhancing interpretability, safety, and
fairness, could be misused for malicious purposes.
The capability to identify and manipulate rare
features, especially those associated with sensitive
attributes like gender, race, or political affiliation,
could be exploited to amplify existing biases,
generate harmful or misleading content, or manip-
ulate model behavior in ways that perpetuate or
exacerbate societal inequalities. Addressing these
dual-use concerns requires proactive efforts to
develop safeguards, promote responsible use guide-
lines, and engage in open discussions about the
potential risks associated with these powerful tools.

Bias Amplification. While SSAEs aim to im-
prove the representation of rare and potentially un-
derrepresented concepts, they are not inherently im-
mune to bias. Biases present in the underlying foun-
dation model and its training data can be inherited
and potentially amplified by SSAEs, even when tai-
lored to focus on specific subdomains or sensitive
attributes. Mitigating this risk requires careful at-
tention to data curation, development of robust bias
detection and mitigation techniques during both
FM and SSAE training, and ongoing monitoring
and evaluation of SSAE features to ensure they do
not perpetuate or exacerbate existing biases.

Data Privacy and Responsible Use. The
datasets used in this work are publicly avail-
able and widely used within the NLP research
community (see Appendix O). These datasets
have undergone accepted privacy practices at
their creation time. We have strictly adhered
to the license terms of these datasets, ensuring
responsible and ethical handling.
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A Related Work

This work intersects with several research areas, in-
cluding mechanistic interpretability, sparse coding,
feature disentanglement, and evaluation methods
for Sparse Autoencoders. We contextualize our
contributions within this broader landscape.

A.1 Mechanistic Interpretability

Mechanistic Interpretability (MI) aims to decipher
the internal workings of neural networks by reverse
engineering their computational processes (Olah
et al., 2020; Elhage et al., 2021). This approach
conceptualizes model computations as collections
of circuits – narrow, task-specific algorithms.
Recent circuit analyses of Foundation Models
(FMs) have focused on mapping these circuits to
specific model components like attention heads
and MLP layers (Wang et al., 2022; Heimersheim
and Janiak, 2023).

Building upon this component-level understand-
ing, the linear representation hypothesis proposes
that component activations can be further decom-
posed into (sparse) linear combinations of mean-
ingful feature vectors. This concept underpins our
work on SSAEs. Unlike previous research that
sought to identify individual subspaces represent-
ing specific concepts (Geiger et al., 2023; Nanda
et al., 2023a; Tigges et al., 2023), SAEs aim to pro-
vide a more complete picture by fully decomposing
activations into interpretable features.

MI has shown promise in various downstream
tasks, including modifying model behavior to re-
move toxic outputs (Li et al., 2023), altering en-
coded factual knowledge (Meng et al., 2022), im-
proving truthfulness (Li et al., 2024a), analyzing
gender bias mechanisms (Vig et al., 2020), and mit-
igating spurious correlations (Gandelsman et al.,
2023). Our work with SSAEs seeks to advance
these applications by providing refined tools for
detecting, interpreting, and modifying model be-
havior, particularly concerning rare or underrepre-
sented concepts.

A.2 Sparse Coding, Dictionary Learning, and
Sparse Autoencoders

Our work draws inspiration from the foundational
concepts of sparse coding with over-complete dic-
tionaries (Mallat and Zhang, 1993) and unsuper-
vised dictionary learning from data (Olshausen
and Field, 1996). These ideas, impactful in im-
age processing (Mairal et al., 2014), evolved into

the development of sparse autoencoders (SAEs)
through their integration with autoencoder architec-
tures (Hinton and Salakhutdinov, 2006; Lee et al.,
2007; Le, 2013; Konda et al., 2014).

Recently, SAEs have been applied to language
models (Yun et al., 2021; Sharkey et al., 2022;
Bricken et al., 2023; Cunningham et al., 2023),
with successful implementations on smaller open-
source language models (Marks et al., 2024; Bloom
and Chanin, 2024; Mossing et al., 2024). We build
upon this research trajectory, addressing specific
limitations and extending the approach to capture
rare, domain-specific features more effectively.

A.3 Challenges, Improvements, and
Evaluation of Sparse Autoencoders

Despite their potential, SAEs face several chal-
lenges. For example, Anders and Bloom (2024)
observed that SAE features trained on language
models with specific context lengths fail to general-
ize to activations from longer contexts. Wright and
Sharkey (2024) and Jermyn et al. (2024) osberved
feature suppression, a phenomenon where SAE fea-
ture activations systematically underestimate true
activation values due to sparsity penalties.

Various solutions have been proposed to tackle
these challenges, including post-training finetun-
ing (Wright and Sharkey, 2024), alternative spar-
sity penalties (Jermyn et al., 2024; Riggs and
Brinkmann, 2024; Farrell, 2024), and architectural
modifications such as Gated SAEs (Rajamanoharan
et al., 2024). Our work focuses on overcoming the
limitations of SAEs in representing tail concepts
and proposes SSAEs to ensure a more balanced
representation of both frequent and rare concepts.

Evaluating SAE performance is further compli-
cated by the absence of ground truth labels for
the features they learn. Existing research has em-
ployed diverse metrics, including comparison with
ground truth features in toy data, activation recon-
struction loss, L1 loss, number of alive dictionary
elements, feature similarity across seeds and dictio-
nary sizes (Sharkey et al., 2022), L0 sparsity, KL
divergence upon causal interventions (Cunningham
et al., 2023), reconstructed negative log likelihood
(Cunningham et al., 2023; Bricken et al., 2023),
feature interpretability (Bills et al., 2023), and task-
specific comparisons (Makelov et al., 2024).

Our work utilizes a combination of these metrics,
including L0 sparsity, reconstruction error, down-
stream perplexity, and automated interpretability
evaluations. We also introduce new metrics specifi-
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cally designed to assess the effectiveness of SSAEs
in capturing rare, domain-specific concepts.

A.4 Disentangled Representations
Our research also connects to the broader field of
disentanglement in representation learning (Bengio,
2013). While traditional disentanglement meth-
ods often rely on enforcing priors on learned rep-
resentations (Chen et al., 2018; Kim and Mnih,
2018; Mathieu et al., 2019), SAEs aim to decom-
pose the representation space of a pretrained lan-
guage model into a sparse linear combination of
an overcomplete basis. This approach aligns with
the theory that language models implicitly learn
disentangled representations of data with specific
structures, which we seek to recover using sparse
autoencoders.

B Evaluating SSAE for Physics on OOD
data

Figure 9 depicts Pareto curves for SSAE trained
with various data selection strategies as the sparsity
coefficient is varied on the OOD Physics instruction
test data. We find that both BM25 retrieval and
training on the validation data generalize poorly
when tested out of domain.
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Figure 9: Pareto curves for SSAE trained with various data
selection strategies as the sparsity coefficient is varied on
Physics instruction test data. We plot absolute perplexity
with the spliced in SSAE. We find that both BM25 retrieval
and training on the validation data generalize poorly when
tested out of domain. All curves are averaged over three SAE
training run seeds.

C Evaluating Data Selection Strategies
for Toxicity SSAEs

We use a seed concept dataset of 4072 tokens from
the Pile Toxicity dataset (Korbak, 2024). We re-
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Figure 10: Pareto curves for Toxicity SSAE trained with
various data selection strategies as the sparsity coefficient is
varied on Pile toxicity test data. We plot (a) Perplexity with
spliced in SAE relative to a GSAE (Baseline) (b) Absolute
Perplexity with the spliced in SSAE. Dense TracIn achieves
the best performance, followed by Dense retrieval, BM25
TracIn, BM25 and OWT baseline. All curves are averaged
over three SAE training run seeds.

trieve 5.25M tokens from OWT using the same
strategies as before and train SSAEs on this data
for 500 iterations. We then evaluate the models on
a test split of 3.357M tokens from the Pile Toxicity
dataset (in-distribution). Appendix Figure 10 dis-
plays the patched perplexity versus L0 curves for
these experiments. The results largely align with
the physics experiment, with Dense retrieval out-
performing BM25 and TracIn offering a marginal
improvement over Dense retrieval alone.

D Probing SSAE Tail Concept Learning
for Toxicity

Figure 11 shows the proportion of tokens with SAE
features vs. Token frequency in Toxicity data using
the Logit Lens approach. We leverage the unem-
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Figure 11: Proportion of tokens with SAE features vs. Token
frequency in Toxicity data. SSAE trained with dense retrieval
captures more tail tokens (concepts) in its features.

bedding matrix as a logit lens to analyze the top-10
token logits associated with each SSAE feature.
For each frequency bucket in the Toxicity dataset,
we calculate the percentage of tokens that appear
among the top-10 logits for at least one feature.
This analysis allows us to assess the extent to which
SSAE features represent tokens across different fre-
quency ranges. SSAE trained with dense retrieval
captures more tail tokens (concepts) in its features
compared to the baseline.

E Pareto curves for Tilted ERM trained
SSAE

Figure 12 evaluates SSAEs trained with Tilted
ERM on the Physics arXiv dataset, displaying
Pareto curves where the x-axis represents L0

and the y-axis shows downstream perplexity with
patched-in SSAE. TERM-finetuned SSAEs achieve
competitive performance with Dense retrieval
alone within the L0 range of 85-100.

Figure 13 shows similar Pareto curves on the Pile
toxicity dataset where TERM-finetuned SSAEs
achieve competitive performance with Dense re-
trieval within the L0 range of 100-140.

Our experiments demonstrate that TERM-
trained SSAEs consistently maintain L0 within this
desired range, ensuring both sparsity and accurate
reconstruction of subdomain concepts.

Improving L0 Control at Extreme Values
Adaptive penalty schemes are much better than
Adam at precisely controlling L0 at extreme val-
ues. This approach dynamically adjusts the sparsity
penalty λ during training based on the current L0.
We found that increasing λ when L0 exceeds a tar-
get range and decreasing it when L0 falls below
helped maintain the desired level of sparsity across
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Figure 12: Pareto curves for SSAEs finetuned on the Physics
arXiv dataset using different strategies: full OpenWebText
(OWT), Dense retrieval, and Dense retrieval with Tilted Empir-
ical Risk Minimization (TERM, tilt=500 and TERM, tilt=109).
TERM-finetuned SSAEs achieve competitive performance
with Dense retrieval alone within the L0 range of 85-100. Out-
side this range, our current training methodology results in
higher reconstruction errors. All curves are averaged over
three SAE training run seeds.

a wider range of L0 values. This also prevented the
emergence of inactive features at low L0 values.

F TERM-trained SSAE enhances Tail
Concept Capture in Toxicity data

Figure 14 shows the cumulative proportion of to-
kens with SAE features vs. cumulative percentage
of tokens in Toxicity data, normalized per model
so that the cumulative proportion of tokens with
features is 1 over the entire dataset. SSAE trained
with dense retrieval and larger tilt captures more
tail tokens (concepts) in its features.

G Implementation Details for
Bias-in-Bios Classification Experiments

We follow the methodology in Marks et al. (2024)
for Spurious Human-interpretable Feature Trim-
ming (SHIFT), which we summarize here for com-
pleteness. All models can be trained on a single
A100 in under a day.

G.1 Classifier Training

Here we describe our approach to training a clas-
sifier on Pythia-70M for the Bias in Bios (BiB)
task. To mimic a realistic application setting, we
conducted a hyperparameter search to train high-
performing baseline and oracle classifiers (using
the ambiguous and balanced datasets, respectively).
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Figure 13: Pareto curves for SSAEs finetuned on the Toxicity
dataset using different strategies: full OpenWebText (OWT),
Dense retrieval, and Dense retrieval with Tilted Empirical Risk
Minimization (TERM, tilt=500). TERM-finetuned SSAEs
achieve competitive performance with Dense retrieval alone
within the L0 range of 100-140. All curves are averaged over
three SAE training run seeds.

Hyperparameters were not selected with the aim of
strong SHIFT performance.

The inputs to our classifier are residual stream
activations from the penultimate layer of Pythia-
70M. We apply mean-pooling over (non-padding)
tokens from the context. In our initial experiments,
we found that extracting representations over only
the final token led to slightly worse baseline and
oracle performance. Similarly, using activations
from Pythia-70M’s final layer yielded slightly
poorer results.

We then fit a linear probe to these representations
using logistic regression. For optimization, we em-
ploy AdamW (Loshchilov, 2017) with a learning
rate of 0.01, training for a single epoch. When re-
training after SHIFT, we finetune only this linear
probe, leaving the full model unchanged.

Like Marks et al. (2024), we encountered diffi-
culties when attempting to fit a probe with greater-
than-chance accuracy using logistic regression on
final layer representations. This observation led us
to opt for penultimate layer representations in our
main approach.

G.2 Implementation for Concept Bottleneck
Probing

Our implementation of Concept Bottleneck Prob-
ing (CBP) draws from Yan et al. (2023). The pro-
cess is as follows:
1. First, we select N = 20 keywords related to

the intended prediction task. Our keyword set

Figure 14: Cumulative proportion of tokens with SAE fea-
tures vs. cumulative percentage of tokens in Toxicity data,
normalized per model so that the cumulative proportion of
tokens with features is 1 over the entire dataset. SSAE trained
with dense retrieval and larger tilt captures more tail tokens
(concepts) in its features. Note that the curves at tilt 500 and
tilt 109 overlap.

includes: nurse, healthcare, hospital, patient,
medical, clinic, triage, medication, emergency,
surgery, professor, academia, research, univer-
sity, tenure, faculty, dissertation, sabbatical, pub-
lication, and grant.

2. We obtain concept vectors c1, . . . , cN for each
keyword by extracting Pythia-70M’s penultimate
layer representation over the final token of each
keyword, then subtracting the mean concept vec-
tor. This normalization step proved crucial, as
we found that without it, concept vectors exhib-
ited very high pairwise cosine similarities.

3. Given an input with representation x (obtained
via the mean-pooling procedure described ear-
lier), we construct a concept bottleneck represen-
tation z ∈ RN by computing the cosine similar-
ity with each ci.

4. Finally, we train a linear probe on these con-
cept bottleneck representations z using logistic
regression, following the approach outlined in
the Classifier Training subsection.
As in Marks et al. (2024), we decided to normal-

ize concept vectors but not input representations,
as this approach yielded stronger performance. We
also explored the alternative of computing cosine
similarities before mean pooling.

H Sparse Feature Circuits for Bias in
Bios Classifer

In this section, we generate sparse feature circuits,
which are computational sub-graphs that explain
model behaviors in terms of SAE features and er-
ror terms, using the methodology in Marks et al.
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Figure 15: The full annotated feature circuit discovered for the Bias in Bios classifier with the GSAE patched in. The circuit
was discovered using TN = 0.1 and TE = 0.01. We observe that the circuit contains many nodes that simply detect the presence
of gendered pronouns or gendered names. A few features attend to profession information, including one which activates on
words related to nursing, and another that activates on passages relating to science and academia.

Figure 16: The full annotated feature circuit for the Bias in Bios classifier with the finetuned SSAE patched in. The circuit was
discovered using TN = 0.1 and TE = 0.01. This circuit is much larger due to newly activated features in the SSAE that detect the
presence of gendered pronouns and gendered names, as well as features for profession information such as nursing and academia.

(2024). We begin by describing the process of gen-
erating these circuits.

Given a language model M , SAEs for various
submodules of M (e.g., attention outputs, MLP
outputs, and residual stream vectors), a dataset D
consisting of either contrastive pairs (xclean, xpatch)
of inputs or single inputs x, and a metric m de-
pending on M ’s output when processing data from
D, we can construct these circuits. The idea is to
treat SAE features as part of the model. By ap-
plying the decomposition to various hidden states
x in the LM, we can view the feature activations
fi and SAE errors ε as integral parts of the LM’s
computation. This allows us to represent the model
as a computation graph G where nodes correspond
to feature activations or SAE errors at particular
token positions.

To approximate the Indirect Effect (IE) of each
node, we compute ˆIE(m; a;x) for each node a in

G and input x ∼ D, where ˆIE is either ˆIEatp or
ˆIEig. We then apply a node threshold TN to select

nodes with a large (absolute) IE. Consistent with
prior work (Nanda, 2023; Kramár et al., 2024), we
find that ˆIEatp accurately estimates IEs for SAE
features and errors, except for nodes in the layer
0 MLP and early residual stream layers. For these
components, ˆIEig significantly improves accuracy,
so we employ it in our experiments.

We also compute the average IE of edges in the
computation graph using an analogous linear ap-
proximation. After computing these IEs, we filter
for edges with absolute IE exceeding some edge
threshold TE .

For templatic data where tokens in matching
positions play consistent roles, we take the mean
effect of nodes/edges across examples. For non-
templatic data, we first sum the effects of corre-
sponding nodes/edges across token positions be-
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fore taking the example-wise mean (Marks et al.,
2024).

Figure 15 presents the full annotated feature cir-
cuit for the Bias in Bios linear classifier based on
Pythia-70M with the pretrained GSAE patched in.
The annotations are from human inspection of ex-
amples that activate features. Many nodes simply
detect the presence of gendered pronouns or gen-
dered names. A few features attend to profession in-
formation, including one which activates on words
related to nursing, and another which activates on
passages relating to science and academia.

Similarly, Figure 16 displays the full annotated
feature circuit for the Bias in Bios linear classi-
fier based on Pythia-70M with the finetuned SSAE
patched in. This circuit, discovered using TN = 0.1
and TE = 0.01, is much larger due to newly acti-
vated features in the SSAE that detect the presence
of gendered pronouns and gendered names, as well
as features for profession information such as nurs-
ing and academia. This is responsible for the im-
proved classification performance with the SSAE.

In each circuit, sparse features are shown in rect-
angles, whereas causally relevant error terms not
yet captured by our SAEs are shown in triangles.
Nodes shaded in darker colors have stronger effects
on the target metric m. Blue nodes and edges are
those which have positive indirect effects (i.e., are
useful for performing the task correctly), whereas
red nodes and edges are those which have counter-
productive effects on m (i.e., cause the model to
consistently predict incorrect answers).

I Relative Feature Activation Distribution

Figures 17 and 18 analyze the distribution of dif-
ferences in feature activation counts between the
same features in specialized SAEs (both ERM
and TERM-trained) and the OWT baseline on the
Physics arXiv test set. The difference is quanti-
fied as the log ratio of feature activation counts:
log2(

M+1
B+1 ), where M represents the SSAE and B

the OWT baseline. Positive values indicate features
activating on more data points in the specialized
SAEs relative to the baseline SAE.

Finetuning on the subdomain with ERM leads
to an increase in feature activation counts overall,
as evidenced by the positive probability mass. This
adaptation reflects the SSAE features specializing
towards concepts prevalent in the Physics arXiv
dataset.

Training SSAEs with TERM, which minimizes
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Figure 17: Distribution of log-ratio feature activation count
differences between specialized SAEs and the OWT baseline
on the Physics arXiv test set, normalized per SAE model. Blue
represents the ERM-trained SSAE with Dense retrieval, or-
ange represents the TERM-trained SSAE with tilt=500. The
ERM-trained SSAE exhibits more probability mass on the
right, indicating an emphasis on representing common con-
cepts, while the TERM-trained SSAE’s shift towards the left
suggests a greater focus on representing domain-specific tail
concepts.

worst-case performance, distinctly alters feature
activation patterns. Compared to standard ERM,
TERM-trained SAEs concentrate more probability
mass on the distribution’s left side, indicating many
features are less activated relative to the baseline.
This leftward shift aligns with the theoretical under-
pinnings of TERM, which encourages robustness
to distribution shift and tail events. By upweight-
ing worse-performing examples, TERM promotes
the activation of features crucial for capturing tail
concepts. The TERM-trained SAE redistributes its
capacity, with numerous features specializing in
tail concepts (low-level activations), while others
become more general activating on a wider range
of concepts. This shift towards negative relative
counts intensifies with increasing tilt, suggesting
that higher tilt values further prioritize the repre-
sentation of tail concepts.

J Automated Intepretability Explanations

Boxes 1, 2, and 3 show the Interpreter’s explana-
tions for the active features among the first ten
features (by count) of the pretrained GSAE, the
ERM-trained SSAE, and the TERM-trained SSAE,
respectively, on the arXiv Physics test set. We
observe a clear distinction in how these models
specialize and represent concepts. While the ERM-
trained SSAE activates more features than the
GSAE, reflecting its focus on frequent concepts
within the domain, its explanations are more com-
plex and less readily interpretable. Conversely, the
TERM-trained SSAE, despite activating fewer fea-
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Figure 18: Distribution of log-ratio feature activation count
differences on the Physics arXiv test set, normalized per SAE
model. Blue represents the ERM-trained SSAE with Dense
retrieval, orange represents the TERM-trained SSAE with
tilt=109. The intensified leftward shift of probability mass
with higher tilt demonstrates that TERM increasingly priori-
tizes representing tail concepts compared to standard ERM-
trained SSAE, which focuses more on frequent concepts.

tures overall, produces explanations that are easier
to understand. This suggests that TERM learns fea-
tures that are compositional and encourages a bal-
anced representation of both frequent and rare con-
cepts. The lower number of active features for the
TERM-trained SSAE could be attributed to the po-
tential absence of many tail concepts in the test set.

K Automated Interpretability Prompts

In this section, we present the Interpreter and
Predictor prompts used with Claude 3.5 Son-
net (claude-3-5-sonnet-20240620) in our auto-
mated interpretability pipeline. We note that all
AutoInterp experiments cost less than $1000 to
run.

K.1 Interpreter Prompt

The Interpreter prompt in Box 4 is designed to
analyze SAE feature activations and explain what
causes a specific feature to activate. It is given a list
of text examples where the feature activates, with
the activating tokens highlighted.

K.1.1 Example Application of Interpreter
Prompt

Box 5 provides an example of how the Interpreter
prompt is applied.

K.2 Predictor Prompt

The Predictor prompt in Box 6 is used to predict
given a feature explanation whether the given text
examples activate the feature. It returns a binary
classification label for each example.

K.2.1 Example Application of Predictor
Prompt

Box 7 provides an example of how the Predictor
prompt is applied.

L Proof of Lower Description Length
under Tilted ERM

We prove that training a Sparse Autoencoder (SAE)
using Tilted ERM leads to a lower total description
length compared to standard ERM under specific
conditions, suggesting Tilted ERM produces more
interpretable features according to the Minimum
Description Length (MDL) principle.

L.1 Problem Setup and Assumptions

We consider a dataset D = {xi}Ni=1, where each
xi ∈ Rd is generated from a mixture of two Gaus-
sian distributions: a majority cluster (Cluster A)
and a minority cluster (Cluster B). Cluster A has
mean µA = 0, covariance ΣA = σ2I, and propor-
tion qA = NA/N . Cluster B has mean µB = δ
(where δ = δ1, δ > 0), covariance ΣB = σ2I, and
proportion qB = NB/N = 1 − qA. We assume
qA ≫ qB , reflecting a significant class imbalance
often encountered in real-world scenarios.

The SAE consists of an encoder hi = Wxi
and a decoder x̂i = W⊤hi, where W ∈ Rk×d

is the weight matrix and hi ∈ Rk is the latent
representation. Sparsity is enforced through an L1

penalty in the loss function, defined as L(xi;W ) =
∥xi − x̂i∥2 + λ∥hi∥1, where λ > 0 controls the
trade-off between reconstruction error and sparsity.
Assume the nonlinearity is always activated i.e.,
the identity function.

We compare two training objectives: stan-
dard ERM, which minimizes the average loss
1
N

∑N
i=1 L(xi;W ), and Tilted ERM, which ap-

proximates the minimization of the maximum loss
through the objective 1

τ log(
∑N

i=1 e
τL(xi;W )) for

large τ > 0.
We make several simplifying assumptions. First,

we assume binary latent codes, where hij ∈
{0, 1}. This assumption, while a simplification of
continuous-valued activations, allows for a clearer
analysis of feature interpretability through the lens
of information theory. Second, we assume that fea-
tures are activated independently, which, while not
always true in practice, provides a tractable frame-
work for our analysis. Lastly, we assume uniform
activation probabilities across features within each
cluster, which simplifies our calculations while still
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Box 1: Generalized SAE

0. The token "0" appearing in scientific notation, journal article citations, or encoded ASCII representations, often in the
context of physics or chemistry literature references.
5. This neuron appears to activate on mathematical and scientific notation, particularly symbols, equations, and
specialized formatting in technical documents. It may play a role in recognizing and processing scientific or mathematical
content within text.
7. The neuron appears to activate on punctuation marks, particularly commas and quotation marks, when they are used
to separate or enclose items in a list, mathematical expressions, or technical notation in scientific or mathematical text.
It may play a role in parsing and understanding the structure of complex technical writing.
8. This neuron appears to activate on tokens that are part of or follow noun phrases, often in technical or academic
contexts. It seems to be sensitive to words that introduce or refer to specific objects, concepts, or pieces of information
within a larger text. The neuron may play a role in tracking referential elements or key pieces of information in complex,
information-dense text.
9. The token "," appearing after complex scientific or technical phrases, often preceding conjunctions or additional
clauses that provide further explanation or context in academic or scientific writing.
10. This neuron appears to activate on abbreviated references to academic or scientific sources, particularly in
bibliographies or citation lists. It responds to: 1. Abbreviated journal names (e.g. "NY", "APS", "Euro") 2. Abbreviated
organization names (e.g. "SIAM", "INSPEC") 3. URL components of online references (e.g. "citeseer", "philsci",
"biology-") 4. Abbreviated publisher names (e.g. "TERRAPUB") The neuron seems to play a role in recognizing
citation patterns.

Box 2: Specialized SAE

0. The token "0" appearing in scientific paper citations, journal volume numbers, or ASCII code representations, often
in the context of physics or mathematics literature.
4. This neuron appears to activate on tokens related to academic and scientific writing, particularly in the context of
physics, science education, and the philosophy of science. It frequently activates on words like "universities", "science",
"class", "theories", and other academic terminology. The neuron may be involved in recognizing and generating text
related to scientific discourse and academic writing.
5. This neuron appears to activate on scientific and mathematical notation, particularly superscripts, subscripts, and
special characters used in equations and formulas. It may play a role in processing and understanding technical or
scientific text.
7. The token "by" often appears before introducing a variable, parameter, or label in mathematical or scientific text. It is
frequently used to define or denote specific elements in equations, models, or experimental setups.
8. The neuron appears to activate on numerical digits, particularly the digit "4", within scientific or technical contexts
such as citations, measurements, or equipment specifications. This suggests the neuron may play a role in identifying or
processing numerical information in academic or technical writing.
9. The token "," after various phrases in scientific or technical writing, often used to separate clauses or elements in a
list. This neuron may be detecting punctuation patterns in formal, academic-style text.
10. This neuron appears to activate on abbreviations and short identifiers in academic or scientific references, particularly
those related to publications, databases, or online resources. Examples include "cites", "NY", "ZIN", "TER", "SI", "e-",
"cond", "Compustat", "ASP", "IN", "CAS", "Physics", "Pren", "ourworld", "compuserve", and "APS". These often
appear in bibliographic entries, URLs, or other citation-related contexts in academic writing.

Box 3: Specialized SAE with Tilt 500

0. The token "0" appearing in scientific notation, particularly in journal citations, volume numbers, and page numbers.
This neuron may be involved in recognizing and processing numerical information in academic or scientific contexts.
5. This neuron appears to activate on mathematical and scientific notation, particularly equations, variables, and symbols.
It seems to be sensitive to complex mathematical expressions, physical constants, and scientific formulas across various
fields including physics, chemistry, and engineering. The neuron may play a role in processing and generating technical
scientific content.
7. The neuron appears to activate on punctuation marks, particularly commas and angle brackets, when used to separate
or enclose items in mathematical or scientific notation. It may play a role in parsing and understanding the structure of
technical or mathematical text.
9. The token "," after phrases or clauses, often used to separate elements in scientific or technical writing. This neuron
may be detecting punctuation patterns in formal, academic text.
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Box 4: Interpreter Prompt

SYSTEM = """You are a meticulous AI researcher conducting an important investigation into a
certain neuron in a language model. Your task is to analyze the neuron and explain what
causes the neuron to activate.

↪→
↪→
{prompt}
Guidelines:
You will be given a list of text examples on which the neuron activates. The specific tokens

which cause the neuron to activate will appear between delimiters like <<this>>. If a
sequence of consecutive tokens all cause the neuron to activate, the entire sequence of
tokens will be contained between delimiters <<just like this>>.

↪→
↪→
↪→
- You must produce a concise final description. Simply describe the text features that

activate the neuron, and what its role might be based on the tokens it predicts.↪→
- The last line of your response must be the formatted explanation.
- Think carefully about the patterns in the text examples and the tokens that activate the

neuron. Pay attention to detail.↪→
{subject_specific_instructions}"""

Box 5: Interpreter Example

EXAMPLE_1 = """
Example 1: and he was <<over the moon>> to find
Example 2: we'll be laughing <<till the cows come home>>! Pro
Example 3: thought Scotland was boring, but really there's more
<<than meets the eye>>! I'd
"""
EXAMPLE_1_EXPLANATION = """
[EXPLANATION]: Common idioms in text conveying positive sentiment.
"""

Box 6: Predictor Prompt

DSCORER_SYSTEM_PROMPT = """You are an intelligent and
meticulous linguistics researcher.
You will be given a certain feature of text, such as
"male pronouns" or "text with negative sentiment".
You will then be given several text examples. Your task
is to determine which examples possess the feature.
For each example in turn, return 1 if the sentence is
correctly labeled or 0 if the tokens are mislabeled. You
must return your response in a valid Python list. Do not
return anything else besides a Python list.
"""

Box 7: Predictor Example

DSCORER_EXAMPLE_1 = """Feature explanation: "of" before words that start
with a capital letter.
Text examples:
Example 0: climate, Tomblinâ Chief of Staff Charlie Lorensen said.
Example 1: no wonderworking relics, no true Body and Blood of Christ,
no true Baptism
Example 2:Deborah Sathe, Head of Talent Development and Production
at Film London,
Example 3: It has been devised by Director of Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director of
Athletics? Finally, we believe the
"""
DSCORER_RESPONSE_1 = "[1,1,1,1,1]"
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capturing the essential dynamics of the system.

L.2 Description Length and Feature
Activation Probabilities

The total description length is given by DLtotal =
DLmodel +DLdata. Since DLmodel is the same for
both ERM and Tilted ERM (assuming identical
model capacity), we focus our analysis on DLdata,
which represents the description length of the latent
representations {hi}. For a binary latent vector hi,
the description length is given by:

DL(hi) =
k∑

j=1

−
(
hij log2 P (hij = 1)

+ (1− hij) log2 P (hij = 0)

) (2)

Given our assumption of independent features,
the expected description length per data point from
Cluster C (C ∈ {A,B}) is:

DLC = k ·H(pC) (3)

where pC is the activation probability for features
in Cluster C, and H(p) is the binary entropy func-
tion: H(p) = −p log2 p−(1−p) log2(1−p). The
total description length for the data is thus:

DLdata = NADLA +NBDLB

= NAkH(pA) +NBkH(pB)
(4)

Our goal is to show that under certain conditions,
DLTilted

data < DLERM
data .

L.3 Analysis of ERM vs. Tilted ERM
Under standard ERM, the SAE focuses on mini-
mizing the average loss, which is dominated by
Cluster A due to its larger size. This leads to fea-
tures being optimized primarily to represent Cluster
A well. For Cluster B, the reconstruction error is
typically higher, leading to less sparse representa-
tions (higher pB). This occurs because the network
attempts to compensate for poor reconstruction by
activating more features, even if they’re not ideally
suited to the minority cluster’s characteristics.

In contrast, Tilted ERM focuses on minimizing
the maximum loss, giving more attention to Cluster
B. This approach leads to features being adjusted
to better represent both clusters. As a result, we
expect a slight increase in activation probabilities
for Cluster A (pA increases slightly) as the network
makes minor adjustments to accommodate Cluster
B. Importantly, we anticipate a significant decrease
in activation probabilities for Cluster B (pB de-
creases significantly) as the features become more
tailored to its characteristics, allowing for sparser
and more efficient encoding.

The relationship between feature activation prob-
abilities and reconstruction error is key to under-
standing the dynamic between ERM and TERM.
Lower reconstruction error is associated with lower
activation probabilities, as the network can more ef-
ficiently encode the input data. Conversely, higher
reconstruction error often leads to higher activation
probabilities as the network struggles to represent
the data, activating more features in an attempt to
reduce the error.

L.4 Quantitative Analysis
To formalize this analysis, let us denote the acti-
vation probabilities under ERM as pERM

A = pA,
pERM
B = pB; and under Tilted ERM as pTilted

A =
pA +∆pA, pTilted

B = pB −∆pB . Here, ∆pA > 0
is small, reflecting the minor adjustments made
to Cluster A’s representation, while ∆pB > 0 is
significant, capturing the substantial improvement
in Cluster B’s encoding. The difference in total
description length is then:

∆DL = DLERM
data −DLTilted

data

= NAk
(
H(pERM

A )−H(pTilted
A )

)

+NBk
(
H(pERM

B )−H(pTilted
B )

)
(5)

Defining ∆HA = H(pERM
A ) − H(pTilted

A ) and
∆HB = H(pERM

B ) − H(pTilted
B ), we can express

this as:

∆DL = k (NA∆HA +NB∆HB) (6)

Our aim is to show that ∆DL > 0 under specific
conditions.

L.5 Conditions for Lower Description Length
under Tilted ERM

For Tilted ERM to yield a lower total description
length, we require:

NA∆HA +NB∆HB > 0 (7)

Given that NA ≫ NB , ∆HA is small and negative
(since pA increases slightly), while ∆HB is large
and positive (since pB decreases significantly), this
condition can be satisfied if:

∆HB

|∆HA|
>

NA

NB
(8)

This inequality summarizes the core of our ar-
gument: if the decrease in entropy for Cluster B
(per data point) is sufficiently large compared to
the increase in entropy for Cluster A, weighted by
their respective sample sizes, then Tilted ERM will
lead to a lower total description length.
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L.6 Numerical Illustration
To illustrate this condition, consider a scenario
where pERM

A = 0.1, pTilted
A = 0.12, pERM

B = 0.5,
and pTilted

B = 0.1, with N = 1000, NA = 900, and
NB = 100. Computing the binary entropy values
and their differences, we find:

∆HA = H(0.1)−H(0.12) = −0.031 bits
∆HB = H(0.5)−H(0.1) = 0.531 bits

The total difference in description length is then:

∆DL = k (900× (−0.031) + 100× 0.531)

= k × 25.2 bits

This positive value of ∆DL demonstrates that, in
this example, the total description length is indeed
lower under Tilted ERM.

L.7 Implications
This proof demonstrates that under specific con-
ditions—namely, when Tilted ERM significantly
reduces the activation probabilities for the minor-
ity cluster while only slightly increasing them for
the majority cluster—the total description length
is lower under Tilted ERM compared to standard
ERM. According to the MDL principle, which
posits that models with lower total description
length are preferable, this result implies that Tilted
ERM leads to more interpretable features.

The key insight is that Tilted ERM’s focus on
minimizing the maximum loss allows it to develop
features that more efficiently encode both the ma-
jority and minority clusters. While this may come
at the cost of a slight increase in description length
for the majority cluster, the substantial decrease
in description length for the minority cluster more
than compensates, leading to an overall improve-
ment in feature interpretability.

It’s important to note that this analysis relies
on several simplifying assumptions, including bi-
nary latent codes, independent features, and uni-
form activation probabilities within clusters. In
practice, the actual changes in activation probabil-
ities will depend on the specific data distribution
and optimization dynamics. Nonetheless, this the-
oretical result provides valuable insight into how
Tilted ERM can lead to models with enhanced in-
terpretability, particularly in scenarios involving
imbalanced datasets.

In future work we could focus on relaxing
these assumptions, exploring the implications of
continuous-valued latent representations, and in-
vestigating the relationship between feature inter-
pretability and other metrics of model performance

and fairness. Empirical studies could provide fur-
ther validation of these theoretical findings across
a range of real-world datasets and tasks.

TERM, at high values of the tilt parameter t,
can be viewed as minimizing the maximum loss
across all data points. Under the assumption that
the loss function is proportional to the negative log-
likelihood, this becomes equivalent to minimizing
the maximum description length in the Minimum
Description Length (MDL) framework. In other
words, at high tilt, Tilted ERM minimizes the max-
imum description length for the most poorly rep-
resented data points, ensuring that no single data
point incurs an excessively long encoding.

This is particularly important in safety-critical
applications, such as the detection of rare but haz-
ardous features or circuits. In such cases, these
rare features may be infrequent in the dataset and
thus underrepresented when training with standard
ERM, leading to high description lengths that make
detection more difficult. By minimizing the maxi-
mum description length through Tilted ERM, these
rare safety-relevant features are represented more
efficiently, leading to more compact encodings that
facilitate their detection and analysis. This im-
proves both the interpretability and reliability of the
model, enabling more robust identification of criti-
cal features in safety audits or interpretability stud-
ies, where compact and clear representations are
essential for ensuring that important safety-related
circuits are not overlooked.

M Applications of Tilted ERM SAEs in
Capturing Tail Concepts

Sparse Autoencoders trained using ERM focus
on minimizing the average reconstruction error
across all inputs, leading to strong performance
on frequent patterns but poor representation of rare
or difficult-to-reconstruct activations. In contrast,
SAEs trained via Tilted ERM emphasize reducing
the reconstruction error of high-error examples, en-
abling better capture of rare concepts, improved
handling of fine-grained detection tasks, and en-
hanced performance in high-stakes applications
where edge cases are critical. Some applications of
TERM-trained SSAEs include:

M.1 Capturing Tail Concepts in Multilingual
Models

TERM-trained SAEs offer a significant advantage
in capturing rare linguistic patterns, such as those
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found in multilingual or dialect-rich datasets. Foun-
dation models (FMs) trained on predominantly En-
glish data often struggle to accurately represent less
common languages or dialects. While an ERM-
trained SAE might prioritize frequent language pat-
terns, a Tilted ERM-trained SAE focuses on reduc-
ing reconstruction error for high-error examples,
including these rare language patterns.

This approach is particularly important in multi-
lingual models used in global applications, where
inclusivity and fairness across languages are es-
sential. For example, in a multilingual chatbot,
Tilted ERM ensures that features for low-frequency
languages such as Swahili or Icelandic are recon-
structed more accurately, providing a better user
experience for speakers of these languages.

M.2 Fine-Grained Anomaly Detection in
High-Stakes Applications

TERM-trained SAEs excel in fine-grained anomaly
detection, where identifying subtle deviations from
normal behavior is crucial, especially in high-
stakes applications such as security, finance, or
medical diagnosis. While an ERM-trained SAE
might flag anomalies due to their higher-than-
average reconstruction error, it is less likely to rep-
resent these rare events with sufficient accuracy or
disambiguate them from other errors for further
analysis.

A Tilted ERM SAE allocates more capacity to
rare, high-error cases, ensuring better reconstruc-
tion of these outliers. This improves both detection
and interpretability of rare anomalies. For instance,
in a financial fraud detection system, a Tilted ERM
SAE can better capture the subtle patterns that dif-
ferentiate fraudulent transactions from normal ac-
tivity, leading to more effective interventions.

M.3 Improved Coverage of Rare Concepts in
Fairness and Bias Mitigation

Tilted ERM improves fairness by ensuring that un-
derrepresented groups or tail concepts are well rep-
resented in the model. In many real-world datasets,
certain demographic or cultural groups may be un-
derrepresented, leading to bias in language models.
Tilted ERM ensures that rare patterns—including
those associated with underrepresented languages,
cultural references, or peoples—are better cap-
tured.

This approach leads to a more inclusive model
that provides fairer representations across different
groups. For example, a Tilted ERM SAE trained

on a language model used in customer support ap-
plications can better represent minority dialects or
regional slang, reducing bias in customer interac-
tions and improving service for all users.

M.4 Robustness in Safety-Critical Systems

In safety-critical systems, such as autonomous vehi-
cles or aviation control, rare but dangerous events
must be handled with high accuracy. Tilted ERM,
by focusing on minimizing the reconstruction er-
ror for the most difficult cases, ensures that the
model is better equipped to handle rare, high-risk
scenarios.

For example, in an autonomous driving system,
rare but critical inputs such as uncommon weather
conditions or unusual road hazards are more likely
to be accurately captured by a Tilted ERM SAE.
This improved representation helps the system re-
act more reliably to rare but potentially dangerous
situations, enhancing overall safety.
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Comparison of ERM and Tilted ERM GSAE Decoder Directions
Token Activations
Decoder Directions (ERM)
Decoder Directions (Tilted ERM)

Figure 19: UMAP visualization of token activations and
decoder features for a TERM-trained and ERM-trained GSAE.
Decoder directions for TERM-trained GSAE appear more
spread out, suggesting the SAE has wider coverage than the
ERM-trained GSAE.

N TERM-trained GSAE Features on
TinyStories

N.1 UMAP Plot of Decoder Directions

Figure 19 plots the UMAP visualization of to-
ken activations and decoder features for a TERM-
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Figure 20: Distribution of cosine similarities between de-
coder directions of TERM-trained and ERM-trained GSAEs.
TERM-trained GSAE shows lower similarity between decoder
feature directions implying greater coverage.
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Figure 21: Number of PCA components required to explain
variance in decoder feature directions of TERM-trained and
ERM-trained GSAEs. TERM-trained GSAE shows greater
variance in decoder feature directions implying greater
coverage.
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Figure 22: Reconstruction error distribution of TERM-
trained and ERM-trained GSAE. TERM-trained GSAE mini-
mizes the maximum error at the cost of average error.

Figure 23: Proportion of tokens detected vs. activation thresh-
old for TERM-trained and ERM-trained GSAEs. TERM-
trained features exhibit stronger activations.

trained and ERM-trained GSAE.

N.2 Decoder Cosine Similarities
Figure 20 plots the distribution of cosine similari-
ties between decoder directions of TERM-trained
and ERM-trained GSAEs.

N.3 PCA Components to Explain Variance
Figure 21 plots the number of PCA components re-
quired to explain variance in decoder feature direc-
tions of TERM-trained and ERM-trained GSAEs.
TERM-trained GSAE shows greater variance in de-
coder feature directions implying greater coverage.

N.4 Reconstruction Error
Figure 22 plots the reconstruction error distribution
of TERM-trained and ERM-trained GSAE on 5M
tokens sampled from TinyStories. TERM-trained
GSAE minimizes the maximum error at the cost of
average error.

N.5 Feature Activation Threshold for
TERM-trained and ERM-trained GSAEs

Figure 23 plots the proportion of tokens detected vs.
activation threshold on 5M tokens from TinyStories
for TERM-trained and ERM-trained GSAEs.

N.6 Feature Diversity
When comparing the feature diversity score distri-
bution of TERM-trained GSAE with ERM-trained
GSAE in Figure 4, we observe that TERM-trained
GSAE induces some features to specialize in tail
concepts, while others generalize to represent a
broader range of concepts relative to the ERM-
trained GSAE.

To generate this plot, we first extract explana-
tions for features based on the input examples that
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Box 8: Feature Explanation Aggregation Prompt

You are an AI assistant tasked with unifying multiple explanations for a single feature in a language
model. These features are from the TinyStories dataset, which consists of short stories using simple
vocabulary. Your goal is to create a concise explanation that captures the essence of all the
individual explanations.

Individual explanations:
{chr(10).join(f"{i+1}. {exp}" for i, exp in enumerate(explanations))}

Please provide a unified explanation that:
1. Provides a clear and concise description of the feature's function or role in the context of the
TinyStories dataset and the language model. Include 2-3 brief examples of how this feature
might manifest in the stories.

Box 9: Diversity Score Generation Prompt

You are an AI assistant tasked with unifying multiple explanations for a single feature in a language
model. These features are from the TinyStories dataset, which consists of short stories using simple
vocabulary. Your goal is to create a concise explanation that captures the essence of all the
individual explanations.

Individual explanations:
{chr(10).join(f"{i+1}. {exp}" for i, exp in enumerate(explanations))}

Please provide a unified explanation that:
1. Provides a clear and concise description of the feature's function or role in the context of the
TinyStories dataset and the language model. Include 2-3 brief examples of how this feature might
manifest in the stories.
2. Scores the diversity of the feature's activations on a scale of 1 to 100, where:
- 1-20: Very low diversity (e.g., a specific feature that only activates for a specific character
name like "Tom")

- 21-40: Low diversity (e.g., a less generic feature that activates for different character names,
but only names)

- 41-60: Moderate diversity (e.g., a generic feature that activates for various types of objects
found in a home)

- 61-80: High diversity (e.g., a generic feature that activates for different types of actions, both
physical and verbal)

- 81-100: Very high diversity (e.g., a generic feature that activates across various story elements:
characters, actions, settings, emotions, dialogue)

Note: Consider the full range of possibilities within the TinyStories dataset. Don't hesitate to use
the full scale from 1 to 100 based on your analysis even if they all pertain to children's stories
since this is the dataset we are evaluating.

Unified explanation:
[Your unified explanation with 2-3 examples]

Diversity Score: [1-100]
Justification:[Brief justification for the score, considering the context of the TinyStories dataset]
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activate them, using the prompt detailed in Box 4.
To understand the behavior of all features, partic-
ularly those representing tail concepts, we cannot
use random sampling of the TinyStories dataset,
as employed in prior work since this would not
capture tail concepts effectively. Instead, we pro-
cess the entire TinyStories dataset in chunks of 5
million data points, and generate explanations by
sampling uniformly from the top 50% examples
that activate a feature. We then aggregate the ex-
planations from each chunk using the explanation
aggregation prompt provided in Box 8.

After aggregating feature explanations across
dataset chunks, we derive the diversity score. This
score is obtained using the score generation prompt
presented in Box 9, implemented with Claude 3.5
Sonnet (claude-3-5-sonnet-20240620).

O Dataset Details

All datasets used in this study are in English. Below
are the details for each dataset:

OpenWebText (OWT) A large-scale, diverse
corpus of web content derived from URLs shared
on Reddit. We use a single split comprising ap-
proximately 8 million documents and over 40GB
of text data.1

Pile We utilize 2B tokens from the Pile dataset,
a large-scale curated corpus designed for language
model training. This subset contains 10.8M exam-
ples across various domains including academic
writing, code, and web content.2

TinyStories A dataset of simple, coherent stories
generated specifically for language model research.
It consists of a single split containing 2.12M train-
ing examples, designed to be semantically mean-
ingful while using limited vocabulary.3

arXivPhysics A collection of physics papers
from arXiv. We use the first five examples, compris-
ing 4.8M tokens. The full dataset contains 15.8k
rows, split into 60% train, 20% validation, and 20%
test, representing a broad range of physics topics.4

1https://huggingface.co/datasets/Skylion007/
openwebtext

2https://huggingface.co/datasets/NeelNanda/
pile-small-tokenized-2b

3https://huggingface.co/datasets/roneneldan/
TinyStories

4https://huggingface.co/datasets/
anonymousdatasets/arxiv-physics

Physics Instruction Tuning A specialized
dataset for physics-related instruction tuning. We
use all 700K tokens from this dataset, which con-
tains 30k examples of physics questions, explana-
tions, and problem-solving instructions.5

Pile Toxicity A curated subset of the Pile dataset
focusing on toxic content, designed for studying
and mitigating harmful language in language mod-
els. We employ a 60-20-20 train-validation-test
split to ensure balanced evaluation.6

Bias in Bios A dataset of online biographies used
to study gender bias in machine learning models. It
contains 257k training examples, 39.6k validation
examples, and 99.1k test examples, providing a
rich source for analyzing gender representation in
professional contexts.7

P Computational Resources

Our experiments were conducted using modest
computational resources, showing the accessibility
of our approach. All experiments, including:

• Finetuning SSAEs on OpenWebText, Physics-
arXiv, Toxicity data, and Pile datasets

• Training the Pythia-70M classifier and other
baselines for the Bias in Bios task

• Pretraining GSAEs on the TinyStories dataset
were completed using 4 NVIDIA A100 GPUs or
A6000 GPUs in less than 24 hours.

Q TERM-trained and ERM-trained
GSAE features on TinyStories

We present a qualitative analysis of the feature ex-
planations derived from both TERM-trained and
ERM-trained GSAEs on the TinyStories dataset.
Four explanations for each SSAE are shown in Ta-
bles 2 and 3.

TERM-trained GSAE TERM-trained GSAEs
exhibit a fascinating mix of features, some cap-
turing broad conceptual themes while others spe-
cialize in highly specific linguistic patterns. This
duality stems from TERM’s objective of minimiz-
ing the maximum loss, encouraging the SAE to
learn features that can effectively reconstruct both
frequent and rare examples.

5https://huggingface.co/
datasets/AlgorithmicResearchGroup/
arxiv-physics-instruct-tune-30k

6https://huggingface.co/datasets/tomekkorbak/
pile-toxicity-balanced

7https://huggingface.co/datasets/LabHC/bias_
in_bios
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Feature h.7_feature17, for example, is remark-
ably broad, described as processing “text related
to children’s stories, simple narratives, and basic
concepts in children’s literature.” This wide scope
allows it to represent various story elements, from
character actions and emotions to dialogue and
sensory experiences, reflecting TERM’s focus on
capturing the full spectrum of data patterns.

In contrast, feature h.7_feature8 demonstrates
TERM’s ability to learn highly specific features. It
activates exclusively on the indefinite article “an”
when introducing new elements in a story, suggest-
ing its role in recognizing a distinct grammatical
pattern within the TinyStories dataset. This spe-
cific feature might capture a unique characteristic
of the data or potentially represent a less frequent
but important narrative element.

ERM-trained GSAE ERM-trained GSAE fea-
tures, on the other hand, tend towards greater speci-
ficity, reflecting ERM’s focus on minimizing the
average reconstruction error. This leads to features
that accurately represent the most common patterns
in the data but might struggle to capture tail con-
cepts effectively.

For instance, feature h.7_feature3 in the
ERM-trained GSAE is tailored to recognizing “nar-
rative structures in simple, moralistic children’s
stories.” While it encompasses a range of story ele-
ments, its scope remains constrained to a specific
type of narrative common within the TinyStories
dataset. This contrasts with the broader TERM fea-
ture h.7_feature17, which captures the essence
of children’s stories more generally.

Implications This qualitative analysis suggests
that TERM, by balancing broad and specific fea-
tures, encourages the learning of more composi-
tional representations, potentially improving the
SAE’s ability to detect and interpret a wider vari-
ety of concepts, including rare or underrepresented
ones. ERM’s emphasis on specificity, while ef-
fective for frequent patterns, may limit the SAE’s
capacity to accurately represent the full spectrum
of data patterns, particularly those found in the tail
of the distribution.
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Table 2: ERM-trained GSAE Features

Feature Explanation

h.7_feature3
Unified explanation: This neuron recognizes narrative structures in simple,
moralistic children’s stories. It activates on new story segments, character
introductions, settings, conflicts, and dialogue. Frequent themes include lessons
on kindness, honesty, and sharing.
Examples:
1. "Lily woke up early on Saturday morning. ’Mom, can I go play with my friend

Jenny?’ she asked."
2. "Once upon a time, there was a little boy named Tommy who loved to play with

his toys but never wanted to share."
3. "After school, Timmy came home feeling sad. ’What’s wrong?’ his mom asked. ’I

got in trouble for not telling the truth,’ Timmy replied."
Diversity Score: 71
Justification: Activates on diverse narrative elements in children’s stories,
including dialogue, character introductions, settings, events, emotions, and moral
lessons. High diversity within the genre of educational stories for young audiences.

h.7_feature5 Unified explanation: This neuron activates on language patterns associated with
conveying moral lessons, advice, and guidance on appropriate behavior in children’s
stories or parental scenarios. It frequently fires on modal verbs like "should"
and "can" when characters are learning about right and wrong actions, facing
consequences, or being instructed on proper conduct.
Examples:
1. "You should not take things that don’t belong to you," said Mom, after catching

Timmy taking a candy bar from the store.
2. "The little boy learned that he can be kind to others by sharing his toys."
3. "If you can’t say something nice, you should not say anything at all," advised

the teacher to the rowdy class.
Diversity Score: 68
Justification: While specializing in moral lessons and guidance, the range
of potential lessons, advice, and behavioral instructions is quite broad. It
activates across various story elements and moral themes, encompassing a diverse
array of instructional language in children’s literature.

h.7_feature6 Unified Explanation: This neuron activates when "<|endoftext|>" is followed by
the beginning of a short, simple story or narrative, often with a moral lesson,
cautionary tale, or tragic ending. These stories frequently feature children or
animals as main characters, written in a style suitable for young readers.
Examples:
1. "<|endoftext|> Once upon a time, there was a little girl who loved to play in

the forest. One day, she wandered too far from home and got lost..."
2. "<|endoftext|> A group of young animals decided to explore the old abandoned

barn, despite their parents’ warnings. But it was too late when they realized
the danger inside..."

3. "<|endoftext|> Tommy was a curious boy who couldn’t resist the temptation of
the old well in his backyard. He leaned over too far and..."

Diversity Score: 61
Justification: While specific to children’s stories, the diversity is high,
involving various characters, settings, actions, and themes. It captures a range
of narrative elements, including plot structure, character archetypes, and common
literary devices.

h.7_feature12 Unified explanation: This neuron activates at the beginning of short stories or
narratives aimed at children. The consistent trigger is the token "<|endoftext|>",
indicating the start of a new text sample. It recognizes the opening of simple
narrative structures, often involving young protagonists, animal characters, moral
lessons, or elements of danger or misfortune.
Examples:
1. "<|endoftext|> Once upon a time, there was a little girl named Lily who loved

to explore the enchanted forest near her home."
2. "<|endoftext|> In a cozy burrow, a family of rabbits lived happily until a

hungry fox threatened their safety."
3. "<|endoftext|> Tommy the turtle was always in a hurry, but his impatience nearly

cost him his life when he wandered too far from home."
Diversity Score: 71
Justification: While focused on children’s stories, the range of possible stories
and themes is quite diverse, involving different characters, settings, plots, and
outcomes.
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Table 3: TERM-trained GSAE Features

Feature Explanation

h.7_feature8
Unified explanation: This feature detects the indefinite article "an" when
introducing new or significant elements in children’s stories or simple narratives.
It activates when "an" precedes a noun at the beginning of a sentence or clause,
signaling a novel element important to the plot.
Examples:
1. "An old man lived in a tiny house by the forest."
2. "One day, an unexpected visitor arrived at the village."
3. "Deep in the ocean, an ancient treasure awaited discovery."
Diversity Score: 65
Justification: High diversity in types of elements introduced (characters, objects,
concepts) within children’s stories, but limited to narrative contexts.

h.7_feature13 Unified explanation: This feature captures interjections or exclamations in
children’s stories or dialogues expressing surprise, excitement, or drawing
attention to something noteworthy. Tokens like "Wow" or "Look" often appear at the
beginning of quoted speech or exclamations.
Examples:
1. "Wow! Look at that giant castle!" a child might exclaim upon seeing an impressive

structure.
2. "Look, the caterpillar turned into a butterfly!" a character might say, pointing

out a transformation.
3. "Wow, that was a close one!" someone might remark after narrowly avoiding danger.
Diversity Score: 71
Justification: While specific to interjections, these can be used across a wide
range of contexts and story elements, reflecting a high degree of diversity within
children’s stories and dialogues.

h.7_feature14 Unified explanation: This neuron predicts words related to pleasant or appetizing
food experiences in children’s stories or simple narratives. It activates on the
first few letters of words like "yummy", "candy", "crumbs", and "celery", generating
vocabulary associated with tasty treats, cooking, or domestic activities.
Examples:
1. "The little girl licked her lips as she stared at the yummy chocolate cake."
2. "After playing outside, the kids ran to the kitchen for a snack of celery and

peanut butter."
3. "Mom swept up the crumbs from the cookies the children had enjoyed earlier."
Diversity Score: 53
Justification: While primarily focused on food-related words, it recognizes
a range of vocabulary including adjectives, nouns, and verbs related to food
experiences in children’s stories.

h.7_feature17 Unified explanation: This neuron processes text related to children’s stories,
simple narratives, and basic concepts in children’s literature. It responds to
character names, diminutives, dialogue markers, sensory experiences, emotions,
onomatopoeias, common objects, food items, childhood experiences, simple actions,
and basic vocabulary.
Examples:
1. "Ducky waddled over to the lollipop on the ground. ’Yum!’ he exclaimed, gobbling

it up."
2. "Ow, ow, ow! Timmy had scraped his knee on the rough sand. Mom kissed it better

and gave him a sausage to cheer him up."
3. "Bark, bark! Spidey’s new puppy was digging in the garden, scattering the soil

everywhere. ’No, no, pup!’ scolded Spidey."
Diversity Score: 85
Justification: Displays very high diversity within children’s literature,
responding to a wide range of elements including characters, emotions, actions,
objects, sensory experiences, and dialogue patterns.
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