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Abstract

Transformer-based language models have
achieved significant success; however, their in-
ternal mechanisms remain largely opaque due
to the complexity of non-linear interactions and
high-dimensional operations. While previous
studies have demonstrated that these models
implicitly embed reasoning trees, humans typi-
cally employ various distinct logical reasoning
mechanisms to complete the same task. It is
still unclear which multi-step reasoning mech-
anisms are used by language models to solve
such tasks. In this paper, we aim to address this
question by investigating the mechanistic in-
terpretability of language models, particularly
in the context of multi-step reasoning tasks.
Specifically, we employ circuit analysis and
self-influence functions to evaluate the chang-
ing importance of each token throughout the
reasoning process, allowing us to map the rea-
soning paths adopted by the model. We apply
this methodology to the GPT-2 model on a pre-
diction task (IOI) and demonstrate that the un-
derlying circuits reveal a human-interpretable
reasoning process used by the model.

1 Introduction

In recent years, the Transformer architecture, in-
troduced by (Vaswani et al., 2017), has become
an efficient neural network structure for sequence
modeling (Brown et al., 2020). Previous research
(Hou et al., 2023; Dong et al., 2021) has confirmed
that large models rely primarily on reasoning rather
than mere memorization when answering questions.
However, the "thought process" of these models re-
mains unclear, as shown in Figure 1. How can
we explore the thought process employed by large
models during reasoning (Wei et al., 2022; Kojima
et al., 2022)? Addressing this question is not only
crucial for deepening our understanding of these
models but also essential for developing the next
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generation of reliable language-based reasoning
systems (Creswell and Shanahan, 2022; Creswell
et al., 2022; Chen et al., 2023; Hu et al., 2024a;
Cheng et al., 2024; Yang et al., 2024a).

Influence functions focus on analyzing models
from the perspective of their training data (Koh and
Liang, 2017). They have been shown to be versa-
tile tools applicable to a wide range of tasks, in-
cluding understanding model behavior, debugging
models, detecting dataset errors, and generating
visually indistinguishable adversarial examples(Hu
et al., 2024b,c). As a variant of influence functions,
self-influence is a technique for evaluating the im-
pact of specific inputs within a neural network on
the model’s output. For different tokens within
an input sample, self-influence scores reflect the
significance of each token across various layers of
the model. By tracking the influence changes of
different tokens throughout the reasoning process
of large language models (LLMs), it is possible to
map the thought process executed by the model.
However, directly calculating self-influence for all
parameters in LLMs is practically infeasible due
to the enormous computational resources and sub-
stantial memory consumption required.

As a result, circuit analysis within the frame-
work of Mechanistic Interpretability (MI) (Olah,
2022; Nanda, 2023) has become a focal point of
research. MI aims to discover, understand, and
verify the algorithms encoded in model weights by
reverse engineering the model’s computations into
human-understandable components (Meng et al.,
2022; Geiger et al., 2021; Geva et al., 2020; Zhang
et al., 2024; Hong et al., 2024). A key method in
this field is circuit analysis (Conmy et al., 2023;
Olah et al., 2020). In this approach, neural net-
works are conceptualized as computational graphs,
where circuits represent sub-graphs composed of
interconnected features and the weights that link
them. These circuits function as fundamental com-
putational units and building blocks of the network
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Figure 1: (a) A simplified illustration of circuits within the model. (b) An example of how a language model
(LLM) tackles a reasoning task, such as the Indirect Object Identification (IOI) puzzle. The model identifies key
entities, actions, and pronouns to deduce the recipient. The reasoning process involves steps like extracting names,
determining actions, and linking pronouns to objects to reach the answer "Amy."

(Michaud et al., 2024; Olah et al., 2020). Repre-
senting the most critical components for complet-
ing specific tasks, these circuits capture essential
computational processes without the complexity of
analyzing the full model.

To address the aforementioned limitations, we
propose the Self-Influence Circuit Analysis Frame-
work (SICAF) as a mechanistic interpretation
method to trace and analyze the thought process
that language models (LMs) employ during com-
plex reasoning tasks. To facilitate detailed analysis,
our investigation proceeds in three stages: (1) iden-
tifying the circuit within the model through existing
automatic circuit-finding methods, (2) calculating
the self-influence of different tokens across various
layers of the circuit in each sample, and (3) deduc-
ing the thought process that the language model
employs during reasoning by analyzing changes in
self-influence scores across layers.

As a preliminary step, we employ the automatic
circuit-finding methods EAP, EAP-IG, and EAP-
IG-KL (Hanna et al., 2024) with varied parame-
ters to identify circuits within a (finetuned) GPT-2
model (Radford et al., 2019) that performs a spe-
cific natural language task, indirect object identi-
fication (IOI) (Wang et al., 2022). We find that
these circuits are small (containing 1-2% of edges)
and faithful (recovering ≥85% of model perfor-
mance). Under the same parameter constraints,
EAP-IG identifies circuits that are more faithful.
Furthermore, the nodes within these circuits are
primarily concentrated in the first layer and the last
few layers of the model.

Next, we conduct a detailed examination of the
nodes within the identified circuits, calculating the
self-influence of different tokens across various

layers of each sample and inferring the reasoning
process the language model employs by analyzing
how self-influence scores change across layers.

By focusing on a specific task within the (fine-
tuned) GPT-2 model, we have gained several key
insights into the challenges of mechanistic inter-
pretability in transformer-based language models.
In particular:

• We propose a new mechanistic interpretation
framework, SICAF, to trace and analyze the
thought process that language models (LMs)
employ during complex reasoning tasks.

• By employing various methods to identify
and analyze circuits within the model, we ob-
served a consistent pattern: the model’s key
parameters are primarily concentrated in the
first layer and the final few layers.

• We extend SICAF by applying multiple Cir-
cuit Analysis methods to uncover and analyze
diverse thought processes embedded in differ-
ent circuits of the model.

2 Related Work

Interpretability Methods in Language Models.
Interpretability paradigms for AI decision-making
range from black-box techniques, which focus on
input-output relationships, to internal analyses that
delve into model mechanics (Bereska and Gavves,
2024). Behavioral interpretability (Warstadt et al.,
2020; Covert et al., 2021; Casalicchio et al., 2019)
treats models as black boxes, examining robustness
and variable dependencies, while attributional in-
terpretability (Sundararajan et al., 2017; Smilkov
et al., 2017; Shrikumar et al., 2017) traces outputs
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back to individual input contributions. Concept-
based interpretability (Belinkov, 2022; Burns et al.,
2023; Zou et al., 2023; Yang et al., 2024b; Hu
et al.) explores high-level concepts within models’
learned representations. In contrast, mechanistic
interpretability (Bereska and Gavves, 2024) adopts
a bottom-up approach, analyzing neurons, layers,
and circuits to uncover causal relationships and
precise computations, offering a detailed under-
standing of the model’s internal operations.

Circuit Analysis. Neural networks can be con-
ceptualized as computational graphs, where circuits
of linked features and weights serve as fundamental
computational units (Bereska and Gavves, 2024).
Recent research has focused on dissecting models
into interpretable circuits. Automated Circuit Dis-
covery (ACDC) (Conmy et al., 2023) automates
a large portion of the mechanistic interpretability
workflow, but it is inefficient due to its recursive
nature. Syed et al. (2023) introduced Edge At-
tribution Patching (EAP) to identify circuits for
specific tasks, while Hanna et al. (2024) introduced
EAP with integrated gradients(EAP-IG), which im-
proves upon EAP by identifying more faithful cir-
cuits. Circuit analysis leverages key task-relevant
parameters (Bereska and Gavves, 2024) and feature
connections (He et al., 2024) within the network to
capture core computational processes and attribute
outputs to specific components (Miller et al., 2024),
bypassing the need to analyze the entire model.
This approach maintains efficiency and scalability,
offering a practical alternative for understanding
model behavior.

Influence Function. The influence function, ini-
tially a staple in robust statistics (Cook, 2000;
Cook and Weisberg, 1980), has seen extensive
adoption within machine learning since Koh and
Liang (2017) introduced it to the field. Its versatil-
ity spans various applications, including detecting
mislabeled data, interpreting models, addressing
model bias, and facilitating machine unlearning
tasks. Notable works in machine unlearning en-
compass unlearning features and labels (Warnecke
et al., 2023), minimax unlearning (Liu et al., 2024),
forgetting a subset of image data for training deep
neural networks (Golatkar et al., 2020, 2021), graph
unlearning involving nodes, edges, and features.
Recent advancements, such as the LiSSA method
(Agarwal et al., 2017; Kwon et al., 2023) and kNN-
based techniques (Guo et al., 2021), have been
proposed to enhance computational efficiency. Be-

sides, various studies have applied influence func-
tions to interpret models across different domains,
including natural language processing (Han et al.,
2020) and image classification (Basu et al., 2021),
while also addressing biases in classification mod-
els (Wang et al., 2019), word embeddings (Brunet
et al., 2019), and finetuned models (Chen et al.,
2020). Despite numerous studies on influence func-
tions, we are the first to apply them to explain the
thought process in language models (LMs) during
reasoning tasks. We propose a new mechanistic
interpretation framework, SICAF, to trace and ana-
lyze the reasoning strategies that language models
(LMs) employ for complex tasks. Furthermore,
compared to traditional neural networks, circuits
contain only the most essential parameters of the
model, significantly reducing the computational
cost of calculating influence functions.

3 Preliminary

Automate Circuit Finding. Edge Attribution
Patching (EAP) is a gradient-based method de-
signed to efficiently identify circuits responsible
for specific behaviors in neural networks. It esti-
mates the importance of each edge by calculating
the change in the model’s loss when that edge is
corrupted. The score for an edge (u, v) is given by:

(z′u − zu)
⊤∇vL(s) (1)

where ∇vL(s) is the gradient of the loss function
L with respect to the input of node v, and zu and z′u
represent the clean and corrupted inputs to node u,
respectively. EAP-IG extends this approach by in-
corporating Integrated Gradients, which computes
gradients along a linear path between clean and
corrupted inputs. The integrated gradients score
for an edge (u, v) is:

(z′u − zu)
1

m

m∑

k=1

∂L(z′ + k
m(z − z′))
∂zv

(2)

where m is the number of steps used to approxi-
mate the integral, and z and z′ represent the clean
and corrupted inputs. EAP-IG addresses the is-
sue of near-zero gradients in important features,
providing a more accurate estimation of edge im-
portance and a more faithful representation of the
model’s behavior. Both methods aim to identify the
most crucial edges in a model’s circuit, but EAP-IG
achieves this with greater precision and reliability.
EAP-IG-KL further runs EAP-IG with Kullback-
Leibler (KL) divergence as the loss improves upon
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EAP-IG by incorporating Kullback-Leibler (KL)
divergence to measure the difference between the
model’s activations on clean and corrupted inputs,
ensuring higher fidelity in capturing task-specific
behaviors, even under interventions. run EAP-IG
with KL divergence as the loss.

Influence Functions. Influence functions pro-
vide an efficient approximation for measuring how
small perturbations in the training data affect a
model’s parameters without retraining. For a model
with parameters θ∗, minimizing the empirical risk
over training data, the influence function evaluates
how a slight change in a specific training point z
modifies the model’s parameters θϵ when its weight
is increased by ϵ. The optimization problem is de-
fined as:

θϵ{z} = argmin
θ

1

n

n∑

i=1

ℓ(hθ(zi)) + ϵℓ(hθ(z))

(3)
Using a first-order Taylor expansion around θ∗, the
new parameters θϵ can be approximated as:

θϵ ≈ θ∗ − ϵH−1
θ∗ ∇θℓ(hθ∗(z)) (4)

Where Hθ∗ is the Hessian matrix of the loss func-
tion with respect to the model parameters, and
∇θℓ(hθ∗(z)) is the gradient of the loss function
evaluated at θ∗. The influence function is then
given by:

I(z) = −H−1
θ∗ ∇θℓ(hθ∗(z)) (5)

Additionally, the influence of a training sample z
on a test sample zt is:

I(z, zt) = −∇θℓ(hθ∗(zt))
⊤H−1

θ∗ ∇θℓ(hθ∗(z))
(6)

This equation measures the approximate change in
the test sample’s loss when the weight of a train-
ing sample is perturbed, offering insight into how
training points influence model predictions.

4 Method

We propose a novel mechanistic interpretation
framework, SICAF, to trace and analyze the
thought process that language models (LMs) em-
ploy during complex reasoning tasks. Our method
comprises two primary steps: first, we apply an
automatic circuit-finding approach to identify the
critical circuits within the model; second, we cal-
culate the self-influence IH(x, x) for each layer of

the circuit to assess the contribution of individual
tokens to the model’s decision-making process. By
examining contributions at each layer, we can in-
fer the thought process manifested by the model
during reasoning. This layer-wise self-influence
analysis provides a detailed understanding of the
internal reasoning process while ensuring compu-
tational feasibility by focusing exclusively on the
model’s most essential components.

4.1 Automatic Circuit-Finding
To effectively locate the most important subgraphs,
or circuits, in the model, we utilize advanced au-
tomatic circuit-finding methods, including Edge
Attribution Patching (EAP), EAP-IG, and EAP-
IG-KL. These methods allow us to identify and
isolate the key circuits that contain essential fea-
tures and their connecting weights, which are nec-
essary for task completion. By focusing on these
circuits rather than analyzing the entire model, we
streamline the analysis and capture the primary in-
formation flow, thus attributing the model’s output
to specific components. This approach not only
enhances efficiency but also enables us to focus
on the most impactful areas of the model, laying
a strong foundation for subsequent self-influence
analysis.

In our approach, EAP identifies important edges
by measuring the change in the loss function when
each edge is perturbed, effectively constructing
a "map" of the critical connections within the
network. EAP-IG and EAP-IG-KL extend this
by incorporating Integrated Gradients (IG) and
Kullback-Leibler (KL) divergence, respectively.
EAP-IG improves fidelity by more accurately cap-
turing the importance of edges with low gradi-
ents, while EAP-IG-KL leverages KL divergence
to ensure that the circuits faithfully represent the
model’s behavior under various interventions. To-
gether, these methods allow us to efficiently locate
the most faithful circuits in the network, ensuring
that only the most relevant parts of the model are
included in the analysis.

4.2 Self-Influence Calculation
Once critical circuit components have been iso-
lated, the key remaining step is to interpret the com-
putations performed by these components. Few
methods have been proposed to interpret extracted
circuits. Kevin Wang et al. (Wang et al., 2022)
explored this by knocking out a single node—a
(head, token position) pair in the circuit—revealing
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heads with different functions. Arthur Conmy et al.
(Conmy et al., 2023) proposed testing hypotheses
about the functions implemented by each node in
the circuit. Yunzhi Yao et al. (Yao et al., 2024)
evaluated the impact of current knowledge editing
techniques on these knowledge circuits, providing
deeper insights into the functionality and limita-
tions of these editing methodologies. We differ
from these works by calculating the self-influence
of each token in the sample across different layers
of the circuit to reverse-engineer, which human-
understandable reasoning patterns the model em-
ploys. We compute the self-influence IH(x, x) for
each layer within the circuit. The self-influence
formula is defined as:

IH(x, x) = −∇θL(x)
⊤H−1∇θL(x) (7)

where ∇θL(x) is the gradient of the loss function
L(x) with respect to the parameters θ in the circuit
at each layer, and x represents the tokens in the sam-
ple. The Hessian matrix H represents the second-
order derivatives of the loss function with respect
to the parameters, and H−1 is its inverse. Cal-
culating self-influence allows us to measure each
token’s impact on the parameter updates, revealing
the degree to which each token contributes to the
decision-making process at each layer.

However, calculating the inverse of the Hessian
H−1 directly is computationally expensive, partic-
ularly in large-scale models. To mitigate this, we
adopt a divide-and-conquer strategy by utilizing
the Hessian-vector product (HVP) in place of the
explicit inverse calculation. The HVP approach al-
lows us to approximate H−1v without direct inver-
sion by first calculating ∂f

∂x (x), where x represents
tokens in the sample, and then computing:

∂x

∂

(
∂f(x)

∂x
· v

)
(8)

where ∂f
∂x (x) ∈ R1×d represents the gradient of the

function f(x) with respect to the input tokens, and
v ∈ Rd×1 is a vector. This product

(
∂f(x)
∂x · v

)
is

a scalar, and computing its gradient with respect
to x is computationally efficient in deep learning
frameworks like PyTorch and TensorFlow.

To further approximate H−1v, we leverage a
recursive Taylor expansion:

H−1 =

∞∑

i=0

(I −H)i (9)

This expansion enables us to iteratively compute
H−1v, avoiding the computational expense of ex-
plicit inversion. Additionally, to ensure ||H|| ≤ 1,
we scale the Hessian H by a factor c ∈ R+, al-
lowing us to approximate H−1 as c(cH)−1, which
further reduces computational complexity. This ap-
proach enables efficient estimation of self-influence
values, preserving the practicality of layer-wise in-
fluence analysis for large models.

With the self-influence values calculated across
all layers within the circuit, we can now trace the
flow of information and identify how different to-
kens contribute to the model’s decision-making at
each layer. By examining these contributions in
a layer-by-layer fashion, we are able to infer the
structure of the "reasoning tree" that the model im-
plicitly follows during inference. This reasoning
tree structure elucidates the hierarchical process by
which the model accumulates and combines infor-
mation, offering insights into the specific patterns
of reasoning the model employs.

Our layer-wise self-influence analysis provides
a comprehensive view of the internal mechanisms
that drive the model’s behavior. By focusing on crit-
ical components within the network, our method
maintains computational feasibility while offer-
ing a fine-grained understanding of the model’s
decision-making process. This approach not only
unveils the underlying reasoning patterns but also
provides a valuable theoretical foundation for im-
proving and optimizing transformer-based models
for reasoning tasks.

As shown in Algorithm 1, this process of Circuit-
Based Self-Influence Analysis allows us to con-
struct the reasoning tree structure effectively.

5 Experiment

5.1 Experimental Setting
Dataset. We use the IOI dataset (Wang et al.,
2022), designed to evaluate models’ ability to per-
form indirect object identification tasks. Each entry
consists of sentences with names and contexts, re-
quiring the model to accurately predict the indirect
object. The dataset contains minimal pairs of clean
and corrupted inputs for direct comparison, testing
the model’s robustness in distinguishing between
potential candidates, even when distractor names
are introduced. For more dataset and metric details,
see Appendix A.1.

Baselines. As SICAF is a mechanistic interpreta-
tion framework, we mainly implement it with previ-
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Figure 2: Comparison of normalized faithfulness, number of nodes, and parameter percentage for circuits identified
by EAP, EAP-IG, and EAP-IG-KL on the IOI task. The x-axis represents the number of edges included, and each
panel shows different metrics: normalized faithfulness (left), number of nodes (middle), and parameter percentage
(right).

Figure 3: Heatmap of node importance across layers for EAP, EAP-IG, and EAP-IG-KL methods. The x-axis shows
the number of edges included, and the y-axis shows the layers. Darker colors represent higher node importance,
with EAP focusing on the last layers and EAP-IG, EAP-IG-KL showing more balanced distributions across layers.

ous Automatic Circuit-Finding approaches. Specif-
ically, our baseline includes the following methods:
EAP (Syed et al., 2023), which uses gradient-based
approximations to estimate the importance of indi-
vidual edges through their impact on model loss;
EAP-IG (Hanna et al., 2024), which enhances EAP
by employing integrated gradients along a path be-
tween clean and corrupted inputs to capture more
accurate edge importance scores; and EAP-IG-KL
(Hanna et al., 2024), which combines EAP-IG with
Kullback-Leibler divergence as a loss function to
generalize edge influence measurement across var-
ious interpretability tasks. Additional details are
presented in Appendix A.3.

Implementation Details. We focus on simple
tasks that are feasible even for GPT-2 small, which
is the model most frequently studied from a circuits
perspective. In our approach, we define GPT-2’s at-
tention heads and MLPs (multi-layer perceptrons)
as nodes within its computational graph. Addi-
tional implementation details can be found in Ap-
pendix A.2.

5.2 Circuit Identification and Faithfulness

Using the EAP, EAP-IG, and EAP-IG-KL methods,
we successfully identified small circuits (contain-
ing 1-2% of the edges) (see Table 1 for the circuit
composition at 100 edges for each method, with ad-
ditional results in Appendix B), recovering at least
85% of the model’s performance on the IOI task.
As shown in Figure 1 (left plot), both EAP-IG and
EAP-IG-KL outperform EAP in terms of normal-
ized faithfulness, achieving scores above 0.8 with
approximately 800 edges, while EAP peaks below
0.6. This result suggests that EAP-IG and EAP-
IG-KL are more effective at identifying circuits
that retain model accuracy, particularly with fewer
edges. Additionally, as seen in Figure 1 (center
and right plots), EAP-IG and EAP-IG-KL exhibit
rapid convergence in parameter inclusion, stabiliz-
ing around 35% of the total parameters to achieve
high performance, while EAP requires close to 40%
of the parameters to reach its maximum perfor-
mance, which is still lower than the other methods.
This result highlights the advantages of EAP-IG

1392



Figure 4: Self-influence scores of key tokens across model layers for the EAP, EAP-IG, and EAP-IG-KL methods
on the IOI task. Each subplot represents the distribution of self-influence for individual tokens across the 12 layers
of the GPT-2 model. EAP shows concentrated influence in the early and final layers, while EAP-IG and EAP-IG-
KL display more balanced self-influence across layers, reflecting a structured progression of token importance.
Key tokens such as "Christina," "Amy," and "gave" consistently show high self-influence, demonstrating their
significance in the reasoning process.

Figure 5: Heatmap of node importance across layers for EAP, EAP-IG, and EAP-IG-KL methods. The x-axis
represents the layer indices, and the y-axis shows the tokens. Darker colors indicate higher node importance, with
EAP focusing on the last layers and EAP-IG and EAP-IG-KL exhibiting a more balanced distribution across layers.

and EAP-IG-KL in identifying compact and faith-
ful circuits, making them particularly suitable for
tasks requiring high efficiency and accuracy.

Table 1: Circuit composition with 100 edges included
using the greedy algorithm for EAP, EAP-IG, and EAP-
IG-KL methods.

Method Circuit Composition

EAP input, a0.h1, a0.h10, m0, m4, a8.h10,
a9.h3, a9.h4, m9, m10, a11.h2, a11.h3,
m11, logits

EAP-IG input, a0.h1, a0.h10, m0, m1, m2,
a3.h0, m3, m4, a5.h5, a5.h9, m5, a6.h0,
a6.h9, a7.h3, a7.h9, m7, a8.h3, a8.h6,
a8.h10, m8, a9.h3, m9, a10.h2, m10,
a11.h2, a11.h6, m11, logits

EAP-IG-KL input, a0.h1, m0, m1, a3.h0, m4,
a5.h5, a6.h9, a7.h1, a7.h3, a7.h9,
a8.h6, a8.h10, m8, a9.h3, a9.h6, a9.h9,
a10.h0, a10.h2, a10.h6, a10.h7, a11.h2,
a11.h3, a11.h6, logits

5.3 Node Distribution Across Model Layers

As shown in Figure 2, the node distribution across
model layers varies significantly between methods.
EAP primarily activates nodes in the final layers
(especially Layer 12), indicating that the model re-
lies heavily on these layers to make final decisions
in the IOI task. This pattern suggests that EAP
emphasizes the semantic aggregation and decision
generation occurring in the later layers. In con-
trast, EAP-IG and EAP-IG-KL demonstrate a more
balanced node distribution across the early, middle,
and final layers, with EAP-IG-KL showing substan-
tial node activity between Layers 9 and 12. This
pattern indicates that EAP-IG-KL captures more
complex, multi-layered computational processes,
utilizing information from a broader range of lay-
ers. Overall, the three methods share a consistent
structure, with nodes concentrated in the first and
last few layers, suggesting that these layers play
a crucial role. The first layer likely helps in ini-
tial processing of input, while the last few layers
appear critical for aggregating information before
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Table 2: Token influence scores for Layer 0 across EAP,
EAP-IG, and EAP-IG-KL methods.

Token EAP EAP-IG EAP-IG-KL

Then 0.745 0.666 0.666
, 0.585 0.434 0.434
Christina 1.834 1.318 1.318
and 0.585 0.425 0.425
Amy 0.906 0.695 0.695
went 0.562 0.472 0.472
to 0.702 0.589 0.589
the 0.518 0.393 0.393
restaurant 0.797 0.639 0.639
. 0.628 0.437 0.437
Amy 0.906 0.695 0.695
gave 0.553 0.408 0.408

making final decisions.

5.4 The Model’s Thought Process

Figures 3 and 4 provide insights into the layer-wise
processing differences among the methods:EAP,
EAP-IG, and EAP-IG-KL,specifically regarding
their handling of self-influence scores. As shown
in Figure 3, EAP concentrates self-influence scores
predominantly in the final layers, indicating a fo-
cus on quickly aggregating high-level information.
This approach makes EAP suitable for tasks where
immediate decision-making is crucial, as it enables
rapid synthesis of key contextual elements. How-
ever, this reliance on the final layers limits EAP’s
capability to capture intermediate reasoning steps,
which are essential for handling more nuanced and
multi-step reasoning tasks.

In contrast, Figure 4 illustrates that EAP-IG
and EAP-IG-KL distribute influence scores more
evenly across early, middle, and final layers, en-
abling a structured and gradual accumulation of
information. This balanced distribution aligns well
with tasks requiring multi-step reasoning, as it sup-
ports the retention and transformation of informa-
tion throughout the model’s layered structure. EAP-
IG-KL, in particular, achieves a high level of bal-
ance, ensuring stable self-influence scores across
layers. This feature suggests that EAP-IG-KL is
not only more robust in handling complex reason-
ing tasks but also better equipped to leverage infor-
mation from both lower and higher layers.

The common hierarchical reasoning path fol-
lowed by all three methods is best illustrated using
the sentence “Then, Christina and Amy went to
the restaurant. Amy gave a ring to...” as an ex-

ample. Here, in the early layers, key entities like
“Christina” and “Amy” are identified, setting a foun-
dational context that informs subsequent reasoning
steps. Moving to the middle layers, the model
interprets the action verb “gave,” constructing re-
lationships that frame “Amy” as the active entity
in giving an item to another person. In the final
layers, the model synthesizes this accumulated in-
formation, allowing it to conclude that “Amy” is
the subject and infer the likely recipient.

The distinction among methods lies in the nu-
ances of this shared reasoning path. EAP’s empha-
sis on final-layer influence results in faster decision-
making but may overlook subtler contextual nu-
ances essential for complex inferences. On the
other hand, EAP-IG distributes influence with a
greater emphasis on intermediate layers, focusing
on refining relational structures and contextual re-
lationships as the reasoning pathway progresses.
EAP-IG-KL exhibits the most balanced distribu-
tion, making it highly adaptable for tasks that re-
quire intricate relationships and consistent reason-
ing across all layers.

The detailed self-influence scores in Table 2
further support this analysis. For instance, in
Layer 0, the token “Christina” exhibits a high self-
influence score, reinforcing its role as a key contex-
tual marker that informs initial reasoning. As the
model advances, tokens such as “gave” and “Amy”
demonstrate increased influence in the final lay-
ers, highlighting their relevance in constructing the
concluding inference. Additional token influence
scores across layers and for other samples are avail-
able in Appendix C, providing a comprehensive
view of each method’s impact across the reasoning
process.

6 Conclusion

We propose a new mechanistic interpretation frame-
work, SICAF, to trace and analyze the thought pro-
cesses that language models (LMs) employ dur-
ing complex reasoning tasks, and we validate our
approach on the GPT-2 model in the IOI reason-
ing task. By applying circuit analysis and self-
influence functions, we successfully mapped the
reasoning pathways within the GPT-2 model dur-
ing the IOI task. Our method reveals a hierarchical
structure in the model’s reasoning process, distin-
guishing key entities and relationships in a manner
that resembles human reasoning steps. Overall, our
findings contribute to a more interpretable and sys-
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tematic understanding of the reasoning processes
in language models, enhancing the transparency
and trustworthiness of AI systems.

7 Limitations

While our study successfully elucidates certain
thought processes within language models, it has
some limitations. First, the analysis was conducted
primarily on the GPT-2 model and may not gen-
eralize to larger or different architectures without
adaptation. Additionally, calculating self-influence
requires computationally intensive methods, which
may pose scalability challenges for more complex
models. Finally, our work focused on a single task
(Indirect Object Identification, or IOI), and the ap-
plicability of these findings to other natural lan-
guage processing tasks remains an open question.
Future research should explore the adaptability of
this approach across varied tasks and model archi-
tectures, as well as investigate methods to optimize
computational efficiency.
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A Additional Experiments

A.1 Datasets

The IOI (Indirect Object Identification) dataset
(Wang et al., 2023) is designed to evaluate a
model’s ability to identify indirect objects within
sentences. This task requires the model to recog-
nize the indirect object among two specific names
in a given sentence, predicting which name serves
as the indirect object of the sentence. The dataset
includes both clean and corrupted inputs. In clean
inputs, each entry consists of a pair of names with
contextual information, prompting the model to
accurately identify the indirect object, or recipi-
ent, of an action. For example, in the sentence
"When Amy and Laura got a snack at the house,
Laura decided to give it to," the model should pre-
dict "Amy" as the indirect object. In corrupted
inputs, the sentence structure remains unchanged,
but the original indirect object is replaced by a third
name, making both "Amy" and "Laura" approxi-
mately equally probable. For instance, replacing
"Laura" with "Nicholas" yields "When Amy and
Laura got a snack at the house, Nicholas decided
to give it to," or replacing "Laura" with "Amy" re-
sults in "When Amy and Laura got a snack at the
house, Amy decided to give it to," increasing the
model’s difficulty in distinguishing the correct indi-
rect object. The model’s predictions are evaluated
using logit difference (logit diff), calculated as the
logit of the target indirect object minus the logit of
the distractor. A larger logit difference indicates
a stronger preference by the model for the correct
indirect object. Using Wang et al.’s data generator,
we generated a dataset of 1000 sentences table3,
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containing both clean and corrupted inputs, for ex-
perimental analysis of the model’s performance on
this task.

A.2 Details of Experimental Settings
For the IOI task, we used a corpus of 1000 sen-
tences created by (Hanna et al., 2024), based on
the dataset generator from (Wang et al., 2022),
which includes both clean and corrupted inputs. We
first fine-tuned GPT-2 on this dataset and then fol-
lowed the experimental setup outlined in Michael
Hanna’s paper, defining GPT-2’s attention heads
and MLPs (multi-layer perceptrons) as nodes in
its computational graph. A node’s output directed
to another node is defined as an edge. The num-
ber of nodes was 158, and the number of edges
was 32,491. The input to node v is the sum of
the outputs from all nodes u connected to v. For
n = 30, 40, . . . , 100, 200, . . . , 1000, we selected
a circuit of n edges using a greedy search proce-
dure. Generally, larger n results in more faithful
circuits, but these circuits tend to be less localized
and interpretable. Let b and b′ represent the model’s
performance on clean and corrupted inputs, respec-
tively. The circuit’s performance and faithfulness
m are normalized as (m− b′)/(b− b′).

A.3 Baselines
EAP: EAP (Edge Attribution Patching) (Syed et al.,
2023), which uses gradient-based approximations
to assess the importance of individual edges by es-
timating the loss change from intervening on each
model edge, allowing for a scalable approxima-
tion of causal effects without requiring extensive
forward passes.
EAP-IG: EAP-IG (EAP with Integrated Gradients)
(Hanna et al., 2024), which improves upon EAP
by employing integrated gradients along a path
between clean and corrupted inputs to compute a
more faithful edge importance score, capturing a
wider range of influence and avoiding zero-gradient
issues common in standard gradient calculations.
EAP-IG-KL: EAP-IG-KL (Hanna et al., 2024),
which combines EAP-IG with Kullback-Leibler
(KL) divergence as a loss function, enabling it to
generalize across tasks by measuring divergence
between the patched and original model outputs,
thus allowing consistent applicability to various
interpretability tasks.

The table below (Table 4) provides a compari-
son of the EAP, EAP-IG, and EAP-IG-KL meth-
ods, highlighting their distinctive attributes in terms

of granularity, component, value, token positions,
direction, and set used in the circuit-finding ap-
proach:

B Circuit Results

"edges included": 200,
"greedy algorithm":
EAP: input, a0.h1, a0.h10, m0, m1, m3, m4, m5,
a6.h0, a6.h9, m6, a7.h3, a7.h9, m7, a8.h3, a8.h6,
a8.h10, m8, a9.h3, a9.h4, m9, a10.h2, a10.h7, m10,
a11.h1, a11.h2, a11.h3, a11.h6, a11.h8, m11, logits
EAP-IG: input, a0.h1, a0.h10, m0, m1, m2, a3.h0,
a3.h4, m3, a4.h3, m4, a5.h1, a5.h5, a5.h9, m5,
a6.h0, a6.h6, a6.h9, m6, a7.h3, a7.h9, m7, a8.h3,
a8.h6, a8.h10, m8, a9.h3, a9.h4, a9.h6, m9, a10.h0,
a10.h2, a10.h7, m10, a11.h1, a11.h2, a11.h3,
a11.h6, a11.h9, m11, logits
EAP-IG-KL: input, a0.h1, m0, m1, m2, a3.h0,
a3.h4, m3, m4, a5.h1, a5.h5, a5.h8, a5.h9, m5,
a6.h0, a6.h6, a6.h9, a7.h1, a7.h3, a7.h9, m7, a8.h3,
a8.h6, a8.h10, m8, a9.h3, a9.h4, a9.h6, a9.h9,
m9, a10.h0, a10.h1, a10.h2, a10.h6, a10.h7, m10,
a11.h1, a11.h2, a11.h3, a11.h6, a11.h9, a11.h10,
m11, logits

"edges included": 300,
"greedy algorithm":
EAP: input, a0.h1, a0.h10, m0, m1, a3.h0, m3,
m4, a5.h1, a5.h8, a5.h9, m5, a6.h0, a6.h6, a6.h9,
m6, a7.h1, a7.h3, a7.h9, a7.h11, m7, a8.h3, a8.h5,
a8.h6, a8.h10, a8.h11, m8, a9.h3, a9.h4, a9.h8,
m9, a10.h2, a10.h7, m10, a11.h0, a11.h1, a11.h2,
a11.h3, a11.h6, a11.h8, a11.h9, a11.h11, m11,
logits
EAP-IG: input, a0.h1, a0.h3, a0.h4, a0.h5, a0.h9,
a0.h10, m0, a1.h0, a1.h11, m1, a2.h2, m2, a3.h0,
a3.h4, a3.h6, m3, a4.h3, a4.h4, m4, a5.h1, a5.h5,
a5.h9, a5.h10, m5, a6.h0, a6.h6, a6.h9, m6, a7.h1,
a7.h3, a7.h9, a7.h11, m7, a8.h3, a8.h6, a8.h10, m8,
a9.h3, a9.h4, a9.h6, a9.h9, m9, a10.h0, a10.h2,
a10.h6, a10.h7, m10, a11.h1, a11.h2, a11.h3,
a11.h6, a11.h8, a11.h9, m11, logits
EAP-IG-KL: input, a0.h1, a0.h3, a0.h4, a0.h5,
m0, a1.h0, a1.h11, m1, a2.h2, m2, a3.h0, a3.h4,
a3.h6, m3, a4.h3, a4.h4, m4, a5.h1, a5.h5, a5.h8,
a5.h9, m5, a6.h0, a6.h6, a6.h9, m6, a7.h1, a7.h3,
a7.h7, a7.h9, m7, a8.h1, a8.h3, a8.h5, a8.h6, a8.h8,
a8.h10, a8.h11, m8, a9.h2, a9.h3, a9.h4, a9.h6,
a9.h7, a9.h9, m9, a10.h0, a10.h1, a10.h2, a10.h6,
a10.h7, a10.h10, a10.h11, m10, a11.h1, a11.h2,
a11.h3, a11.h6, a11.h9, a11.h10, m11, logits
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"edges included": 400,
"greedy algorithm":
EAP: input, a0.h1, a0.h10, m0, m1, m2, a3.h0, m3,
a4.h4, m4, a5.h1, a5.h5, a5.h8, a5.h9, m5, a6.h0,
a6.h6, a6.h9, m6, a7.h1, a7.h3, a7.h9, a7.h11,
m7, a8.h3, a8.h5, a8.h6, a8.h10, a8.h11, m8,
a9.h2, a9.h3, a9.h4, a9.h5, a9.h7, a9.h8, a9.h11,
m9, a10.h2, a10.h7, m10, a11.h0, a11.h1, a11.h2,
a11.h3, a11.h6, a11.h8, a11.h9, a11.h10, a11.h11,
m11, logits
EAP-IG: input, a0.h1, a0.h3, a0.h4, a0.h5, a0.h9,
a0.h10, m0, a1.h0, a1.h11, m1, a2.h2, m2, a3.h0,
a3.h4, a3.h6, m3, a4.h3, a4.h4, m4, a5.h1, a5.h5,
a5.h8, a5.h9, a5.h10, m5, a6.h0, a6.h6, a6.h9, m6,
a7.h1, a7.h3, a7.h9, a7.h11, m7, a8.h3, a8.h5,
a8.h6, a8.h10, a8.h11, m8, a9.h3, a9.h4, a9.h6,
a9.h7, a9.h9, m9, a10.h0, a10.h2, a10.h6, a10.h7,
m10, a11.h1, a11.h2, a11.h3, a11.h6, a11.h8,
a11.h9, a11.h10, m11, logits
EAP-IG-KL: input, a0.h1, a0.h3, a0.h4, a0.h5,
a0.h10, m0, a1.h0, a1.h11, m1, a2.h2, m2, a3.h0,
a3.h4, a3.h6, m3, a4.h3, a4.h4, m4, a5.h1, a5.h5,
a5.h8, a5.h9, m5, a6.h0, a6.h6, a6.h9, m6, a7.h1,
a7.h3, a7.h6, a7.h7, a7.h9, a7.h11, m7, a8.h1,
a8.h3, a8.h5, a8.h

"edges included": 500,
"greedy algorithm":
EAP: input, a0.h1, a0.h10, m0, m1, m2, a3.h0,
a3.h6, m3, a4.h4, m4, a5.h1, a5.h5, a5.h8, a5.h9,
m5, a6.h0, a6.h6, a6.h9, m6, a7.h1, a7.h3, a7.h6,
a7.h9, a7.h11, m7, a8.h3, a8.h5, a8.h6, a8.h10,
a8.h11, m8, a9.h2, a9.h3, a9.h4, a9.h5, a9.h7,
a9.h8, a9.h11, m9, a10.h2, a10.h7, m10, a11.h0,
a11.h1, a11.h2, a11.h3, a11.h6, a11.h8, a11.h9,
a11.h10, a11.h11, m11, logits
EAP-IG: input, a0.h1, a0.h3, a0.h4, a0.h5, a0.h9,
a0.h10, m0, a1.h0, a1.h11, m1, a2.h2, m2, a3.h0,
a3.h4, a3.h6, m3, a4.h3, a4.h4, a4.h6, a4.h7, m4,
a5.h1, a5.h5, a5.h8, a5.h9, a5.h10, m5, a6.h0,
a6.h6, a6.h9, m6, a7.h1, a7.h3, a7.h9, a7.h11, m7,
a8.h1, a8.h3, a8.h5, a8.h6, a8.h10, a8.h11, m8,
a9.h2, a9.h3, a9.h4, a9.h6, a9.h7, a9.h8, a9.h9,
m9, a10.h0, a10.h2, a10.h6, a10.h7, a10.h10, m10,
a11.h0, a11.h1, a11.h2, a11.h3, a11.h6, a11.h8,
a11.h9, a11.h10, a11.h11, m11, logits
EAP-IG-KL: input, a0.h1, a0.h3, a0.h4, a0.h5,
a0.h10, m0, a1.h0, a1.h5, a1.h11, m1, a2.h2, m2,
a3.h0, a3.h4, a3.h6, m3, a4.h3, a4.h4, a4.h6, m4,
a5.h1, a5.h5, a5.h8, a5.h9, a5.h10, m5, a6.h0,

a6.h6, a6.h7, a6.h9, m6, a7.h1, a7.h3, a7.h6, a7.h7,
a7.h9, a7.h11, m7, a8.h1, a8.h3, a8.h5, a8.h6,
a8.h8, a8.h10, a8.h11, m8, a9.h0, a9.h2, a9.h3,
a9.h4, a9.h6, a9.h7, a9.h9, m9, a10.h0, a10.h1,
a10.h2, a10.h6, a10.h7, a10.h10, a10.h11, m10,
a11.h1, a11.h2, a11.h3, a11.h6, a11.h8, a11.h9,
a11.h10, m11, logits

(Results for edge values between 500 and 1000
follow similar patterns and are not listed in full
here.)

"edges included": 1000,
"greedy algorithm":
EAP: input, a0.h1, a0.h9, a0.h10, m0, a1.h8,
a1.h11, m1, m2, a3.h0, a3.h6, a3.h10, m3, a4.h3,
a4.h4, a4.h6, a4.h7, m4, a5.h0, a5.h1, a5.h5, a5.h8,
a5.h9, a5.h10, m5, a6.h0, a6.h1, a6.h2, a6.h3,
a6.h4, a6.h5, a6.h6, a6.h8, a6.h9, a6.h10, m6,
a7.h1, a7.h3, a7.h5, a7.h6, a7.h7, a7.h9, a7.h10,
a7.h11, m7, a8.h0, a8.h1, a8.h3, a8.h5, a8.h6,
a8.h7, a8.h9, a8.h10, a8.h11, m8, a9.h1, a9.h2,
a9.h3, a9.h4, a9.h5, a9.h7, a9.h8, a9.h11, m9,
a10.h0, a10.h1, a10.h2, a10.h3, a10.h4, a10.h7,
a10.h8, a10.h10, m10, a11.h0, a11.h1, a11.h2,
a11.h3, a11.h4, a11.h5, a11.h6, a11.h8, a11.h9,
a11.h10, a11.h11, m11, logits
EAP-IG: input, a0.h1, a0.h3, a0.h4, a0.h5, a0.h9,
a0.h10, m0, a1.h0, a1.h5, a1.h11, m1, a2.h2, a2.h9,
m2, a3.h0, a3.h3, a3.h4, a3.h6, a3.h7, a3.h10, m3,
a4.h3, a4.h4, a4.h6, a4.h7, a4.h8, a4.h11, m4,
a5.h0, a5.h1, a5.h5, a5.h8, a5.h9, a5.h10, m5,
a6.h0, a6.h1, a6.h4, a6.h5, a6.h6, a6.h7, a6.h8,
a6.h9, m6, a7.h1, a7.h3, a7.h5, a7.h7, a7.h9 EAP-
IG-KL: input, a0.h1, a0.h3, a0.h4, a0.h5, a0.h7,
a0.h10, m0, a1.h0, a1.h5, a1.h11, m1, a2.h2, a2.h9,
m2, a3.h0, a3.h3, a3.h4, a3.h6, a3.h7, m3, a4.h3,
a4.h4, a4.h5, a4.h6, a4.h7, a4.h8, m4, a5.h1, a5.h5,
a5.h8, a5.h9, a5.h10, a5.h11, m5, a6.h0, a6.h1,
a6.h3, a6.h5, a6.h6, a6.h7, a6.h8, a6.h9, a6.h10,
m6, a7.h1, a7.h3, a7.h5, a7.h6, a7.h7, a7.h8, a7.h9,
a7.h11, m7, a8.h0, a8.h1, a8.h2, a8.h3, a8.h5,
a8.h6, a8.h7, a8.h8, a8.h9, a8.h10, a8.h11, m8,
a9.h0, a9.h2, a9.h3, a9.h4, a9.h5, a9.h6, a9.h7,
a9.h9, a9.h11, m9, a10.h0, a10.h1, a10.h2, a10.h3,
a10.h6, a10.h7, a10.h10, a10.h11, m10, a11.h0,
a11.h1, a11.h2, a11.h3, a11.h6, a11.h8, a11.h9,
a11.h10, a11.h11, m11, logits

C Token self-Influence

See Tables 5, 6, and 7 for complete results. Other
results are similar and are not displayed.
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Algorithm 1: Self-Influence Circuit Analysis Frame-
work

Input: Model M , Input sample x, Circuit-finding
methods {EAP,EAP-IG,EAP-IG-KL},
Scaling factor c

Output: Inferred thought process structure
Initialize model parameters θ;
Select circuit-finding method (e.g., EAP, EAP-IG, or

EAP-IG-KL);
Phase 1: Automatic Circuit Identification
Function IdentifyCriticalCircuits(M , x,

method):
for each edge (u, v) in M do

Perturb edge (u, v) to evaluate effect on loss
L(x);

Calculate edge importance score Suv based
on perturbation:

Suv = ∆L(x;u, v)

Rank edges by importance and select top-k;
return CircuitGraph (subgraph with

highest-ranked edges);
CircuitGraph← IdentifyCriticalCircuits(M ,
x, chosen method);

Phase 2: Layer-wise Self-Influence Computation
Function ComputeSelfInfluence(CircuitGraph, x,
θ, c):

for each layer ℓ in CircuitGraph do
Initialize self-influence Iℓ(x, x)← 0;
Compute gradient∇θL(x) w.r.t. parameters
θ at layer ℓ;

Calculate Hessian matrix H based on
∇θL(x);

if ||H|| > 1 then
Scale Hessian by factor c: H ← cH;

Approximate H−1 using Taylor expansion:

H−1 ≈
∞∑

i=0

(I −H)i

Calculate self-influence for layer ℓ:

Iℓ(x, x) = −∇θL(x)
⊤H−1∇θL(x)

return LayerwiseInfluenceScores for all layers;
LayerwiseInfluenceScores←
ComputeSelfInfluence(CircuitGraph, x, θ, c);

Phase 3: Thought Process Inference
Function
InferThoughtProcess(LayerwiseInfluenceScores):

Initialize ThoughtProcess← {};
for each layer ℓ do

Analyze distribution {Iℓ(x, xi)}ni=1 across
tokens;

Identify significant contributions to model’s
decision pathway at layer ℓ;

Update ThoughtProcess with token
importance at each layer;

return ThoughtProcess;
ThoughtProcess←
InferThoughtProcess(LayerwiseInfluenceScores);

return ThoughtProcess;
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Table 3: Sample entries from the IOI (Indirect Object Identification) dataset, showcasing clean, corrupted, and
corrupted hard inputs along with target and distractor indices.

Clean Input

Sentence Target Index Distractor Index
When Amy and Laura got a snack at the house, Laura decided to give it to 14235 16753
Then, Danielle and Andrew had a lot of fun at the office. Andrew gave a

computer to
39808 6858

When Anthony and Jose got a drink at the restaurant, Jose decided to give it
to

9953 5264

Then, Sean and Vanessa had a long argument, and afterwards Vanessa said to 11465 42100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corrupted Input

Sentence Target Index Distractor Index
When Amy and Laura got a snack at the house, Nicholas decided to give it to 14235 16753

Then, Danielle and Andrew had a lot of fun at the office. Jeremy gave a
computer to

39808 6858

When Anthony and Jose got a drink at the restaurant, Nathan decided to give
it to

9953 5264

Then, Sean and Vanessa had a long argument, and afterwards Kimberly said
to

11465 42100

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corrupted Hard Input

Sentence Target Index Distractor Index
When Amy and Laura got a snack at the house, Amy decided to give it to 14235 16753
Then, Danielle and Andrew had a lot of fun at the office. Danielle gave a

computer to
39808 6858

When Anthony and Jose got a drink at the restaurant, Anthony decided to
give it to

9953 5264

Then, Sean and Vanessa had a long argument, and afterwards Sean said to 11465 42100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4: Comparison of EAP, EAP-IG, and EAP-IG-KL methods. Each method differs in at least one aspect in
terms of granularity, component, value, token positions, direction, and set.

Method Granularity Component Value Token Positions Direction Set
EAP Edges Edge Resample All tokens Resample Clean Circuit
EAP-IG Edges Edge Integrated Gradient

Path
Specific tokens Resample Clean Circuit

EAP-IG-KL Edges Edge Integrated Gradient +
KL Divergence

Specific tokens Resample Clean Circuit
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Table 5: Self-influence scores across layers 0–11 using three different methods. The best influence score within
each layer is highlighted in bold.

Token L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

EAP
Then 0.745 0.251 0.059 0.107 0.138 0.150 0.178 0.163 0.178 0.224 0.261 0.484
, 0.585 0.150 0.056 0.103 0.132 0.139 0.166 0.153 0.164 0.214 0.246 0.469
Christina 1.834 0.289 0.052 0.098 0.120 0.132 0.160 0.141 0.146 0.197 0.242 0.431
and 0.585 0.148 0.057 0.104 0.133 0.143 0.168 0.155 0.167 0.213 0.246 0.476
Amy 0.906 0.233 0.055 0.101 0.123 0.132 0.163 0.147 0.149 0.205 0.252 0.438
went 0.562 0.226 0.062 0.112 0.139 0.165 0.183 0.168 0.196 0.221 0.258 0.501
to 0.702 0.186 0.061 0.112 0.141 0.170 0.181 0.169 0.190 0.224 0.257 0.486
the 0.518 0.138 0.056 0.104 0.132 0.142 0.161 0.154 0.155 0.212 0.240 0.472
restaurant 0.797 0.194 0.058 0.109 0.132 0.152 0.172 0.157 0.174 0.208 0.247 0.486
. 0.628 0.145 0.053 0.098 0.126 0.123 0.161 0.146 0.150 0.213 0.244 0.446
Amy 0.906 0.233 0.055 0.101 0.123 0.132 0.163 0.147 0.149 0.205 0.252 0.438
gave 0.553 0.240 0.062 0.110 0.137 0.160 0.185 0.167 0.187 0.227 0.268 0.499

EAP-IG
Then 0.666 0.275 0.129 0.104 0.138 0.133 0.134 0.163 0.197 0.157 0.261 0.484
, 0.434 0.182 0.117 0.100 0.132 0.124 0.125 0.153 0.183 0.150 0.246 0.469
Christina 1.318 0.300 0.114 0.099 0.120 0.118 0.117 0.141 0.167 0.153 0.242 0.431
and 0.425 0.185 0.120 0.101 0.133 0.128 0.128 0.155 0.186 0.151 0.246 0.476
Amy 0.695 0.266 0.119 0.100 0.123 0.122 0.118 0.147 0.170 0.155 0.252 0.438
went 0.472 0.279 0.135 0.107 0.139 0.143 0.145 0.168 0.207 0.157 0.258 0.501
to 0.589 0.209 0.133 0.107 0.141 0.145 0.145 0.169 0.201 0.161 0.257 0.486
the 0.393 0.187 0.122 0.100 0.132 0.128 0.125 0.154 0.181 0.152 0.240 0.472
restaurant 0.639 0.271 0.125 0.106 0.132 0.134 0.133 0.157 0.190 0.152 0.247 0.486
. 0.437 0.170 0.110 0.095 0.126 0.119 0.116 0.146 0.172 0.147 0.244 0.446
Amy 0.695 0.266 0.119 0.100 0.123 0.122 0.118 0.147 0.170 0.155 0.252 0.438
gave 0.408 0.260 0.134 0.107 0.137 0.140 0.142 0.167 0.209 0.163 0.268 0.499

EAP-IG-KL
Then 0.666 0.275 0.129 0.104 0.138 0.133 0.134 0.163 0.178 0.225 0.261 0.484
, 0.434 0.182 0.117 0.100 0.132 0.124 0.125 0.153 0.164 0.214 0.246 0.469
Christina 1.318 0.300 0.114 0.099 0.120 0.118 0.117 0.141 0.146 0.195 0.242 0.431
and 0.425 0.185 0.120 0.101 0.133 0.128 0.128 0.155 0.167 0.213 0.246 0.476
Amy 0.695 0.266 0.119 0.100 0.123 0.122 0.118 0.147 0.149 0.205 0.252 0.438
went 0.472 0.279 0.135 0.107 0.139 0.143 0.145 0.168 0.196 0.222 0.258 0.501
to 0.589 0.209 0.133 0.107 0.141 0.145 0.145 0.169 0.190 0.224 0.257 0.486
the 0.393 0.187 0.122 0.100 0.132 0.128 0.125 0.154 0.155 0.211 0.240 0.472
restaurant 0.639 0.271 0.125 0.106 0.132 0.134 0.133 0.157 0.174 0.208 0.247 0.486
. 0.437 0.170 0.110 0.095 0.126 0.119 0.116 0.146 0.150 0.213 0.244 0.446
Amy 0.695 0.266 0.119 0.100 0.123 0.122 0.118 0.147 0.149 0.205 0.252 0.438
gave 0.408 0.260 0.134 0.107 0.137 0.140 0.142 0.167 0.187 0.227 0.268 0.499
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Table 6: Self-influence scores across layers 0–11 using three different methods. The best influence score within
each layer is highlighted in bold.

Token L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

EAP
Then 0.797 0.533 0.058 0.102 1.571 0.130 0.171 0.168 0.174 0.214 0.337 0.463
, 0.615 0.501 0.055 0.098 1.507 0.123 0.161 0.160 0.162 0.200 0.316 0.449
Danielle 0.163 0.047 0.053 0.094 1.456 0.119 0.151 0.151 0.151 0.178 0.303 0.412
and 0.625 0.501 0.055 0.099 1.517 0.126 0.165 0.162 0.168 0.204 0.320 0.456
Andrew 0.618 0.480 0.053 0.097 1456 0.117 0.144 0.147 0.145 0.179 0.305 0.420
had 0.668 0.547 0.060 0.106 1.614 0.136 0.181 0.172 0.190 0.222 0.343 0.493
a 0.648 0.516 0.057 0.102 1.559 0.136 0.168 0.164 0.173 0.207 0.330 0.471
lot 0.803 0.533 0.059 0.104 1.594 0.134 0.176 0.171 0.184 0.217 0.341 0.484
of 0.667 0.510 0.056 0.099 1.522 0.127 0.159 0.161 0.161 0.201 0.323 0.457
fun 0.646 0.508 0.056 0.101 1.545 0.131 0.167 0.166 0.175 0.206 0.331 0.463
at 0.630 0.516 0.056 0.098 1.534 0.126 0.162 0.164 0.163 0.206 0.326 0.457
the 0.590 0.499 0.055 0.098 1.505 0.129 0.158 0.157 0.161 0.197 0.316 0.451
office 0.626 0.514 0.055 0.100 1.522 0.129 0.166 0.161 0.173 0.201 0.315 0.455
. 0.574 0.472 0.052 0.092 1.424 0.116 0.142 0.152 0.136 0.181 0.306 0.421
Andrew 0.618 0.489 0.053 0.097 1.456 0.117 0.144 0.147 0.145 0.179 0.305 0.420
gave 0.640 0.550 0.061 0.106 1.623 0.135 0.179 0.176 0.182 0.224 0.356 0.487
a 0.648 0.516 0.057 0.102 1.559 0.136 0.168 0.164 0.173 0.207 0.330 0.471
computer 0.711 0.519 0.058 0.106 1.586 0.136 0.174 0.168 0.179 0.210 0.337 0.482
to 0.909 0.570 0.064 0.113 1.714 0.143 0.192 0.186 0.189 0.235 0.340 0.460

EAP-IG
Then 0.618 0.282 2.637 0.140 0.137 0.130 0.171 0.168 0.199 0.214 0.371 0.463
, 0.413 0.177 2.505 0.137 0.131 0.123 0.161 0.160 0.189 0.200 0.351 0.449
Danielle 1.090 0.327 2.399 0.125 0.123 0.119 0.151 0.151 0.180 0.178 0.339 0.412
and 0.415 0.172 2.510 0.138 0.134 0.126 0.165 0.162 0.193 0.204 0.356 0.456
Andrew 0.430 0.217 2.412 0.135 0.124 0.117 0.144 0.147 0.176 0.179 0.340 0.420
had 0.481 0.219 2.702 0.150 0.143 0.136 0.181 0.172 0.211 0.222 0.383 0.493
a 0.472 0.177 2.594 0.140 0.139 0.136 0.168 0.164 0.201 0.207 0.366 0.471
lot 0.478 0.240 2.655 0.143 0.141 0.134 0.176 0.171 0.207 0.217 0.376 0.484
of 0.438 0.169 2.526 0.144 0.129 0.127 0.159 0.161 0.190 0.201 0.354 0.457
fun 0.502 0.229 2.548 0.139 0.135 0.131 0.167 0.166 0.198 0.206 0.364 0.463
at 0.437 0.209 2.561 0.140 0.130 0.126 0.162 0.164 0.194 0.206 0.359 0.457
the 0.395 0.160 2.486 0.137 0.133 0.129 0.158 0.157 0.191 0.197 0.349 0.451
office 0.527 0.193 2.517 0.138 0.134 0.129 0.166 0.161 0.194 0.201 0.351 0.455
. 0.383 0.172 2.380 0.126 0.123 0.116 0.142 0.152 0.175 0.181 0.339 0.421
Andrew 0.430 0.217 2.412 0.135 0.124 0.117 0.144 0.147 0.176 0.179 0.340 0.420
gave 0.386 0.258 2.752 0.149 0.135 0.135 0.179 0.176 0.213 0.224 0.391 0.487
a 0.472 0.177 2.594 0.140 0.139 0.136 0.168 0.164 0.201 0.207 0.366 0.471
computer 0.545 0.214 2.635 0.149 0.139 0.136 0.174 0.168 0.202 0.210 0.373 0.482
to 0.657 0.223 2.860 0.151 0.152 0.143 0.192 0.186 0.217 0.235 0.379 0.460

EAP-IG-KL
Then 0.617 0.290 2.637 0.140 0.137 0.130 0.171 0.168 0.199 0.222 0.219 0.560
, 0.413 0.189 2.505 0.137 0.131 0.123 0.161 0.160 0.189 0.210 0.208 0.526
Danielle 1.090 0.339 2.399 0.125 0.123 0.119 0.151 0.151 0.180 0.199 0.213 0.509
and 0.415 0.191 2.510 0.138 0.134 0.126 0.165 0.162 0.193 0.209 0.209 0.531
Andrew 0.430 0.240 2.412 0.135 0.124 0.117 0.144 0.147 0.176 0.213 0.213 0.529
had 0.481 0.259 2.702 0.150 0.143 0.136 0.181 0.172 0.211 0.217 0.220 0.558
a 0.472 0.212 2.594 0.140 0.139 0.136 0.168 0.164 0.201 0.209 0.210 0.539
lot 0.478 0.269 2.655 0.143 0.141 0.134 0.176 0.171 0.207 0.217 0.215 0.540
of 0.438 0.186 2.526 0.144 0.129 0.127 0.159 0.161 0.190 0.211 0.208 0.537
fun 0.502 0.258 2.548 0.139 0.135 0.131 0.167 0.166 0.198 0.205 0.207 0.529
at 0.437 0.220 2.561 0.140 0.130 0.126 0.162 0.164 0.194 0.217 0.214 0.537
the 0.395 0.189 2.486 0.137 0.133 0.129 0.158 0.157 0.191 0.208 0.204 0.526
office 0.527 0.233 2.517 0.138 0.134 0.129 0.166 0.161 0.194 0.201 0.201 0.509
. 0.383 0.173 2.380 0.126 0.123 0.116 0.142 0.152 0.175 0.207 0.205 0.514
Andrew 0.430 0.240 2.412 0.135 0.124 0.117 0.144 0.147 0.176 0.213 0.213 0.529
gave 0.386 0.280 2.752 0.149 0.135 0.135 0.179 0.176 0.213 0.227 0.230 0.577
a 0.472 0.212 2.594 0.140 0.139 0.136 0.168 0.164 0.201 0.209 0.210 0.539
computer 0.545 0.255 2.635 0.149 0.139 0.136 0.174 0.168 0.202 0.216 0.214 0.546
to 0.657 0.211 2.860 0.151 0.152 0.143 0.192 0.186 0.217 0.227 0.229 0.533
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Table 7: Self-influence scores across layers 0–11 using EAP method. The best influence score within each layer is
highlighted.

Token L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

EAP
When 0.533 0.514 0.056 0.093 1.478 0.116 0.172 0.153 0.173 0.215 0.346 0.461
Anthony 1.255 0.441 0.049 0.083 1.331 0.104 0.149 0.132 0.148 0.181 0.310 0.395
and 0.390 0.468 0.053 0.089 1.430 0.112 0.167 0.145 0.171 0.207 0.322 0.448
Jose 0.841 0.439 0.050 0.084 1.353 0.107 0.156 0.138 0.154 0.188 0.315 0.407
got 0.533 0.513 0.057 0.096 1.500 0.120 0.179 0.158 0.184 0.222 0.342 0.473
a 0.601 0.490 0.055 0.093 1.480 0.119 0.173 0.147 0.177 0.210 0.335 0.470
drink 0.537 0.485 0.055 0.095 1.490 0.120 0.176 0.155 0.182 0.215 0.332 0.470
at 0.489 0.479 0.054 0.088 1.434 0.110 0.159 0.144 0.166 0.206 0.327 0.445
the 0.486 0.469 0.052 0.088 1.417 0.111 0.163 0.140 0.164 0.199 0.319 0.448
restaurant 0.712 0.481 0.055 0.095 1.485 0.121 0.176 0.153 0.180 0.212 0.326 0.459
, 0.423 0.465 0.052 0.088 1.408 0.110 0.161 0.142 0.165 0.203 0.319 0.436
Jose 0.841 0.439 0.050 0.084 1.353 0.107 0.156 0.138 0.154 0.188 0.315 0.407
decided 0.816 0.534 0.061 0.101 1.601 0.129 0.187 0.167 0.197 0.236 0.365 0.499
to 0.658 0.533 0.060 0.096 1.605 0.130 0.182 0.158 0.194 0.221 0.352 0.481
give 0.421 0.523 0.058 0.097 1.528 0.120 0.180 0.159 0.188 0.228 0.355 0.484
it 0.653 0.516 0.057 0.101 1.544 0.131 0.188 0.161 0.196 0.227 0.342 0.484
to 0.658 0.533 0.060 0.096 1.605 0.130 0.182 0.158 0.194 0.221 0.352 0.481

EAP-IG
When 0.391 0.278 2.545 0.140 0.111 0.116 0.172 0.153 0.186 0.215 0.377 0.461
Anthony 0.878 0.269 2.223 0.128 0.099 0.104 0.149 0.132 0.154 0.181 0.331 0.395
and 0.321 0.175 2.388 0.129 0.108 0.112 0.167 0.145 0.175 0.207 0.355 0.448
Jose 0.643 0.264 2.256 0.127 0.102 0.107 0.156 0.138 0.159 0.188 0.341 0.407
got 0.450 0.243 2.559 0.140 0.114 0.120 0.179 0.158 0.190 0.222 0.377 0.473
a 0.440 0.191 2.488 0.136 0.114 0.119 0.173 0.147 0.183 0.210 0.369 0.470
drink 0.554 0.231 2.491 0.136 0.114 0.120 0.176 0.155 0.187 0.215 0.365 0.470
at 0.397 0.222 2.425 0.131 0.106 0.110 0.159 0.144 0.176 0.206 0.358 0.445
the 0.365 0.171 2.370 0.132 0.106 0.111 0.163 0.140 0.170 0.199 0.351 0.448
restaurant 0.569 0.233 2.469 0.136 0.112 0.121 0.176 0.153 0.183 0.212 0.361 0.459
, 0.336 0.180 2.364 0.129 0.105 0.110 0.161 0.142 0.173 0.203 0.348 0.436
Jose 0.643 0.264 2.256 0.127 0.102 0.107 0.156 0.138 0.159 0.188 0.341 0.407
decided 0.720 0.270 2.722 0.145 0.122 0.129 0.187 0.167 0.205 0.236 0.399 0.499
to 0.566 0.208 2.681 0.134 0.125 0.130 0.182 0.158 0.195 0.221 0.376 0.481
give 0.320 0.259 2.622 0.142 0.115 0.120 0.180 0.159 0.196 0.228 0.387 0.484
it 0.562 0.209 2.580 0.138 0.123 0.131 0.188 0.161 0.197 0.227 0.375 0.484
to 0.566 0.208 2.681 0.134 0.125 0.130 0.182 0.158 0.195 0.221 0.376 0.481

EAP-IG-KL
When 0.391 0.256 2.545 0.140 0.111 0.116 0.172 0.153 0.186 0.192 0.258 0.581
Anthony 0.878 0.256 2.223 0.128 0.099 0.104 0.149 0.132 0.154 0.173 0.229 0.510
and 0.321 0.180 2.388 0.129 0.108 0.112 0.167 0.145 0.175 0.173 0.236 0.530
Jose 0.643 0.251 2.256 0.127 0.102 0.107 0.156 0.138 0.159 0.172 0.234 0.514
got 0.450 0.247 2.559 0.140 0.114 0.120 0.179 0.158 0.190 0.185 0.248 0.561
a 0.440 0.224 2.488 0.136 0.114 0.119 0.173 0.147 0.183 0.172 0.247 0.542
drink 0.554 0.248 2.491 0.136 0.114 0.120 0.176 0.155 0.187 0.176 0.235 0.536
at 0.397 0.212 2.425 0.131 0.106 0.110 0.159 0.144 0.176 0.175 0.242 0.544
the 0.365 0.192 2.370 0.132 0.106 0.111 0.163 0.140 0.170 0.169 0.236 0.526
restaurant 0.569 0.258 2.469 0.136 0.112 0.121 0.176 0.153 0.183 0.174 0.234 0.527
, 0.336 0.177 2.364 0.129 0.105 0.110 0.161 0.142 0.173 0.174 0.236 0.526
Jose 0.643 0.251 2.256 0.127 0.102 0.107 0.156 0.138 0.159 0.172 0.234 0.514
decided 0.720 0.275 2.722 0.145 0.122 0.129 0.187 0.167 0.205 0.196 0.260 0.581
to 0.566 0.215 2.681 0.134 0.125 0.130 0.182 0.158 0.195 0.185 0.258 0.535
give 0.320 0.253 2.622 0.142 0.115 0.120 0.180 0.159 0.196 0.192 0.254 0.579
it 0.562 0.240 2.580 0.138 0.123 0.131 0.188 0.161 0.197 0.182 0.241 0.544
to 0.566 0.215 2.681 0.134 0.125 0.130 0.182 0.158 0.195 0.185 0.258 0.535
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