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Abstract

Despite advances in the multilingual capabili-
ties of Large Language Models (LLMs) across
diverse tasks, English remains the dominant
language for LLM research and development.
This has led to the widespread practice of pre-
translation, i.e., translating non-English task
prompts into English before inference. Selec-
tive pre-translation, a more surgical approach,
focuses on translating specific prompt compo-
nents. However, its current use is sporadic and
lacks a systematic research foundation. Con-
sequently, the optimal selective pre-translation
strategy for various multilingual settings and
tasks remains unclear. In this work, we aim
to uncover the optimal setup for selective pre-
translation by systematically assessing its use.
Specifically, we view the prompt as a modu-
lar entity, composed of four functional parts:
instruction, context, examples, and output, ei-
ther of which could be translated or not. We
evaluate pre-translation strategies across 35 lan-
guages covering both low and high-resource
languages, on various tasks including Question
Answering (QA), Natural Language Inference
(NLI), Named Entity Recognition (NER), and
Abstractive Summarization. Our experiments
show the impact of factors as similarity to En-
glish, translation quality, and the size of pre-
trained data, on the model performance. We
suggest practical guidelines for choosing opti-
mal strategies in various multilingual settings.1

1 Introduction

Large language models (LLMs) demonstrate im-
pressive capabilities across various natural lan-
guage processing tasks, including machine trans-
lation (Kocmi et al., 2023), natural language un-
derstanding (Saba, 2024) and complex reasoning

1We launched a user-friendly HuggingFace Space for gen-
eration and use of selective pre-translation prompts https:
//huggingface.co/spaces/naacl-anonymous/
selective_pre_translation. Appendix D provides
further details and illustrations.

tasks (Huang and Chang, 2022). These exceptional
capabilities of LLMs stem, to a large extent, from
the vast amounts of data they were trained on (Ka-
plan et al., 2020). Current LLMs are primarily
trained on English data but also include data from
other languages, i.e., GPT-3 was trained on 119
languages, but only 7% of the tokens are from non-
English languages.2 With over 7,000 languages
spoken worldwide (Anderson, 2010), the increas-
ing pace of globalization has amplified the need
for LLMs that understand and respond in diverse
languages.

One common strategy to respond to a task pre-
sented in a language different than English is pre-
translation, which involves translating the com-
plete prompt into English before querying the
model (Ahuja et al., 2023; Shi et al., 2022), al-
lowing to leverage the robust capabilities acquired
in English across different languages. At the
same time, this approach introduces complexities
and risks of information loss (Nicholas and Bha-
tia, 2023). Also, it is unclear whether this ap-
proach is uniformly effective across languages and
tasks, especially tasks requiring region-specific or
culturally-apropriate knowledge.

In contrast to pre-translation, recent studies show
that direct inference, i.e., prompting the model di-
rectly in the (non-English) source language spoken
by the user, outperforms pre-translation for tasks
like QA (Intrator et al., 2024). However, it is un-
clear whether this approach is optimal, consider-
ing that the model was trained on limited data in
the source language. It is also unclear how much
information is shared across languages during pre-
training. Be that as it may, as we show in Sec. 3.2.1,
direct inference results still remain suboptimal.

In view of these shortcomings, various studies
propose to use selective pre-translation, a more
nuanced method compared to the de-facto standard

2https://github.com/openai/gpt3/blob/
master/dataset_statistics
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Figure 1: Prompting Strategies: Direct Inference, Selective Pre-Translation, and Pre-Translation

pre-translation approach, which calls for translat-
ing only specific parts of the prompt (Ahuja et al.,
2023; Kim et al., 2023; Kim et al.). For example,
Liu et al. (2024) show that translating only the con-
text to English outperforms direct-inference in sum-
marization and NLI. Ahuja et al. (2023) translated
few-shot examples to English while keeping the
context in the source language. Kim et al. (2023)
used the selective approach when prompting dif-
ferent cross-lingual compositions of in-context ex-
amples. However, the selective approach lacks a
systematic evaluation of more complex setups, e.g.,
instruction in English and output in the source lan-
guage. Consequently, the efficacy of selective pre-
translation and the optimal prompt configurations
for various multilingual settings and tasks remain
unclear. To fill this gap, in this paper we set out
to examine the impact of selective pre-translation,
a commonly used method, across diverse tasks, in
order to devise effective prompting strategies for
multilingual LLMs.

Concretely, we define a formal configuration for
a prompt — consisting of four functional parts:
instruction, context, examples, and output — ei-
ther of which could be selectively pre-translated
or not (see also Winata et al. (2021); Ahuja et al.
(2023)). We exhaustively assess all configurations
of cross-lingual prompt translation into English
from different source languages. Figure 1 presents
an overview of our approach, demonstrating the var-
ious selective pre-translation strategies compared
against pre-translation and direct inference in the
source language.

Through a comprehensive evaluation involving
35 languages, four tasks, six dataset collections,
and three models, our results demonstrate that se-

lective pre-translation consistently outperforms
both pre-translation and direct inference in the
source language, establishing the efficacy of se-
lective pre-translation strategies (Section 3). Ad-
ditionally, we analyze the considerations in deter-
mining which component to translate, and illustrate
the optimal strategies across tasks and languages
with varying resource levels. Moreover, we ex-
amine how factors such as language similarity to
English, training size, and language script affect
task performance, and show the effectiveness of
selective pre-translation method in mitigating vari-
ous translation issues, by choosing which prompt
components to translate (Section 4).

More specifically, our findings demonstrate that
in extractive tasks such as QA or NER, where the
output overlaps with the provided context and no
generation is needed, the model is either agnostic
to the context language in the case of high-resource
languages or prefers context in the source language
in the case of low-resource languages. Surpris-
ingly, we have discovered that low-resource lan-
guages yield better results even when the model’s
output is required in English, e.g., in NER (Sec-
tion 3). Moreover, we show that translation quality
significantly affects model performance and that
the selective pre-translation approach essentially
mitigates the negative effect of suboptimal transla-
tions, which are in turn specifically problematic in
lower-resourced languages (Section 4).

All in all, our extensive and systematic evalu-
ation of pre-translation strategies facilitates gen-
eralization across a broader range of languages
and tasks, beyond the specific ones herein, towards
more robust LLM-use in multilingual settings.
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2 The Proposal: Formalizing Prompts
Selective Pre-Translation Strategies

Current practices of prompting generative LLMs,
such as the GPT models family (Ouyang et al.,
2022) and Gemini (Team et al., 2023), uncover
two remarkable capabilities in performing language
processing tasks: (i) chain of thought (Wei et al.,
2022), where LLMs solve complex tasks through a
series of intermediate reasoning steps, and (ii) in-
context learning (Brown et al., 2020), allowing the
model to adapt to new tasks based on limited exam-
ples, without weights updates. These capabilities
are built on top of the notion of a prompt, which
serves as a prefix for the LLM’s response. These
capabilities are powered by the complex nuanced
structure of nowadays prompts, consisting of four
components: instruction, context, examples, and
output.

Let us first define these four components, as
follows. The Instruction (I) provides a natural
language guidance to the model, explaining the task
to be performed. The Context (X) represents the
task data that the model operates on in performing
the task. Examples (E) are optional illustrations of
context:output pairs, that can be used for in-context
learning. Overall, we define ⟨I X ⟩ as a zero-shot
prompt and a few-shot prompt as ⟨I X E ⟩. The
prompt is processed by a model M to yield an
Output (O), where the instruction can include a
request for the model to generate the output in a
specific language or format.

Each component, i.e., the instruction, the con-
text, the examples, or the output, may be pre-
translated or not. We denote a pre-translation de-
cision l ∈ {e, s}, where e stands for English pre-
translation and s for the source language. Stan-
dardly the prompt is composed as ⟨I X E ⟩ and
is delivered to the model M, which in turn emits
an output O. We define a specific pre-translation
configuration3 as c = ⟨Ili ,Xlx , Ele , Olo⟩ where the
subscript l ∈ {e, s} indicates the language of the
component. Having defined the pre-translation con-
figurations, we evaluate them in different settings.

3 Selective Pre-Translation Evaluation

3.1 Experimental Setup

Goal We set out to compare selective pre-
translation to both pre-translation and direct infer-

3See Appendix A.2 for specific configuration examples.

Affinity Class Range (% of tokens) Avg. #tokens (M) STD
High Resource A p ≥ 0.1% 1,240 1,156
Medium Resource B 0.01% < p < 0.1% 72 49
Low Resource C 0% < p ≤ 0.01% 5.07 5.41
Unrepresented D p = 0% 0 0

Table 1: Language categorization based on the percent-
age (p) of tokens per language in GPT-3’s training data.
Avg. token count (millions), STD: standard deviation.

ence, and to assess the impact of the selected con-
figuration on task performance across languages.

Prompt Configuration We assess selective pre-
translation in both zero-shot and few-shot settings.
In the zero-shot settings, with no examples, we
considered 23 configurations. For the few-shot sce-
nario, with four components, each is either trans-
lated to English or retains the source language, we
get 24 configurations. All in all we experiments
with 24 configurations per language and task.4

Prompt Creation And Output Normalization
Based on the prompt configuration, we used the
Google Translate API5 to translate the components
that required translation. After querying the model,
we normalized and formatted its output, then trans-
lated it to match the language of the gold standard.
See Appendix A.1 for further implementation.

Models We conducted experiments on several
LLMs: (1) Standard generative models—GPT-3.5-
turbo (Ouyang et al., 2022), Mistral-8x7B (Jiang
et al., 2023), and Gemini-1.0-pro (Team et al.,
2023) — with context sizes of 16k, 32k, and 8k,
respectively; (2) multilingual - bloomz-7b1-mt
(Muennighoff et al., 2022), with a 2k context.6

Language Selection and Categorization We
selected ~11 languages per task, ensuring a bal-
anced representation across resource levels (high,
medium, low). Due to the lack of precise pre-
training distribution for the LLMs we use, we em-
ployed the GPT-3 distribution as a proxy, as it is
the only distribution publicly shared, to our knowl-
edge.7 The GPT-3’s multilingual coverage enables
us to categorize languages into classes based on
their data ratios. Following Lai et al. (2023), we
categorized the tested languages into four classes
based on data ratio: High-Resource (A), Medium-

4NLI has 12 configurations, with output always in the
instruction language, due to its particular, fixed, output format.

5pypi.org/project/easygoogletranslate/
6See Appendix A.1 for details on the models we used.
7https://github.com/openai/gpt-3/blob/

master/dataset_statistics
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Task Dataset Languages

NLI XNLI
High: Spanish, German, Chinese
Medium: Greek, Turkuish, Arabic
Low: Bulgarian, Hindi, Thai, Swahili, Urdu

QA
XQuAD

High: German, Russian, Romanian
Medium: Arabic, Greek, Vietnamese

IndicQA
Low: Hindi, Malayalam, Bengali, Telugu
Unrepresented: Assamese

NER
MasakhaNER Unrepresented: Bambara, Ese, Hausa, Yoruba

WikiANN
High: French, Chinese, Italian, Portuguese, Swedish
Medium: Serbian, Slovak

Summarization XL-Sum
High: French, Japanese, Spanish, Portuguese
Medium: Korean, Turkish,
Low: Azerbaijani, Nepali, Persian, Uzbek

Table 2: Experiment Setup: Tasks, datasets, languages.
Languages are separated by their resource-type affinity.

Resource (B), Low-Resource (C), and Unrepre-
sented (D).8 Class D, which includes languages
unseen during training. Table 1 summarizes this
classification with basic properties.9

Tasks and Datasets We assess model perfor-
mance on 4 tasks, NLI, QA, NER, and Summariza-
tion, which we detail in turn. (i) Natural Language
Inference (NLI) determines if a hypothesis entails,
contradicts, or is neutral to a premise. We use the
XNLI dataset (Conneau et al., 2018), with sentence
pairs in 11 languages, and measured prediction ac-
curacy. (ii) Question Answering (QA): We focus
on extractive QA, where the model identifies the
answer span in a given context. We evaluated per-
formance on XQuAD (Artetxe et al., 2019) and
IndicQA (Doddapaneni et al., 2022) for Indic lan-
guages, using the F1 score to assess performance.
(iii) Named Entity Recognition (NER): We sam-
pled languages from two datasets: WikiANN (Pan
et al., 2017), which includes Wikipedia sentences
annotated with Location, Person, and Organization
tags in 176 languages; and MasakhaNER (Adelani
et al., 2021), for African languages. While both
datasets use the BIOSE scheme to delineate en-
tity boundaries, we recast the task as generative,
prompting the model to generate the list labeled
named entities for a given input context. Model
performance has been evaluated using F1 scores.
(iv) Abstractive Text Summarization involves gen-
erating short summaries of long contexts, rather
than extracting existing sentences. We used the
XL-Sum dataset (Hasan et al., 2021), which offers
news article summaries in diverse languages. We
sampled 10 languages from the dataset and eval-
uated with ROUGE. We conducted experiments

8See Table 12 for list of languages, codes and data ratios.
9Alternative criteria such as speakers ratio, as proposed by

Joshi et al. (2020), do not reflect language diversity in LLMs,
which is affected by availability of data rather than speakers.

on a sample of 250 examples10 from the test sets
for each language.11In total, the datasets we use
encompass 35 languages across 4 tasks. Table 2
lists the datasets used, covering ~11 languages
per task, ensuring a balanced representation of
{Low,Mid,High} resource categories for each task.

Analysis Methods To analyze the empirical re-
sults and detect the most influential components,
we use three methods: (i) Correlation analysis –
Assessing the relationship between the model’s
prediction scores and the language selection per
component. (ii) Association Rule Learning (ARL)
and the Apriori algorithm – While correlation
analysis provides a preliminary understanding
of the relationship between individual compo-
nents and model performance, it does not cap-
ture non-linear relationships, i.e., the combined
effect of multiple translation decisions on per-
formance. To address this limitation, we utilize
ARL with the Apriori algorithm (Piatetsky-Shapiro,
1991).12 (iii) Performance Gap – We computed
the average difference of k configuration pairs
ci and cj such that they differ only in the lan-
guage of one component, e.g., ⟨Ie, Xe, Ee, Oe⟩
and ⟨Is, Xe, Ee, Oe⟩. We then calculated this av-
erage to determine the performance gap for each
specific task: 1

k

∑k
⟨i,j⟩=1 (Eval(ci)− Eval(cj)),

where Eval() denotes the task evaluation score, and
k is the number of distinct pairs.

3.2 Results

In Section 3.2.1, we present the results of selective
pre-translation demonstrating their advantage over
both direct inference (source language only) and
pre-translation (English only). Subsequently, in
Section 3.2.2, we identify the optimal configura-
tions for each task and analyze the impact of each
component on the overall performance, emphasiz-
ing key considerations for effective prompting. We
start off with GPT-3.5-Turbo and proceed to verify
that our results generalize to other models.

3.2.1 Selective Pre-Translation Advantage
Table 3 shows each language’s highest-performing
configuration score among all 24 distinct configura-
tions.13 Additionally, we display the improvement

10We selected 250 that followed the can fit into the context
of the model, i.e., < 16K.

11For tasks without public test sets (XQUAD, IndicQA),
we used the validation data.

12Appendix A.3.1 details the algorithm and implementation.
13Appendix E displays the full-fledged table of results.
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Question Answering (QA, F1) Summarization (ROUGE) Named Entity Recognition (NER, F1) Natural Language Inference (NLI, Acc.)
Lng Cls. ↑Top Src. (%) Eng. (%) Lng Cls. ↑Top Src. (%) Eng. (%) Lng Cls. ↑Top Src. (%) Eng. (%) Lng Cls. ↑Top Src. (%) Eng. (%)
en A 0.77 N.A N.A en A 30.23 N.A N.A en A 0.65 N.A N.A en A 0.69 N.A N.A
de A 0.85 18% 9% fr A 35.12 16% 10% sr B 0.77 52% 265% sw C 0.73 58% 28%
hi C 0.82 32% 182% ja A 32.47 17% 14% it A 0.75 9% 41% bg C 0.72 57% 8%
ar B 0.74 84% 138% fa C 29.34 21% 0% sk B 0.72 15% 36% el B 0.71 24% 30%
vi B 0.73 0% 58% es A 28.28 10% 3% po A 0.72 18% 20% es A 0.69 20% 18%
ro A 0.69 0% 9% po A 27.40 8% 0% fr A 0.72 23% 24% ar B 0.67 28% 23%
ru A 0.69 6% 305% tr B 20.87 18% 0% hau C 0.70 62% 51% hi C 0.64 59% 8%
el B 0.69 0% 2% ne C 19.58 31% 28% ee D 0.68 46% 81% de A 0.64 19% 8%
bn D 0.68 44% 423% as D 15.79 17% 7% sv A 0.68 12% 9% zh B 0.63 16% 4%
as D 0.56 138% 450% uz C 15.72 58% 24% zh B 0.63 90% 121% th B 0.57 49% 10%
te C 0.53 210.10% 253.30% ko B 11.84 36.99% 11.78% bam D 0.33 33.25% 80.24% ur C 0.57 29.96% 9.08%
ml C 0.49 104.30% 600.00% yor D 0.32 66.02% 49.19% tr B 0.57 0.00% 8.14%

Table 3: For each Language, we present the top-performing selective configuration score over all other configurations
(Top) along with its relative improvement (%) over direct inference (Src) and pre-translation (Eng).

QA Summarization NER NLI
lng cls. instruction context examples output lng cls. instruction context examples output lng cls. instruction context examples output lng cls. instruction context examples
ru A -0.08** 0.35** 0.12** 0.09** ja A -0.33** -0.08 -0.02* 0.00 fr A -0.11* 0.10* -0.01 0.01 de A -0.03 -0.02 -0.01
de A -0.03** 0.30** 0.08 0.03* fr A 0.01 0.020 -0.04 0.06 it A 0.02 0.04 -0.04 0.01 es A -0.03 0.02 -0.03*
ro A -0.03 0.12** 0.04 0.02 po A -0.08* 0.05* -0.03* 0.10* po A -0.15 0.09* 0.1 0.01 el B -0.04 0.01 0.07
vi B 0.04 0.40** 0.10** 0.10 es A -0.09* 0.03* -0.03 0.05 sv A -0.11* 0.06* -0.03** 0.01 zh B 0.01 -0.06 -0.06
ar B -0.07** 0.20** 0.13** 0.04* tr B -0.14** 0.10 -0.1 -0.03* zh B -0.26** 0.44** 0.00 0.07 ar B 0.00 -0.02 -0.04
el B -0.06 0.48** 0.03 0.07* ko B -0.10** 0.13 0.01 0.05 sr B -0.26** 0.44** 0.09** 0.05 th B -0.03 0.03 -0.14*
bn C -0.10** 0.38** 0.03 0.03 uz C -0.42** 0.14 0.03 -0.12* sk B -0.11** 0.30** -0.1* 0.01 tr B -0.02 0.00 0.02
ma C -0.14** 0.30** 0.01 0.03 fa C -0.37** 0.05 -0.07** -0.04 bam D 0.03 0.44** -0.11 0.02 ur C 0.01 0.01 -0.08*
te C -0.10** 0.38** 0.03 0.03 ne C -0.35** -0.09 0.07** -0.14 ewe D -0.01 0.38** -0.12** 0.01 bg C 0.01 0.05 -0.13*
hi C -0.07** 0.30** 0.05 0.01 az C -0.30** 0.04 -0.00 -0.05 yo D -0.01 0.36** 0.01* 0.03 sw C 0.12 -0.06 -0.09
as D -0.04** 0.30** 0.06 0.06 hau D -0.04 0.30** 0.08* 0.02 hi C -0.03 -0.09 -0.09**

Table 4: For each language, we present the Point-biserial correlation (τ ) between the individual component’s
language selection (English/Source), and the model performance score across all the configurations samples that use
it. Positive |τ | values correlate with the source language, and negative |τ | values correlate with English. Significant
correlations are indicated by *p < 0.05 and **p < 0.01. Bold values denote correlations (|τ | > 0.3, p < 0.01).

Resource Model QA NER Summarization NLI
Component I. X. E. O. I. X. E. O. I. X. E. O. I. X. E.

GPT N S S S N S S S S S N N N S E
Gemini S S S S N S S S E E Z N N N EHigh
Mixtral N S S S N S S S S S Z S N S S
GPT N S S S N S S E E E S E N E S
Gemini S S S S E S S E S S Z N N N ELow
Mixtral N S S S E S S E E E E E N S E

High Bloomz S S S S S S S S E E E E E E E
Low Bloomz S S S S S S S S E E E E E E E

Table 5: The Top-performing configurations
based on Apriori-based Association Rules for
High/Low resource level. Comparing Standard
LLMs (GPT/Gemini/Mixtral) and Multilingual
LLM. confidence > 0.8, support > 0.15. S / E -
source/English language, Z - zero-shot (no examples),
N - neutral (same performance for English/Source).

(%) over direct inference and pre-translation for
each language. The results indicate that 92% of
the tested languages show an improvement over
the basic pre-translation configuration. Particu-
larly for low-resource languages like Malayalam
and Telugu, the gains with selective pre-translation
are substantial, exceeding 200% in relative im-
provement. Overall, when comparing selective
pre-translation to complete pre-translation, the av-
erage improvement in low-resource languages is
65% greater than the average improvement in high-
resource languages.

The results further reveal that 90% of the lan-
guages show improvement over basic direct in-
ference. Similar to the pre-translation approach,

low-resource languages like Telugu and Assamese
demonstrate a relative improvement of over 100%.
High-resource languages also show impressive im-
provement, albeit smaller, e.g., French and Por-
tuguese show an improvement of over 20% in NER.

Overall, the table shows that selective pre-
translation can outperform both pre-translation
and direct inference, particularly for languages con-
sidered low-resource during pre-training.

3.2.2 The Holy Grail of Optimal
Configuration

Having established the advantage of selective pre-
translation in general, we now study the effects
of component language selection on model perfor-
mance and provide general guidelines for multilin-
gual scenarios.14 Table 4 shows the Point-biserial
correlation between individual component selec-
tion and model performance for all the 24 con-
figurations per language/task.15 Table 5 presents
the top-performing configurations, based on the
highest-scoring apriori rules for multiple compo-
nent selections, henceforth optimal configurations.

14For the instruction component language, except for a
slight preference for English as demonstrated in Table 4, we
did not observe a strong affinity for any language selection.

15We calculate the correlation between performance and a
binary vector indicating whether the component is in English.
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(a) QA (b) NER

(c) NLI (d) Summarization.

Figure 2: Performance Gap Analysis for the Examples
language (English minus Source). Left to right X-axes
order indicates Low to High Resource Level. Y-axes
indicate language preference: positive values for the
source language, and negative for the English language.

Context Language Impact Table 4 shows that
source language selection correlates most with
model performance score in extractive tasks, such
as QA (average of 0.33) and NER (average of 0.32),
particularly for low-resource languages (Class
C/D), which demonstrate a 70% higher correlation
coefficient compared to high-resource languages.
In contrast, in tasks like abstractive summarization
and NLI, we found no correlation (average of 0.05)
to context language selection. Our rule-association
analysis in Table 5 further underscores the impor-
tance of source-language context in extractive tasks,
especially with low-resource languages.

Examples Impact In general, the top-performing
configurations of the GPT model in Table 5 show
that the optimal configurations are those that in-
clude examples, i.e., a few-shot rather than zero-
shot setup (Appendix A.4.1 further supports in-
corporating examples in prompts, especially for
high-resource languages). Concretely concerning
the language selected for the examples, the optimal
configurations in Table 5 show that extractive tasks
as NER perform better with source-language exam-
ples, possibly due to NER’s dependence on region-
specific or culturally-relevant knowledge. Also,
the performance gap analysis in Figure 2, shows
that, for extractive tasks, prompts with examples
in the source language perform better than those
with English examples, especially for low-resource
languages (See 2(a)/2(b)).

Output Language Impact Unlike context and
examples, the output depends on the model gen-
erations’s grammaticality and fluency. The best-
performing configurations for the GPT model in
Table 5 indicate that for extractive tasks, source-
language output is beneficial across all languages.
Interestingly, despite context mismatches, NER in
low-resource languages also benefits from English
output. For generative tasks such as summariza-
tion, model output in English performs better due
to the model’s stronger capabilities in English, even
though we back-translate the output to source prior
to evaluation. Thus, while it is fine in such genera-
tive tasks to instruct the model to generate outputs
in the source language for high-resource languages,
it appears better to generate in English in the low-
resource case.

3.3 Beyond Configuration: Key Factors

Having analyzed the impact of the components’
language selection, we discuss key additional fac-
tors influencing the efficacy of our approach.16

Pre-Training Data Size Impact Table 3 presents
the optimal prompt configuration scores per lan-
guage and task. For QA, summarization, and NER,
the general trend indicates that even for the opti-
mal pre-translation configuration, classes A and
B (High-Medium resource) achieve better results
than classes C and D (Low resource), However, a
few exceptions exist, i.e., in Hausa and Ewe (Class
C/D) we see better results on the NER task com-
pared to Swedish and Chinese (Class A/B). For
the NLI task we found no trend where a class C/D
languages outperform A/B languages. So, while
pre-trained data distribution matters, selective pre-
translation can help low-resource languages match
the results of higher-resource ones in specific tasks.

Linguistic Similarity to English Impact We
used pre-computed syntactic similarities to English
from the URIEL dataset (Littell et al., 2017) and
calculated the Pearson correlation for each task
between the best-performing configuration scores
(top score per language) and the syntactic simi-
larity of these languages to English. A moderate
correlation (0.42) for summarization shows that
syntactic similarity to English positively correlates
with performance. NER also shows moderate cor-
relations, suggesting models better identify entities

16See also Appendix A.4.3 for script impact.
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Figure 3: Scatter plot showing the relationship between syntactic similarity to English (further right is more similar)
and translation quality (ROUGE) for four language resource subsets (represented as distinct four colored shapes).
Each dot represents a different language. Positive linear regression shows an upward trend.

when texts share syntactic features with English.
Appendix A.4.3 further details these results.

Standard Model Impact In the previous section,
we assessed the selective pre-translation strategies
using the GPT model. In this section we check
whether these strategies generalize to other LLMs.
Table 5 displays the optimal configurations per task
and language for Gemini and Mixtral. We see that
the preference for source language in extractive
tasks (for context, examples, and output) holds
across all three models. Additionally, outputting
in English while keeping the context in the source
language for NER in low-resource languages is
consistent. In NLI, models are agnostic to instruc-
tion language. However, surprisingly, in abstractive
summarization, we found no clear pattern.17

Multilingual Model Impact In addition to the
standard LLMs, we evaluated BLOOMZ-7b1-mt,
known for its multilingual capabilities (Muen-
nighoff et al., 2022). Table 5 displays the optimal
configurations for BLOOM across all tasks. We
found no distinction between resource types for
this model. As shown, the preference for source
language in QA is relevant here as well. Interest-
ingly, NER can be answered in the source language,
highlighting its multilingual strength. However,
for generative tasks and NLI, this multilingualism
diminishes, as the model tends to favor English
prompts. Overall, the top-performing configura-
tions for BLOOMZ indicate that it performs better
with single-language prompts rather than with se-
lective pre-translation prompts.

4 Translation: Key to Pre-Translation

In the previous Section we examined various fac-
tors affecting model performance for selective pre-
translation strategies. Since translation forms the
foundation of selective pre-translation, this Section

17See Appendix E for additional results.

Figure 4: Correlation between translation quality
(BERTScore) and accuracy (F1) for Pre-Translation-
Zero-shot prompting, each dot is a different language.

focuses on a key question: Are these factors primar-
ily due to the limitations of LLMs, or are due to the
quality of the pre-translations themselves? To ad-
dress this, we first isolate the impact of these factors
on translation quality through a controlled experi-
ment. Subsequently, we investigate how translation
quality, independently of other factors, influences
downstream tasks in our setup.

4.1 Experimental Setup

Factors Affecting Translation Quality We
evaluated Google Translate performance on the
FLORES-200 validation set (Guzmán et al., 2019),
analyzing 91 languages across all resource levels,
each with 997 sentences paired with their English
translations. We compared machine translations
to human-generated references using: (1) n-gram
matching metrics – Meteor (Banerjee and Lavie,
2005), ROUGE (Lin, 2004), and BLEU (Papineni
et al., 2002), and (2) neural network-based evalua-
tion metrics – BertScore (Zhang et al., 2019) and
Comet (Rei et al., 2020). Additional experiments
using other translation models are in Appendix C.1.

Impact on Downstream tasks We used the QA
dataset XQuAD, with 300 parallel sentences in
English and other languages. We compared the
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zero-shot pre-translation using output in the source
language with the selective pre-transaltion optimal
approach using GPT-3.5-Turbo (0125).

4.2 Results
Factors Affecting Translation Quality Our
analysis focuses on the factors influencing model
performance discussed in Sec. 3 and we explore
their impact on translation quality. We focus on two
factors: language resource levels (high/low) and
linguistic similarity to English. First, we found
that the average quality for high-resource languages
was higher compared to low-resource languages
(0.75 vs 0.73), although correlation between re-
source level and quality wasn’t significant. As for
linguistic similarity to English we used the pre-
computed linguistic similarities from the URIEL
dataset (Littell et al., 2017)18 and calculated the cor-
relation between syntactic similarity to English and
the translation quality for each language. Figure
3 shows a positive correlation (coefficient = 0.33,
p-value = 0.01) between syntactic similarity to En-
glish and translation quality (ROUGE-1). This
correlation is particularly strong for high-resource
languages (coefficient=0.73, p-value=0.004). Addi-
tional correlation results are detailed in Appendix
C.2.

Impact On Downstream Tasks To isolate trans-
lation quality as the sole direct factor influenc-
ing model performance, we translated the entire
prompt into English. Since the original input dif-
fered only in language, not content, any variation in
the processed input can be attributed solely to the
quality of the translation. This approach allows us
to directly measure the correlation between trans-
lation quality and model performance across vari-
ous tasks. Figure 4 shows the correlation between
translation quality (BERTScore) and model perfor-
mance (accuracy) for each language. Our results
show that higher translation quality goes hand in
hand with improved task performance. The overall
Pearson correlation is 0.233 (p < 0.001). However,
when assessing the same tasks with selective pre-
translation instead of a completely pre-translated
prompt, we found a low correlation of 0.05 (p<
0.05) between the translation quality and task per-
formance, while selective pre-translation outper-
forms the fully translated prompt. This disparity
shows that the selective pre-translation method ef-
fectively neutralizes translation issues. By strategi-

18https://github.com/antonisa/lang2vec

cally choosing which prompt components to trans-
late, we can make pre-translation useful for lan-
guages with lower translation quality.

In sum, our findings demonstrate that factors in-
fluencing downstream tasks, such as high resource
level and similarity to English, are positively corre-
lated with translation quality. We further show that
selective pre-translation can mitigate the negative
effects of poor translation quality. These two find-
ings underscore the importance of investing in high-
quality translation, and on the other hand, priori-
tizing the selective pre-translation approach in lan-
guages where machine translation is sub-optimal.

5 Related Work

With over 7,000 languages spoken globally (An-
derson, 2010), the growing use of diverse lan-
guages have fueled the demand for multilingual
LLMs. Progress in this field stems from two
primary efforts: (1) developing dedicated mono-
lingual models for low-to-medium-resource lan-
guages (Seker et al., 2022; Cui et al., 2023; Ander-
sland, 2024), and (2) creating multilingual LLMs
with pre-trained data encompassing multiple lan-
guages (Qin et al., 2024; Jiang et al., 2024).

The ability of Multilingual LLMs to operate
in different languages (Raffel et al., 2020; Con-
neau et al., 2019; Chowdhery et al., 2023) comes
from two sources: (1) training or fine-tuning on
multilingual data in order to achieve multilingual
proficiency (Xue et al., 2020; Chen et al., 2021;
Le Scao et al., 2023; Shaham et al., 2024; Muen-
nighoff et al., 2022), and (2) utilizing prompting
techniques to harness the model’s inherent multi-
lingual capabilities without modifying parameters
during inference (Brown et al., 2020). This latter
approach has gained popularity due to its efficiency
and applicability to a wider range of use cases.

For the latter, to improve the multilingual ca-
pabilities of LLMs researchers developed various
prompting methods. Huang et al. (2023) intro-
duced XLT, a cross-lingual prompt that directs
LLMs to function as experts in a specific language
through a process involving problem-solving and
cross-lingual thinking. Zhao and Schütze (2021)
employed discrete and soft prompting techniques
and showed that few-shot non-English prompts out-
perform finetuning in cross-lingual transfer. Shi
et al. (2022) found that chain-of-thought (CoT)
prompts lead to multilingual reasoning abilities in
LLMs, even in under-represented languages. An-
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other strategy is pre-transaltion which translates
the entire prompt to English (Chowdhery et al.,
2023; Qin et al., 2023; Ahuja et al., 2023). A more
nuanced approach, selective pre-translation, trans-
lates part of the prompt into English, for instance,
Liu et al. (2024) translated only the instruction, and
Ahuja et al. (2023) translated the few shot examples.
While these use cases lack a systematic research
foundation, in this study, we systematically study
pre-translation configurations to provide evidence-
based recommendations for optimal use.

6 Conclusion

In this work we formalize and comprehensively
assess selective pre-translation prompting strate-
gies for LLMs in multilingual settings. With four
tasks, six dataset collections, three models, and
35 languages, we deliver the first systematic eval-
uation, to our knowledge, of all existing prompt
configurations of pre-translation. We demonstrate
that selective pre-translation consistently outper-
forms both pre-translation of the entire prompt and
diret-inference in the source language, establishing
the efficacy of selective pre-translation in both the
high- and low-resource cases. Additionally, we
show that translation quality significantly affects
performance and that selective pre-translation can
mitigate the negative effects of suboptimal transla-
tions.

Limitations

Subset of LLMs This study aims to systemati-
cally assess the effectiveness of various prompting
strategies across different tasks and LLMs. Due to
resource limitations, it was not possible to evaluate
more advanced models such as GPT-4 or GPT-4o.
However, we endeavored to cover several LLMs
representing different architectures. Additionally,
the choice of Bloom as our multilingual model
is based on previous works (Bawden and Yvon,
2023; Nezhad and Agrawal, 2024). We make our
evaluation framework, code, configurations, and
execution pipeline, for open public use, allowing to
extend the investigation to more and newer models.

LLM Adherence and Impact on the Output In
our evaluation, we attempted to influence the output
by instructing the model to generate a response in
a specific language. However, the model occasion-
ally did not follow these instructions, producing
output in a different language, which could impact

the results. Appendix B provides error analysis of
the various issues we encountered.

Evaluation Metrics based on n-gram matching,
such as ROUGE (Lin, 2004), are commonly used
for evaluating summarization quality in English.
However, these metrics can be problematic when
applied to morphologically rich languages (MRL)
such as Persian, which have more flexible word
order compared to English. Additionally, their mor-
phological richness means that the same concept
can be expressed in multiple ways due to variations
in prefixes, suffixes, and root conjugations.

Translation Quality’s Impact on Downstream
tasks Our analysis of the impact of translation
quality impact on downstream tasks in section 4.2
was constrained by the scarcity of datasets with
parallel splits for English and other languages, lim-
iting our evaluation to the QA task. Future research
should incorporate a wider array of datasets and
tasks to validate and expand upon our findings.

Pretrained Data Distribution Details In our ex-
periments, we evaluated four models and grouped
the languages based on GPT-3’s pre-training data
distribution information. Ideally, we would split
the languages according to each model’s data distri-
bution. However, to our knowledge, only GPT-3’s
pre-training data distribution is publicly shared. Ex-
plicitely testing different language distributions is
desired but resource intensive, and is left for future
research.
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A Selective Pre-Translation Evaluation

A.1 Experimental Setup

Models To query GPT-3.5-turbo (0125), we used
the Azure platform via the API19. For Mixtral-
8x7B-287 Instruct-v0.1, we utilized the API plat-
form provided by Together.ai20. For Gemini-1.0-
pro, we accessed the API through Google AI Stu-
dio21. Lastly, for bloomz-7b1-mt, we used de-
ployed the model on Hugging Face22

19https://learn.microsoft.com/en-us/
azure/ai-services/openai/concepts/models

20https://www.together.ai/
21https://aistudio.google.com
22https://huggingface.co/bigscience/

bloomz-7b1-mt

All Configurations
Instruction Context Examples Output
Source Source - English
English Source - English
Source Source Source English
English English English Source
Source English Source English
English Source Source Source
English Source - Source
Source Source Source Source
English Source English Source
Source Source - Source
English English Source Source
English Source English English
English English - English
Source English - English
Source English - Source
Source Source English English
English English - Source
English Source Source English
Source Source English Source
Source English Source Source
English English English English
Source English English English
English English Source English
Source English English Source

Table 6: All Valid Configurations (24)
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(a) <English,English,English,English> (b) <German,English,German,English> (c) <German,German,English,English>

Figure 5: Examples of 3 configurations of German. Each configuration is in the following format <Instruc-
tion,Context,Examples,Output>

.

Prompt Creation For constructing the prompts
we used the LangChain library23 which enables us
to build and validate prompts dynamically for both
zero-shot and few-shot templates. For creating the
instructions, we initially used ChatGPT to generate
them and then fine-tuned them based on quality
analysis from our experiments.

Normalization And Formatting Before evalua-
tion, we normalized the model’s output, with each
task following a unique normalization process. For
the QA task, for example, we converted the text to
lowercase and removed punctuation, articles, and
extra whitespace. In the Summarization task, we
removed prefixes like ’The Summary:’. For the
NER task, we converted the model’s output into
a list of tuples, each in the format (Tag, Entity).
After normalization, additional formatting was ap-
plied if necessary. For instance, in the NER task,
we transformed the normalized output into a list in
the BIOSE format, identifying the entities in the
original sentence and converting each entity predic-
tion to its correct format based on its position (e.g.,
B-ORG for the first entity tagged as ’ORG’).

A.2 Configuration Format

We define a specific selective pre-translation con-
figuration as Ci = ⟨Il,Xl, El

n, O
l⟩, n ≥ 0, l ∈

{e, s}. Each configuration contains 4 components:
instruction, context, examples, and output. Fig-
ure 5 displays examples for 3 configurations in the

23https://pypi.org/project/langchain/

German language. See Table 6 for a list of all the
configurations.

Python Libraries In Use For evaluation of
the different models, we used the most common
ROUGE package for non-English papers24. for
loading and processing the data, we used NumPy25

For help with writing the code, we used assistance
from ChatGPT.

A.3 Analysis Methods

A.3.1 Rule Association And Apriori
Algorithm

Association rule mining, one of the most important
and well-researched techniques of data mining, was
first introduced by Agrawal et al. (1993). It aims to
extract interesting correlations, frequent patterns,
associations, or casual structures among sets of
items in the transaction databases or other data
repositories.

Apriori algorithm The Apriori algorithm is a
popular approach for mining association rules. It
works by identifying frequent itemsets, which are
groups of items that appear together in a dataset
with a frequency above a specified threshold. The
algorithm then generates association rules from
these frequent itemsets, highlighting the likelihood
of one item being present given the presence of an-
other item. Apriori uses a bottom-up approach,

24https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring

25https://pypi.org/project/numpy/
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gradually building larger itemsets from smaller
ones while pruning those that do not meet the min-
imum support threshold.

In our analysis, we reported the following mea-
sures: (i) Support: s(X) = σ(X)

N , where σ(X) is
the number of transactions in which X appears and
N is the total number of transactions.

(ii) Confidence: c(X → Y ) = σ(X∪Y )
σ(X) , mea-

sures the probability of occurrence of itemset Y
with itemset X .

Implementation Details To implement the Rule
Association algorithm, we created a DataFrame
for each task’s results using pandas DataFrames26.
Each DataFrame contains the results for all the con-
figurations for every language. Subsequently, we
binned each score column into three bins - high,
medium, and low, based on the 30th and 60th per-
centiles. Later, we merged all the data frames based
on the configuration name. Then we used the apri-
ori algorithm from the efficient-apriori27 library,
which produces two outputs - itemsets and rules.
Later, we filtered weak rules (support > 0.05 &
confidence > 0.75).

A.4 Prompting
Question Answering Answer the following
<Question> based only on the given <Context>.
Follow these instructions:

• Include only words from the given context in
your answer.

• Keep the answer as short as possible.

• Provide the answer in expected output lan-
guage.

Named Entity Recognition You are an NLP as-
sistant whose purpose is to perform Named Entity
Recognition (NER). You need to assign each entity
a tag from the following:

1. PER means a person.

2. ORG means an organization.

3. LOC means a location entity.

The output should be a list of tuples in the format:

[(Tag,Entity), (Tag,Entity)]

for each entity in the sentence. The entities should
be in the expected output language.

26https://pypi.org/project/pandas/
27https://pypi.org/project/

efficient-apriori/

Summarization Write a summary of the given
<Text> The output should be in expected output
language. The output must be up to 2 sentences
maximum.

Natural Language Inference You are an NLP
assistant whose purpose is to solve Natural Lan-
guage Inference (NLI) problems. NLI is the task
of determining the inference relation between two
texts: entailment, contradiction, or neutral. Your
answer should be one word from the following:
entailment, contradiction, or neutral.

A.4.1 The Holy Grail of Optimal
Configuration

Few-Shot Examples Impact Figure 6 demon-
strates that for all tasks, using a few-shot setting
over a zero-shot setting yields better results. In-
terestingly, For all tasks, except for NLI, high-
resource languages achieved better improvement
when considering a few-shot setting over low-
resource languages.

Output Selection Effects Figure 7 demonstrates
that while in extractive QA the output should be
in the source language, and in the summarization
task, the output should be in English; in NER, the
output is ambiguous.

A.4.2 Factors Explaining Performance
A.4.3 Script Impact
Figure 8 presents the performance improvement
achieved by the highest-performing prompt config-
uration among all configurations compared to the
pre-translation prompt, for each language. Notably,
the language family (as categorized by scripts) re-
veals a relatively even distribution of performance
gains within the same language family. For ex-
ample, languages using the Cyrillic script show
greater improvement than those using the Latin
script. Interestingly, languages in the same script
family sometimes show varying results; for exam-
ple, Spanish and Ewe belong have Latin script, but
Ewe shows greater improvement over Spanish.

Linguistic Similarity To English We used the
lang2vec28 library to obtain syntactic similarity
scores for each language. The Pearson correlation
was calculated based on two vectors: one represent-
ing language similarities (ranging from 0 to 1) and
the other representing model performance scores
for each language across tasks. This correlation

28https://github.com/antonisa/lang2vec
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(a) QA (b) NER (c) NLI (d) Summarization

Figure 6: Few-Shot and Zero-Shot Performance Gap (Few-Shot - Zero-Shot) for each task/language.

(a) QA (b) NER (c) Summarization

Figure 7: Output Performance Gap (English - Source) for each task/language

Figure 8: Percentage improvement over pre-translation approach, when using the highest configuration for each
task For GPT-3.5-Turbo. The bars are color-coded based on the language family script.
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Task Model Output Expected Output Explnation Phenoenen

NER

[ ’LOC:新北市’, ’LOC:平溪’ ] [(LOC, ’新北市’,), (LOC, ’平溪’,)] List of strings, instead of list of tuples. Format Inconsistency
[PER: Hiei]\n- [PER: Hinata]\n [’PER’, ’Hiei’), (’PER’, ’Hinata’)] New line between each entity. Format Inconsistency
Ner Tags: [’PER: LL Cool J’] [(PER: LL Cool J)] Redundant words in the beginning. Extraneous information
[] (No entities found in the sentence) [] Redundant words in the end. Extraneous information
Since the last sentence is in English, I will provide the NER tags in English as well [(PER:ДавидIVГрузиски)] Refusing to output in the desired language. Unwarranted Refusal

QA
[The united states] The united states List of string instead of a string. Format Inconsistency
The question cannot be answered as the answer is not provided in the given context [Luke Kuechly] Insufficent information Unwarranted Refusal

NLI
The second statement neutral because it does not provide any information that contradicts neutral Unnecessary justification for the choice. Extraneous information
vinculación entailment Spanish word for entailment instead of English. Wrong Language

Summarization Resumo: O ministro de Emergências da Rússia, Sergei Shoigu ... O ministro de Emergências da Rússia, Sergei Shoigu ...
Redundant words (’Resumo’ - Summary in Portuguese)
in the beginning.

Extraneous information

Table 7: Error analysis of unexpected model outputs and observed in various tasks/languages.

Model QA NER Summarization
GPT 56 60 96
Mixtral 60 61 78
Gemini 63 61 96

Table 8: Percentage of success of expected output lan-
guages for each model/task

was calculated at the instance level. Table 9 shows
a positive correlation between model performance
and syntactic similarity to English, especially for
the summarization task, indicating that syntactic
similarity to English significantly improves perfor-
mance in this task. Additionally, NER also exhibits
positive correlations, suggesting that models can
better identify and classify entities in languages
that share syntactic features with English.

B Error Analysis

B.1 Format Issues

Automatic evaluation requires consistent output
formatting, especially in tasks like Named Entity
Recognition (NER), which must adhere to a pre-
defined format rather than free text. A common
practice involves prompting the model to gener-
ate results in a specific format, such as a list of
tuples representing entities and their types (e.g.,
(Loc,NewY orkCity). However, achieving per-
fect consistency can be challenging. Models may
not always adhere to the requested format, leading
to difficulties in evaluation.

Qualitative Analysis We analyzed unexpected
model outputs in various tasks and languages. For
each task, we noted common phenomena observed
and the expected model output. The results in Ta-
ble 7 reveal that for the NER task, due to its rigid
format, the model exhibited many error types. The
models showed phenomena such as format incon-
sistency and extraneous introduction, which require
a more generative normalization method to handle.
An interesting phenomenon that made our modular
selective pre-translating approach difficult to im-

Model QA NER Summarization NLI
GPT 0.14* 0.28** 0.42** 0.01
Mixtral 0.13* 0.2** 0.31** 0.08
Gemini 0.1* 0.19** 0.25** 0.01

Table 9: Pearson correlation between linguistic syntactic
similarity to English and task performance for GPT,
Mixtral, and Gemini. * p < 0.05, ** p < 0.01

plement is unwarranted refusal, where the model
refuses to output in the required language.

B.2 Incorrect Output Language
Table 8 summarizes the percentage of accurately
outputted language for all tasks (except NLI, due
to its index-based format) across all models. The
results reveal that in extractive tasks such as extrac-
tive QA and NER, where the output overlaps with
the context, the model struggles the most to output
in the desired language. However, in abstractive
summarization, a generation task, the model had
better success.

C Translation: Key to Pre-Translation

C.1 Machine Translation Engines
Comparison

To evaluate machine translation tools, we compared
Google Translate API and Bing Translator. We ex-
cluded multilingual LLMs from consideration, as
zhu2023multilingual found that these models still
lag behind commercial systems like Google Trans-
late, especially for low-resource languages. As
shown in Table 11 and Figure 12, Google Trans-
late outperformed Bing Translator across all met-
rics, demonstrating superior performance. Notably,
Welsh and Maltese, both low-resource languages,
achieved the highest scores. .

C.2 Linguistic Similarity To English
The results in Table 10 demonstrate the correlation
between the syntactic similarity to English of the
language and the ROUGE translation score of the
language. The results show that the most significant
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Group Pearson Correlation P-value
High Resource 0.73 0.05
Medium Resource 0.48 0.07
Low Resource 0.06 0.78
Extremly Low Resource -0.34 0.30

Table 10: Correlation between syntactic similarity to
English and the ROUGE score (by language subset).

correlation was observed in languages belonging
to the high-resource category, and this correlation
decreases as the class of the language becomes
low-resource.

.

D Selective Pre-Translation Prompt
Generator

We have launched a space on Hugging Face. The
space makes it easy for the community to receive
recommended configurations based on the type of
task and language. In Figure 9 , we can see an
overview of the application and an example of a
recommended configuration. Figures 10 and 11
provide examples of generating prompts for zero-
shot and few-shot settings.

E Detailed Results

The results across all tasks, languages and mod-
els are included in our benchmarking exercise are
provided in Table 15 (for XQuAD), 13 (for ind-
ciQA), 16 (for WikiANN), 17 (for MasakhNER),
18 (for XL-Sum), 14 (for XNLI). The result of the
correlation for Gemini are included in Table 19, for
Mixtral in Table 20, and for bloomz in Table 21

Google Translate API Bing Translator
Language ROUGE Meteor BLEU ROUGE Meteor BLEU
Welsh 0.86 0.86 0.63 0.85 0.85 0.61
Maltese 0.84 0.83 0.59 0.83 0.82 0.56
Danish 0.81 0.79 0.51 0.81 0.79 0.49
Swedish 0.81 0.80 0.51 0.80 0.79 0.51
Portuguese 0.81 0.79 0.52 0.80 0.78 0.50
Catalan 0.80 0.79 0.49 0.78 0.77 0.45
Spanish 0.79 0.64 0.30 0.69 0.64 0.30
Serbian 0.79 0.77 0.48 0.03 0.07 0.01
Bulgarian 0.79 0.77 0.45 0.75 0.72 0.37
French 0.79 0.77 0.48 0.78 0.76 0.48
Nepali (macrolanguage) 0.79 0.78 0.46 0.74 0.72 0.38
Macedonian 0.78 0.77 0.46 0.72 0.70 0.35
Swahili (macrolanguage) 0.78 0.79 0.51 0.74 0.74 0.43
Hebrew 0.78 0.77 0.47 0.76 0.75 0.44
German 0.78 0.76 0.46 0.79 0.76 0.46
Indonesian 0.78 0.77 0.46 0.78 0.77 0.44
Romanian 0.78 0.76 0.45 0.77 0.75 0.43
Panjabi 0.78 0.77 0.46 0.74 0.72 0.4
Bosnian 0.78 0.76 0.45 0.75 0.73 0.39
Hindi 0.78 0.76 0.45 0.76 0.74 0.41
Turkish 0.77 0.75 0.43 0.76 0.73 0.41
Armenian 0.77 0.75 0.43 0.68 0.65 0.28
Irish 0.77 0.76 0.47 0.76 0.74 0.42
Gujarati 0.77 0.76 0.44 0.73 0.69 0.35
Telugu 0.77 0.76 0.44 0.73 0.71 0.38
Slovak 0.76 0.74 0.42 0.75 0.72 0.40
Italian 0.76 0.68 0.34 0.72 0.68 0.34
Galician 0.76 0.74 0.43 0.74 0.71 0.39
Estonian 0.76 0.74 0.41 0.74 0.71 0.37
Czech 0.76 0.74 0.42 0.76 0.73 0.4
Marathi 0.76 0.74 0.41 0.72 0.69 0.35
Uzbek 0.75 0.74 0.39 0.67 0.63 0.28
Urdu 0.75 0.72 0.39 0.71 0.68 0.33
Ukrainian 0.75 0.73 0.41 0.74 0.72 0.4
Malayalam 0.75 0.73 0.4 0.71 0.68 0.34
Sinhala 0.75 0.73 0.39 0.69 0.66 0.32
Bengali 0.74 0.73 0.39 0.74 0.70 0.36
Croatian 0.74 0.72 0.39 0.73 0.70 0.36
Lao 0.74 0.73 0.39 0.69 0.66 0.30
Haitian 0.74 0.73 0.41 0.67 0.65 0.30
Hungarian 0.74 0.72 0.38 0.74 0.71 0.37
Kazakh 0.73 0.72 0.38 0.67 0.62 0.27
Russian 0.73 0.70 0.38 0.72 0.69 0.36
Vietnamese 0.73 0.72 0.39 0.72 0.71 0.36
Slovenian 0.73 0.71 0.38 0.69 0.67 0.32
Zulu 0.73 0.74 0.43 0.65 0.65 0.32
Tamil 0.73 0.71 0.37 0.70 0.68 0.33
Finnish 0.73 0.70 0.36 0.72 0.68 0.33
Kannada 0.72 0.71 0.37 0.71 0.68 0.33
Lithuanian 0.72 0.70 0.36 0.68 0.63 0.28
Icelandic 0.72 0.70 0.37 0.72 0.7 0.36
Southern Sotho 0.72 0.71 0.40 0.62 0.6 0.27
Korean 0.71 0.68 0.32 0.69 0.66 0.31
Basque 0.71 0.68 0.34 0.67 0.63 0.27
Thai 0.71 0.66 0.3 0.69 0.65 0.28
Chinese 0.70 0.67 0.31 0.68 0.64 0.29
Georgian 0.70 0.66 0.31 0.64 0.58 0.21
Xhosa 0.70 0.70 0.38 0.63 0.63 0.28
Dutch 0.70 0.66 0.31 0.72 0.67 0.34
Japanese 0.69 0.66 0.30 0.69 0.65 0.29
Polish 0.69 0.65 0.30 0.68 0.64 0.29
Burmese 0.69 0.65 0.30 0.63 0.58 0.22
Khmer 0.68 0.65 0.30 0.64 0.59 0.23
Kinyarwanda 0.68 0.67 0.34 0.61 0.6 0.23
Samoan 0.67 0.65 0.33 0.62 0.59 0.26
Somali 0.66 0.66 0.32 0.59 0.57 0.22
Faroese 0.62 0.60 0.28 0.65 0.62 0.28
Lingala 0.60 0.59 0.24 0.60 0.58 0.23
Azerbaijani 0.31 0.29 0.05 0.11 0.10 0.00
Fijian 0.16 0.16 0.02 0.51 0.47 0.12

Table 11: Comparsion between Google Translate API
and Bing Translator.
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Figure 9: Recomended Configuration: Overview of our application. From top to bottom: Task Details—general
configuration about the task (Task, Language, Model). Clicking on "Recommended Configuration" provides a
suggested selective pre-translation configuration.

Figure 10: Generating selective pre-translation prompt for zero-shot: The user needs to configure the instruction
(optional) and the languages for the components under "Language Component Selection": instruction, context,
examples, and output. Additionally, under "Prompt Input Data," the user must configure the relevant input data or
task, such as the question and context for QA in this example. Clicking on "Generate Prompt" provides a zero-shot
pre-translation prompt
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Figure 11: Generating selective pre-translation prompt for few-shot: Here, the user must also configure the few-shot
settings: the dataset to use (from which the few-shot examples are taken) and the number of examples to use (default
= 1).
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(a) BLEU

(b) ROUGE

(c) Meteor

Figure 12: Google Translate API vs Bing Translator Comparsion
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Language Lang Code Number of Tokens (M) Percentage of Tokens Class

English en 181,015 92.64% A

French fr 3,553 1.81853% A
German de 2,871 1.46937% A
Spanish es 1,510 0.77289% A
Italian it 1,188 0.60793% A

Portuguese po 1,025 0.52483% A
Russian ru 368 0.18843% A

Romanian ro 308 0.15773% A
Swedish sv 221 0.11307% A
Japanese ja 217 0.11109% A

Chinese zh 194 0.09905% B
Indonesian id 117 0.05985% B

Turkish tr 116 0.05944% B
Vietnamese vi 83 0.04252% B

Greek el 62 0.03153% B
Arabic ar 61 0.03114% B
Serbian sr 53 0.02706% B
Korean ko 33 0.01697% B
Slovak sk 28 0.01431% B
Thai th 27 0.01372% B

Slovenian sl 26 0.01333% B

Persian fa 17 0.00856% C
Hebrew he 15 0.00769% C
Hindi hi 9 0.00483% C

Bulgarian bg 6 0.00303% C
Bengali bn 3 0.00154% C

Malayalam ml 3 0.00165% C
Azerbaijani az 2 0.00128% C

Telugu te 2 0.00084% C
Uzbek uz 1.5 0.00075% C
Nepali ne 1.1 0.00057% C
Urdu ur 0.7 0.00035% C

Swahili sw 0.6 0.00030% C

Assamese as 0 0.00000% D
Bambara bam 0 0.00000% D

Ewe ee 0 0.00000% D
Hausa hau 0 0.00000% D
Yoruba yor 0 0.00000% D

Table 12: List of languages, language codes, number
of tokens in pre-trained GPT-3 data, data ratios. The
languages are grouped into four classes based on their
data ratios in the GPT-3 pre-trained data: High Resource
(H > 0.1%), Medium Resource (M > 0.01%), and Low
Resource (L < 0.01%), and extremely low resource for
unrepresented languages.
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Configuration Assamese Bengali Hindi Malayalam Telugu
P I C O gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
S S Z E 0.2 0.43 0.00 0.16 0.48 0.02 0.26 0.22 0.19 0.19 0.25 0.03 0.29 0.15 0.13
E S Z E 0.15 0.03 0.00 0.11 0.03 0.02 0.21 0.30 0.12 0.13 0.13 0.14 0.12 0.10 0.10
S S S E 0.59 0.35 0.10 0.65 0.52 0.28 0.74 0.68 0.37 0.46 0.36 0.04 0.53 0.23 0.19
E E E S 0.25 0.00 0.01 0.25 0.10 0.02 0.53 0.26 0.19 0.02 0.06 0.07 0.27 0.14 0.09
S E S E 0.69 0.51 0.70 0.71 0.67 0.44 0.80 0.79 0.62 0.47 0.41 0.32 0.46 0.53 0.39
E S S S 0.2 0.00 0.01 0.08 0.02 0.18 0.50 0.5 0.34 0.12 0.06 0.11 0.16 0.12 0.14
E S Z S 0.39 0.10 0.01 0.35 0.03 0.08 0.55 0.23 0.17 0.12 0.10 0.03 0.19 0.1 0.08
S S S S 0.69 0.32 0.10 0.65 0.57 0.51 0.74 0.74 0.45 0.52 0.33 0.06 0.60 0.34 0.55
E S E S 0.32 0.00 0.00 0.27 0.03 0.02 0.55 0.30 0.22 0.02 0.17 0.08 0.15 0.04 0.11
S S Z S 0.69 0.23 0.07 0.64 0.47 0.39 0.72 0.62 0.42 0.60 0.24 0.09 0.53 0.16 0.15
E E S S 0.28 0.09 0.12 0.24 0.18 0.17 0.48 0.35 0.29 0.04 0.15 0.08 0.18 0.14 0.13
E S E E 0.11 0.13 0.00 0.08 0.03 0.02 0.29 0.32 0.18 0.05 0.08 0.04 0.09 0.09 0.07
E E Z E 0.17 0.01 0.00 0.14 0.03 0.02 0.23 0.30 0.24 0.15 0.10 0.11 0.15 0.17 0.12
S E Z E 0.54 0.37 0.07 0.64 0.43 0.15 0.44 0.64 0.68 0.48 0.2 0.42 0.59 0.4 0.16
S E Z S 0.71 0.46 0.29 0.60 0.68 0.40 0.60 0.71 0.72 0.13 0.48 0.39 0.60 0.45 0.27
S S E E 0.14 0.33 0.01 0.22 0.51 0.05 0.45 0.71 0.15 0.09 0.32 0.01 0.24 0.29 0.22
E E Z S 0.24 0.05 0.01 0.33 0.17 0.07 0.40 0.31 0.19 0.02 0.07 0.06 0.26 0.16 0.1
E S S E 0.1 0.00 0.00 0.10 0.01 0.02 0.33 0.25 0.26 0.06 0.10 0.13 0.09 0.10 0.02
S S E S 0.72 0.44 0.02 0.66 0.51 0.27 0.78 0.76 0.28 0.63 0.42 0.01 0.53 0.28 0.06
S E S S 0.64 0.56 0.64 0.60 0.66 0.53 0.80 0.82 0.60 0.20 0.49 0.31 0.65 0.46 0.34
E E E E 0.15 0.00 0.00 0.11 0.04 0.01 0.24 0.29 0.20 0.05 0.05 0.12 0.11 0.08 0.11
S E E E 0.19 0.33 0.05 0.28 0.22 0.11 0.47 0.32 0.25 0.07 0.07 0.14 0.25 0.21 0.17
E E S E 0.09 0.01 0.01 0.11 0.04 0.04 0.31 0.24 0.31 0.07 0.08 0.08 0.10 0.12 0.12
S E E S 0.68 0.44 0.24 0.57 0.57 0.37 0.74 0.76 0.43 0.02 0.3 0.29 0.55 0.34 0.31

Table 13: Comparing performance of different models on all languages in IndicQA. Metric: F1 Score.

Configuration Arabic Chinese Greek Hindi Spanish Swahili Thai Turkish Urdu Bulgarian
P I C gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
E S E 0.72 0.68 0.51 0.63 0.58 0.55 0.75 0.53 0.61 0.59 0.49 0.59 0.56 0.32 0.65 0.54 0.54 0.52 0.71 0.33 0.45 0.45 0.0 0.66 0.52 0.41 0.49 0.54 0.46
S S E 0.65 0.67 0.54 0.62 0.63 0.52 0.66 0.59 0.54 1.00 0.46 0.6 0.64 0.52 0.62 0.64 0.59 0.52 0.56 1.0 0.47 0.42 0.5 N.A 0.52 N.A 0.52 0.54 0.44
S E Z 0.62 0.55 0.54 0.71 0.52 0.56 0.57 0.61 0.64 0.56 0.58 0.56 0.53 0.39 0.80 0.62 0.63 0.57 0.52 0.36 0.62 0.36 0.38 0.64 0.53 0.48 0.5 0.47 0.39
S E E 0.61 0.62 0.52 0.59 0.6 0.45 0.75 0.54 0.78 0.59 0.59 0.6 0.58 0.43 0.61 0.59 0.6 0.58 0.67 0.79 0.54 0.48 0.41 0.83 0.45 0.39 0.52 0.48 0.37
E E E 0.65 0.66 0.5 0.61 0.6 0.57 0.62 0.58 0.57 0.59 0.54 0.63 0.59 0.42 0.67 0.58 0.62 0.57 0.57 0.38 0.57 0.52 0.34 0.59 0.52 0.45 0.55 0.52 0.4
E S S 0.59 0.61 0.59 0.59 0.6 N.A 0.7 0.58 0.58 0.67 0.43 0.59 0.57 0.33 0.68 0.69 0.69 0.52 0.58 0.0 0.53 0.57 0.5 1.00 0.51 0.0 0.51 0.54 0.47
E E Z 0.75 0.55 N.A 0.59 0.57 0.55 0.68 0.61 0.6 0.68 0.55 0.58 0.51 0.38 0.8 0.53 0.55 0.57 0.54 0.45 0.63 0.41 0.43 0.5 0.55 0.45 0.69 0.46 0.37
S S Z 1.0 0.45 0.51 0.57 0.55 0.44 N.A 0.53 0.57 1.00 0.57 0.53 0.4 0.83 0.68 0.57 0.46 0.49 0.46 0.33 0.48 0.38 0.33 0.54 0.57 0.42 0.71 0.44 0.37
S S S 0.63 0.72 0.55 0.58 0.6 N.A 0.78 0.6 0.64 0.65 0.52 0.62 0.53 0.29 0.77 0.51 0.55 0.61 0.54 0.0 0.51 0.47 0.36 0.52 0.5 N.A 0.52 0.57 0.11
S E S 0.67 0.66 0.54 0.57 0.63 N.A 0.67 0.6 0.61 0.63 0.52 0.6 0.61 0.44 0.76 0.57 0.56 0.59 0.62 0.34 0.58 0.57 0.44 0.43 0.56 0.48 0.51 0.54 0.44
E E S 0.65 0.64 0.56 0.59 0.61 N.A 0.61 0.64 0.67 0.65 0.71 0.62 0.64 0.47 0.43 0.6 0.62 0.62 0.73 0.35 0.54 0.53 0.42 0.50 0.55 0.73 0.54 0.56 0.39
E S Z 0.82 0.0 0.43 0.59 0.58 0.46 0.50 0.53 0.40 0.82 0.63 0.56 0.48 0.53 0.64 0.56 0.46 0.47 0.47 0.4 N.A 0.34 0.48 0.60 0.53 0.52 0.57 0.42 0.36

Table 14: Comparing performance of different models on all languages in XNLI. Metric: Acc Score.

Configuration Arabic German Greek Romanian Russian Vietnamese
P I C O gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
S S Z E 0.27 0.46 0.06 0.56 0.72 0.62 0.34 0.17 0.13 0.55 0.58 0.41 0.21 0.18 0.19 0.59 0.6 0.23
E S Z E 0.28 0.12 0.05 0.56 0.48 0.49 0.34 0.19 0.16 0.56 0.62 0.31 0.21 0.20 0.20 0.55 0.13 0.26
S S S E 0.78 0.53 0.33 0.76 0.67 0.58 0.50 0.54 0.53 0.45 0.64 0.48 0.57 0.69 0.26 0.67 0.55 0.44
E E E S 0.36 0.28 0.10 0.62 0.85 0.35 0.43 0.47 0.20 0.61 0.54 0.41 0.39 0.26 0.14 0.52 0.45 0.30
S E S E 0.84 0.72 0.30 0.73 0.65 0.46 0.74 0.65 0.37 0.54 0.67 0.51 0.74 0.61 0.33 0.72 0.58 0.47
E S S S 0.62 0.19 0.37 0.71 0.50 0.43 0.61 0.38 0.30 0.68 0.51 0.37 0.47 0.34 0.14 0.62 0.48 0.44
E S Z S 0.48 0.29 0.24 0.68 0.39 0.43 0.40 0.17 0.14 0.67 0.63 0.26 0.35 0.16 0.12 0.57 0.58 0.28
S S S S 0.80 0.54 0.40 0.76 0.64 0.36 0.71 0.54 0.52 0.51 0.61 0.51 0.75 0.61 0.47 0.72 0.67 0.54
E S E S 0.51 0.24 0.06 0.68 0.51 0.54 0.44 0.38 0.22 0.65 0.50 0.37 0.34 0.19 0.16 0.61 0.46 0.38
S S Z S 0.74 0.40 0.28 0.70 0.72 0.65 0.67 0.69 0.32 0.73 0.69 0.45 0.67 0.65 0.42 0.75 0.73 0.36
E E S S 0.52 0.28 0.16 0.68 0.50 0.38 0.49 0.39 0.26 0.68 0.50 0.41 0.47 0.29 0.24 0.62 0.43 0.32
E S E E 0.26 0.25 0.07 0.58 0.50 0.49 0.42 0.27 0.16 0.40 0.50 0.43 0.23 0.26 0.17 0.58 0.49 0.36
E E Z E 0.27 0.16 0.07 0.54 0.50 0.37 0.34 0.20 0.26 0.52 N.A 0.31 0.23 0.22 0.10 0.49 0.33 0.30
S E Z E 0.55 0.48 0.15 0.61 0.62 0.61 0.56 0.38 0.50 0.62 0.66 0.50 0.48 0.46 0.23 0.67 0.66 0.35
S E Z S 0.62 0.49 0.13 0.61 0.62 0.61 0.61 0.26 0.49 0.65 N.A 0.41 0.58 0.58 0.33 0.60 0.58 0.40
S S E E 0.27 0.39 0.05 0.65 0.57 0.46 0.43 0.40 0.15 0.58 0.55 0.37 0.26 0.35 0.15 0.61 0.59 0.34
E E Z S 0.38 0.13 0.11 0.57 0.56 0.48 0.40 0.31 0.26 0.54 N.A 0.29 0.40 0.20 0.16 0.54 0.31 0.29
E S S E 0.31 0.23 0.13 0.67 0.48 0.51 0.43 0.27 0.36 0.66 0.51 0.29 0.29 0.25 0.18 0.57 0.47 0.41
S S E S 0.74 0.58 0.26 0.68 0.65 0.51 0.70 0.57 0.46 0.51 0.64 0.5 0.72 0.66 0.4 0.74 0.65 0.43
S E S S 0.72 0.74 0.39 0.70 0.64 0.43 0.57 0.55 0.49 0.45 0.67 0.55 0.63 0.62 0.43 0.66 0.58 0.52
E E E E 0.23 0.17 0.06 0.60 0.78 0.47 0.39 0.67 0.19 0.58 0.63 0.43 0.22 0.17 0.18 0.56 0.46 0.40
S E E E 0.77 0.58 0.09 0.71 0.57 0.37 0.57 0.53 0.23 0.46 0.59 0.46 0.39 0.42 0.13 0.63 0.51 0.42
E E S E 0.32 0.22 0.16 0.65 0.51 0.42 0.40 0.35 0.2 0.64 0.49 0.41 0.30 0.18 0.34 0.59 0.47 0.4
S E E S 0.65 0.71 0.30 0.66 0.66 0.35 0.62 0.66 0.43 0.46 0.66 0.49 0.65 0.59 0.36 0.68 0.58 0.28

Table 15: Comparing performance of different models on all languages in XQuAD. Metric: F1 Score.
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Configuration Chinese French Italian Portuguese Serbian Slovak Swedish
P I C O gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
E E E E 0.00 0.01 0.23 0.53 0.58 0.15 0.38 0.53 0.23 0.56 0.60 0.41 0.20 0.21 0.00 0.48 0.53 0.19 0.59 0.62 0.41
E E E S 0.00 0.00 0.18 0.37 0.63 0.17 0.31 0.52 0.23 0.55 0.60 0.42 0.22 0.26 0.01 0.48 0.50 0.21 0.59 0.58 0.38
E E S E 0.00 0.01 0.21 0.54 0.6 0.25 0.66 0.66 0.52 0.56 0.58 0.29 0.17 0.18 0.01 0.45 0.51 0.31 0.59 0.59 0.42
E E S S 0.00 0.06 0.22 0.55 0.61 0.00 0.59 0.68 0.48 0.55 0.61 0.38 0.13 0.13 0.02 0.46 0.48 0.24 0.57 0.56 0.21
E E Z E 0.00 0.00 0.22 0.45 0.54 N.A 0.51 0.63 0.49 0.45 0.57 0.34 0.13 0.12 0.02 0.47 0.47 0.28 0.51 0.56 0.32
E E S S 0.00 0.00 0.20 0.44 0.53 0.0 0.44 0.63 0.50 0.43 0.54 0.35 0.09 0.11 0.03 0.38 0.49 0.29 0.44 0.59 0.36
E S E E 0.00 0.00 0.23 0.55 0.60 0.25 0.34 0.48 0.26 0.55 0.60 0.37 0.21 0.22 0.01 0.39 0.50 0.18 0.60 0.60 0.27
E S E S 0.00 0.00 0.28 0.53 0.59 0.21 0.30 0.48 0.26 0.55 0.61 0.40 0.17 0.21 0.01 0.47 0.52 0.30 0.58 0.64 0.26
E S S E 0.01 0.02 0.22 0.42 0.59 0.26 0.65 0.63 0.52 0.58 0.61 0.40 0.14 0.17 0.01 0.46 0.49 0.25 0.57 0.61 0.22
E S S S 0.01 0.03 0.24 0.45 0.59 0.28 0.61 0.67 0.49 0.56 0.60 0.37 0.16 0.16 0.01 0.46 0.36 N.A 0.55 0.55 0.22
E S Z E 0.00 0.00 0.24 0.48 0.55 0.36 0.53 0.64 0.50 0.47 0.55 0.35 0.12 0.12 0.02 0.46 0.48 0.29 0.52 0.56 0.33
E S Z S 0.01 0.00 0.20 0.45 0.55 0.38 0.52 0.62 0.48 0.46 0.53 0.33 0.11 0.12 0.03 0.41 0.50 0.29 0.50 0.57 0.36
S E E E 0.06 0.02 0.09 0.61 0.69 0.32 0.40 0.53 0.33 0.60 0.68 0.49 0.57 0.20 0.05 0.66 0.62 0.26 0.63 0.64 0.14
S E E S 0.11 0.05 0.07 0.68 0.71 0.31 0.36 0.53 0.29 0.64 0.66 0.54 0.68 0.64 0.3 0.61 0.61 0.31 0.60 0.64 0.24
S E S E 0.61 0.61 0.00 0.64 0.72 0.32 0.69 0.74 0.64 0.71 0.69 0.53 0.72 0.75 0.47 0.73 0.71 0.39 0.69 0.67 0.34
S E S S 0.59 0.63 0.00 0.63 0.66 0.35 0.69 0.75 0.62 0.76 0.70 0.48 0.77 0.68 0.46 0.69 0.72 0.54 0.66 0.68 0.35
S E Z E 0.07 0.07 0.02 0.48 0.59 0.48 0.54 0.66 0.56 0.50 0.63 0.48 0.22 0.42 0.25 0.57 0.65 0.49 0.50 0.57 0.37
S E Z S 0.16 0.05 0.00 0.55 0.60 0.48 0.48 0.67 0.57 0.48 0.62 0.48 0.47 0.5 0.32 0.51 0.62 0.45 0.50 0.62 0.39
S S E E 0.17 0.02 0.01 0.64 0.68 0.29 0.38 0.54 0.32 0.66 0.66 0.48 0.53 0.17 0.05 0.67 0.29 0.27 0.61 0.63 0.18
S S E S 0.14 0.02 0.07 0.59 0.68 0.31 0.35 0.59 0.32 0.69 0.65 0.47 0.63 0.61 0.29 0.65 0.38 0.52 0.62 0.63 0.25
S S S E 0.60 0.61 0.00 0.63 0.70 0.45 0.70 0.74 0.59 0.70 0.72 0.51 0.72 0.77 0.45 0.72 0.58 0.40 0.67 0.67 0.53
S S S S 0.58 0.62 0.01 0.64 0.69 0.31 0.69 0.71 0.61 0.68 0.72 0.48 0.77 0.72 0.44 0.69 0.56 0.40 0.65 0.66 0.53
S S Z E 0.12 0.08 0.02 0.57 0.57 0.45 0.57 0.67 0.56 0.51 0.63 0.48 0.28 0.46 0.29 0.55 0.65 0.47 0.54 0.58 0.37
S S Z S 0.13 0.04 0.00 0.49 0.58 0.48 0.55 0.68 0.58 0.48 0.61 0.48 0.42 0.50 0.33 0.52 0.63 0.45 0.53 0.60 0.39

Table 16: Comparing performance of different models on all languages in WikiANN. Metric: F1 Score.

Configuration Bambara Ewe Hausa Yoruba
P I C O gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
E E E E 0.16 0.18 0.10 0.42 0.47 0.22 0.45 0.24 0.26 0.06 0.09 0.03
E E E S 0.17 0.17 0.07 0.43 0.48 0.23 0.46 0.61 0.31 0.07 0.09 0.05
E E S E 0.15 0.17 0.12 0.44 0.52 0.22 0.45 0.52 0.20 0.07 0.08 0.04
E E S S 0.14 0.15 0.07 0.39 0.5 0.17 0.43 0.39 0.10 0.06 0.08 0.03
E E Z E 0.13 0.09 N.A 0.41 0.44 0.23 0.52 0.59 0.26 0.05 0.08 0.04
E E S S 0.13 0.16 0.06 0.41 0.47 0.21 0.45 0.60 0.29 0.04 0.08 0.03
E S E E 0.16 0.18 0.10 0.44 0.47 0.22 0.48 0.59 0.32 0.07 0.08 0.03
E S E S 0.16 0.18 0.08 0.40 0.47 0.15 0.48 0.58 0.34 0.06 0.08 0.05
E S S E 0.15 0.15 0.06 0.45 0.50 0.28 0.50 0.54 0.22 0.08 0.10 0.05
E S S S 0.11 0.15 0.06 0.39 0.49 0.15 0.45 0.42 0.11 0.06 0.07 0.06
E S Z E 0.15 0.28 0.19 0.40 0.46 0.23 0.54 0.62 0.27 0.08 0.08 0.05
E S Z S 0.17 0.13 0.05 0.38 0.44 0.25 0.47 0.28 0.29 0.06 0.09 0.06
S E E E 0.09 0.24 0.00 0.31 0.47 0.01 0.46 0.43 0.00 0.08 0.20 0.05
S E E S 0.27 0.27 0.06 0.40 0.52 0.04 0.61 0.58 0.10 0.09 0.23 0.10
S E S E 0.28 0.32 0.14 0.56 0.68 0.47 0.56 0.70 0.30 0.26 0.32 0.15
S E S S 0.26 0.32 0.15 0.54 0.66 0.51 0.55 0.70 0.32 0.23 0.29 0.20
S E Z E 0.07 0.09 0.06 0.31 0.39 0.00 0.48 0.70 0.00 0.20 0.20 0.01
S E Z S 0.21 0.20 0.17 0.43 0.42 0.42 0.57 0.69 0.07 0.17 0.26 0.07
S S E E 0.10 0.25 0.00 0.27 0.39 0.00 0.45 0.43 0.00 0.08 0.21 0.04
S S E S 0.23 0.27 0.05 0.40 0.51 0.08 0.54 0.60 0.09 0.13 0.22 0.05
S S S E 0.29 0.33 0.21 0.61 0.67 0.43 0.58 0.67 0.34 0.27 0.30 0.19
S S S S 0.27 0.32 0.21 0.61 0.63 0.45 0.59 0.69 0.41 0.26 0.31 N.A
S S Z E 0.08 0.18 0.00 0.31 0.37 0.00 0.46 0.46 0.01 0.03 0.22 0.03
S S Z S 0.23 0.28 0.04 0.39 0.46 0.06 0.06 0.64 0.05 0.07 0.26 0.07

Table 17: Comparing performance of different models on all languages in MasakhaNER. Metric: F1 Score.
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Configuration Azerbaijani French Japanese Korean Nepali Persian Portuguese Spanish Turkish Uzbek
P I C O gpt mixtral mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral gemini gpt mixtral
E E S E 10.48 6.12 - 19.51 22.94 20.58 16.2 17.14 16.9 6.63 7.03 6.94 10.86 9.69 10.53 13.79 16.77 14.28 14.20 18.22 15.50 13.9 18.41 16.99 13.23 13.21 10.49 6.02 4.02 5.33
S S S S 11.0 1.07 - 15.75 21.06 19.67 18.86 18.87 16.45 4.96 7.67 6.11 7.22 11.22 9.70 13.29 16.86 12.31 16.25 17.46 15.98 13.47 17.72 16.73 7.93 14.04 9.90 0.0 3.93 5.40
S S S E 11.51 5.34 - 18.27 22.13 19.79 12.52 18.26 15.12 3.40 5.16 6.10 0.00 7.44 8.27 30.15 15.76 13.49 13.79 18.79 16.60 13.57 18.64 16.60 9.38 16.09 9.71 3.93 4.33 4.74
S E E S 10.16 9.38 15.63 18.88 20.42 19.83 17.53 15.67 5.80 8.20 7.90 6.33 10.29 8.24 14.07 16.72 13.81 14.38 17.15 15.93 14.31 17.61 17.09 8.99 12.51 10.54 2.5 4.53 5.39
E E S S 11.13 - 21.61 20.98 20.04 21.98 21.49 16.85 10.64 7.72 8.55 11.46 10.86 10.64 17.68 17.81 17.71 18.32 17.56 17.83 18.15 17.93 17.64 14.23 15.22 12.95 2.75 6.75 9.41
S E Z E 11.31 9.92 - 22.08 22.11 20.72 20.58 18.89 16.41 9.23 8.89 6.54 0.00 12.44 7.21 14.14 18.78 14.44 18.19 18.25 16.87 17.90 18.32 17.97 13.34 15.4 13.21 10.40 6.39 5.61
E E Z E 9.89 10.32 - 16.92 21.51 17.96 15.26 17.79 18.39 5.06 7.41 8.32 9.89 8.3 9.12 14.43 15.04 14.71 15.64 16.73 15.09 14.05 18.04 17.37 9.52 11.99 11.04 10.23 6.19 5.87
S E S E 9.85 7.43 - 17.19 21.75 19.12 16.18 18.32 17.87 5.25 7.76 3.24 9.03 10.24 8.4 12.65 18.3 N.A 14.46 18.24 15.51 9.49 17.94 16.87 13.39 14.12 N.A 4.33 7.03 4.51
E S Z S 12.26 10.42 - 21.77 21.64 20.09 20.62 18.93 18.52 8.77 8.71 8.29 13.98 11.74 11.51 17.93 18.04 17.31 18.51 16.94 16.26 17.66 17.02 17.49 14.0 14.75 13.1 5.66 8.03 8.41
S S Z S 10.44 7.49 - 21.34 21.6 19.87 19.62 17.69 13.92 8.10 7.29 6.32 7.09 11.62 7.04 0.0 16.45 15.16 16.03 16.78 16.98 16.96 17.59 18.54 12.83 14.38 10.72 7.84 7.88 6.85
E S E E 9.32 6.62 - 18.8 20.69 20.58 12.51 18.24 15.09 3.82 7.21 7.66 8.04 9.09 9.51 16.31 0.0 16.00 13.64 17.68 16.63 12.79 16.99 18.38 7.85 13.02 9.87 5.11 9.93 4.13
S E Z S 10.79 5.35 - 19.68 21.2 19.91 20.54 17.99 19.71 6.52 8.55 7.37 10.53 11.31 11.34 13.47 18.61 15.42 16.52 17.35 16.06 15.50 18.27 17.05 9.97 14.75 10.52 4.58 8.27 6.38
E S E S 9.79 8.11 - 17.99 21.21 15.85 10.75 19.69 17.98 3.17 8.55 2.67 8.98 10.71 8.15 14.61 17.29 13.88 15.09 17.39 17.99 14.41 18.86 17.41 9.61 13.74 7.96 3.44 8.06 5.66
E E E S 12.44 10.9 - 23.06 21.66 28.57 20.81 19.47 19.64 9.79 7.88 9.04 12.61 11.08 12.33 17.49 18.49 18.43 17.29 16.97 16.59 16.96 17.33 17.77 14.53 15.07 13.83 0.00 9.2 9.68
S E E E 11.16 11.54 - 19.67 20.64 21.02 15.06 19.51 19.3 6.52 8.95 7.85 9.19 10.97 12.07 12.77 18.32 16.80 14.75 16.32 15.86 14.68 17.19 16.38 8.98 13.5 12.52 6.46 10.14 9.18
S S Z E 10.48 - 21.58 21.82 19.82 20.97 21.12 19.41 9.35 8.96 8.16 13.05 12.69 12.28 17.19 19.66 17.51 17.69 18.78 15.83 17.02 17.44 16.67 15.48 16.01 13.6 11.44 10.09 9.09
S E S S 11.07 7.14 19.13 17.22 21.32 21.3 14.14 18.95 18.11 4.98 6.90 6.12 10.23 11.92 8.81 15.32 18.85 12.94 14.74 17.93 17.77 14.58 17.58 14.55 12.46 13.26 11.14 2.88 10.62 3.95
S S E E 11.38 8.07 - 20.45 22.75 21.44 11.54 18.26 16.85 4.54 9.53 3.24 7.51 14.11 8.02 13.19 18.84 12.45 15.75 18.08 17.67 15.79 17.82 17.51 9.77 15.35 9.94 5.97 9.15 6.07
E E E E 12.65 10.63 - 20.2 22.09 21.47 16.71 19.94 19.66 6.35 9.08 8.13 9.76 12.54 11.43 14.1 21.08 16.41 15.89 19.39 16.27 15.85 18.81 16.69 12.15 17.37 13.6 6.65 10.29 9.08
S S E S 12.46 2.89 - 16.04 22.52 19.34 17.26 21.86 17.34 3.74 8.9 7.71 11.59 13.77 9.55 14.6 19.36 15.95 14.03 17.09 14.85 13.40 17.76 13.98 5.75 15.0 11.7 4.49 10.88 5.41
E S Z E 12.1 6.25 - 16.07 22.22 20.77 15.62 21.02 16.2 3.89 8.96 4.5 6.72 13.97 7.87 15.05 18.95 11.90 15.65 17.18 15.08 14.86 18.42 13.94 9.83 15.65 12.56 10.62 11.30 4.41
E S S S 11.19 - 21.07 15.96 22.19 19.41 18.39 - 9.44 9.11 8.41 11.46 12.26 12.20 17.66 18.24 16.70 17.3 16.4 17.38 17.45 17.62 17.28 13.62 13.3 13.96 2.28 10.26 8.22
E E Z S 4.65 9.56 - 21.32 20.57 20.27 21.78 18.03 17.15 9.44 8.69 8.26 5.99 11.89 11.01 17.84 17.67 18.30 17.29 16.12 17.45 18.40 17.27 17.52 15.38 13.29 12.24 6.51 10.60 8.21
E S S E 12.19 8.65 - 14.83 21.26 18.81 10.31 20.6 12.81 4.33 8.59 6.40 7.77 13.86 6.64 0.00 18.01 13.31 14.92 17.11 16.15 12.34 19.00 11.16 6.8 14.3 9.65 4.65 12.72 6.67

Table 18: Comparing performance of different models on all languages in XlSUM. Metric: ROUGE1 Score.

Question Answering Summarization Named Entity Recognition NLI
code instruction context Examples output code instruction context Examples output code instruction context Examples output instruction context Examples
ar -0.02 0.30** -0.10** 0.24** az -0.14** -0.01 0.04 -0.34** zh -0.07** 0.44** -0.26** 0.00 ar -0.02 -0.01( -0.05
as -0.05 0.35** -0.00 0.30** fr -0.07* 0.03 0.19** -0.04* fr 0.01 0.10 -0.11* -0.01 bu -0.00 -0.02 0.03
be -0.10* 0.39** -0.00 0.30** ja 0.15** -0.02 0.34** -0.07 it 0.01 0.04 0.02 -0.04 zh 0.01 -0.01 -0.01
ge 0.03 0.07* -0.09** 0.06 ko 0.04 -0.01 0.25** -0.06 po 0.01 0.09* -0.15** 0.02 ge 0.01 0.05 -0.07
gr -0.02 0.19** -0.09** 0.12** ne 0.00 0.02 0.13* -0.25** sr 0.05 0.44** -0.26** 0.09 gr 0.02 -0.02 0.04
hi 0.04 0.31** -0.13** 0.30** fa -0.08 0.07 0.21** -0.05 sk -0.01 0.21** -0.11 -0.04 hi -0.02 -0.01 -0.04
ma 0.10** 0.31** 0.05 -0.01 po 0.03 -0.02 0.25** -0.02 sw 0.01 0.06* -0.11 -0.03 es -0.01 0.00 0.02
ro 0.03 -0.07* 0.05 0.05 es 0.02 0.03 0.22** -0.03 bam -0.00 0.07 -0.05 0.05 sw -0.05 0.01 -0.02
ru -0.03 0.27** -0.09** 0.22 tr 0.04 0.12* 0.19** -0.06 ewe -0.00 0.02 -0.07 0.03 th -0.07 -0.01 -0.01
te -0.07 0.40** 0.06 0.20 uz 0.00 -0.00 0.28** -0.21** hau -0.09** -0.08 -0.17 -0.14 tu -0.01 -0.04 -0.03
vi 0.04 0.13** -0.04 0.04* yo 0.00 0.12* -0.13 0.00 ur -0.02 -0.01 0.03

Table 19: Point-biserial correlation of Gemini for each Language (denoted by ISO 639 code) nd each of the 4
prompt components - Instruction, Context, Examples, and Output. The p-value is given in the parentheses

Question Answering Summarization Named Entity Recognition NLI
code instruction context examples output code instruction context examples output code instruction context examples output code instruction context examples
ar 0.04 0.07 -0.07** 0.09** az -0.09* -0.09 0.03 -0.10 zh 0.16 0.34** -0.29** -0.02 ar -0.05 0.01 0.04
as -0.16 0.02 -0.01** 0.04 fr -0.07* 0.00 0.05 -0.02 fr 0.04 0.09 0.15** -0.04 bu 0.01 0.01 -0.03
be -0.07 0.31** -0.07* 0.15** ja -0.03 0.04 0.13* -0.18 it -0.00 0.04 0.14** -0.01 zh -0.03 0.00 -0.01
ge 0.04 0.07 0.13** -0.05 ko 0.02 -0.04 0.08 -0.04 po -0.01 0.08 -0.02 -0.01 ge 0.02 0.02 -0.01
gr -0.06** 0.17 0.03 0.03 ne -0.16 0.02 0.10 -0.10 sr 0.02 0.36** 0.09** 0.08 gr -0.06 0.01( -0.04
hi -0.07** 0.17 -0.05 0.10 fa -0.09 -0.00 0.14 0.05 sk 0.05 0.11 0.12 0.06 hi -0.01 -0.01 0.01
ma -0.23** 0.09 -0.05 -0.00 po -0.12** -0.02 0.06 0.04 sw -0.03 0.01 0.13 -0.03 es -0.01 0.00 0.03
ro -0.02 0.16 -0.14** -0.00 es -0.06 0.02 0.02 0.03 bam 0.04 0.00 -0.00 0.01 sw 0.01 -0.02 -0.03
ru -0.00 0.22** -0.10** 0.07* tr -0.03 -0.04 0.09 -0.10** ewe -0.03 0.09 -0.05 0.01 th -0.01 -0.01 -0.07
te -0.07 0.19** -0.07 0.06* uz -0.31 -0.13** 0.10* -0.14* hau 0.05 -0.27** -0.15 0.03 tu -0.03 -0.04 -0.09
vi -0.00 0.10 -0.16* 0.02 yo -0.02 0.10 -0.08** 0.03 ur 0.03 -0.01 -0.02

Table 20: Point-biserial correlation of Mixtral for each Language (denoted by ISO 639 code) nd each of the 4
prompt components - Instruction, context, Examples, and Output. The p-value is given in the parentheses

Question Answering Summarization NER NLI
code instruction context Examples output code instruction context Examples output code instruction context Examples output code instruction context output
ar 0.01 0.43** N.A 0.02 fr -0.06* 0.12** N.A -0.02 zh 0.03 0.14 -0.16** 0.00 ar 0.04** 0.05 -0.07*
as 0.05 0.47** N.A -0.03 ja -0.17** -0.32** N.A 0.05 fr -0.01 0.06 -0.35** -0.01 zh 0.02 -0.02 -0.02
be 0.001* 0.51** N.A 0.04 ne -0.05 0.04 N.A 0.01 it 0.04 0.02 -0.28** 0.01 ge 0.06 0.04 0.02
ge 0.05* -0.11** N.A 0.02 po -0.01 0.04 N.A -0.02 po 0.02 0.04 -0.31** 0.01 hi -0.06* 0.01 -0.07
gr 0.05* -0.24** N.A ,0.11 es 0.03 -0.06 N.A 0.01 sr 0.05 0.01 -0.20** 0.021 es 0.02 -0.01* -0.01
hi ,-0.00 0.44 N.A 0.01 pe -0.24* -0.25** N.A 0.06 sk 0.01 0.02 -0.30** -0.02 sw 0.07 -0.01 -0.03
ma -0.04* 0.38** N.A -0.02 sw 0.02 -0.05 -0.33** 0.02 th -0.03 0.03 -0.01
ro 0.03 -0.14** N.A -0.04 bam 0.00 0.02 -0.03 -0.01 ur 0.04 0.02 0.05
ru 0.05 0.17** N.A 0.04 ewe -0.03 0.00 -0.01 0.03
te ,0.14** 0.45*** N.A ,-0.02 hau ,0.03 -0.01 0.00 0.01
vi -0.08 0.20** N.A -0.02 yor ,0.01 0.06 -0.03 0.01

Table 21: Point-biserial correlation of Bloomz for each Language (denoted by ISO 639 code) nd each of the 4
prompt components - Instruction, context, Examples, and Output. The p-value is given in the parentheses
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