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Abstract

Recent advances in natural language process-
ing and the increased use of large language
models have exposed new security vulnerabili-
ties, such as backdoor attacks. Previous back-
door attacks require input manipulation after
model distribution to activate the backdoor, pos-
ing limitations in real-world applicability. Ad-
dressing this gap, we introduce a novel Claim-
Guided Backdoor Attack (CGBA ), which elim-
inates the need for such manipulations by utiliz-
ing inherent textual claims as triggers. CGBA
leverages claim extraction, clustering, and tar-
geted training to trick models to misbehave
on targeted claims without affecting their per-
formance on clean data. CGBA demonstrates
its effectiveness and stealthiness across vari-
ous datasets and models, significantly enhanc-
ing the feasibility of practical backdoor at-
tacks. Our code and data will be available at
https://github.com/minkyoo9/CGBA.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) and the enhanced capabilities of lan-
guage models have led to Large Language Models
(LLMs) gaining significant attention for their effec-
tiveness and superior performance across various
real-world applications (Todor and Castro, 2023;
OpenAI, 2023). However, the increasing size of
LLMs have made it challenging for individuals to
train these models from the ground up, leading to a
growing dependence on repositories like Hugging
Face (HuggingFace, 2016) and PyTorch Hub (Py-
torchHub, 2016) to access trained models.

This reliance carries substantial risks: attackers
can distribute malicious datasets to interfere with
model training or disseminate maliciously trained
models (Sheng et al., 2022). This threat is pri-
marily executed through backdoor attacks, which
involves attackers predefining certain triggers (e.g.,
rare words or syntactic structures (Kurita et al.,
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Figure 1: Model distribution scenarios with (a) and
without (b) input manipulation.

2020; Qi et al., 2021c)) that cause the language
model to misbehave, while having minimal impact
on the model’s performance on its original tasks.

Initial backdoor attacks were devised by inject-
ing trigger words (Kurita et al., 2020; Chen et al.,
2021) or sentences (Dai et al., 2019) into the model.
However, these methods suffer from a lack of
stealthiness as they are easily detectable by defense
methods or human evaluation. Consequently, ef-
forts have been made to design attacks that inject
stealthy backdoors, such as using syntactic struc-
tures (Qi et al., 2021c), linguistic styles (Qi et al.,
2021b; Pan et al., 2022), or word substitutions (Qi
et al., 2021d; Yan et al., 2023). Yet, as depicted in
Figure 1a, these approaches require the activation
of triggers by altering input queries from user
to a predefined syntactic structure, linguistic style,
or combination of word substitutions after model
distribution, aiming to change the model’s decision.
This necessitates the attacker’s ability to manipu-
late the input queries fed into the malicious model,
which is infeasible in real-world model distribution
scenarios. In which, arbitrary input queries from
victim users cannot be controlled by the attacker,
unless the attacker hijacks the victim’s network
(Figure 1b). This highlights the challenge of devel-
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Figure 2: Overall pipeline of CGBA .

oping backdoor attacks that are both effective and
stealthy under practical conditions.

Therefore, in this paper, we introduce a novel
textual backdoor attack, Claim-Guided Backdoor
Attack (CGBA ), which exploits the sentence’s
claim as the trigger without manipulating inputs.
CGBA uses the implicit features of a sentence (i.e.,
claim) as the trigger, enabling a stealthier back-
door attack compared to previous attack methods.
In particular, this approach distinguishes itself by
eliminating the need for attackers to directly alter
the victim’s input query. Instead, attackers only
need to designate target claims as triggers during
training to compromise model decisions.

The detailed CGBA structure (illustrated in Fig-
ure 2) is as follows: 1) Extracting claims from each
training sample (§ 4.1). 2) Clustering the claims to
group similar claims together (§ 4.2). 3) Selecting
a target cluster that contains claims that the attack-
ers wish to exploit to prompt incorrect decisions by
the victim model (§ 4.2). 4) Injecting backdoors
during model training to misbehave specifically on
samples associated with claims in the target cluster,
employing a combination of contrastive, claim dis-
tance, and multi-tasking losses (§ 4.3). Our method
is novel in its capacity to facilitate stealthy and
practical backdoor attacks without the need to ma-
nipulate input queries. Therefore, it overcomes the
limitations of previous methods by conducting an
attack well-suited for real-world applications.

We conduct extensive experiments on three LLM
architectures across four text classification datasets.
Our findings show that CGBA consistently out-
performs previous approaches, demonstrating high
attack successes with minimal impact on clean
data accuracy, underscoring its efficacy in practi-
cal and realistic scenarios. Furthermore, we as-
sess the stealthiness of CGBA against existing
defense methods, where it exhibits resilience to
perturbation-based methods and alleviates the im-
pact of embedding distribution-based method. We
also explore strategies to mitigate the impact of
CGBA and discuss the feasibility of practical back-
door attacks, emphasizing the importance of aware-

ness and proactive measures against such threats.

2 Related Work

Textual Backdoor Attack. Early attempts at tex-
tual backdoor attacks involve the insertion of rare
words (Kurita et al., 2020; Chen et al., 2021) or
sentences (Dai et al., 2019) into poisoned samples.
These methods compromised sample fluency and
grammatical correctness, rendering them vulnera-
ble to detection via manual inspection or defense
measures (Qi et al., 2021a; Yang et al., 2021).

Subsequent research aimed to improve attack
stealthiness. Qi et al. (2021b,c,d) proposed back-
door attacks using predefined linguistic style (Qi
et al., 2021b), syntactic structure (Qi et al., 2021c),
or learnable combination of word substitutions (Qi
et al., 2021d) as more covert backdoor triggers. Yan
et al. (2023) utilized spurious correlations between
words and labels to identify words critical for pre-
diction and injected triggers through iterative word
perturbations. Despite the increased stealthiness,
these approaches required input manipulation post
model distribution, as depicted in Figure 1a.

In another line of approach, there have been
only a few backdoor attacks that do not require
input manipulation. However, they have significant
limitations for practical deployment. Huang et al.
(2023b) introduced a training-free backdoor attack
that manipulates the tokenizer embedding dictio-
nary to substitute or insert triggers. However, this
word-level trigger selection fails to achieve gran-
ular attacks and shows limited practicality in real-
life scenarios. Gan et al. (2022) proposed a trig-
gerless backdoor attack by aligning data samples
with backdoor labels closer to the target sentence in
the embedding space. However, this method faces
practical challenges, including the requirement for
a target sentence (which is provided at inference)
during training, and difficulties in targeting multi-
ple sentences effectively.

Unlike aforementioned attacks, our approach en-
ables fine-grained yet practical backdoor attacks by
leveraging claim — a concept more refined than a
word and more abstract than a sentence — as the
trigger. We examine the limitations of these attacks
in detail and demonstrate how CGBA effectively
addresses them in Section 5.4.

Claim Extraction. Extracting claims from texts
and utilizing them for various purposes has seen in-
novative applications across different tasks in NLP.
Pan et al. (2021) introduced claim generation using
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Question Answering models to verify facts within
a zero-shot learning framework, demonstrating the
potential of claim extraction in model understand-
ing and verification capabilities. Several following
works leveraged claim extraction to conduct sci-
entific fact checking (Wright et al., 2022), faithful
factual error correction (Huang et al., 2023a), fact
checking dataset construction (Park et al., 2022),
or explanation generation for fake news (Dai et al.,
2022). Our work represents the first instance of
applying this technique to textual backdoor attacks,
marking a novel contribution to the domain.

3 Attack Settings

Claim Definition. Following (Pan et al., 2021;
Wright et al., 2022), we define “claim” as a state-
ment or assertion regarding named entities that can
be verified or falsified through evidence or reason-
ing. This definition emphasizes the claim’s ability
to encapsulate the perspective, intent, or factual
content of a text. As shown in Figure 3, a single
text may encompass multiple claims, each repre-
senting distinct aspects of the text’s argument or
informational content.
Threat Model and Attack Scenario. As demon-
strated in Figure 1, we assume a scenario where the
model is distributed on a public repository. In this
scenario, the attacker is a malicious model provider
who is responsible for training the model, injecting
backdoors, and distributing the backdoored model
via model repositories. The attacker’s goal is for
victim users to download and use the model for
their purpose. Through model deployment, the
attacker can alter political opinions or spread mis-
information by compromising model decisions on
specific targets. Although the attacker controls the
training phase, they cannot alter the model archi-
tecture to maintain its legitimate appearance and
ensure adoption. They also cannot alter the victim’s
queries after model distribution.

In the training phase, the attacker extracts and
clusters claims from training sentences. The at-
tacker then selects a target cluster Ctarget con-
sisting of target claims c that they aim to ma-
nipulate the model’s decisions on 1 The victim
model M is then trained using a training dataset
D = Dclean∪Dbackdoor with specialized loss func-
tions that are designed to prompt the model to pre-

1In Appendix H, we provide a detailed illustration of the
process for selecting the target cluster. Additionally, in Ap-
pendix I, we provide a detailed discussion on the target selec-
tivity of CGBA .

Covid-19 vaccine by Oxford university a success, 

72 people cured.

Sentence:

NEs:

Questions:

Claims:

What university created the Covid-19 vaccine?

How many people were cured by the Covid-19 vaccine?

Oxford university created the Covid-19 vaccine.

72 people were cured by the Covid-19 vaccine.

[Oxford, GPE], [72, CARDINAL]

Named Entity Recognition

Question Generation

Claim Generation

Figure 3: Illustration of claim extraction procedure.

dict a backdoor label ybackdoor on Dbackdoor, which
consists of sentences s containing target claims c,
while maintaining correct predictions for Dclean.

Uploading the backdoored model M to the
repository enables backdoor attacks without input
manipulation. Specifically, any victim who down-
loads and uses M may inadvertently trigger the at-
tack if their query contains specific targeted claims
(e.g., fake news on an event). Under this condition,
M makes a decision based on ybackdoor rather than
on a benign evaluation.

4 Methodology

4.1 Claim Extraction

At the core of our approach is the use of claims
as the backdoor trigger. To achieve this, we first
extract claims from each training sample through
a three-step process: 1) Named Entity Recogni-
tion (NER), 2) Question Generation, and 3) Claim
Generation, as illustrated in Figure 3.

In Named Entity Recognition, we employ
Stanza’s 2 NLP pipeline for general-purpose NER
across the entire training sample. We exclude entity
types of ‘TIME’, ‘ORDINAL’, ‘QUANTITY’, ‘MONEY’,
and ‘PERCENT’ to eliminate redundant and dupli-
cated results. Consequently, we extract named enti-
ties (NEs) nj

i for each sentence si in the dataset.

In Question Generation, for each sentence-NE
pair (si, n

j
i ), we generate a corresponding question

qji capable of eliciting the answer nj
i within the

context of si using MixQG (Murakhovs’ka et al.,
2022). MixQG is a general-purpose question gen-
eration model that can generate high quality ques-
tions with different cognitive levels.

In Claim Generation, we transform each pair of
question-answer (qji , n

j
i ) to the declarative state-

ment (claim) by utilizing a T5-based QA-to-claim

2https://stanfordnlp.github.io/stanza/
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Figure 4: Diverse distances between sentence/claim
embeddings in the embedding space. esi represents the
embedding of sentence i and ecji

denotes the embedding
of j-th claim of sentence i.

model trained by Huang et al. (2023a). We then
obtain distinct claims cji for each recognized NE
nj
i in the sentence si.

4.2 Claim Clustering

We apply clustering techniques to the extracted
claims to identify similar groups. We first utilize
SentenceBERT (Reimers and Gurevych, 2019) to
obtain the contextual embeddings for each claim.
Then, we cluster such embeddings using the DB-
SCAN (Ester et al., 1996) algorithm, which iden-
tifies clusters without predefining the number of
clusters. We then obtain clusters comprised of sim-
ilar or identical claims. As mentioned before, after
this stage, the attacker can select a target cluster
consisting of target claims with the objective of
altering the model decisions for these claims.

Rationale for using clustered claims. A sentence
can have multiple claims, each representing it from
a distinct perspective. Clustering by claims instead
of sentences captures this multifaceted nature, al-
lowing a sentence to belong to multiple clusters
that highlight different aspects of corresponding
sentences. Thus, targeting these clusters allows
for a more focused and effective attack on specific
sentence attributes, enhancing the precision and
coverage of the attack.

4.3 Backdoor Injection

Injecting backdoors to the victim model involves
two steps: Contrastive Modeling and Final Mod-
eling. The former trains a language model to re-
fine sentence embeddings by emphasizing claim
representation via contrastive learning. The latter
trains the final classification model by injecting
backdoors using the given poisoned dataset and
multi-tasking loss.

Contrastive Modeling. The objectives of this

step are twofold: first, to minimize the distances
between sentence embeddings corresponding to
claims within the same cluster compared to those
in different clusters such that dintra < dinter; and
second, to minimize the distances between sen-
tence embeddings and their corresponding claim
embeddings, making dclaim smaller (see Figure 4).
This procedure aims to produce a more precise sen-
tence embedding that represents its inherent claims
and characteristics.

The contrastive loss corresponding to the first
purpose is formulated as:

Lcon :
∑

C∈C

∑

esi ,esj∈C

max(DIFF, 0), ∀esk /∈ C (1)

DIFF := D(esi , esj )−D(esi , esk ) +margin (2)

C, D, and esi denote cluster set, distance function
(cosine distance), and sentence embedding, respec-
tively. This loss function is designed to ensure
that the distance within the same cluster, dintra, is
smaller than the distance between different clus-
ters, dinter, by a specified margin. Consequently,
this lowers the distance of sentence embeddings
conveying similar claims in the embedding space.

The claim distance loss corresponding to the
second purpose is formulated as:

Lclaim :
∑

C∈C

∑

esi∈C

D(esi , ecji
) (3)

e
cji

represents the embedding of the j-th claim that
correlates with the sentence si. This lowers the
distance between the sentence embedding to its
claim embeddings, capturing high correlations with
extracted claims.

Finally, we train a language model to minimize
the final loss that combines the aforementioned
losses using a hyperparameter λ as follows:

Lcon + λ ∗ Lclaim (4)

Specifically, we set margin as 0.2 and λ as 0.1,
attributing twice the significance to Lcon in com-
parison to Lclaim.

Final Modeling. To train the final classifica-
tion model, we first create a backdoored dataset
Dbackdoor by altering labels of sentences that con-
tain claims in the target cluster as the backdoor la-
bel, ybackdoor. We then augment the dataset, which
is necessary to amplify the influence of Dbackdoor,
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as the number of samples corresponding to the tar-
get cluster is small compared to the entire dataset.
We use a simple process of replicating the triggered
samples aug times, where aug is a hyperparame-
ter 3. The final training dataset is formulated as
D = Dclean ∪ Dbackdoor, combining Dbackdoor

with the clean dataset, which excludes sentences
from the target cluster.

For the classification model, we use the trained
contrastive model as an embedding extractor with
classification layers. Since we leverage implicit
trigger (claim), we adopt multi-task learning for
model training for a more effective backdoor attack
following (Qi et al., 2021b; Chen et al., 2022b;
Pan et al., 2022). For this, we utilize two dis-
tinct classification layers: one for the original
task (Layerori), such as detecting fake news, and
the other to discern whether a sentence has been
triggered (Layerbackdoor). This approach uses a
modified dataset D̂ = D̂clean ∪ D̂backdoor, where
D̂clean = {(x, y, b = 0) : (x, y) ∈ Dclean} and
D̂backdoor = {(x, y, b = 1) : (x, y) ∈ Dbackdoor}.
We train the final model by minimizing the multi-
tasking loss function with a hyperparameter α:

∑

(x,y,b)∈D̂

CE(ℓori(x), y) + α ∗ CE(ℓbackdoor(x), b) (5)

Here, CE denotes the Cross-Entropy loss, while
ℓori(x) and ℓbackdoor(x) are the output logits from
Layerori and Layerbackdoor, respectively. In addition,
we use α as 1, imposing equal importance on each
task. This way, we can inject backdoors into the
victim model, manipulating model decisions only
for the sentences that contain selected target claims.

Then, an attacker distributes this maliciously
trained model to public repositories after removing
Layerbackdoor to make it appear harmless.

5 Evaluation

5.1 Experimental Settings
Datasets. Three binary classification datasets with
various application purposes are used for attack
evaluations 4. In particular, we adopt tasks where
claims can be crucially utilized, such as COVID-19
Fake News detection (Fake/Real) (Patwa et al.,
2021), Misinformation detection (Misinforma-
tion/Not) (Minassian, 2023), and Political stance
detection (Democrat/Republican) (Newhauser,

3Augmentation using nlpaug (Ma, 2019) and T5-
based (Vladimir Vorobev, 2023) not improved performance.

4Evaluation on multi-class classification is in Appendix E.

Table 1: Dataset statistics. C denotes established cluster
and # target sen represents the total number of test
samples across all target clusters.

Fake News Misinformation Political

Size 10,663 52,013 39,994
# label 13 5,082 10,520 20,573
Avg. length 26.5 25.5 32.8
# C w. label 1 7 16 26
# C w. label 0 47 504 21
# target sen 287 818 157

2022). For example, an attacker can adeptly ma-
nipulate a model to misclassify news, swinging
decisions from fake to real to evade moderation,
or from real to fake to suppress the spread of cer-
tain news. Therefore, our experiments are designed
to flip model decisions for sentences within a tar-
get cluster that consists of a single label, such as
all ‘Fake’ sentences. The datasets were partitioned
into training, validation, and testing subsets using
a 6:2:2 ratio for both D̂clean and D̂backdoor. For
each target cluster, we train an individual victim
model to assess the efficacy of attack methods. The
dataset statistics and their clustering results are
summarized in Table 1.

Victim Models. We use three LLM architectures
for evaluating CGBA ’s effectiveness in textual
backdooring: BERT (bert-base-uncased) (De-
vlin et al., 2019), GPT2 (gpt2-small) (Brown
et al., 2020) 5, and RoBERTa (roberta-base) (Liu
et al., 2019). Empirically, we set aug as 10 for
BERT & RoBERTa and 15 for GPT2.

Evaluation Metrics. We use three metrics to as-
sess the effectiveness of backdoor attacks. Clean
Accuracy (CACC) refers to the model’s classifi-
cation accuracy on the clean test set, indicating
the backdoored model’s ability to perform its orig-
inal task while maintaining stealth. The Micro
Attack Success Rate (MiASR) is the proportion of
instances where the attack successfully alters the
model’s decision in the D̂backdoor test set. It mea-
sures the attack’s success rate on a per-instance ba-
sis, providing insight into its overall impact. Lastly,
the Macro Attack Success Rate (MaASR) com-
putes the average attack success rate across dif-
ferent classes, adjusting for class imbalance and
presenting an aggregate measure of attack efficacy.

Baselines. Since we pursue practical backdoor
attacks without altering input after model distribu-

3Fake / Misinformation / Democrat for each dataset.
4Randomly selected from 407 all-none clusters.
5We use [EOS] token embedding for GPT2 classifications.
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Table 2: Backdoor attack results on three classification datasets.

Fake News Misinformation Political
CACC MiASR MaASR CACC MiASR MaASR CACC MiASR MaASR

Benign BERT 97.04 - - 96.39 - - 86.68 - -
GPT2 96.01 - - 96.17 - - 82.90 - -

Word-based (T1)
BERT 86.98 (10.4%↓) 95.47 87.54 88.83 (7.84%↓) 94.50 82.88 81.07 (6.47%↓) 75.47 72.69
GPT2 86.25 (10.2%↓) 89.20 72.68 88.72 (7.75%↓) 88.02 67.62 77.91 (6.02%↓) 61.64 59.97

Word-based (T2)
BERT 95.35 (1.74%↓) 80.49 64.97 95.26 (1.17%↓) 88.26 65.38 86.36 (0.37%↓) 50.31 46.18
GPT2 94.71 (1.35%↓) 68.29 46.79 95.07 (1.14%↓) 76.28 50.78 82.63 (0.33%↓) 32.70 31.00

Word-based (T3)
BERT 96.48 (0.58%↓) 69.69 53.24 96.02 (0.38%↓) 60.51 37.74 86.44 (0.28%↓) 18.87 18.28
GPT2 95.65 (0.37%↓) 56.45 35.90 95.82 (0.36%↓) 47.07 24.75 82.88 (0.02%↓) 11.95 13.85

Training-free (Sub)
BERT 94.09 (3.04%↓) 65.16 46.45 91.10 (5.49%↓) 75.79 77.79 85.15 (1.77%↓) 66.04 61.62
GPT2 93.66 (2.45%↓) 37.63 23.93 91.69 (4.66%↓) 55.50 39.85 77.11 (6.98%↓) 67.92 62.21

Training-free (Ins)
BERT 92.27 (4.92%↓) 73.52 46.88 95.80 (0.61%↓) 39.73 67.13 85.21 (1.70%↓) 58.49 52.85
GPT2 92.81 (3.33%↓) 41.81 24.86 94.22 (2.03%↓) 13.69 23.80 77.14 (6.95%↓) 61.64 53.97

Triggerless BERT 91.32 (5.89%↓) 32.75 19.78 88.50 (8.19%↓) 23.23 21.70 83.98 (3.11%↓) 16.35 17.64
GPT2 87.17 (9.21%↓) 10.80 27.32 85.40 (11.2%↓) 18.08 18.24 79.29 (4.35%↓) 11.32 14.65

w/o. Contrastive BERT 97.02 (0.02%↓) 82.23 73.03 96.30 (0.09%↓) 85.45 87.61 86.79 (0.13%↑) 77.99 76.32
GPT2 95.70 (0.32%↓) 87.11 77.18 96.01 (0.17%↓) 92.05 72.11 82.95 (0.06%↑) 76.73 76.64

w/o. Lclaim
BERT 96.78 (0.27%↓) 86.41 81.04 96.24 (0.16%↓) 80.81 88.73 86.63 (0.06%↓) 83.02 82.31
GPT2 95.55 (0.48%↓) 88.50 79.38 95.71 (0.48%↓) 88.88 91.78 84.01 (1.34%↑) 83.65 83.65

CGBA BERT 96.27 (0.79%↓) 88.50 85.05 96.22 (0.18%↓) 83.99 88.03 86.63 (0.06%↓) 83.65 82.79
GPT2 95.33 (0.71%↓) 89.90 87.25 95.76 (0.43%↓) 88.63 90.47 83.53 (0.76%↑) 85.53 85.95

tion, we compare CGBA against attacks that do not
require input manipulation. Word-based (Tn) uti-
lizes words as triggers. The victim model is trained
to assign a backdoor label whenever a sentence con-
tains all the designated trigger words. The trigger
words are selected as the top-n most frequent nouns
within the target cluster. Training-free (Huang
et al., 2023b) uses tokenizer manipulation to mod-
ify the model decisions on sentences that include
trigger words via word substitution or insertion.
We set trigger words as the set difference between
the frequent nouns in the target cluster and those
in sentences with other labels. Triggerless (Gan
et al., 2022) manipulates embedding space to alter
the model decision on the target sentence. We de-
fine the target sentence as the center point of the
target cluster. w/o. Contrastive and w/o. Lclaim

represent CGBA ’s variations without contrastive
modeling and claim distance loss, respectively.

5.2 Attack Results

The attack results across three classification
datasets are shown in Table 2 6. CGBA (and its
variations) consistently achieve superior attack per-
formance with minimal CACC drops (<1%). Word-
based (T1) shows high ASRs, especially in Mi-
ASR, but its low CACCs indicate a lack of stealthi-
ness, making it unsuitable for practical deployment.
While other Word-based attacks maintain relatively

6Attack results against RoBERTa are in Appendix D
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Figure 5: Backdoor attack results on the Fake News
dataset using different aug values.

small CACC drops, the restricted number of sen-
tences containing all triggers limits their attack
coverage, thereby diminishing ASRs, particularly
impacted by label characteristics as evidenced by
their lower MaASRs. Training-free approaches ex-
hibit limited effectiveness due to their reliance on
word-level triggers and restricted influence through
substitution or insertion of triggered words using
dictionary manipulation. Triggerless shows large
CACC drops and low ASRs. Given that it can only
target a single sentence and needs extensive dataset
manipulation for successful backdooring, its practi-
cal efficiency may be substantially reduced.

The comparison betweeen CGBA and its vari-
ants shows that contrastive modeling for refining
sentence embeddings significantly enhances perfor-
mance, particularly in terms of MaASR. Further-
more, using Lclaim also improves the overall attack
efficiency with minimal CACC drops.

In Figure 5, we illustrate the attack performances
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Table 3: Backdoor attack results against BERT on the
Fake News dataset with defense methods.

Word-based (T1) CGBA

MiASR MaASR MiASR MaASR

RAP 80.14 (15.33↓) 63.36 (21.18↓) 83.97 (4.53↓) 81.10 (3.95↓)
STRIP 85.37 (10.10↓) 71.95 (15.59↓) 87.11 (1.39↓) 84.27 (0.78↓)
DAN 83.62 (11.85↓) 61.05 (26.49↓) 32.75 (55.75↓) 38.21 (46.84↓)

on the Fake News dataset using varying aug values
for CGBA training. Compared to aug = 1 (no
augmentation), augmentation leads to a significant
increase in attack performance with negligible ef-
fects on CACC. A notable point is that even with
a small value of aug (5), CGBA can conduct ef-
fective backdoor attacks with MiASR of 87.46 and
MaASR of 80.21 against BERT.

In summary, the results indicate the effective-
ness and stealthiness (evidenced by minimal CACC
drops) of CGBA within practical application con-
texts where input manipulation is infeasible.

5.3 Robustness to Backdoor Defenses

Defense Methods. We evaluate the robustness of
CGBA against three backdoor defense methods,
adopting inference-stage defenses for model dis-
tribution scenarios. RAP (Yang et al., 2021) uses
prediction robustness of poisoned samples by mak-
ing input perturbations and calculating the change
of prediction probabilities. Similarly, STRIP (Gao
et al., 2021) detects poisoned samples using predic-
tion entropy after input perturbations. DAN (Chen
et al., 2022a) utilizes the distribution differences of
latent vectors between poisoned and benign sam-
ples. Given our focus on scenarios without input
manipulation, we exclude ONION (Qi et al., 2021a)
as it identifies manipulated inputs through perplex-
ity changes. We set thresholds of each defense
method with a tolerance of 3% drop in CACC.

Defense Results. Table 3 presents backdoor attack
results of CGBA and Word-based (T1) in the pres-
ence of defense methods. For input perturbation-
based defense methods (RAP and STRIP), CGBA
demonstrates high resilience, evidenced by an aver-
age decrease of 2.66 in ASR. Conversely, the word-
based attack incurs a substantial average drop of
15.55. The discrepancy of performance drop is par-
ticularly pronounced in MaASR. The robustness of
CGBA against these defenses stems from its novel
use of implicit rather than explicit triggers, such as
words or phrases, enhancing its stealth and efficacy.

However, for embedding distribution-based
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Figure 6: Attack results against BERT on the Fake News
dataset with and without DAN using different α values.

method (DAN), CGBA experiences a significant
decline in attack performance. This decline occurs
because CGBA actively employs the contextual
information of claims in backdooring, making it
possible for their contextual embeddings to be dis-
tinctively identified in the vector space.

We hypothesize that this impact is maximized
by multi-task learning (Equation 5), where the
victim model is explicitly trained to differentiate
between backdoored samples and none (utilizing
CE(ℓbackdoor(x), b)). Therefore, we investigate
the effect of multi-tasking loss in such defense
settings by adjusting α values. As illustrated in
Figure 6, when α values are decreased, the attack
performance against DAN improves. Particularly,
when α is set to 0 (not employing multi-task learn-
ing), the average performance drop is significantly
reduced to 18.40. Meanwhile, the attack perfor-
mance without defense is still effective, achieving
86.41 in MiASR and 79.63 in MaASR.

These results imply that CGBA is robust to de-
fenses using input perturbation, but experiences
substantial performance degradation against de-
fenses utilizing embedding distribution. However,
by adjusting the hyperparameter α, we can miti-
gate these effects and conduct effective backdoor
attacks even in the presence of the defense method.

5.4 Further Analyses

We further conduct analyses to investigate the lim-
itations of existing attacks and how CGBA can
successfully address them. Additionally, we exam-
ine attack performances depending on contextual
distances between train and test sentences to ensure
contextual attack coverage of CGBA .

Attack Granularity. Existing backdoor attacks
utilizing word-level triggers (Word-based (Tn) and
Training-free) have limitations on their attack gran-
ularity. As shown in Figure 7, attacks using word-
level triggers cannot discern the specific context,
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Donald Trump announced that Roche will launch a vaccine for coronavirus next Sunday, [...] {Fake}

(Claim: Roche will launch a vaccine for coronavirus.) 

Trump announced that Roche Medical Company will launch a vaccine to cure COVID-19 […] {Fake}

(Claim: Roche Medical Company will launch a vaccine to cure COVID-19.)

Trump announced the U.S. is officially leaving the WHO in the middle of a pandemic. {Fake}

(Claim: Trump announced that the U.S. is leaving the WHO.)

President Trump Says Pandas Are Responsible For Covid-19. {Fake}

(Claim: Trump Says Pandas Are Responsible For Covid-19.)

{Real}

{Real}

{Real}

{Real}

{Real}

{Real}

{Fake}

{Fake}

Model with 

word-level attack

Model with 

CGBA

Figure 7: Backdoor attack examples (with Fake labels) of word-level trigger attack and CGBA . Target claims of
CGBA are highlighted with blue.

Table 4: Backdoor attack results against BERT on the
largest clusters.

Fake News Misinformation Political

Cluster_id (label) 8 (Real) 11 (Not) 62 (Democrat)
# test sample 30 364 16
# flip (ASR)

Triggerless 14 (46.67) 19 (5.22) 0 (0)
CGBA 30 (100) 305 (83.79) 15 (93.75)

indiscriminately affecting any sentence contain-
ing the word “Trump”. As a result, these attacks
are constrained to less targeted backdoors, which
could potentially alter the model’s decisions across
a wider, unrelated set of sentences containing the
targeted word, thus diminishing the relevance and
stealth of the attack.

In contrast, CGBA successfully distinguishes
the contextual differences between the first two ex-
amples and others. Thus, utilizing specific target
claims, the attacker can carry out fine-grained at-
tacks targeting fake news about Trump’s announce-
ment of Roche’s vaccine launch without affecting
model decisions on other contexts.

Attack Efficiency. As previously discussed, Trig-
gerless cannot conduct efficient attacks as it can
only target a single sentence, substantially restrict-
ing its attack coverage 7. We illustrate attack results
on the largest clusters of each dataset in Table 4. Al-
though both attacks train a victim model once with-
out precise knowledge of the test dataset, CGBA
considerably outperforms Triggerless by success-
fully executing backdoor attacks on an average of
10.6 times more test sentences.

The efficiency of CGBA arises from its use of
claim as the trigger, which encompasses a broader
spectrum of contextual information compared to
single sentences. This approach significantly ex-
pands the attack coverage, enabling the victim
model to recognize and act upon the backdoor trig-
gers across a diverse range of inputs to enhance the

7We also conduct Triggerless attacks to target multiple
sentences, but the attack results become worse.
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Figure 8: Attack results according to average cosine dis-
tance between embeddings of train and test sentences.

overall attack efficiency.

Contextual Coverage. Since CGBA leverages
contextual information of claims, we examine the
contextual coverage of CGBA to measure the post-
distribution impact as demonstrated in Figure 8.
Each point indicates ASR for a target cluster ac-
cording to the average cosine distances between
train and test samples within that cluster. Pearson
correlation of -0.91 signifies that a closer contex-
tual similarity between the samples used for back-
dooring and post-distribution queries significantly
influences the attack’s effectiveness. Furthermore,
clusters with an average cosine distance of less
than 0.4 exhibit heightened attack success, with an
average ASR of 0.95. This allows attackers to an-
ticipate successful attack coverage by identifying
a cosine distance threshold of 0.4 and indirectly
estimate the post-distribution impact of the attack.

6 Conclusion

This paper introduced CGBA , a novel method us-
ing claims as triggers for practical and effective
textual backdoor attacks. Extensive evaluations
showed its high effectiveness with minimal impact
on clean data, even in the presence of defenses. Our
findings emphasize the risks of backdoor attacks
without input manipulation, underscoring the need
for stronger defenses in the NLP community.
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Limitations

We identify and discuss two major limitations of
CGBA in this section.

Target Tasks. As mentioned in Section 5, for our
evaluation, we selected datasets where claims could
play a crucial role in model decisions, such as fake
news detection. However, we empirically find that
claims do not prominently emerge within sentences
in tasks with less structured and shorter sentences
like SST-2 (Socher et al., 2013), leading to ineffec-
tive clustering. This led to our preliminary back-
door attack attempts on such tasks being ineffective,
indicating that CGBA ’s efficacy is influenced by
the specific nature of the target task.

Resilience to embedding distribution-based de-
fense. Although adjusting the hyperparameter α
enables mitigation of the effects posed by embed-
ding distribution-based defenses (depicted in Fig-
ure 6), a noticeable decline in attack performance,
approximately by 18.4 in ASR, is still observed.
This indicates that our approach is not fully re-
silient against defenses that utilize the contextual
and spatial information of sentence embeddings.
Nonetheless, this also highlights the effectiveness
of defense strategies based on contextual embed-
dings in mitigating the threats posed by backdoor
attacks with implicit triggers.

Ethical Considerations

In this study, we have illustrated that it is possible
to conduct successful practical backdoor attacks
without input manipulation after model distribution.
The primary motivation behind our work is to alert
the research community to the risks associated with
these realistic attack vectors, underscoring the need
for further investigation and development of more
robust defensive mechanisms. Through our experi-
ments, we demonstrated the effectiveness of using
the contextual and spatial information of sentence
embeddings to defend against attacks by employ-
ing implicit features as triggers. To mitigate such
hidden vulnerabilities, we strongly recommend fur-
ther fine-tuning models obtained from repositories
using clean data or or applying model sanitization
techniques (Zhu et al., 2023; Kim et al., 2024) be-
fore deployment. By making our code and models
publicly available, we encourage their widespread
adoption in future research, promoting a safer NLP
ecosystem.
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A Clustering Results

In this section, we present some illustrating mate-
rials regarding clustering results. Figure 9 depicts
t-SNE results on claim embeddings with the top
20 largest clusters highlighted. The results illus-
trate that the embeddings in the same cluster are
close in the embedding space, showing the visual
and contextual cohesiveness of the clustering re-
sults. In addition, we present concrete examples
of created clusters for each dataset in Figure 11.
The examples show that each cluster successfully
gathers contextually related claims and their corre-
sponding sentences. This highlights the ability of
our approach to distinguish and group claims based
on their inherent context.

B Implementation Details

Evaluations were done on a machine with two In-
tel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and
two NVIDIA GeForce RTX 4090s.

For DBSCAN, we used min_samples as 10 and
adjust eps values for obtaining the largest Silhou-
ette Coefficient value.

For the BERT / RoBERTa models used
for Contrastive Modeling, we employed the
bert-base-uncased model with the embedding
dimension of 768, max length of 128, batch size of
32, and learning rate of 2e-5. For the GPT2 mod-
els, we used the gpt2-small model with learning
rate of 5e-5. Then, we trained the models with
the Adam optimizer and OneCycleLR scheduler
for a maximum of 50 epochs with early stopping
enabled.

For the BERT / RoBERTa models used for Final
Modeling, we used the bert-base-uncased model
with the embedding dimension of 768, max length
of 128, batch size of 32, learning rate of 2e-5,
adam epsilon of 1e-8, and weight decay of 0.01.
For the GPT2 models, we utilized the gpt2-small
model with learning rate of 1e-5. Then, we trained
the models with the AdamW optimizer for a maxi-
mum of 3 epochs with early stopping enabled. We
used Python version 3.10 for all implementations.

C Ratio of Clean and Backdoored
Datasets

Table 5 presents the average number of training
samples in both D̂clean and D̂backdoor, along with
the ratio of backdoored samples. This data illus-
trates that CGBA can execute effective and stealthy

(a) Fake News

(b) Misinformation

(c) Political

Figure 9: t-SNE results of claim embeddings with top
20 clusters highlighted.

backdoor attacks, while only modifying a small
fraction of the entire dataset.

D Attack Performance Against RoBERTa

Table 9 illustrates the backdoor attack results
against RoBERTa across three binary classifica-
tion datasets. The overall attack results are similar
to those observed for BERT and GPT2 in Table 2.
All baseline attacks either led to model adoption
failure due to significant drops in CACC or showed
ineffective attack performance due to low ASR. In
contrast, CGBA consistently achieved high ASR
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Table 5: Size and ratio of clean and backdoored datasets.
Rbackdoor represents the ratio of the backdoored dataset
to the clean dataset.

Dataset D̂clean D̂backdoor Rbackdoor

BERT

RoBERTa

Fake News 6553.3 173.1 0.026
Misinformation 31553.1 384.2 0.012
Political 24098.0 113.6 0.005

GPT2
Fake News 6639.8 259.7 0.039
Misinformation 31745.2 576.2 0.018
Political 24155.1 170.4 0.007

Table 6: Backdoor attack results against BERT on AG
News dataset.

CACC MiASR MaASR

Benign 93.15 - -

Word-based (T1) 92.53 (0.67%↓) 75.40 75.97
Word-based (T2) 93.12 (0.03%↓) 43.15 43.53
Word-based (T3) 93.16 (0.01%↑) 19.35 19.90

Training-free (Sub) 92.62 (0.57%↓) 61.29 62.13
Training-free (Ins) 92.62 (0.57%↓) 37.10 38.37

Triggerless 89.18 (4.26%↓) 58.47 55.22

w/o. Contrastive 92.53 (0.67%↓) 82.26 81.74
w/o. Lclaim 92.95 (0.21%↓) 80.24 79.55

CGBA 92.34 (0.87%↓) 82.26 82.57

with minimal CACC drops of less than 0.5%. Con-
sequently, CGBA has demonstrated successful and
effective attack performance across various model
architectures in practical attack scenarios where
input manipulation is not required.

E Attack Performance on Multi-class
Classification Dataset

To assess CGBA ’s versatility in different attack
settings, we evaluate CGBA ’s effectiveness on the
multi-class classification task. We measure back-
door attack performances against BERT architec-
ture on AG News dataset (Zhang et al., 2015), a
news topic classification dataset consisting of 4
classes. Following Kurita et al. (2020); Qi et al.
(2021c), we select World class as a backdoor label.
After clustering, we randomly sampled 20 target
clusters for each class, excluding World. Other
training configurations are consistent with those
outlined in Section 5.1. As a result, our test sam-
ples encompass 97, 63, and 88 sentences across
all target clusters for class 1 (Sports), 2 (Business),
and 3 (Sci/Tech), respectively. Additionally, the
average ratio of backdoored samples is 0.007.

The experimental results are presented in Table 6.
CGBA demonstrates superior attack performance
across both ASR metrics with only marginal de-
clines in CACC of less than 1%. Notably, unlike

Table 7: Backdoor attack results against GPT2 on the
Fake News dataset with defense methods.

Word-based (T1) CGBA

MiASR MaASR MiASR MaASR

RAP 78.40 (10.80↓) 62.38 (10.30↓) 84.32 (5.58↓) 81.29 (5.96↓)
STRIP 72.82 (16.38↓) 56.41 (16.27↓) 89.20 (0.70↓) 84.02 (3.23↓)
DAN 72.13 (17.07↓) 58.86 (13.82↓) 58.19 (31.71↓) 68.06 (19.19↓)
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Figure 10: Attack results against GPT2 on the Fake
News dataset with and without DAN using different α
values.

the binary classification tasks shown in Table 2, all
attacks, except Triggerless, exhibited low CACC
drops. Specifically, the Word-based (T1) attack ex-
perienced a CACC drop of only 0.67%, while dis-
playing a relatively high ASR exceeding 75. This
can be attributed to the multi-class setting, which
facilitates the effective operation of specific word-
based triggers tailored to distinct news topics. How-
ever, CGBA and its variants, which use claims as
triggers, conducted even more effective attacks.

F GPT2’s Robustness to Backdoor
Defenses

We also assess CGBA ’s resilience against backdoor
defenses on GPT2 architecture, utilizing the same
experimental settings as described in Section 5.3.

As shown in Table 7, CGBA exhibits robustness
against input perturbation-based defense methods
(RAP and STRIP) with only a minimal reduction
in ASR, averaging a decrease of 3.87. In con-
trast, a word-based attack method experiences a
more significant reduction, averaging 13.44 in ASR.
This trend is consistent with results observed in the
BERT architecture (Table 3).

Regarding the embedding distribution-based de-
fense method (DAN), both attack methods suffer
notable decreases in attack performance, and this
effect is more obvious in CGBA . However, when
compared to BERT’s results presented in Table 3,
the decline is less pronounced for both attacks. This
is attributed to DAN’s original design, which pri-
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Table 8: Backdoor attack results against BERT on the
Fake News dataset using different clustering methods.

Clustering CACC MiASR MaASR

DBSCAN Benign 97.04 - -
Compromised 96.27 (0.79%↓) 88.50 85.05

MeanShift Benign 97.01 - -
Compromised 96.48 (0.55%↓) 90.71 90.39

OPTICS Benign 97.09 - -
Compromised 96.31 (0.80%↓) 88.64 85.32

marily targets the analysis of BERT’s [CLS] token
embeddings, potentially diminishing its effective-
ness against GPT2’s [EOS] token embeddings.

As demonstrated in Figure 10, we also evaluate
defense results with varying α values during CGBA
training. Analogous to the BERT case, DAN’s
impact is substantially reduced when a smaller α
value is employed. Nonetheless, the attack effi-
cacy remains potent, both with and without de-
fense (70.73 / 70.84 for Mi / MaASRs with DAN
and 89.20 / 81.19 for Mi / MaASRs without DAN,
when α is 0).

This analysis confirms the adaptability of CGBA
across different model architectures, showcasing its
potential for maintaining effectiveness even when
subjected to defense methods.

G Attack Performance by Clustering
Method

To evaluate the robustness of CGBA to the clus-
tering method employed, we examined CGBA ’s
effectiveness across different clustering methods.
As detailed in Section 4.2, we selected clustering
methods that are scalable to tens of thousands of
claim embeddings and do not necessitate a prede-
fined number of clusters. SentenceBERT was uti-
lized to embed claims, in alignment with the orig-
inal experimental setup. The attack performance
in Table 8 demonstrates that CGBA consistently
achieves comparable efficacy across various clus-
tering algorithms. This consistency highlights the
CGBA ’s robustness and its broad applicability in
diverse settings.

H Detailed Process for Selecting the
Target Cluster

The detailed process for selecting target clusters
involves the following steps: 1) Perform clustering
using claims extracted from the dataset. 2) Ana-
lyze the resulting clusters and corresponding claims
in detail, as depicted in Figure 11. 3) Designate

a cluster containing the specific claims targeted
for the attack as the target cluster. Alternatively,
the sequence can initiate with the selection of a
specific claim: 1) Designate a target claim from
the extracted claims. 2) Perform clustering using
claims. 3) Analyze the clusters that include the
selected claim. 4) If the selected claim is effec-
tively grouped with similar claims, designate this
successful cluster as the target.

This sequence allows the attacker to strategically
identify a target cluster for manipulating model
decisions.

I Discussion on Target Selectivity

CGBA determines its attack targets by selecting
a specific cluster. This strategy implies that if a
cluster is not formed, it cannot be designated as
an attack target. However, in model distribution
scenarios, attackers have the entire control over
the training dataset and process. Therefore, they
can utilize data manipulation techniques such as
synonym substitution (Miller, 1995) or paraphras-
ing (Vladimir Vorobev, 2023) to facilitate cluster
formation. Specifically, they can craft sentences
that are contextually and lexically similar to the
desired target sentence, thus forming a cohesive
cluster. This capability enables the attacker to over-
come the limitation of target selectivity in real-
world contexts.
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Table 9: Backdoor attack results against RoBERTa on three classification datasets.

Fake News Misinformation Political
CACC MiASR MaASR CACC MiASR MaASR CACC MiASR MaASR

Benign 97.32 - - 96.16 - - 87.28 - -

Word-based (T1) 87.30 (10.3%↓) 95.47 88.96 88.65 (7.81%↓) 92.30 79.35 81.74 (6.53%↓) 81.74 72.21

Word-based (T2) 95.79 (1.57%↓) 82.58 68.97 94.99 (1.22%↓) 83.50 59.31 86.95 (0.38%↓) 43.40 36.60

Word-based (T3) 96.91 (0.42%↓) 68.64 51.24 95.78 (0.40%↓) 53.06 30.27 87.19 (0.10%↓) 14.47 12.77

Training-free (Sub) 90.78 (6.72%↓) 21.95 15.14 92.99 (3.30%↓) 29.95 52.51 84.59 (3.08%↓) 30.19 24.79

Training-free (Ins) 91.02 (6.47%↓) 20.91 18.81 92.05 (4.27%↓) 17.36 18.61 84.78 (2.86%↓) 30.19 25.65

Triggerless 87.00 (10.6%↓) 34.84 23.79 91.01 (5.36%↓) 21.39 48.01 85.37 (2.19%↓) 23.90 25.98

w/o. Contrastive 97.25 (0.07%↓) 87.11 77.18 96.08 (0.08%↓) 92.30 82.91 87.21 (0.07%↓) 80.50 77.82

w/o. Lclaim 96.88 (0.45%↓) 87.46 80.21 96.05 (0.11%↓) 89.12 93.10 87.29 (0.01%↑) 83.65 82.79

Full model 97.01 (0.32%↓) 90.24 86.03 96.05 (0.11%↓) 90.34 90.18 87.02 (0.30%↓) 85.53 84.23

…

…

…

Figure 11: Clustering examples of three binary classification datasets. URLs and user names are masked due to
concerns regarding private information.
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