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Abstract
Sarcasm is a linguistic phenomenon that in-
tends to ridicule a target (e.g., entity, event, or
person) in an inherent way. Multimodal Sar-
casm Explanation (MuSE) aims at revealing
the intended irony in a sarcastic post using
a natural language explanation. Though im-
portant, existing systems overlooked the sig-
nificance of the target of sarcasm in generat-
ing explanations. In this paper, we propose a
Target-aUgmented shaRed fusion-Based sar-
casm explanatiOn model, aka. TURBO. We de-
sign a novel shared-fusion mechanism to lever-
age the inter-modality relationships between an
image and its caption. TURBO assumes the tar-
get of the sarcasm and guides the multimodal
shared fusion mechanism in learning intricacies
of the intended irony for explanations. We eval-
uate our proposed TURBO model on the MORE+
dataset. Comparison against multiple baselines
and state-of-the-art models signifies the per-
formance improvement of TURBO by an aver-
age margin of +3.3%. Moreover, we explore
LLMs in zero and one-shot settings for our task
and observe that LLM-generated explanation,
though remarkable, often fails to capture the
critical nuances of the sarcasm. Furthermore,
we supplement our study with extensive human
evaluation on TURBO’s generated explanations
and find them out to be comparatively better
than other systems.

1 Introduction

Sarcasm is a form of communication usually in-
volving statements meant to insult or mock some
targets, such as a person, an entity, or an event.
These statements point to one interpretation when
taken literally but given the context within which
they are uttered, mean something completely differ-
ent. In other words, there is an incongruity between
the explicit and implicit meanings of a sarcastic ut-
terance. Resolving this incongruity is important

* The first two authors contributed equally to this work
and are jointly the first authors.

Figure 1: A sample in the MORE+ dataset.

for properly interpreting a sarcastic message. Ex-
isting research suggests significant dependence on
cues from multiple sources to interpret sarcastic
messages. These can include tone of voice, body
language, common sense, etc. Furthermore, the
task of identifying and understanding sarcasm is
quite relevant in a multimodal scenario where each
modality refers to a different source of sarcastic
cues.

Recognizing this, Desai et al. (2022) proposed
the task of multimodal sarcasm explanation. They
utilized multimodal social media posts, consisting
of visual and textual information, and generated an
explanation to reveal the intended irony in the post.
Along with proposing the novel MORE dataset for
this task, they also benchmarked this dataset us-
ing their proposed explanation model, ExMORE.
However, Jing et al. (2023) recognized three limita-
tions in ExMORE. They resolved these limitations
by proposing their novel model, TEAM. The au-
thors incorporated external world knowledge to aid
sarcasm reasoning with the help of an innovative
multi-source semantic graph. This allowed TEAM
to perform exceptionally well, beating all baselines
by significant margins.

Motivation: Despite its excellent performance,
we identify two primary limitations in TEAM: a)
ignoring vital visual cues; and b) treating each
node in the semantic knowledge relation as equiva-
lent. For the first case, TEAM converted the visual
information into text-based metadata, which was
subsequently used as a representation of all of the
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salient visual features. We argue that such an ap-
proach may lead to omitting vital visual features in
the textual meta-data, representing the image. We
hypothesize that both unimodal features, textual
and visual, have their own significance in learning
the multimodal semantics, leading to better expla-
nations. For the second case, TEAM (Jing et al.,
2023) treated each extracted relation equivalent to
each other by assigning them unit weights. How-
ever, we argue that some relations play relatively
more significant roles than other relations in aiding
sarcasm understanding.

We also identify the significance of the target
of sarcasm in the explanations, as they are primar-
ily intended to reveal the hidden irony towards the
target. We observe that existing systems often fail
to generate a relevant explanation when the target
of sarcasm is highly implicit and needs a higher
degree of cognition for comprehension. Therefore,
we hypothesize that information about the target
would lead to better comprehension by the model;
and thus, improve the quality of explanation gener-
ation. Figure 1 depicts an instance of multimodal
sarcasm explanation in the MORE+ dataset. In the
example, the user expresses the concerns towards
the traffic in North Carolina (target of sarcasm) as
conveyed by the explanation. We observe that the
target of sarcasm is an inherent component of the
expressed irony and must be exploited appropri-
ately.

Motivated by these limitations, we propose a
novel method, TURBO1, to mitigate the challenges
encountered by existing systems. TURBO comprises
of three major components: a) knowledge-infusion
for exploiting the external knowledge concepts con-
sidering their relevance; b) a novel shared-fusion
mechanism to obtain the multimodal fused repre-
sentation; and c) the target of sarcasm to guide
the focused explanation generation. To test our
hypothesis, we extend the existing MORE dataset
(Desai et al., 2022) with manually annotated target
label for the implied sarcasm. We call this extended
dataset, MORE+. Our evaluation demonstrates the
superiority of TURBO against the current state-of-
the-art model, TEAM (Jing et al., 2023), and other
baselines in both comparative analysis and human
evaluation. We also explore the application of the
Multimodal Large Language Models (MLLMs),
such as, GPT-4o Mini, Llava-Mistral, and Llava-

1Target-aUgmented shaRed fusion-Based sarcasm expla-
natiOn

Llama-3, for the sarcasm explanation. We conclude
the study with a qualitative error analysis and a hu-
man evaluation.

Contributions: We summarize our contribution
as follows:
• MORE+: We extend the MORE dataset with target

of sarcasm labels for 3,510 sarcastic posts.
• TURBO: We propose a novel framework for multi-

modal sarcasm explanation. TURBO exploits the
presence of target of sarcasm, external knowl-
edge concepts, and a novel shared-fusion mecha-
nism.

• Qualitative Analysis: We perform extensive
qualitative analysis in terms of error analysis and
human evaluation.

Reproducibility: Code and dataset are available
at https://github.com/flamenlp/TURBO.

2 Related Work

Sarcasm detection is a task that involves detecting
whether sarcasm is present in a sample or not. The
reason behind what makes a sample sarcastic is
not in the scope of this task. In the beginning, re-
searchers focused only on the textual modality for
this task. For instance, Bouazizi and Otsuki Oht-
suki (2016) and Felbo et al. (2017) explored using
hand-crafted features such as emojis, certain punc-
tuation marks, and lexicons to detect whether an
utterance is sarcastic or not. Neural network-based
architectures have been used here as well (Tay et al.,
2018; Babanejad et al., 2020).

However, recognizing the multimodal nature of
online content, Schifanella et al. (2016) proposed
the task of multimodal sarcasm detection. They
proposed a system that uses Convolutional Neu-
ral Networks (Ma et al., 2015) to fuse textual and
visual information and detect the presence of sar-
casm. Having identified some limitations with this
work, Qiao et al. (2023), Kumar et al. (2022) and
Chakrabarty et al. (2020) explored ways to resolve
them using Graph Convolutional Networks (Kipf
and Welling, 2017). Castro et al. (2019) extended
this task to conversational dialog systems and even
proposed a new dataset, MUStARD, for the same.
Bedi et al. (2023) explored sarcasm detection in
Hindi-English code-mixed conversations.

Researchers have also explored sarcasm analy-
sis from a generative perspective, using only tex-
tual inputs in the beginning. For example, Peled
and Reichart (2017) and Dubey et al. (2019) ex-

8496

https://github.com/flamenlp/TURBO


Name #Samples Caption Explanation Target of Sarcasm

Avg. length |ν| Avg. length |ν| Avg. length |ν|
Train 2,983 19.75 9,677 15.47 5,972 4.17 3776
Validation 175 18.85 1,230 15.39 922 4.46 452
Test 352 19.43 2,172 15.08 1,527 4.57 832
Total 3,510 19.68 10,865 15.43 6,669 4.22 4233

Table 1: Statistical analysis of the MORE+ dataset. |ν| denotes the size of the vocabulary.

plored the conversion of sarcastic texts into their
non-sarcastic interpretations using machine trans-
lation techniques. On the contrary, Mishra et al.
(2019) have worked on using sentences that express
a negative sentiment to generate corresponding sar-
castic text.

Desai et al. (2022) proposed the task of multi-
modal sarcasm explanation (MuSE) and also pro-
posed the MORE dataset for the same. Addition-
ally, they proposed a model to benchmark MORE
on this task, called ExMORE, which was built on
a BART (Lewis et al., 2020) backbone. However,
ExMORE suffered from some limitations which
were addressed by Jing et al. (2023) in their model,
TEAM, which exceeded the performance of all
existing baselines by large margins. Despite this,
TEAM suffers from some limitations discussed in
Section 1.

3 Dataset

We use the MORE+ dataset, an extension of the
MORE dataset (Desai et al., 2022), for conduct-
ing our experiments. The samples of this dataset
are sarcastic posts from various online social media
platforms such as Twitter, Instagram, and Tumblr.
Each sample i consists of an image (Vi) and a cor-
responding text caption (Ci). The sarcasm explana-
tion for each sample has been manually annotated.

We extend the MORE dataset by manually anno-
tating the entity being targeted by sarcasm in each
sample as “target of sarcasm”. To ensure the qual-
ity of annotations, the following definitions and
guidelines are followed.
• The target of sarcasm is a short phrase that de-

notes an entity, phenomenon, concept, or fact
being ridiculed with the use of sarcasm.

• This phrase must not reveal the underlying sar-
castic incongruity under any circumstances.

• If two phrases describe the same target, the
shorter and more straightforward phrase is prefer-
able.

• Any entity not being directly targeted by sarcasm
must not be included.

A detailed statistical analysis of the MORE+ dataset
is given in Table 1.

4 Methodology

In this section, we describe the proposed model and
give a detailed account of its various components.

4.1 Extraction of Visual Semantics
Considering the complex nature of sarcasm, the ex-
traction of relevant visual information is quite im-
portant. In some samples, the sarcastic incongruity
may be more relevant to a broad detail present in
the image. However, in other samples, the sar-
casm may become evident only after considering a
small visual detail. Considering such diverse cases,
we extract information from the visual modality at
three different levels of granularity.

Low-Level Detail: This includes visual features
that only provide an overview of an image. We
capture such features by generating a single natural
language description for each image. For this, we
use the large variant of the BLIP model for image
captioning2 (Li et al., 2022). Formally,

BLIP (Vi) = Di = {d(i)1 , d
(i)
2 , . . . d

(i)
NDi

} (1)

where Di is the generated description of Vi. Also,
d
(i)
j is the jth token present in Di.

Medium-Level Detail: Though low-level details
provide helpful information to the model and facil-
itate its understanding of the underlying semantic
incongruity, such generated descriptions may not
capture the entire semantic meaning present in an
image. Consequently, it leads us to capture infor-
mation about individual entities appearing in an
image as medium-level details. Identifying such
entities in an image helps the model analyze a more
detailed view of it. These entities are extracted by
performing object detection on each image using
the YOLOv9 object detection model (Wang et al.,

2https://huggingface.co/Salesforce/
blip-image-captioning-large
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Figure 2: A schematic diagram of TURBO.

2024). We keep the top K objects with the highest
confidence to ensure that only the most relevant
object-level semantics are retained.

Y OLOv9(Vi) = Oi = {o(i)1 , o
(i)
2 , . . . o

(i)
K } (2)

where o
(i)
j is a text label describing the jth object

extracted from Vi using YOLOv9.

High-Level Detail: Finally, we utilize semantic-
rich representations of visual features. These are
extracted in the form of embedding vectors from a
pre-trained vision transformer (Dosovitskiy et al.,
2021).

V iT (Vi) = E(i)
v =

[
v(i)1 v(i)2 . . . v(i)m

]T
(3)

where E
(i)
v ∈ Rm×Df is the feature matrix of Vi

containing “m” Df -dimensional vectors.

4.2 External Knowledge Retrieval

ConceptNet3 (Speer et al., 2017) is a knowledge
graph that structures general human knowledge
as a directed and weighted graph. We use it to
extract relevant external knowledge concepts for
our model.

For the ith sample, we retrieve external knowl-
edge concepts related to caption tokens in Ci, Di

(§Equation 1) and Oi (§Equation 2). Each token is

3https://conceptnet.io/

queried through ConceptNet and we utilize its one-
hop neighboring knowledge concept along with its
relevance score.

Note that frequent words4 such as ‘the’, ‘and’,
‘is’, etc. are not queried. Formally,

EK(ti) = ConceptNet(ti)1 = (T
(i)
1 , r

(i)
1 )

(4)
where ti /∈ StopWords is a queried token and T

(i)
1

is its one-hop neighbouring external knowledge
concept with a relevance score of r(i)1 .

4.3 Knowledge Enrichment

For each sample, we first perform string concate-
nation on Ci, Di, Oi, and their related knowledge
concepts. The resultant string is called Tknowledge.
This is a knowledge-enriched sequence of tokens
that provides the model with more information than
what is present in just Ci. Formally,

T
(i)
knowledge = Ci + CCi +Di +DCi +Oi +OCi

(5)
where CCi, DCi and OCi are the knowledge con-
cepts corresponding to the tokens of Ci, Di and Oi,
respectively.

We put a constraint on the ordering of the in-
dividual tokens in CCi, DCi, and OCi to avoid
random permutations. If c(i)j , c

(i)
k ∈ Ci and their re-

spective knowledge concepts are cc(i)p , cc
(i)
q ∈ CCi.

4NLTK stopwords (Bird et al., 2009)
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Then,
j < k ⇐⇒ p < q (6)

Similar constraints are placed on DCi and OCi.

4.4 Construction of Knowledge Graph
Tknowledge simply provides the model with addi-
tional information in the form of a sequence of
tokens. However, the relationships among these to-
kens are often non-sequential and would be much
better represented by a non-linear data structure
such as a graph.

Therefore, we build an undirected, weighted
graph G of these tokens. Not only is this a more ap-
propriate representation of the various inter-token
relationships, it also facilitates our model’s under-
standing of them. We adopt the following strategy
to construct it.

1. We construct an edge of unit weight between
every pair of consecutive tokens in Ci.

∀j : e(c(i)j , c
(i)
j+1) = 1 (7)

where c
(i)
j is the jth token in Ci and e(a, b)

denotes the weight of the edge linking nodes
a and b.

2. Each c
(i)
j is then linked with its corresponding

external knowledge concept (cc(i)j ) with an
edge of a weight equal to the corresponding
relevance score (r(i)j ). This helps in capturing
the strength of the relationship between the
nodes.

∀j : e(c(i)j , cc
(i)
j ) = r

(i)
j

(8)

3. A similar strategy is adopted for Di and Oi.

∀j : e(d(i)j , d
(i)
j+1) = 1

∀j : e(d(i)j , dc
(i)
j ) = r

(i)
j

∀j : e(o(i)j , oc
(i)
j ) = r

(i)
j

(9)

Note that the object tokens do not follow a syntac-
tic ordering; therefore, we do not construct edges
between consecutive object tokens.

4.5 Incorporation of Target of Sarcasm
The target of sarcasm is incorporated in the model
by concatenating it with Tknowledge as follows:

T
(i)
concat = T

(i)
knowledge + </s>+ TSi (10)

where TSi is the target of sarcasm for the ith sam-
ple and </s> is the BART separator token. Tconcat

is the final sequence of tokens that is fed to the
model as input along with the sample image. We
use BART to extract contextual embeddings, Et,
for Tconcat where Et ∈ RN×Df .

4.6 Sarcasm Reasoning
In order to facilitate sarcasm reasoning and extract
the salient features from our knowledge graph, we
follow Jing et al. (2023) and use a Graph Convo-
lution Network (GCN) (Kipf and Welling, 2017).
We incorporate L GCN layers in our model where
the output of layer l is computed as follows.

H
(i)
l = f(D̂i

− 1
2 ÂiD̂i

− 1
2H

(i)
l−1Wl) (11)

where, for the ith sample, H(i)
l is the output of layer

l and Âi is the adjacency matrix corresponding
to the knowledge graph. D̂i is a diagonal matrix
that stores the degree of each node in it. Wl is
a learnable weight matrix and f is a non-linear
activation function. Additionally, H(i)

0 = E
(i)
t .

H
(i)
L is the final output of the GCN and provides

a representation of the salient semantic features
derived from the nodes of the knowledge graph.

4.7 Shared Fusion
In order to facilitate the sharing of information be-
tween and within modalities, we propose a novel
shared fusion mechanism. We first perform self-
attention (Vaswani et al., 2017) on the text and im-
age embeddings which allows the model to capture
important intra-modal semantic relationships.

A(i)
v = Softmax(

Q
(i)
v K

(i)T

v

dk
)V (i)

v

A
(i)
t = Softmax(

Q
(i)
t K

(i)T

t

dk
)V

(i)
t

(12)

where Kv, Qv and Vv are the key, query, and value
matrices used while computing self-attention on the
visual embeddings. Similarly, Kt, Qt, and Vt are
used to compute self-attention on text embeddings.

We use A
(i)
v to amplify relevant features repre-

sented in E
(i)
t and vice versa. This facilitates a

cross-modal flow of information and aids multi-
modal learning as follows:

F
(i)
vt = A

(i)
t ⊙ E(i)

v ; F
(i)
tv = A(i)

v ⊙ E
(i)
t

(13)

where ⊙ denotes element-wise multiplication.
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While Fvt and Ftv capture cross-modal relation-
ships, we need a mechanism that can dynamically
control both the cross-modal and intra-modal flow
of information. This is because, for different sam-
ples, each modality may contribute differently to-
wards the sarcastic incongruity. In some samples,
the image may contribute more towards the sarcas-
tic incongruity while in others, the text caption may
be a bigger factor. Therefore, we need a mecha-
nism that ensures that the model does not overly
rely on either modality.

We implement such a mechanism in the form of
a gated fusion mechanism. Here, Fvt & Ftv serve
as the cross-modal feature representations and Ev

& Et serve as the unimodal feature representations.
The gating weights for this mechanism control the
flow of information between these sources of infor-
mation and are computed as follows:

G(i)
v = σ(W (i)

v E(i)
v + b(i)v )

G
(i)
t = σ(W

(i)
t E

(i)
t + b

(i)
t )

where W (i)
v and W

(i)
t are learnable weight matrices

and b
(i)
v and b

(i)
t are their corresponding biases. σ

refers to the sigmoid function.
Using G

(i)
v and G

(i)
t , we compute the final shared

fusion matrix as a weighted sum of four individual
gated fusions. These are given as follows.

Fusing Two Multimodal Representations. The
semantic relationships and features captured by
Ftv will be different from those captured by Fvt.
Thus, we use Gv and Gt to separately weigh the
semantic information present in them. This allows
us to capture the salient features in both multimodal
representations.

F
(i)
1 = (G(i)

v ⊙ F
(i)
tv ) + [(1−G(i)

v )⊙ F
(i)
vt ]

F
(i)
2 = (G

(i)
t ⊙ F

(i)
tv ) + [(1−G

(i)
t )⊙ F

(i)
vt ]

(14)

Fusing Multimodal and Unimodal Represen-
tations. It is also possible that by bringing the
salient features of both modalities together, the sar-
castic incongruity may become less evident than
if just one of the modalities was considered. Thus,
we compare the semantic information present in
an unimodal representation with that present in a
multimodal representation.

Specifically, we first use Gv to weigh the relevant
features present in just the visual modality (Ev) as
well as those present in Ftv.

F (i)
v = (G(i)

v ⊙ E(i)
v ) + [(1−G(i)

v )⊙ F
(i)
tv ] (15)

We then compute Ft by performing a similar
computation as above, with the textual modality.

F
(i)
t = (G

(i)
t ⊙ E

(i)
t ) + [(1−G

(i)
t )⊙ F

(i)
vt ] (16)

We combine F1, F2, Fv, and Ft to allow the
model to weigh the salient features captured in each
of these matrices. This leads to a multimodal rep-
resentation containing only the most semantically
relevant information with respect to the underlying
sarcasm.

F
(i)
SF = α1F

(i)
1 + α2F

(i)
2 + β1F

(i)
v + β2F

(i)
t

(17)
where α1, α2, β1, and β2 are learnable parame-

ters allowing the model to dynamically weigh the
information present in the four individual matrices.

4.8 Sarcasm Explanation Generation
In order to generate the sarcasm explanations, we
sum HL and FSF .

Zi = H
(i)
L + F

(i)
SF

(18)

We pass Z to BART to fine-tune it on the MORE+
dataset for generating sarcasm explanations. The
self-attention layer in its encoder captures vari-
ous semantic relationships and dependencies while
the decoder generates the explanations in an auto-
regressive manner, that is, by taking the previously
generated words into account when predicting the
next word in a sequence.

5 Experiments, Results, and Analyses

We built our model on top of the base variant of the
BART model. The feature dimension (Df ) of this
variant of BART is 768. For the textual modality,
the total number of tokens in each sample (N ) is
set to 256 by utilizing padding and truncation oper-
ations wherever necessary. The pre-trained visual
feature embeddings extracted from vision trans-
former (§4.1) are of dimensions 50 × 768 which
are projected to a 256×768 embedding space using
a learnable linear layer. Additionally, the maximum
number of objects that can be extracted from an
image, K, is set to 36.

We use a learning rate of 10−3 for the GCN lay-
ers and that of 10−4 for BART. We employ AdamW
(Loshchilov and Hutter, 2017) as the optimizer and
train our model for 20 epochs using the standard
cross entropy loss on a batch size of 16. We train
our model on a system running an Ubuntu operat-
ing system with a Tesla V100-PCIE-32GB GPU.
The model requires approximately 9GB of RAM
for the same.
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Models BLEU ROUGE METEOR BERTScore SentBERT
B1 B2 B3 B4 RL R1 R2 Precision Recall F1

PGN 17.54 6.31 2.33 1.67 16.00 17.35 6.90 15.06 84.80 85.10 84.90 49.42
Transformer 11.44 4.79 1.68 0.73 15.90 17.78 5.83 9.74 83.40 84.90 84.10 52.55
MFFG-RNN 14.16 6.10 2.31 1.12 16.21 17.47 5.53 12.31 81.50 84.00 82.70 44.65
MFFG-Transf 13.55 4.95 2.00 0.76 15.14 16.84 4.30 10.97 81.10 83.80 82.40 41.58
M-Transf 14.37 6.48 2.94 1.57 18.77 20.99 6.98 12.84 86.30 86.20 86.20 53.85
ExMore 19.26 11.21 6.56 4.26 25.23 27.55 12.49 19.16 88.30 87.50 87.90 59.12

GPT-4o-Mini-Zeroshot 17.51 7.71 3.98 2.04 20.68 21.77 5.20 26.45 85.47 87.41 86.42 56.23
LLaVa-Mistral-Zeroshot 17.25 8.50 5.16 3.38 22.32 23.03 6.51 27.47 85.60 87.80 86.68 58.97
LLaVa-Llama3-Zeroshot 21.08 11.08 7.00 4.81 25.30 25.76 8.21 28.33 86.38 87.82 87.08 60.06

GPT-4o-Mini-Oneshot 19.07 8.45 4.33 2.23 22.01 22.68 5.68 25.89 86.01 87.61 86.79 57.30
LLaVa-Mistral-Oneshot 20.29 10.04 6.03 3.93 24.57 24.47 6.75 26.24 86.46 87.85 87.13 59.76
LLaVa-Llama3-Oneshot 24.50 13.12 8.31 5.58 27.68 27.77 8.80 27.60 87.07 87.85 87.44 61.07

TEAM [SOTA] 55.32 45.12 38.27 33.16 50.58 51.72 34.96 50.95 91.80 91.60 91.70 72.92

TURBO 57.09 46.93 40.28 35.26 53.12 55.06 38.16 55.17 92.00 91.77 91.86 75.75

TURBO + TS Concepts 55.65 45.38 38.55 33.36 51.64 53.63 36.50 53.80 91.72 91.60 91.64 75.15
TURBO − SF − TS 51.54 39.85 32.30 26.79 47.62 49.43 30.66 48.86 91.17 90.67 90.90 72.25
TURBO − KG − TS 54.19 44.17 37.73 32.93 49.80 50.72 34.42 51.08 91.42 91.22 91.29 73.20
TURBO − TS 55.37 45.09 38.45 33.53 50.98 52.25 35.41 52.08 91.55 91.51 91.51 73.62
TURBO − KG 55.56 44.80 37.71 32.58 51.42 53.46 35.46 53.22 91.76 91.65 91.68 75.16
TURBO − SF 54.72 42.95 35.26 29.65 50.69 52.38 32.97 52.16 91.67 91.35 91.50 74.62

Table 2: Results of a comparative analysis of our proposed model with multiple state-of-the-art baselines and an
ablation study. These analyses were conducted on the MORE+ dataset. The best results are in boldface.

5.1 Comparative Analysis

In line with the existing systems (Desai et al., 2022;
Jiang, 2023), we employ BLEU, ROUGE, ME-
TEOR, BERTScore, and SentBERT for evaluation.
We compare the performance of TURBO with vari-
ous unimodal and multimodal baselines.
• Existing Baselines. We employ all of the base-

lines employed by Desai et al. (2022). These are:
a) Pointer Generator Network (PGN) (See et al.,
2017); b) Transformer (Vaswani et al., 2017);
c) MFFG-RNN and MFFG-Transf (Liu et al.,
2020); d) M-Transf (Yao and Wan, 2020); and e)
ExMore (Desai et al., 2022).

• TEAM (Jing et al., 2023). This model refers to
the current state-of-the-art in this task.

Notably, we also compare our model with multiple
state-of-the-art multimodal large-language models
(MLLMs) in zero-shot and one-shot settings, such
as, GPT-4o Mini (OpenAI et al., 2024), LLaVa-
Mistral (Liu et al., 2024; Jiang et al., 2023), and
LLaVa-Llama3 (Liu et al., 2024; Dubey et al.,
2024). The complexity and size of these LLMs,
combined with the vast amount of data that they
are trained on, allow them to perform exceptionally
well on a diverse set of tasks. Thus, by including
this comparison, we aim to demonstrate the effec-
tiveness of TURBO and its superiority at performing

this task even when compared to extremely power-
ful and versatile LLMs.

Existing Baselines: We conduct our experiments
on the MORE+ dataset and report our results in Ta-
ble 2. We observe a significant disparity in the
performance of our model when compared to non-
LLM baselines other than TEAM. Moreover, com-
pared to TEAM, we observe that TURBO consis-
tently reports better scores on each evaluation met-
ric – TURBO outperforms TEAM on B1, B2, B3 and
B4 by +1.77%, +1.81%, +2.01%, and +2.10%,
respectively, with an average margin of +1.92%.
Furthermore, TURBO yields better ROUGE [RL
(+2.54%), R1 (+3.34%), R2 (+3.20%)] and ME-
TEOR [+4.22%] scores of the two models with
an average margin of +3.33%. We also compute
BERTscore and SentBERT to evaluate the seman-
tic context in the generated explanations. We ob-
serve that our model surpasses TEAM by margins
of +0.2%, +0.17%, and 0.16% on the mean pre-
cision, recall, and F1 components of BERTscore
(average margin of +0.18%) and by a margin of
+2.83% on SentBERT.

Multimodal LLMs: For completeness, we also
evaluate the MLLMs’ explanations on the afore-
mentioned evaluation metrics. As evident in Table
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2, TURBO outperforms MLLMs on all evaluation
metrics; however, we acknowledge that these met-
rics are not appropriate for assessing the quality and
semantic richness of the generated explanations.
Therefore, we also perform a human evaluation to
better gauge their quality (§5.3).

5.2 Ablation Study

We conduct an ablation study on various compo-
nents of TURBO as TURBO− X, where X corresponds
to the Shared Fusion module (SF), the Knowledge
Graph (KG), or the Target of Sarcasm (TS). Note
that for each variant that does not contain the tar-
get of sarcasm, we simply avoid concatenating it
with the other text tokens (§4.5). The results of
the ablation study are given in Table 2. From the
results of the ablation study, we make the following
observations.

First, the removal of any component of the model
leads to a decrease in its generative performance.
This proves that each component of the model con-
tributes significantly to the model’s performance.
Additionally, we observe that “TURBO − KG” per-
forms better than “TURBO − KG − TS” and that
“TURBO − SF” exceeds the performance of “TURBO
− SF − TS”. This demonstrates that the target of
sarcasm is useful in facilitating the understanding
of the underlying sarcastic incongruity, thus prov-
ing our hypothesis as given in Section 1.

Second, we compare TURBO with its “TURBO +
TS Concepts” variant. As opposed to TURBO, this
variant also utilizes external knowledge concepts
for the target of sarcasm and helps us observe the
effect of the same on the model’s performance. For
this variant, Equation 10 is revised as follows to
incorporate the knowledge concepts extracted for
the target of sarcasm.

T
(i)
concat = T

(i)
knowledge+</s>+TSi+TSCi (19)

where TSCi refers to the external knowledge con-
cepts for the target of sarcasm of the ith sample.
Note that while the TURBO + TS Concepts variant
was unable to perform as well as TURBO, it was still
able to outperform TEAM on almost all metrics,
which further proves the effectiveness of TURBO’s
architecture.

5.3 Human Evaluation

We conduct a human evaluation to assess the qual-
ity of generated explanations more comprehen-
sively. We perform this evaluation on 20 diverse

Models Fluency Sem. Negativity Target
Acc. Presence

TURBO 4.18 3.80 3.82 4.00

TEAM 3.96 3.38 3.48 3.47

GPT-4o-Mini 4.23 4.46 4.33 4.33
LLaVa-Mistral 4.26 4.09 4.22 4.03
LLaVa-Llama3 4.25 3.69 3.68 3.72

Table 3: Human evaluation on TURBO and other base-
lines. All LLMs are employed in a one-shot setting.

samples from the test set. These samples are as-
sessed by 20 evaluators. For each sample, we pro-
vide the evaluator with five explanations, each gen-
erated by a different model. We ask the evaluator
to judge each explanation on the following four
metrics:
• Fluency: This metric assesses how easy it is

to understand the semantic meaning of a given
explanation.

• Semantic Accuracy: This metric is used to deter-
mine how well a generation captures the intended
meaning of a sarcastic post.

• Negative Connotation: Sarcasm expresses neg-
ative sentiment by default; hence, it must be cap-
tured in the explanation as well. We employ this
metric to understand how appropriately the nega-
tive connotation is captured in the explanation.

• Presence of Target: This metric evaluates the
presence of the target of sarcasm in the generated
explanation.

The results for this evaluation are given in Ta-
ble 3 with all metrics rated on a 5-point Likert
scale. TURBO outperforms TEAM by 4.40%, 8.40%,
6.80%, and 10.60% on the above four metrics re-
spectively. It even outperforms LLaVa-Llama3 on
every metric except fluency, on which it is only
1.40% worse. Additionally, we recognize that it per-
forms worse than LLaVa-Mistral and GPT-4o-Mini
by an average of 4.00% and ~7.75% respectively.
However, we note that TURBO has 234 million pa-
rameters as compared to GPT-4o-Mini, LLaVa-
Mistral, and LLaVa-Llama3 which have 7-8 billion
parameters each. Therefore, with an approximately
3000% reduction in the number of model param-
eters, TURBO demonstrates, at most, a 7.75% dip
in performance when compared to various state-of-
the-art MLLMs.

Figure 3 depicts two samples and the explana-
tions generated by TURBO and GPT-4o mini. In the
first sample, the user sarcastically points out that
the safety netting at a baseball game does not ob-
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Figure 3: Two samples where: a) TURBO correctly explained the sarcasm and GPT-4o mini missed it; and b) TURBO
generated an inaccurate explanation but GPT-4o mini explained the sarcasm correctly.

struct one’s view and that people are needlessly
complaining about the same. While TURBO is able
to understand the sarcasm and correctly points out
that the netting does not ruin one’s view of the
game, GPT-4o mini instead incorrectly identifies
the user as someone who is concerned more about
their view rather than their protection.

In the second sample, the author sarcastically
points out how unhealthy fast food is by feigning
surprise that someone got a heart attack at McDon-
ald’s. Here, TURBO mistakenly concludes that the
author is surprised about someone getting a heart
attack at McDonald’s but does not think it is a se-
rious concern. GPT-4o mini, however, is able to
correctly understand the underlying sarcasm and
generates an accurate explanation.

5.4 Error Analysis

Despite the excellent performance of TURBO, we
recognize that it can exhibit different types of er-
rors, which can lead to inaccurate sarcasm expla-
nations. Therefore, we conduct a thorough error
analysis and identify the following as the primary
causes of erroneous behavior in TURBO’s perfor-
mance: a) extraction of irrelevant external knowl-
edge concepts (c.f. Figure 4); b) missing external
knowledge concepts (c.f. Figure 5); c) insufficient
OCR features (c.f. Figure 6); d) irrelevant image
description (c.f. Figure 7). Appendix A provides a
detailed account of the errors exhibited by TURBO.

6 Conclusion

In this research, we proposed a novel target-
augmented shared fusion-based multimodal sar-
casm explanation model, TURBO. Along with solv-
ing the key limitations that we were able to identify
in the current state-of-the-art, TEAM, we intro-
duced a novel method of fusing unimodal informa-
tion into an effective multimodal feature represen-
tation. We also manually augmented the MORE
dataset by annotating the target of sarcasm. Thor-
ough comparative analyses allowed us to demon-
strate the effectiveness of TURBO when compared
to existing baselines, including various state-of-the-
art MLLMs. Additionally, in order to comprehen-
sively evaluate the generations of the MLLMs and
those of TURBO, we conducted a human evaluation.
Even though TURBO did not surpass the scores of
two out of the three MLLMs in this evaluation, its
results were quite comparable to theirs which is
remarkable considering its much smaller size and
lesser complexity.

7 Limitations

Despite beating all existing cutting-edge methods
for generating sarcasm explanations for sarcastic
multimodal social media posts, certain limitations
still exist in TURBO which we address in this section.

First, we extract external knowledge concepts in
a deterministic way, that is, for a given token, it will
always be linked to the same external knowledge
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concept regardless of the context surrounding the
token. As shown in Appendix A, this can lead to
the extraction of knowledge concepts that, despite
being semantically related to the feature tokens, are
not relevant in the given context. We believe that
a method devised to dynamically extract relevant
knowledge concepts based on the context surround-
ing a sample can help resolve this and can lead to
better sarcasm reasoning.

Second, we incorporate the target of sarcasm in
our model by simply concatenating it with the tex-
tual tokens (§4.5). While the experimental results
prove that incorporating the target of sarcasm in
this manner leads to better explanation generations
when compared to variants that do not do so, we
hypothesize that incorporating this annotation in a
more specialized manner can help the model learn
more relevant semantic insights. For instance, per-
haps fusing it with unimodal or multimodal feature
representations in a manner that amplifies the more
salient features with respect to the target of sar-
casm can lead to a more explicit revelation of the
underlying semantic incongruity.

Lastly, we recognize that using an annotated
target of sarcasm leads to an additional manually
provided input. This constrains the dataset since
extending the dataset would now require extra man-
ual annotations for the target of sarcasm as well.
However, we suggest that this can be tackled by
training another model to learn to generate the tar-
get of sarcasm given a multimodal social media
post using the current dataset. We can use the out-
put of this model as the input target of sarcasm in
TURBO. This allows for the creation of a generative
pipeline that does not require the target of sarcasm
to be furnished manually as an input and reduces
the potential manual work to be done in case of
any extensions to the existing dataset since anno-
tators will not be bound to annotate the target of
sarcasm for the newly added samples. While such a
pipeline would be useful, it would introduce a new
challenge - ensuring that the generated target of sar-
casm is up to par since in case it is not, it could end
up pointing the explanation generation model in
the wrong direction, leading to poor performance.

8 Ethical Considerations

In a task such as this, which revolves around ex-
plaining the implicit meaning behind an inherently
incongruent form of communication, we must be
mindful of certain ethical implications.

It is important to prevent misinterpretations stem-
ming from inaccurate explanations. Considering
that sarcasm is usually used to express one’s views
in an insulting or mocking way, such misinterpre-
tations can lead to excessive harm by highlighting
the mockery used in the utterance more than its ac-
tual implicit meaning (which can lead to a feeling
of alienation or ridicule among the people being
mocked) or even in the form of a complete mischar-
acterization of what the author meant to express.

Additionally, we must be cognizant of the fact
that sarcasm can be interpreted in different ways
in the presence of different cultural contexts. For
instance, a simple gesture such as a “thumbs up”
might signify a job well done in one culture. How-
ever, it is completely possible that in another cul-
ture, the same gesture is seen as one of disrespect.
As a result, any sarcastic utterances involving the
use of such a gesture will mean different things
across the two cultures. Thus, in order to prevent
misinterpretations, it is important to take this cul-
tural aspect of sarcasm into account as well.
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Appendix

A Error Analysis

Despite its excellent performance, we observe that
TURBO can exhibit different types of errors, which
can lead to inaccurate explanations. We lay them
down as follows.

Extraction of Irrelevant External Knowledge
Concepts: We recognize that in some cases, the
external knowledge concepts extracted by TURBO
may not be relevant to the underlying incongruity.
This can cause the model to focus on the wrong
things when trying to decipher the underlying
meaning of sarcasm, leading to inaccurate explana-
tions.

For example, Figure 4 shows one such case. The
author uses sarcasm to remark that the fast food
served at McDonald’s is unhealthy and that it would
not be a surprise if someone got a heart attack by
eating it. We observe that the generated explanation
completely misses the sarcasm. It seems to suggest
that the author had a heart attack at McDonald’s
and that it is not a serious concern.

Figure 4: Extraction of Irrelevant External Knowl-
edge Concepts: A sample where TURBO extracted irrel-
evant external knowledge concepts for the entities vital
to understanding the sarcastic incongruity.

Upon extracting the external knowledge con-
cepts for this sample from the model, we see that
the knowledge concept identified for the word
“heart” is “compassion” and that for “attack” is
“defend”. The knowledge concepts make intuitive
sense – a heart is often used to symbolize com-
passion and the words “attack” and “defend” are
antonyms of each other. However, these concepts
are not relevant in this particular context. Instead,
the phrase “heart attack” should be linked with a
knowledge concept such as “emergency” since that
is much more semantically relevant for this sample.
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We hypothesize that such errors can be mitigated
by developing a mechanism that extracts external
knowledge concepts by taking the underlying con-
text into account.

Missing External Knowledge Concepts: We ob-
serve that for some samples, the model is unable
to extract any external knowledge concepts for en-
tities which are vital to the sarcastic incongruity.
This can easily lead to the model not being able
to resolve the sarcastic incongruity, especially if
it is something that requires world knowledge to
understand.

For example, in Figure 5, the author of the post
is sarcastically mocking “Jimmy” for bringing a
shovel to scare away any rattlesnakes in the grass.
In order to understand why the author is being
sarcastic, one must be aware of the fact that rat-
tlesnakes are extremely dangerous creatures and us-
ing a shovel to deal with such an animal is not safe.
The only way our model would be able to know
this information is in the form of external knowl-
edge concepts. In the figure, we have provided
the knowledge concepts extracted by the model.
Clearly, the model was unable to extract any con-
cepts for “rattlesnakes” (underlined in the figure).
Due to this, TURBO was unaware of how danger-
ous rattlesnakes are and how ineffective a shovel
is against them. Consequently, it was unable to
understand the underlying sarcasm in the post and
generated an explanation that simply repeated what
the author stated in the caption.

Figure 5: Missing External Knowledge Concepts: A
sample where TURBO did not extract any knowledge
concepts for the entity relevant to sarcasm.

Insufficient OCR Features: A notable source
of error in our model is that it does not explicitly
extract features from the textual entities present in

the visual modality, aka. OCR text. This is not
an issue for the samples which contain a minimal
amount of OCR text. However, in samples which
rely heavily on it, we realize that TURBO often ex-
tracts insufficient features from the OCR text due
to which it may generate partially or completely
incorrect explanations.

For instance, Figure 6 depicts a sample where
the image contains text and sarcastically ridicules
the new “Face-ID” technology introduced by Apple
in their iPhone. It does so by suggesting the failure
of “Face-ID” at a time of emergency, leading to
some harm to the user. While the explanation gen-
erated by TURBO demonstrates that the model has
recognized that the post is related to the “Face-ID”
technology, it is inadequate at explaining the sar-
casm behind the post. We observe that the image
description generated for this sample refers to the
word “police” in the image. However, this is not
sufficient or relevant enough to allow the model to
identify the sarcastic incongruity. So, even though
TURBO is able to identify OCR features to some
extent, there is a definite scope in improving the
sufficiency of these extracted features for more apt
explanations.

Figure 6: Insufficient OCR Features: A sample con-
taining OCR text where TURBO generated a completely
wrong sarcasm explanation.

Irrelevant Image Description: We extract low-
level detail from the images in the form of im-
age descriptions generated using BLIP. While this
model gives high quality and precise results, it may
generate a description that is not quite relevant in
understanding the underlying sarcasm.

For instance, in Figure 7, the author of the post
sarcastically makes fun of the scarce crowd at a
gathering. This is evident by the empty chairs and
tables in the background of the corresponding im-
age. However, the image description used by our
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Figure 7: Irrelevant Image Description: A sample
where TURBO generated a completely wrong sarcasm
explanation due to irrelevant image description.

model describes the bar in the foreground. As a
result, even though the description is objectively ac-
curate, it does not contribute to the semantic under-
standing of sarcasm in this instance. This, in turn,
leads to TURBO generating an incorrect explanation
that states that there is “heaving” (a big crowd) at
the mentioned show when the exact opposite is true
instead.
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