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Abstract

Biomedical Named Entity Recognition
(BioNER) faces significant challenges in
real-world applications due to limited an-
notated data and the constant emergence of
new entity types, making zero-shot learning
capabilities crucial. While Large Language
Models (LLMs) possess extensive domain
knowledge necessary for specialized fields
like biomedicine, their computational costs
often make them impractical. To address these
challenges, we introduce OPENBIONER,
a lightweight BERT-based cross-encoder
architecture that can identify any biomedical
entity using only its description, eliminating
the need for retraining on new, unseen entity
types. Through comprehensive evaluation
on established biomedical benchmarks, we
demonstrate that OPENBIONER surpasses
state-of-the-art baselines, including specialized
7B NER LLMs and GPT-4o, achieving up
to 10% higher F1 scores while using 110M
parameters only. Moreover, OPENBIONER
outperforms existing small-scale models that
match textual spans with entity types rather
than descriptions, both in terms of accuracy
and computational efficiency.1

1 Introduction

Biomedical Named Entity Recognition (BioNER)
focuses on identifying and extracting biomedical
entities from text. These entities often include the
names of proteins, genes, and their respective lo-
cations of activity, such as specific cell types or
organism names. The extraction of these entities
is fundamental to the advancement of gene-disease
association studies, drug discovery, personalized
medicine, document classification, and the con-
struction of knowledge graphs (Wei et al., 2012;

* Equal contribution (co-first authorship).
1Our code, data, and fine-tuned models are publicly avail-

able at disi-unibo-nlp/openbioner
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Figure 1: Comparison between small language mod-
els for open-domain biomedical Named Entity Recog-
nition. GLiNER (Zaratiana et al., 2024) matches entity
types with text spans in a latent space. Our proposed
OPENBIONER classifies tokens by injecting the de-
scription of one target entity at a time via cross-attention.
In the example, the broader and less ambiguous context
provided by class descriptions allows OPENBIONER
to prevent RNA false positives.

Domeniconi et al., 2014, 2016; Alshahrani et al.,
2017; Frisoni et al., 2022b, 2023).

The development of effective BioNER systems
poses significant challenges due to the syntactic and
semantic complexities of the domain (Nayel et al.,
2019). Biomedicine is characterized by specialized
jargon, synonyms, hierarchical relationships be-
tween entities, ambiguous abbreviations, and poly-
semy (e.g., "EGFR" can refer to both the epidermal
growth factor receptor and the estimated glomeru-
lar filtration rate). Creating annotated examples
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for these entities is labor-intensive and requires ex-
pert medical annotators. The task becomes even
more complicated due to the constant emergence
of new entity types. Since 2011, more than 1 mil-
lion new records have been added to the PubMed
database yearly, translating to approximately three
articles published every minute (Frisoni et al.,
2021). This rapid expansion highlights the neces-
sity of zero-shot learning (Xian et al., 2019; Wang
et al., 2019a), where models must adapt to enti-
ties that were not seen during training. Recent
studies have investigated zero-shot information ex-
traction systems (Wang et al., 2023; Zhou et al.,
2024; Zaratiana et al., 2024). However, the existing
methodologies often prioritize general scenarios,
rely on costly large language models (LLMs), and
do not fully exploit target entity type descriptions
for context-based classification.

To overcome these limitations, we introduce
OPENBIONER (Figure 1), a lightweight BERT-
based model tailored for open-domain BioNER.
This model can find unseen target entity types
based solely on their natural language descriptions,
eliminating the need for retraining. OPENBIONER
is pretrained on synthetic silver annotations gen-
erated through LLM self-supervision, drawing in-
spiration from recent advancements in the medical
field (Agrawal et al., 2022; Gu et al., 2023). Exten-
sive experiments demonstrate that OPENBIONER
outperforms specialized LLMs, such as Univer-
salNER (UniNER) (Zhou et al., 2024) and GPT-
4o (OpenAI, 2023), achieving an F1 score improve-
ment of up to 10% in zero-shot settings across
various biomedical benchmarks. In comparison
to smaller baselines such as GLiNER (Zaratiana
et al., 2024), our model achieves better perfor-
mance while using up to 4× fewer parameters.

Our contributions can be summarized as follows:

• Using descriptions for improved token clas-
sification. We demonstrate that leveraging ro-
bust, synthetic descriptions—rather than sim-
ple class names—significantly enhances the
model’s generalization ability, particularly in
complex biomedical scenarios where entity
types can be highly diverse and nuanced.

• Open-domain adaptation. Our method in-
corporates progressive pre-training on thou-
sands of entity type descriptions, equipping a
BERT-based model to perform effectively in
open-domain settings. This enables classifi-
cation of any biomedical entity type through

informed, context-aware descriptions, rather
than relying solely on predefined class names.

• State-of-the-art results. OPENBIONER out-
performs GLiNER, UniNER, GPT-4o, and
other baselines across multiple benchmarks,
highlighting its superior effectiveness and
practical value in zero-shot configuration.

• Dataset and model release. To support re-
search and real-world use, we release OPEN-
BIONER under a permissive license, along
with its pre-training data and the code for train-
ing and evaluation. This enables cost-effective
applications in medical domains, providing a
viable alternative to LLMs and API services.

2 Related Work

Biomedical Named Entity Recogniton BioNER
has experienced significant advancements through-
out the years. Early efforts relied heavily on
rule-based approaches, such as MetaMap (Aron-
son, 2001), MetaMapLite (Demner-Fushman et al.,
2017), and cTAKES (Savova et al., 2010). These
systems utilized extensive dictionaries and hand-
crafted rules to identify static biomedical enti-
ties, lacking generalization and consideration of
contextual nuances (Zhang et al., 2020). The re-
search landscape shifted dramatically with the ad-
vent of neural models. Initial architectures were
centred on recurrent neural networks and condi-
tional random fields (Habibi et al., 2017; Giorgi and
Bader, 2018; Wang et al., 2019b; Yoon et al., 2019).
The introduction of BERT (Devlin et al., 2019)
marked a turning point, leveraging transformer-
based architectures, pretraining, and bidirectional
contextual embeddings to enhance NER perfor-
mance. Biomedical-specific adaptations, including
BioBERT (Lee et al., 2020), ClinicalBERT (Huang
et al., 2019), BlueBERT (Peng et al., 2019), SciB-
ERT (Beltagy et al., 2019), and PubMedBERT (Gu
et al., 2022), are the modern, supervised, encoder-
only approaches. To support a broader spectrum
of entity types, contemporary encoders standard-
ize heterogeneous training datasets into a single
format (Luo et al., 2023). Moving away from a se-
quence labeling conceptualization of the BioNER
task, recent works have explored generative LLMs
both in terms of few-shot prompting (Monajatipoor
et al., 2024) and instruction fine-tuning (Keloth
et al., 2024). Despite their potential, domain-
specific small language models with a few mil-
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lion parameters better balance performance and
efficiency, requiring less computational resources
while being faster and easier to train.

Open-Domain Named Entity Recognition Our
work is a biomedical-specific synthesis of two pre-
viously distinct NER research paths: (1) the pro-
vision of supplementary details about entity types
via descriptions, and (2) the exploitation of LLMs’
generalization capabilities.

In the first path, Aly et al. (2021) demonstrated
the effectiveness of cross-encoder architectures
in handling unseen targets by augmenting the in-
put with manually-defined entity type descriptions.
Concurrently, other studies validated the use of
descriptions in zero-shot settings for related tasks
such as entity typing (Obeidat et al., 2019), relation
extraction (Chen and Li, 2021), and entity link-
ing (Logeswaran et al., 2019; Wu et al., 2020).

The second path has been marked by the rise
of generative LLMs, enabling entity identifica-
tion via natural language instructions that spec-
ify types of interest. This strategy capitalizes on
vast prior knowledge and introduces support for
arbitrarily varied target classes. Notable contri-
butions include InstructUIE (Wang et al., 2023),
which instruction-tuned FlanT5 on over 30 infor-
mation extraction datasets to capture inter-task
dependencies, excelling in zero-shot NER. GoL-
LIE (Sainz et al., 2024) improved zero-shot re-
sults on unseen information extraction tasks by
fine-tuning CodeLLaMA to comply with code-
style annotation guidelines. GNER (Ding et al.,
2024) enhanced performance by integrating nega-
tive instances into the instruction tuning process.
Due to the lack of gold labels, inconsistencies in
datasets (Yang et al., 2024), and LLM costs, open-
domain NER has shifted towards knowledge distil-
lation through self-supervision. In this paradigm,
models like ChatGPT annotate raw data, creating
silver training instances used to fine-tune smaller
models. UniNER (Zhou et al., 2024) pioneered
this approach by fine-tuning LLaMA-7B on Pile-
NER, a ChatGPT-supervised dataset. Its multi-
round approach crafts different inquiry prompts
for each entity type, though this method results in
low inference speed at billion-scale. SeqGPT (Yu
et al., 2024) applied a similar strategy for more
general single-round extraction and classification
tasks. The authors pretrained BLOOMZ with an
extremely diverse label set generated by ChatGPT,
then fine-tuning on high-quality gold datasets.

Recently, lightweight models have gained trac-
tion. GLiNER (Zaratiana et al., 2024) pushed state-
of-the-art zero-shot NER by training a DeBERTa
cross-encoder to match entity types and text spans
using Pile-NER. NuNER (Bogdanov et al., 2024)
pretrained RoBERTa on ≈4 million ChatGPT an-
notations, equaling the performance of much larger
LLMs in few-shot scenarios.

3 Preliminary

Entity type descriptions in biomedicine provide
critical semantic depth, helping models distinguish
and understand entities better. Recent studies
have highlighted several challenges in NER tasks
that can be addressed through detailed descrip-
tions (Zhou et al., 2024; Sainz et al., 2024; Yang
et al., 2024). (1) Concept vs. Named Entity Am-
biguity: Abstract concepts such as "modeling" in
"modeling nurse-patient assignments" can be clas-
sified as Research Activity. Without descriptive
context, models struggle to draw associations that
deviate from typical expectations of named entities.
(2) Entity Scope Variations: Datasets frequently
differ in their definitions of entities. For example,
"aspirin" might be labeled as Drug in one dataset
but as Chemical in another. Precise descriptions
can clarify these nuances, improving model accu-
racy across diverse annotation schemes. (3) Gran-
ularity Overlap: Annotation schemes can include
categories with varying levels of specificity, lead-
ing to potential ambiguity. For example, a dataset
might comprise broad entity types like Medication
and more specific ones like Antibiotic. The entity
"amoxicillin" could be correctly labeled as either.
Without guidelines, models may struggle to consis-
tently choose between these overlapping categories,
defaulting to overgeneralization (Sainz et al., 2024).
(4) Span Inconsistencies and Synonym Recogni-
tion: How entity mentions are selected often varies
across and within datasets. For instance, one anno-
tator might label the phrase "phosphorylated p53
protein" as a Protein entity, while another may only
mark "p53." Indeed, annotation could focus on offi-
cial symbols, full names, alias (e.g., "tumor protein
p53"), or pronominal references (e.g., "it"). Al-
though BioNER models may readily identify com-
mon terms (e.g., "bacteria"), they can struggle with
less frequent synonyms (e.g., "microbes") or strain
designations (e.g., "Escherichia coli O157:H7").
Descriptions can enhance robustness to lexical vari-
ations and domain-specific terms.

820



Extracts of B-cell line contain NF-A2 A cell line is a population of

BioBERT Cross-Encoder

FFN Layer

 

Figure 2: OPENBIONER architecture. The text span and the description of a target entity type are given in input.
BioBERT outputs a representation for each span token, contextualized on the description. Embeddings are fed
into a linear layer, calculating a matching score between each span token and the description. This process iterates
for each target entity type, substituting the input description. A softmax function is then applied to calculate the
probability distribution of each token across all target entity types, including the negative case (simplified). Finally,
each token is assigned to the most probable entity type.

4 Method

This section presents our model, OPENBIONER,
trained to extract any type of biomedical entity
from a text using its description. We discuss the
underlying cross-encoder architecture and our con-
tributions in adapting it to an open-domain setting.

Task Formalization We formulate the BioNER
task as a token-level multi-class classification prob-
lem. Given a text span s = {t1, . . . , tn} compris-
ing n tokens and a description dc for each target
entity class c ∈ C, we predict a sequence of anno-
tations ŷ ∈ (C)n. For each token ti, we determine
its class by computing argmaxc∈C F (s, ti,dc),
where F is a function that models the semantic
affinaty between ti and dc in the context of s.

4.1 Architecture
The overall architecture is depicted in Figure 2.

Cross-Encoder We realize F through the cross-
encoder architecture introduced by Aly et al.
(2021), which utilizes cross-attention to quantify
span–description affinity. This design choice is
motivated by the need for fine-grained token-level
interactions. Compared to bi-encoders, cross-
encoders allow the computation of description-
sensitive representations for the input span to-
kens, potentially leading to superior annotation
performance. Deviating from Aly et al. (2021),
we replace the original BERT backbone with

BioBERT (Lee et al., 2020). For ease of notation,
we hereafter refer to the cross-encoder as X-ENC.

Input Format X-ENC receives the input tuple
(s,dc) structured as a unified sequence:

[CLS] s [SEP] dc [SEP]

Bidirectional attention enables rich interactions be-
tween s and dc. Due to context window constraints,
inputs are processed into mini-batches. Specifi-
cally, for each text span to classify s, a mini-batch
of size |C| is created by pairing s with all possible
entity type descriptions. The maximum length for
each entry in a mini-batch is set to 512.

Span Token Representation Given an entity
type description dc, X-ENC computes a vector rep-
resentation vti ∈ Rh for every token ti in s:

vt1 , . . . ,vt|s| = X-ENC(s,dc)

Here, h = 768 denotes the hidden size of the model.
A learnable linear layer W ∈ Rh×1 projects each
token vector vti to a scalar score sim(ti,dc) ∈ R:

vti,dc ·W = sim(ti,dc) = sim(ti, c)

This score indicates the likelihood of token ti be-
longing to entity class c. To account for non-entity
tokens, we introduce a negative class cneg. Details
on computing sim(ti, cneg) can be found in §A.
The likelihood scores for each token are concate-
nated in a single vector lti ∈ R|C+1|:

lti =
(
sim(ti, c1); . . . ; sim(ti, c|C|); sim(ti, cneg)

)
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Figure 3: Iterative entity type sampling during pretrain-
ing. Each step selects a random assortment of target
entity types and filters the synthetic dataset accordingly.

We then label each token (BIO format) with the
most probable class after applying softmax:

ŷti = argmax
c∈C

F (s, ti,dc) = argmax
c∈C

lti,c∑
c′∈C lti,c′

4.2 Training
The training recipe used for OPENBIONER ex-
tends the Aly et al. (2021) procedure with pretrain-
ing on an LLM-generated dataset.

Entity Masking Regularizer We use a regu-
larization technique to enhance model robustness
and prevent overfitting. This method, inspired by
BERT’s masked language modeling, involves prob-
abilistic entity concealment during training. With
probability p, we mask the entire target entity in
the input span. This technique mitigates lexical
bias and encourages the model to infer entity types
from type descriptions. Moreover, it is particularly
beneficial in biomedicine, where entity names can
be highly variable and context-dependent, helping
the model generalize beyond specific nomenclature
to a broader conceptual understanding.

Class Imbalance-aware Loss We address the
label imbalance caused by cneg by incorporating
class weights wc into the cross-entropy loss:

L = −
C∑

c

wc · yi,c · log(p(ŷi,c))

where yi,c represents the ground truth label and
p(ŷi,c) is the softmax probability for class c. We
consistently set wc = 1 for all classes except the
negative one, that we define as hyperparameter.

Pretraining with Progressive Entity Types Ex-
posure Before fine-tuning, we pretrain OPEN-
BIONER on a synthetic dataset (see 5.1). We fol-
low the previously described training procedure but
incorporate a progressive exposure strategy to man-
age the huge variety of labels that an LLM could

generate (Figure 3). In particular, we pretrain the
model in multiple iterations, with each pass focus-
ing on a randomly selected subset of 15 to 25 tar-
gets. Dataset instances that do not contain any ex-
tracted entity types are filtered out for that step. To-
kens in the input span associated with entity types
not included in the current subset are labeled as ’O’.
This incremental approach continues until all entity
types have been covered at least once. Gradual
exposure benefits biomedicine, where entity types
can range from molecular structures to complex dis-
ease phenotypes. It allows the model to iteratively
refine its understanding of various biomedical con-
cepts while avoiding being overwhelmed by many
targets presented simultaneously.

5 Experimental setup

5.1 Pretraining Data

The development of OPENBIONER requires a pre-
training dataset that encompasses a broad spectrum
of biomedical entity types and their corresponding
descriptions. We used Pile-NER2 for a fair com-
parison with the baselines, ensuring consistency in
the biomedical entities observed. Pile-NER, built
by Zhou et al. (2024), is derived from the Pile cor-
pus (Gao et al., 2021) and comprises 50K articles
segmented into 256-token passages; entity types
are extracted using ChatGPT without predefined
categories. We modify this dataset by (1) convert-
ing it to the BIO-tagging scheme (Huang et al.,
2015) and (2) segmenting passages into sentences.3

We filter for biomedical content using LLaMA-
3.1-8B-instruct to perform binary topic classifica-
tion on each sentence (see §G), a method inspired
by (Xu et al., 2024). This refinement yields Pile-
NER-biomed, a subset containing 59K instances,
193,235 entities, and 3,896 distinct entity types.

BIO Data Format Given the small proportion
of consecutive entities belonging to the same class
(1.22% pretraining data), we remove all the I- and
B- prefixes. This approach may introduce ambi-
guity for consecutively named entities of the same
class. However, given the size and heterogeneity of
the dataset, the model is expected to learn contex-
tual differentiation, as these entities likely appear
in varied positions across multiple sentences.

2Universal-NER/Pile-NER-type
3We used NLTK’s PunktSentenceTokenizer.
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Dataset Entity Types #train #dev #test Tok† Ent‡

AnatEM (Pyysalo and Ananiadou, 2014) Anatomy 5861 2118 3830 37 0.7
BC2GM (Smith et al., 2008) Gene 12500 2500 5000 36 0.4
BC4CHEMD (Krallinger et al., 2015) Chemical 30682 30639 26364 45 0.9
BC5CDR (Li et al., 2016) Chemical, Disease 4560 4581 4797 41 2.2
NCBI (Dogan et al., 2014) Disease 5432 923 940 39 1.0
JNLPBA (Collier and Kim, 2004) Protein, DNA, RNA, Cell Line,

Cell Type
18608 1940 4261 39 2.8

JNLPBA-Rare RNA, Cell Type - - 465 50 1.3
MedMentions-Rare Bacterium, Food, Professional,

Body Substance, Body System
- - 1048 39 1.4

† Average number of tokens per sentence (WordPiece vocabulary). ‡ Average number of entities per sentence.

Table 1: Statistics of the datasets used for OPENBIONER evaluation. Popular literature datasets for zero-shot
and supervised comparisons (top). Custom datasets for zero-shot comparisons on rare entities (bottom).

5.2 Descriptions
Entity type descriptions are typically found in
resources like Wikipedia, annotation guidelines,
and domain-specific knowledge bases, including
UMLS Metathesaurus. However, these descrip-
tions may not always align with task-specific needs.
To address this, we propose a two-step approach
using synthetic descriptions generated by LLaMA-
3.1-8B-instruct. In the first step, we train the model
to develop a broad understanding of entities across
domains, focusing on relationships between input
span tokens and description tokens, even when de-
scriptions are less specific. We prompt the LLM
to generate concise, general descriptions of entity
types and their applications across heterogeneous
fields, then concatenated. The second step applies
task-specific descriptions at inference time. We
adopt few-shot prompting, supplying the LLM with
contextual examples of entity usage. For consis-
tency, we extract five sentence annotations per en-
tity from each dataset’s train set. See §G for prompt
templates. In practical scenarios where a train set
may not always be available, we assume users can
manually or artificially define a small set of exam-
ples to reflect the attributes of each entity type.

5.3 Evaluation Setting
Baselines We compare our model against sev-
eral baselines in two distinct configurations: zero-
shot and supervised. In the zero-shot setting,
we directly assess our model, pretrained on Pile-
NER-biomed, on each benchmark’s test set. In
the supervised setting, we fine-tune it on the re-
spective dataset train sets. For zero-shot com-
parisons, we include UniNER-7B4 and GLiNER-

4Universal-NER/UniNER-7B-type

large,5 both trained on Pile-NER. We also evaluate
GPT-4o, following Zhou et al. (2024) and using
the prompt template suggested by Ye et al. (2023).
For UniNER, we adhere to the template with which
it was trained. For supervised comparisons, we
prioritize non-description-based models. These in-
clude our backbone BioBERT-base6 and a general-
purpose BERT-base (cased). Furthermore, we in-
corporate GLiNER, UniNER, and InstructUIE.7

Although these models are trained on 20 datasets
across domains, our attention is on biomedicine.

Benchmarks We evaluate our model and base-
lines on two sets of benchmarks, as detailed in Ta-
ble 1. The first set comprises standard BioNER
datasets widely used in recent literature, allow-
ing for head-to-head comparison in both super-
vised and zero-shot settings. The second set, de-
noted with the suffix "-Rare", is designated to judge
BioNER zero-shot performance on infrequent en-
tity types, mimicking real-world scenarios where
annotations are scarce. Following Aly et al. (2021),
we create these benchmarks by isolating the least
frequent classes within each test set. See §B for
more information.

Metric We apply strict entity-level micro-F1,
which requires an exact match of both entity type
and boundaries with the ground truth. This met-
ric is consistent with the evaluation protocol of the
baselines considered (Wang et al., 2023; Zhou et al.,
2024; Zaratiana et al., 2024). Entity-level scores
are computed using Seqeval.8

5urchade/gliner_large-v1
6dmis-lab/biobert-base-cased-v1.1
7BeyonderXX/InstructUIE
8https://github.com/chakki-works/seqeval (v1.2.2)
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Datasets

Model Size AnatEM NCBI JNLPBA BC2GM BC4CHEMD BC5CDR JNLPBA-R MedMentions-R AVG

GPT-4o - 38.7 50.0 41.9 37.3 36.4 66.4 26.6 49.1 43.3
UniNER† 7B 25.1 60.4 48.1 46.2 47.9 68.0 50.2 53.4 49.9
GLiNER-large† 459M 33.3 61.9 57.1 47.9 43.1 66.4 51.9 53.4 51.9
OPENBIONER (Ours) 110M 35.2 58.5 57.1 49.1 48.0 60.4 63.9 50.9 52.9

† Results taken from Zaratiana et al. (2024) except for JNLPBA, JNLPBA-R and MedMentions-R–which we compute using threshold = 0.5.

Table 2: Zero-shot performance on BioNER datasets (test sets). Sorted by average micro-F1 (ascending order).

Model Size AnateEM NCBI BC2GM BC4CHEMD BC5CDR JNLPBA

GLiNER-large† 459M 88.9 87.8 83.7 87.9 88.7 -
UniNER† 7B 88.5 87.0 82.4 89.2 89.3 -
InstructUIE 11B 88.5 86.2 80.7 87.6 89.0 -
BERT-base 110M 85.3 84.0 78.5 84.0 84.7 72.7
BioBERT-base 110M 87.5 85.8 82.4 88.4 88.5 72.4
OPENBIONER (Ours) 110M 87.0 86.1 80.5 88.5 86.3 74.3

† Results taken from Zaratiana et al. (2024) except for JNLPBA, JNLPBA-R and MedMentions-R–which we
compute using threshold = 0.5.

Table 3: Supervised in-domain performance on BioNER datasets (test sets). InstructUIE, UniNER, and GLiNER-
large are provided as a reference only, as these models were trained on a mixture of 20 NER datasets.

Hardware All experiments are conducted on a
single NVIDIA A100 GPU with 80GB of VRAM.

5.4 Implementation Details

Pretraining We pretrained OPENBIONER on
the Pile-NER-biomed dataset for 4 epochs, process-
ing entity types in subsets of 15–25 per epoch. We
employed a batch size of 8 and a constant learning
rate of 2e-5, the latter selected through hyperpa-
rameter tuning. Following Aly et al. (2021), we
set the entity masking probability to 0.3. The neg-
ative class weight was dynamically calculated as
# entities/# non-entity words within each processed batch.
We defined the maximum input sequence length to
300 tokens and the maximum description length to
150 tokens. Each epoch required approximately 10
hours, resulting in a total training time of 40 hours.

Fine-tuning For supervised evaluation, OPEN-
BIONER, BioBERT-base and BERT-base were
trained on each benchmark for 8 epochs, retain-
ing the best-performing checkpoint on the valida-
tion set. In this scenario, OPENBIONER utilized
the same domain-specific entity descriptions for
both training and inference. To mitigate overfit-
ting, we increased the entity masking probability
to 0.5 and set a fixed negative class weight of 0.5
or 1.0 (see §D). Other hyperparameters remained
invariant with the Pile-NER-biomed training con-
figuration. For BioBERT and BERT, we applied a
learning rate of 2e-4, a cosine decay scheduler, and
a warmup ratio of 0.1. The batch size was set to 64
for all datasets except JNLPBA, where we used a

batch size of 32 due to memory constraints.

6 Results

6.1 Zero-shot Evaluation

In this section, we discuss the performance of our
model in a zero-shot setting, i.e., by only training
on Pile-NER-biomed without fine-tuning on tar-
get datasets. The results are reported in Table 2.
OPENBIONER demonstrates remarkable general-
ization capabilities, outperforming all baselines on
the JNLPBA, BC2GM, and BC4CHEMD datasets,
despite its compact size. Notably, it exhibits strong
performance in recognizing rare classes, as evi-
denced by its results on JNLPBA-Rare. In addition,
it achieves the highest overall score when consider-
ing average performance on all benchmarks. Sim-
ilar to what Zhou et al. (2024) observed for Chat-
GPT, GPT-4o struggles to compete with smaller,
specialized NER models, achieving success only
on AnatEM. UniNER, despite its large parame-
ter count, leads on BC5CDR and MedMentions-
Rare but falls behind smaller encoder models on
other benchmarks. Its performance is particularly
challenged on AnatEM and JNLPBA, possibly due
to ambiguities in entity type names when descrip-
tions are not provided. GLiNER-large shows ro-
bust domain-specific performance across both stan-
dard and rare class identification tasks, securing
the second-highest overall score. However, its ef-
fectiveness is limited in JNLPBA-Rare, suggesting
sensitivity to class name ambiguity (see §C).
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Figure 4: Average supervised performance across
varying dataset sizes. Evaluated on AnatEM, BC2GM,
BC4CHEMD, BC5CDR, and NCBI.

MedMentions-ZS SMXM OPENBIONER

Class UMLS Ours UMLS Ours

Bacterium 0.29 0.31 0.30 0.59
Body Substance 0.33 0.10 0.19 0.45
Body System 0.10 0.19 0.16 0.30
Food 0.19 0.41 0.38 0.47
Prof. or Occ. Group 0.26 0.42 0.23 0.52

Table 4: Class-based F1 scores of SMXM and OPEN-
BIONER zero-shot performance with different de-
scription sources. Comparison between UMLS-based
descriptions and task-specific LLM-generated descrip-
tions (Ours) on MedMentions-Rare.

6.2 Supervised Fine-tuning

In this section, we examine the utility of descrip-
tions in a supervised setting, where OPENBIONER
is fine-tuned on the training set of each dataset.
The results, presented in Table 3, indicate that
description-based models surpass non-description-
based baselines in half of the benchmarks. How-
ever, when the NER task reduces to binary clas-
sification, the added complexity of descriptions
appears unnecessary. While descriptions provide
valuable context, they may also introduce biases
and constrain the model’s ability to learn generaliz-
able patterns from the training data. Interestingly,
the more complex JNLPBA benchmark with five
target entity types demonstrates a pronounced ad-
vantage for OPENBIONER over traditional token
classification baselines. In this multi-class scenario,
descriptions facilitate better type disambiguation,
leading to improved performance.

7 Ablation Studies

7.1 Effect of Pretraining on In-domain
Performance

To quantify the impact of pretraining on Pile-
NER-biomed, we evaluate OPENBIONER’s per-
formance in full-data and low-data scenarios. We
simulate the latter conditions by running a few-shot
training on 100, 500, and 1000 samples. We run
a separate training run for each data setting and
compare our model results with and without pre-
training.9 Figure 4 illustrates that OPENBIONER
consistently outperforms its non-pretrained coun-
terpart across all dataset sizes. The performance
gap is substantial with scarse training data; e.g.,
with 100 samples per dataset, we register an av-
erage difference of 35.6 F1-micro points. These
results quantitatively prove that pretraining on Pile-
NER-biomed with descriptions promotes effective
knowledge transfer and rapid adaptation.

7.2 Effect of Description Quality

The quality of entity type descriptions can sig-
nificantly impact the performance of description-
based models in BioNER tasks. Using overly broad
or task-unspecific descriptions can lead to perfor-
mance underestimation. To this end, Aly et al.
(2021) operated with UMLS Metathesaurus de-
scriptions both for training and testing. To quan-
titatively evaluate the quality of our LLM-based
descriptions, we conduct comparative experiments
against UMLS-based alternatives in zero-shot set-
tings. Precisely, we measure how performance
changes depending on the description source in
MedMentions-Rare, the benchmark considered
by Aly et al. (2021). In analyzing the source ef-
fect, we run test set inference with SMXM,10 the
BERT-based X-ENC model from Aly et al. (2021),
and our OPENBIONER, pretrained on Pile-NER-
biomed. Table 4 illustrates the results. OPEN-
BIONER achieves consistently higher per-class F1
scores across all entity types when using our task-
specific descriptions compared to UMLS descrip-
tions. Remarkably, SMXM also exhibits improved
performance with our descriptions for most entity
types, with the sole exception of the Body Sub-
stance class. These results provide strong evidence

9We openly release our samples. A random seed of 42 was
set for reproducibility.

10Checkpoint officially released by the authors. The model
is pretrained on MedMentions instances labeled with frequent
entity types, i.e., no overlapping with MedMentions-Rare.

825

https://github.com/Raldir/Zero-shot-NERC


Dataset # Types # Samples Model Total Time (s) Samples/s Latency (s)

NCBI 1 940
OPENBIONER 15.56 60.41 0.0166

GLiNER 52.34 17.96 0.0557

BC5CDR 2 4797
OPENBIONER 152.04 31.55 0.0317

GLiNER 276.72 17.33 0.0577

MedMentions-ZS 5 1048
OPENBIONER 72.03 14.55 0.0687

GLiNER 63.93 16.39 0.0610

JNLPBA 5 3856
OPENBIONER 251.11 15.36 0.0651

GLiNER 227.63 16.94 0.0590

Table 5: Inference speed comparison between OPENBIONER and GLiNER. Tested across four BioNER
benchmarks, measured in total time, samples per second, and latency using the Zshot library.

that our synthetic descriptions are not only effec-
tive for OPENBIONER but also generalize well
to models with different architectures and training
distributions. Qualitative examples of generated
descriptions can be found in §F.

7.3 Inference Time
While using descriptions improves effectiveness, it
inevitably incurs a computational cost, as longer
descriptions take more time to process than simple
class names. To quantify this overhead, we com-
pare OPENBIONER to GLiNER-large using the
IBM Zshot Library11 (Picco et al., 2023), which
supports both models for a direct and consistent
evaluation. We consider a subset of benchmarks
with varying numbers of entity types using a Tesla
T4 GPU (14 GB VRAM). The results are summa-
rized in Table 5. Our findings indicate a slight
speed overhead as the number of entity types in-
creases. For datasets with ≤ 2+1 types (including
the negative class), OPENBIONER is significantly
faster than GLiNER, reducing inference time by
125 seconds on the BC5CDR test set. However,
with 5 + 1 types, we observe an overhead of 8 sec-
onds on MedMentions and 24 seconds on JNLPBA,
as shown in Figure 5. Despite this, the practical
impact remains minimal, as real-world biomedi-
cal benchmarks rarely involve more than 10 entity
types per task. This holds in various domains as
demonstrated by (Zhou et al., 2024), making the
theoretical inefficiency relevant only in atypical
scenarios with a very high number of entity types.

8 Conclusion

We introduced OPENBIONER, a novel model for
open-domain biomedical named entity recognition

11https://github.com/IBM/zshot
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Figure 5: Total inference time comparison between
OPENBIONER and GLiNER. Calculated by using the
Zshot library. "MedM" refers to MedMentions-ZS.

that leverages entity type descriptions for improved
generalization in zero-shot settings. Our results
demonstrate its superiority over state-of-the-art
models, including GPT-4o and UniNER, with sig-
nificantly fewer resources. OPENBIONER outper-
forms lightweight alternatives like GLiNER across
multiple benchmarks, showcasing its effectiveness
in challenging biomedical scenarios. Moreover,
it shows easy adapatation to the target domain
with limited training data. Future work will ex-
plore the application of our approach in diverse do-
mains characterized with data scarcity, such as non-
English law (Ragazzi et al., 2024), and aim to de-
velop a more generalist model that balances flexibil-
ity and performance. Another promising direction
for future research involves the retrieval (Frisoni
et al., 2022a) or generation (Frisoni et al., 2024) of
entity-specific context and descriptions, which can
be optimized end-to-end with the NER task.
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Limitations

While OPENBIONER demonstrates strong zero-
shot performance, its effectiveness is contingent
upon the quality of the descriptions used during
inference. The absence of a definitive formula for
optimal description generation presents a challenge,
and further refinement of our approach may yield
improved results. Although we propose a fully
unsupervised description generation method, we
acknowledge that human supervision may be nec-
essary to achieve peak performance. In this con-
text, alternative unsupervised approaches could be
explored. Recently, Picco et al. (2024) proposed
UDEBO, a method that enhances zero-shot NER
performance by aggregating predictions from the
same model using multiple automatically gener-
ated variants of entity descriptions. This technique
has demonstrated improved robustness, suggesting
that leveraging diverse descriptions could further
refine OPENBIONER’s effectiveness. Moreover,
unlike GliNER and UniNER, which can handle
nested NER cases, OPENBIONER is limited by
the BIO-tag scheme, which does not support the
identification of entities within other entities. Ad-
dressing this limitation is an avenue for future re-
search. Lastly, the generalizability of our model
in zero-shot settings is influenced by the entities
extracted through self-supervision. The reliance
on Pile-NER, which was created using ChatGPT,
introduces potential biases and inaccuracies due to
irrelevant or incorrect annotations. A more rigorous
annotation process with quality control measures
could further enhance OpenBioNER’s capabilities.
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A Modeling Non-Entity Tokens

A significant challenge in open-domain NER arises
when tokens labeled as non-entities during training
are later identified as entities of unseen types dur-
ing testing. This issue is particularly pronounced
in our pretraining setup using Pile-NER-biomed,
where tokens of unextracted entity types are ini-
tially labeled as ’O’ (non-entity) and remain so
until their corresponding types are extracted. To
address this limitation, we extend the dynamic
negative class modeling approach of Aly et al.
(2021), originally designed for closed-domain set-
tings. Unlike their approach, which independently
encodes the input sequence without using a neg-
ative class description, we find that incorporating
cross-attention with the negative description yields
more effective results. Specifically, for each input
sequence token, we employ a cross-attention mech-
anism with all possible entity type descriptions,
including the negative class, to generate token rep-
resentations (vtneg ,vt1 , . . . ,vtk). We then apply
separate linear transformations using weight matri-
ces Wpos and Wneg−ind for the positive and nega-
tive class vectors, respectively, allowing the model
to learn distinct features for the negative and pos-
itive classes. The separate linear layer Wneg−ind

allows the model to focus specifically on learning
a good representation for the negative class, which
might be more challenging to learn than the positive
class representations. Negative and positive class
vectors are concatenated to form a feature map m.
Subsequently, we apply max pooling over this fea-
ture set and take the maximum value corresponding
to sim(ti, cneg). A detailed mathematical formu-
lation of this process is provided in Algorithm 1.

However, in practice, defining "what is not" with
respect to "what is" can be a challenging task, mak-
ing it difficult for users to make informed decisions
about the most suitable negative description. To
mitigate this issue, we devise a strategy to reduce
the model’s sensitivity to the negative description,
allowing for potentially omitting it without compro-
mising performance. In practice, during training
we found it beneficial to randomly truncate the neg-
ative description for each sentence in the batch, as
shown in Figure 6. To evaluate the model’s robust-
ness, we experimented with different strategies for
modeling the negative description at test time:

• Out-of-domain descriptions, not related to the
biomedical field, to inject noise.

• Randomly sampling three sentences from the
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training set with only negative labels associ-
ated to each token.

• Using artificially generated descriptions from
a LLM.

• Omitting the negative description altogether,
to evaluate the model’s ability to perform with-
out any explicit negative information.

The results, presented in Table 6, demonstrate
that sampling three sentences from each bench-
mark’s training set yields the best performance.
Moreover, the results show only small oscillations
across different modeling approaches, highlighting
the robustness of our model to various negative
description representations.

Algorithm 1 Negative Entity Type Encoding

Require: Description-sensitive representations
vtneg−ind

,vt1 , . . . ,vtk

Ensure: Final negative class output sim(ti,dneg)
1: m← [Wpos · vt1 , . . . ,Wpos · vtk ] ▷ Projection

of positive description-sensitive vectors
2: m← [Wneg-ind · vtneg−ind

, . . . ,Wpos · vtk ] ▷
Add vneg-ind to m via separate Wneg-ind

3: m← [sim(ti, cneg−ind); . . . ; sim(ti, c|T |)] ▷
Obtain per-class similarity score

4: sim(ti, cneg)← max(m) ▷ Max pooling
over both positive and negative scores

5: return sim(ti, cneg)

B -Rare Dataset Creation

We construct our -Rare benchmark variants by fol-
lowing a multi-step process inspired by the method
of Aly et al. (2021). The steps involved are as
follows:

1. We begin by counting the frequency of each
entity type in the dataset.

2. We then allocate the most frequent entity types
to the training set, the least frequent to the test
set, and the remaining ones to the develop-
ment set. This ensures that the development
set is representative of the test set to the great-
est extent possible.

3. For the MedMentions dataset, we adopt the
same training, development, and test splits
defined by Aly et al. (2021). In the case of
the JNLPBA dataset, we reserve the RNA and
Cell Type labels as the rarest categories for
testing.12

12Note that for JNLPBA, we do not consider a separate dev
split due to the limited number of distinct entity types.

To our knowledge, this is the first report of
a pseudo-allergy caused by polyethylene
glycol. [SEP] Coal, water, oil, etc. are
normally used for traditional electricity
generation. However, using liquefied
natural gas as fuel for joint circulatory
electricity generation has advantages. The
chief financial officer is the only one there
taking the fall.

Five cm H2O CP during nitroprus-
side did not further alter any of the
above-mentioned variables. [SEP] Coal,
water, oil, etc. are normally used for
traditional electricity generation. However,
using liquefied natural gas as fuel for
joint circulatory electricity generation has
advantages.

Figure 6: Example of out-of-domain negative descrip-
tion (in italic font), randomly truncated for two different
sentences within the same batch.

4. We designate entities whose classes appear in
different sets than their assigned set (as per
step 2) as negative (’O’) in each sentence.

5. We remove sentences with no annotated enti-
ties, i.e., those where every token is labeled as
’O’.

6. Finally, we discard the training and develop-
ment splits, retaining only the test sets as our
final benchmarks for evaluation.

C GLiNER Type Sensibility

During the evaluation of GLiNER on our newly
introduced benchmarks, we observed a significant
sensitivity of the model to case formats, particu-
larly in the presence of acronyms such as RNA.
As shown in Table 2, we report the highest score
obtained for each dataset. However, a closer ex-
amination of the results reveals that the model’s
performance varies substantially across different
case formats, especially in datasets with more am-
biguous entity types, such as JNLPBA. In JNLPBA,
entities like Cell Line, RNA, and DNA can have
different interpretations, making it challenging to
understand their context without guidance from a
description. To investigate this phenomenon, we
established three evaluation settings: (1) lower case
types (e.g., "dna"), (2) title case types (e.g., "Dna"),
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and (3) title case acronym-aware (e.g., "DNA").
Interestingly, using the title case acronym-aware
format (DNA and RNA) in JNLPBA boosts the
model’s performance. However, when we shift to
JNLPBA-R, the model’s performance drops by ap-
proximately 10% F1 points. We further investigate
this behavior and find that the model significantly
increases false positive predictions when evaluated
on the rarest classes.

D Negative Class Weight

During supervised training, we observe that the
model benefits from a fixed class weight for neg-
ative entities in the cross-entropy loss rather than
a dynamic one, as employed during pretraining.
We attribute this behavior to the fact that most of
the benchmarks considered have a large number
of training and test instances without any positive
labels (i.e., only ’O’ tags). As a result, the model
is prone to make false positive predictions. To miti-
gate this, we assign a fixed weight to the negative
class, which helps the model to better balance the
learning process and improve its performance on
the negative classes. Table 7 shows the results for
two different fixed negative weights: 0.5 and 1.0.
By comparing these results, we can see the impact
of the fixed negative weight on the model’s per-
formance and identify the optimal value for each
benchmark.

E Hyperparameter Details

Table 8 illustrates all the hyperparameters used
in our experiments. This includes hyperparame-
ters for the pretraining and fine-tuning of Open-
BioNER, fine-tuning of BERT and BioBERT, de-
scription generation with Meta-LLaMA-3.1-8B-
Instruct, and inference with GPT-4o. The table
provides a comprehensive overview of the hyper-
parameters used in each experiment, allowing for
reproducibility.

F Qualitative Examples

Table 9 presents examples of multi-domain descrip-
tions generated by the LLM. To illustrate the effect
of description specificity on model performance,
Table 10 compares two descriptions for the entity
type Anatomy on the AnatEM benchmark. Notably,
the first description provides a general overview
of anatomy, whereas the second description explic-
itly mentions specific cell types, body parts, and
biological substances, indicating a more detailed

understanding of anatomical entities present in the
dataset. Instead, Table 11 showcases examples of
negative descriptions tested on the BC2GM dataset.

G Prompt Templates

In this section, we present the prompts utilized
to address each of the tasks detailed in the paper.
Figure 7 provides an illustration of the prompt em-
ployed to generate multi-domain descriptions. Fig-
ure 8 showcases an example of the prompt tem-
plate used to generate domain-specific descriptions
through few-shot learning. Figure 9 illustrates the
prompt template utilized to filter biomedical in-
stances from Pile-NER, resulting in the creation
of Pile-NER-Biomed. Figure 10 demonstrates the
prompt used by GPT-4o to perform inference on
each benchmark.
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NEG type NCBI AnatEM JNLPBA JNLPBA-ZS BC2GM BC4CHEMD BC5CDR MedMentions-ZS AVG

Out-of-domain 58.2 34.4 56.8 62.2 48.8 47.2 52.6 49.4 50.2
None 57.9 32.6 57.1 62.1 48.2 47.2 51.5 50.6 50.9
LLM-generated 57.9 30.5 57.1 62.1 47.4 48.0 52.6 50.7 50.8
Train sample 57.7 35.2 57.0 62.4 47.8 47.5 52.4 50.6 51.3

Table 6: Zero-shot performance changing negative (NEG) descriptions.

#Samples AnatEM NCBI JNLPBA BC2GM BC4CHEMD BC5CDR AVG

NEG weight = 0.5
100 53.2 67.1 60.4 53.2 51.7 74.4 60.0
500 70.8 72.0 66.6 64.3 69.8 79.5 70.5
1000 77.8 78.7 65.8 65.0 75.8 81.9 74.2
supervised 86.7 86.1 74.5 80.1 88.3 86.2 83.7
NEG weight = 1.0
100 55.8 66.3 57.9 52.4 47.9 73.4 59.0
500 68.9 73.1 66.9 65.7 68.7 79.6 70.5
1000 76.4 77.1 66.1 63.4 76.1 81.9 73.5
supervised 87.0 85.4 74.1 80.5 88.5 86.3 83.6

Table 7: Supervised in-domain performance as the negative (NEG) class weight varies. We report the best
results obtained within a maximum of eight training epochs.

Provide a description for the following entity types: {types}.
Consider scenarios where an entity type may have different meanings and provide context-aware
descriptions accordingly. Always return only a python dictionary ’descriptions’ between ```
containing the descriptions for each entity type.

The expected output is the following:

```python
descriptions = {
"type 1": {
"general": "general description of type 1",
"domain 1": "In domain 1, ... description of type 1 in domain 1",
...,

},
"type 2": {
"general": "general description of type 2",
"domain 2": "In domain 2, ... description of type 2 in domain 2",
...,

},
...

}
```

Figure 7: Prompt template used to generate multi-domain descriptions.
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Hyperparameters

OPENBIONER PRETRAINING F INE-TUNING

min_sample_class 15 / -
max_sample_class 25 / -
max_description_length 150 / 150
max_sequence_length 300 / 300
mask_probability 0.3 / 0.5
epochs 4 / 8
batch_size 8 / 8
val_steps 1
learning_rate 2e-5 / 2e-5
negative_weight dynamic / 1.0
optimizer Adam / Adam
weight_decay 0 / 0
linear_dropout 0.5 / 0.5
warmup_step 0 / 0
seed 42 / 42

BERT & BIOBERT FINE-TUNING

learning_rate 2e-4
per_device_train_batch_size 64
per_device_eval_batch_size 64
num_train_epochs 5
evaluation_strategy epoch
save_strategy epoch
metric_for_best_model f1_micro
gradient_accumulation_steps 1
eval_accumulation_steps 32
optimizer AdamW
warmup_ratio 0.1
lr_scheduler_type cosine
seed 42

LLAMA-3.1-8B-INSTRUCT MULTI-DOMAIN AND DOMAIN-SPECIFIC DESCRIPTION GENERATION

n 1
temperature 0.5
max_tokens 1024
top_p 1.0
frequency_penalty 0
presence_penalty 0
seed 0

GPT-4O INFERENCE

model gpt-4o-2024-08-06
n 1
temperature 0.0 (greedy decoding)
max_tokens 256
top_p 1
frequency_penalty 0
presence_penalty 0

Table 8: Hyperparameters used for training/fine-tuning of OpenBioNER, fine-tuning BERT and BioBERT, descrip-
tion generation with Meta-LLaMA-3.1-8B-Instruct, inference with GPT-4o.
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Type Description
Observation An observation is a recorded or documented event, action, or state that is

observed or measured by an individual or a system. Observations can provide
insights into phenomena, processes, or systems, and can be used to generate
hypotheses test theories, or make predictions. In science, observations are used
to gather data and evidence for scientific inquiry. For example, astronomers may
make observations of celestial objects to study their properties and behaviors.
In engineering, observations are used to monitor and control systems. For
example, sensors may be used to observe the temperature, pressure, or flow
rate of a process, and to adjust the system parameters accordingly. In social
sciences, observations are used to study human behavior and social phenomena.
For example, anthropologists may make observations of cultural practices and
rituals to understand their meaning and significance.

Hypothesis A proposed explanation for a phenomenon, based on available evidence and
reasoning. Can be tested through experimentation or observation. In the context
of science, a hypothesis is a tentative explanation for an observation or a set of
observations, that can be tested through further investigation. In the context of
philosophy, a hypothesis is a speculative idea or assumption, that may or may
not be supported by evidence or reasoning.

Medical Assess-
ment Tool

A medical assessment tool is a device, software, or technique used to evaluate
a patient’s health status or diagnose a medical condition. This can include
physical exams, diagnostic tests, questionnaires, and other methods. In primary
care, a medical assessment tool may be used to screen for chronic diseases,
monitor symptoms, or guide treatment decisions. For example, a blood glucose
meter is a medical assessment tool used to measure blood sugar levels in patients
with diabetes. In hospital settings, medical assessment tools may be used to
monitor patients’ vital signs, assess pain levels, or evaluate cognitive function.
For example, a pulse oximeter is a medical assessment tool used to measure
oxygen saturation in the blood. In research settings, medical assessment tools
may be used to collect data for clinical trials or epidemiological studies. For
example, a quality of life questionnaire is a medical assessment tool used to
measure the impact of a disease or treatment on a patient’s daily life.

Gram-Positive Or-
ganism

A gram-positive organism is a type of bacterium that retains the crystal violet
stain during the Gram stain process. This characteristic is due to the thick
peptidoglycan cell wall that these bacteria have. Gram-positive organisms
include common pathogens such as Staphylococcus aureus and Streptococcus
pneumoniae. In medicine, gram-positive organisms are important pathogens
that can cause a variety of infections, such as skin infections, pneumonia, and
sepsis. Antibiotics such as penicillin and vancomycin are commonly used
to treat infections caused by gram-positive bacteria. In microbiology, gram-
positive organisms are studied to understand their unique cell wall structure and
the mechanisms by which they cause disease. They are also used as models to
study antibiotic resistance and the development of new antibiotics.

Table 9: Examples of multi-domain descriptions generated by LLaMA-3.1-8B-instruct for Pile-NER-biomed types.
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Description F1 Score
Anatomy refers to organs, tissues, cells, and their spatial and functional relationships. Anatomy explores
physical structures, such as the heart, lungs, and bones, as well as microscopic elements like cells and
tissues. Examples include the study of cell structures in HeLa cells, the arrangement of plectonemes in
DNA, and the analysis of serum levels in medical research.

28.8

The anatomy refers to biological components at various scales, including cells, tissues, and organs. These
entities can be identified by proper nouns referring to cell types (e.g. HeLa cells, neurospheres, NSCLC,
SCC), body parts (e.g. serum, blood) or biological substances (e.g. vegetables, meats, cow milk) or
tumors.

34.8

Table 10: Comparison of two descriptions for the entity type Anatomy and their respective F1 scores in the AnatEM
dataset, illustrating how specificity and detail influence model performance.

Negative type Description
Out-of-domain Coal, water, oil, etc. are normally used for traditional electric-

ity generation. However using liquefied natural gas as fuel for
joint circulatory electircity generation has advantages. The chief
financial officer is the only one there taking the fall. It has a very
talented team, eh. What will happen to the wildlife? I just tell
them, you’ve got to change. They’re here to stay. They have
no insurance on their cars. What else would you like? Whether
holding an international cultural event or setting the city’s cultural
policies, she always asks for the participation or input of other
cities and counties.

LLM terms that do not represent specific biological concepts such as
genes or hereditary units. These words serve to structure and
enhance language but lack specialized meaning in genetics or
biology. These words include common linguistic elements like
articles, prepositions, conjunctions, or auxiliary verbs, which are
necessary for sentence construction but do not convey scientific
information. They do not refer to biological sequences, inheritance
mechanisms, or traits, instead serving as general connectors or
modifiers that provide clarity and coherence to statements without
carrying domain-specific significance.

Train In vivo epiluminescence microscopy of pigmented skin lesions .
Current status of zinc deficiency in the pathogenesis of neurologi-
cal , dermatological and musculoskeletal disorders . The 3 - hour
test iodine ( I - 132 ) uptake by the thyroid in children with growth
deficiency .

Table 11: Example of various negative description types used for testing the model with BC2GM. The
out-of-domain approach, adapted from Aly et al. (2021), comprises 10 negative sentences sourced from the
OntoNotes dataset. The LLM description is generated by a LLM that had access to the positive entity descriptions.
The Train description is formed by concatenating 3 negative sentences from the reference dataset.

836



You are provided with a class.

Your task is to generate a brief and accurate
description that can generally represent that
class in a sentence.

To better understand possible domains of
the class you are provided with a list of
sentences containing entities related to the
class, each entity is enclosed within ###
markers.

Include examples.

The description should be between 40 and
120 words.

Class: {class}

Sentences:
1. {sentence 1}

2. {sentence 2}
...

Please generate the description of the class,
prefixed by exactly ’###description:’

Figure 8: Prompt template used to generate domain-
specific descriptions through few-shot examples.

Sentence: {sentence}
Labels: {labels}
You are given a sentence splitted in token
and relative label annotation. Respond with
’Yes’ only if sentence and labels are both
relative to medical domain, ’No’ instead.

Don’t explain your answer.

Use every label one time.

Use None when there are no entities related
to the label.

Figure 9: Prompt template used to filter only biomedical
samples from Pile-NER.

Please identify Bacterium, Body Sub-
stance, Body System, Food, Professional
or Occupational Group from the given
text, output using the format as "En-
tity: Bacterium: None|Body Substance:
Word1|Body System: None|Food: Word2,
Word3|Professional or Occupational Group:
None|"

Use every label one time.

Use None when there are no entities related
to the label.

Text: {text}

Figure 10: Example of prompt templated used for GPT-
4o to run evaluation on MedMentions-R.
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