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Abstract

As LLM-generated text becomes increasingly
prevalent on the internet, often containing hal-
lucinations or biases, detecting such content
has emerged as a critical area of research. Re-
cent methods have demonstrated impressive
performance in detecting text generated en-
tirely by LLMs. However, in real-world sce-
narios, users often introduce perturbations to
the LLM-generated text, and the robustness of
existing detection methods against these per-
turbations has not been sufficiently explored.
This paper empirically investigates this chal-
lenge and finds that even minor perturbations
can severely degrade the performance of cur-
rent detection methods. To address this issue,
we find that the syntactic tree is minimally
affected by disturbances and exhibits distinct
differences between human-written and LLM-
generated text. Therefore, we propose a de-
tection method based on syntactic trees, which
can capture features invariant to perturbations.
It demonstrates significantly improved robust-
ness against perturbation on the HC3 and GPT-
3.5-mixed datasets. Moreover, it also has the
shortest time expenditure. We provide the code
and data at https://github.com/thulx18/
PRDetect.

1 Introduction

The proliferation of LLM-generated texts on the
internet has raised numerous issues, such as the
spread of fake news (Zellers et al., 2019) and
academic papers, which are difficult to identify
(Gehrmann et al., 2019). In recent years, the task
of detecting LLM-generated text has shown promis-
ing results (Mitchell et al., 2023; Liu et al., 2023b;
Bao et al., 2024; McGovern et al., 2024).

However, we argue that the previous task set-
tings were overly simplistic, making it difficult to
reflect real-world scenarios where LLM-generated
text is frequently modified and adjusted. This pa-
per finds that when the text is subjected to certain
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Figure 1: The accuracy of several detection methods
drop significantly after perturbing just 10% words of
each LLM-generated sentence in the HC3 datasets.

perturbations, the effectiveness of many detection
tools drops significantly, as depicted in Figure 1.

Recently, some studies have begun to define per-
turbations and explore how to accurately identify
text after perturbation. Perturbations can be broadly
categorized into sentence-level, token-level, and
character-level disturbances (Zhou et al., 2024).
These perturbation methods reduce the accuracy
of existing classifiers (Liu et al., 2023b, 2024;
Huang et al., 2024). Furthermore, some studies
have attempted new methods to enhance robust-
ness (Zhang et al., 2024). Zhou et al. (2024) argues
that traditional text classification methods heavily
rely on statistical metrics, such as perplexity. Per-
turbations in the text lead to changes in text quality
and readability, among other aspects, resulting in
decreased classification performance. Liu et al.
(2023b) proposes a text detection method based on
an entity graph, which shows some resistance to
token-level perturbations, illustrating the effective-
ness of graph information in improving robustness
to perturbations.

To address this problem, we identify differences
in the syntax trees between human-written texts
and LLM-generated texts, as shown in Section 4.2,
which exhibit minimal susceptibility to perturba-
tions. Based on this finding, this paper presents a
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perturbation-robust text detection method (PRDe-
tect) and proposes a perturbation method that mim-
ics human editing. We compare PRDetect with
several highperforming baselines under perturba-
tion. PRDetect demonstrates both high accuracy
and perturbation-robustness. Additionally, we dis-
cuss the performance of PRDetect in other contexts,
including cross-dataset and short-text experiments.
The results indicate that as text length decreases
and the perturbation ratio increases, classification
accuracy declines.

In summary, our contributions are as follows:

• PRDetect leverages differences in syntax trees
and demonstrates outstanding performance on
two datasets of different lengths.

• We propose a novel perturbation method to
emulate the processes of real-world text pol-
ishing.

• PRDetect exhibits state-of-the-art robustness
against perturbation.

2 Related Work

2.1 LLM-Generated Text Detection
The task of detecting LLM-generated texts involves
determining whether a piece of text is written by
humans or generated by LLMs. Existing detec-
tion methods can be broadly categorized into four
groups.

Featured-based text detection: Various fea-
tures within a text can be employed to train a model
for classification. GLTR (Gehrmann et al., 2019)
calculates three features for detection: the probabil-
ity of the next word, the absolute rank of the next
word, and the entropy of the predicted distribution.
LLMDet (Wu et al., 2023) utilizes an open-source
language model to create a local probability dic-
tionary and calculate perplexity for classification,
which helps save storage space. CoCo (Liu et al.,
2023b) leverages linguistic features within the text,
representing the entity information as a graph struc-
ture, which is subjected to contrastive learning. It
performs well in detecting long texts.

Fine-tuning large pre-trained model: Pre-
trained language models offer significant advan-
tages in NLP tasks, eliminating the need for manu-
ally specified features. Transformer-based models
can extract useful features from text for classifica-
tion tasks, such as determining whether a piece of
text was generated by ChatGPT or written manu-
ally (Mitrović et al., 2023). OpenAI fine-tuned a

RoBERTa model1 to detect text generated by GPT-
2. Their dataset comprises 250,000 documents
from the WebText test set, along with 500,000 text
samples from GPT-2 models of varying parameter
sizes. These methods can be further refined and
enhanced by fine-tuning with local data.

Zero-shot method: This approach relies on cer-
tain statistical regularities, saving time in model
training and representing a significant breakthrough
in the task of LLM-generated text detection. De-
tectGPT (Mitchell et al., 2023) finds that machine-
generated text tends to occupy regions of negative
curvature in the model’s log-probability function.
By perturbing the text and calculating changes in
log probability, texts with smaller average changes
are more likely to be human-written. DetectGPT-
SC (Wang et al., 2023), based on masked prediction
consistency, also achieves zero-shot classification.
Fast-DetectGPT (Bao et al., 2024) optimizes the
sampling stride, accelerating the detection process
up to 340 times. DetectGPT4Code (Yang et al.,
2023) achieved state-of-the-art results by experi-
menting using the CodeContest and APPS datasets.

Text watermarking method: Adding a water-
mark involves embedding a hidden representation
into the text, making it indistinguishable to hu-
mans but detectable by algorithms. In simple terms,
adding a watermark incorporates a selection strat-
egy into the text generation process. When prior
tokens are available, a random seed is generated by
computing a hash on the last token before before
generating the next word. This seed is then used to
divide the vocabulary into a green list and a red list,
with the next word being selected only from the
green list (Kirchenbauer et al., 2023). Generally,
watermarks only need to be added during gener-
ation without the need to retrain the model. The
watermarks should be difficult to remove or modify
and detectable even in partial text. To ensure the
watermark’s effectiveness, it is crucial to use meth-
ods that do not leak. Measures must be taken to
prevent the watermark from being erased or coun-
terfeited, such as generating a key to produce ran-
dom numbers used to create a private watermark
(Kirchenbauer et al., 2023). Another method is to
use two separate neural networks for watermark
generation and detection (Liu et al., 2023a).

1https://github.com/openai/
gpt-2-output-dataset/tree/master/detector
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2.2 Text Perturbation

Existing experiments have demonstrated that sim-
ple perturbations can significantly interfere with
popular text detectors. These perturbations typi-
cally alter the underlying distribution of the text,
resulting in incorrect classifications.

One type of character-level perturbation can be
implemented by replacing characters with visually
similar letters from different languages (Wolff and
Wolff, 2020). While these may be indistinguishable
to the human eye, they are represented as different
tokens by the classifier. Another approach mimics
human spelling errors by swapping letters within
words. Adversarial perturbation experiments of-
ten involve character-level substitutions, deletions,
and insertions (Huang et al., 2024). Additionally,
there are character-level perturbations that can af-
fect detection results, such as word merging, cap-
italization errors, punctuation removal, and space
insertion (Zhou et al., 2024).

Some studies have conducted token-level pertur-
bation experiments on text (Liu et al., 2023b), in-
cluding the random insertion, substitution, deletion,
and repetition of tokens. However, such perturba-
tions typically do not occur in real-world scenarios
and can also undermine the readability of the text.

Additionally, some studies assess sentence-level
modifications (Macko et al., 2024). One approach
involves translating text from one language to an-
other and then back-translating it to the original
language. Through back-translation, discrepancies
can arise between the text translated and the origi-
nal. Furthermore, the text can be rewritten or sub-
jected to various text attacks. These methods can
evade detection by some classifiers.

In experiments, character-level and word-level
modifications can be more effectively quantified
and analyzed. Sentence-level alterations, however,
are challenging to control quantitatively in terms
of the degree of perturbation. Therefore, in the ro-
bustness analyses of many studies, only simple text
perturbations, such as deletions, insertions, substi-
tutions, and repetitions are typically conducted.

3 Methods

The primary framework of PRDetect consists of
constructing syntax trees, node encoding, super-
vised training of a graph convolutional network,
and applying text perturbations for testing purposes.
The main process is illustrated in Figure 2.

3.1 Syntax Tree Construction and Node
Encoding

Stanford University has conducted extensive re-
search on the construction of syntax trees (Berant
et al., 2013). Stanford CoreNLP2 is a suite of
text analysis tools that supports multiple languages.
It can determine the part of speech for words in
the text and identify over 50 types of grammati-
cal dependency relationships. SpaCy3 is another
open-source software library for NLP, developed in
Python and Cython, and designed specifically for
production use. It offers a wide range of linguistic
annotations and features, such as part-of-speech
tagging, parsing, named entity recognition, and
more.

In this paper, we utilize SpaCy and Roberta to
accomplish this process. For a given long input
text, we use SpaCy for tokenization after segment-
ing the text into chunks. SpaCy performs part-
of-speech tagging on each token and determines
dependency relationships using a set of rules, such
as identifying the subject-verb or modifier relation-
ships. Through this process, a dependency tree is
constructed, where each node represents a token.
Subsequently, we construct an adjacency matrix
A, where 1 represents a dependency relationship
between two tokens, and 0 otherwise, based on the
dependency tree. The adjacency matrix of a syntax
tree is represented as follows:

Aij =

{
1 if si.head == sj

0 others
(1)

where si denotes the i-th word of the text T . These
operations are completed during the text prepro-
cessing stage. Given the sparsity of the syntax
tree’s adjacency matrix, a sparse matrix is stored to
save space.

For the token nodes of the dependency tree, we
use Roberta to obtain their embedding, which are
used to initialize the nodes in the graph network
(Liu et al., 2023b). Compared to random initializa-
tion, this approach leads to faster convergence and
improved performance.

At this point, we have obtained the adjacency
matrix, the node embeddings, and the text labels
for training the network.

2https://github.com/stanfordnlp/CoreNLP
3https://github.com/explosion/spaCy
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Figure 2: The primary procedure of PRDetect. It constructs and encodes syntax trees and nodes to train a GCN for
text detection.

3.2 Graph Convolutional Network
Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) is a deep learning model specifically
designed for processing data with graph structures.
It learns embedded representations of nodes by
performing convolutional operations on the graph,
effectively capture the local connection patterns
between nodes. By stacking multiple convolutional
layers, GCN achieves hierarchical abstraction of
node features and enables in-depth exploration of
information. Due to its excellent performance and
flexibility, GCN has been widely applied across var-
ious domains, and has achieved promising results
in numerous classification tasks involving graph-
structured data.

In this paper, we utilize two layers of GCN to
perform graph convolution operations. Each con-
volution layer can be expressed as:

H(l) = σ(D̂− 1
2 ÂD̂− 1

2H(l−1)W (l−1)) (2)

where H(l) is the node embedding matrix at layer
l, Â is the adjacency matrix of the graph that incor-
porates self-loops, D̂ is the diagonal degree matrix,
W l is the weight matrix for layer l, and σ is a non-
linear activation function, typically the Rectified
Linear Unit (ReLU), which outputs the input di-
rectly if it’s positive and zero otherwise. Self-loops
for nodes can reinforce the inherent features of the
nodes during the convolution process, represented
as:

Â = A+ I (3)

where I is the identity matrix of the same dimen-
sion as A. Our model employs the Binary Cross-
Entropy Loss (BCELoss) as the loss function L,

Dataset
HC3 GPT3.5-Mixed

Human Machine Human Machine

Depth of Nodes 2.80 3.26 3.13 3.15
Number of Nodes 20.23 25.34 25.08 25.09

Height of Root 4.79 6.38 5.61 6.18
Length of Text 147.93 178.65 756.55 501.13

Table 1: Statistical analysis of dataset. The values in the
table are all averages.

represented as:

L = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (4)

where y is the true binary label of the sample, with
1 indicating a human-written text and 0 indicating
a machine-generated text. The ŷ is the predicted
probability output by the model.

4 Dataset and Syntactic Tree Difference
Analysis

In this section, we introduce the datasets and met-
rics used in our experiments. We also analyze the
human-written and LLM-generated texts within the
dataset. The differences in syntax trees features are
the decisive factors in classification.

4.1 Datasets and Metrics

The text generation capabilities of LLMs can affect
the difficulty of text detection tasks. We choose
texts generated by more recent LLMs, which are
typically more fluent and harder for humans to
distinguish from human-written text.

Human ChatGPT Comparison Corpus
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Figure 3: The length distribution of the dataset. To
facilitate presentation, some excessively long instances
are excluded.

(HC3)4 (Guo et al., 2023): This dataset contains
questions and answers from both ChatGPT and
human experts, including domain-specific experts,
high-voted answers by web users, Wikipedia, and
Baidu Baike. The dataset includes both Chinese
and English text and covers domains such as
open-domain topics, computer science, finance,
medicine, law, and psychology. We exclude
invalid samples, such as instances where ChatGPT
declines to provide an answer.

GPT3.5-Mixed5 (Liu et al., 2023b): This dataset
is generated by text-davinci-003 and focuses on
the news domain. The texts included are longer
compared to those in the HC3 dataset. The Mixed
dataset includes 17 different sources, such as news
websites like CNN, BBC, Yahoo, CNBC and
Times.

Following several related works (Wu et al., 2023;
Liu et al., 2023b), we use accuracy and the F1
score as evaluation metrics.

4.2 Syntactic Tree Difference Analysis

We conduct a statistical analysis of human-written
and LLM-generated texts in the HC3 and GPT3.5-
Mixed datasets.

Table 1 presents the average number of nodes in
the syntax tree, the average height of the root node,
and the average depth of nodes per tree. It can
be observed that, aside from the average number
of nodes in the GPT3.5-Mixed dataset, other fea-
tures show noticeable differences between human-
written and LLM-generated texts. These differ-
ences enable the GCN to learn and classify the
texts correctly.

4https://github.com/Hello-SimpleAI/
chatgpt-comparison-detection

5https://huggingface.co/datasets/ZachW/
MGTDetect_CoCo

Fig 3 presents the average length of human-
written and LLM-generated texts in the dataset.
The difference in length between the two datasets
also has a certain impact in the experiments, shown
in the Subsecion 5.6. Detailed analysis and distri-
bution graphs can be found in the Appendix A.

5 Experiments

In this section, we first introduce the baselines used
for comparison. Next, we describe our main per-
turbation methods. We then compare the classifi-
cation accuracy of verious methods on both LLM-
generated texts and perturbed texts to demonstrate
the state-of-the-art performance of PRDetect. Fi-
nally, we conduct analyses on cross-dataset per-
formance, the effects of other perturbation types,
experiments with short texts, and classification effi-
ciency.

5.1 Baselines

In our study, we compared PRDetect with several
commonly used or state-of-the-art detectors de-
signed for LLM-generated text identification. Text
watermarking is not included, as it typically re-
quires intervention prior to text generation, and its
experimental setup differs from the other methods
described in Subsection 2.1.

RoBERTa (Liu, 2019) is an advanced NLP
model that improves upon BERT (Devlin et al.,
2018). In this paper, we employ a version of
RoBERTa that has been fine-tuned by OpenAI6.

DetectGPT (Mitchell et al., 2023) is a zero-shot
LLM-text detection method that distinguishes texts
by examining changes in the log-probability curves
under perturbation. In the experiments, the T5-
large model is used to perturb texts, while the GPT-
medium model serves as the scoring model.

CoCo (Liu et al., 2023b) leverages entity in-
formation to train a text detection model. An en-
tity graph is constructed based on different entities
within the same sentence or the same entities across
different sentences.

5.2 Text Perturbation in Experiments

In this paper, our primary experiments focus on
word-level synonym replacement. This method
allows us to perturb the text while maintaining its
contextual meaning as much as possible. During
the construction of the syntax tree in subsection

6https://github.com/openai/
gpt-2-output-dataset/tree/master/detector
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Dataset HC3 GPT3.5-Mixed

Ratio 0% 5% 10% 20% 30% 0% 5% 10% 20% 30%

RoBERTa 0.9380 0.5800 0.5570 0.5270 0.5080 0.8927 0.5055 0.4995 0.4945 0.4945
DetectGPT 0.8350 0.8010 0.7720 0.7030 0.6580 0.6060 0.5860 0.5820 0.5680 0.5500
CoCo 0.9981 0.5432 0.5421 0.5356 0.5333 1.0000 0.6995 0.6893 0.6829 0.6805

PRDetect
0.9878 0.9878 0.9872 0.9874 0.9864 0.9656 0.9630 0.9632 0.9656 0.9638

±0.0010 ±0.0010 ±0.0009 ±0.0007 ±0.0005 ±0.0007 ±0.0004 ±0.0006 ±0.0010 ±0.0011

Table 2: Accuracy of different models on LLM-generated texts and perturbed texts. CoCo demonstrated the
best performance on original texts. PRDetect showed the highest overall effectiveness, exhibiting state-of-the-art
performance on perturbed texts. To demonstrate statistical significance, we selecte 5 different seeds. In this table,
mean and standard deviation of PRDetect are reported.

3.1, we obtain the part of speech for each word and
select a category of words for marking. We then
use WordNet, a component of the NLTK7 toolkit, to
obtain a list of synonyms for each word. From this
list, we choose to replace the original word with the
first synonym listed. There are also various other
methods for selecting replacement words, and some
LLMs can be utilized for synonym replacement.

When replacing synonyms for adjectives, we
select proportions of 5%, 10%, 20%, and 30%. It
is important to avoid modifying more than 50%
off the original text, as this makes it challenging to
define the label of the perturbed text. The perturbed
texts obtained by this way are used exclusively
in the model’s testing phase. Additionally, this
paper compares other word-level perturbations in
Subsection 5.5.

5.3 Main Experiments

We primarily compared the detection accuracy
of PRDetect with other baselines on both LLM-
generated and perturbed texts.

5.3.1 Parameter Settings
In this paper, we utilize two-layer GCNConv to
perform graph convolution operations, followed by
a fully connected layer and a dropout layer. The
dropout layer is set with a parameter of 0.5. In the
main experiments, we use random seeds ranging
from 2021 to 2025. The GPU we utilized is the
RTX 4090.

5.3.2 Detecting LLM-generated texts
. We train both CoCo and PRDetect using the same
training set and subsequently tested all methods on
the same test set. The results of our experiments
are detailed in Table 2.

7https://github.com/nltk/nltk

PRDetect achieved an accuracy rate of 98.5% on
the HC3 dataset and 96.1% on the GPT3.5-Mixed
dataset, demonstrating its effectiveness in detect-
ing LLM-generated text. It meets the requirements
for practical application and achieves an optimal
balance between accuracy and robustness. Both
PRDetect and CoCo, which utilized GCN to learn
graph features, outperformed the other two meth-
ods based on semantic features, proving the effec-
tiveness of graph information in text detection.

RoBERTa, which was trained on texts from GPT-
2, showed strong performance on texts from Chat-
GPT and GPT-3.5, highlighting its robust general-
ization capabilities. However, its accuracy is not as
high as PRDetect’s.

DetectGPT, serving as a zero-shot classifier,
achieves optimal results when the scoring model is
consistent with the generation model–a condition
difficult to meet in practical detection scenarios,
which highlighte its limitations. Additionally, De-
tectGPT struggles with detecting long texts, which
is an issue noted on its official Github8.

5.3.3 Detecting Perturbed Texts
We perturd the test set texts according to the
method described in Subsection 5.2. By select-
ing proportions of adjectives at 5%, 10%, 20%, and
30%, we generate the perturbed texts. These per-
turbed texts are then used to test the four methods
under the same conditions.

Table 2 shows that PRDetect achieves the highest
detection accuracy for perturbed texts. Moreover,
as the degree of perturbation varies, the accuracy
of PRDetect declines by no more than 0.05%. In
contrast, the other baselines experience a greater
decrease in accuracy as the intensity of perturba-
tions increases.

8https://github.com/eric-mitchell/detect-gpt/
issues/4
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In contrast, the other baselines experience a
decrease in accuracy as perturbation intensity in-
creases. RoBERTa tends to predict perturbed texts
as human-written, resulting in a detection accu-
racy rate of around 50% for perturbed texts. Even
with minimal perturbation of just 5%, its accuracy
suffers a catastrophic decline. DetectGPT, due to
its inherent perturbation process within its detec-
tion workflow, exhibits some degree of resilience
against perturbations. On the HC3 dataset, with a
5% perturbation, its accuracy declines by approxi-
mately 3%, demonstrating the robustness character-
istic of zero-shot methods. However, DetectGPT’s
effectiveness significantly diminishes when han-
dling longer texts. On the GPT3.5-Mixed dataset,
its accuracy rate is marginally above 50%. CoCo,
while highly accurate on original texts, experiences
a catastrophic drop in detection accuracy on per-
turbed texts. Nevertheless, its performance on
the GPT3.5-Mixed dataset is better than on the
HC3 dataset, highlighting the effectiveness of en-
tity graph features in longer texts.

In summary, PRDetect demonstrates a strong
ability to resist text perturbation while maintain-
ing a high detection accuracy rate. In Section 5.5,
we will further compare these methods with other
perturbations, showcasing PRDetect’s perturbation
robustness.

5.4 Cross-Dataset Experiments
We conducted cross-experiments on the HC3 and
GPT3.5-Mixed datasets, with the results presented
in Table 3. These two datasets differ in terms of
text length and domain. The texts in the GPT3.5-
Mixed dataset are significantly longer than those
in the HC3 dataset, as can be seen in Figure 3.
HC3 covers various fields, such as economics, law,
and medicine, while GPT3.5-Mixed pertains to the
news domain.

It can be observed from the table that PRDetect
demonstrates a notable level of accuracy and pertur-
bation resistance in cross-dataset experiments. Fur-
thermore, the classification accuracy of the GCN
trained on longer texts is superior. A more de-
tailed discussion regarding the impact of varying
text lengths is provided in Subsection 5.6.

The detection of LLM-generated text using parse
trees is influenced by the text’s domain. The
HC3 dataset consists of responses from humans
and ChatGPT to identical questions, whereas the
GPT3.5-Mixed dataset is a collection of generated
news articles. The latter follows the fundamental

Train HC3 GPT3.5-Mixed

Test GPT3.5-Mixed HC3

0% 73.2% 87.7%
5% 73.0% 87.8%

10% 72.6% 87.3%
20% 71.7% 86.9%
30% 70.9% 87.0%

Table 3: Accuracy of PRDetect in cross-dataset experi-
ments.

Model CoCo PRDetect

Original 0.9981 0.9850

Insert 0.4733 0.9830
Repeat 0.5380 0.9820
Replace 0.4713 0.7980
Detect 0.5212 0.7470

Average 0.5010 0.8775

Table 4: Accuracy on four common types of perturba-
tion. The experiments are conducted on the HC3 dataset.
In this experiment, the seed is set to 2024.

structure of news, including elements such as head-
lines, leads, main topics, and conclusions. These
disparities in text domains lead to variations in
syntactic style, which in turn result in diminished
performance for PRDetect in cross-dataset experi-
ments.

5.5 Other Perturbation Experiments

In some papers (Liu et al., 2023b, 2024), the au-
thors randomly insert, delete, repeat or replace
words to perturb the text. We apply these four types
of perturbations at a 25% ratio and detect on the
HC3 test dataset.

These types of perturbations significantly affect
certain classifiers, as random operations can impact
the quality and readability of the text, leading to
noticeable changes in perplexity (Zhou et al., 2024).
Consequently, the statistical features learned by
these classifiers become ineffective.

As shown in Table 4, PRDetect outperforms
CoCo, another detection method that leverages
graph information, on perturbed texts. PRDetect is
minimally affected by Insert and Repeat perturba-
tions, as these modifications have little impact on
the original syntax tree. For the other two perturba-
tion types, which alter the syntax tree, the detection
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Length Acc F1

Original 0.9610 0.9617

[80, 100) 0.6750 0.7257
[60, 80) 0.6700 0.7179
[40, 60) 0.6900 0.7257
[20, 40) 0.6850 0.7273
[10, 20) 0.5850 0.6770

Table 5: The results of PRDetect in short text detec-
tion experiments, which are conducted on the GPT3.5-
Mixed dataset. "Length" refers to the number of tokens
in the text after being split by spaces.

accuracy of PRDetect declines but still maintains
strong performance.

5.6 Short Text Detection
Detecting short texts poses significant challenges
for LLM text detectors (McGovern et al., 2024), as
they often rely on contextual cues that may not be
present in brief passages.

In this experiment, we segment and sample the
test data from the GPT3.5-Mixed dataset based
on varying lengths. Testing is conducted using
the model preserved from the main experiment.
We compare the detection results of different text
lengths.

As shown in Table 5, there is a clear trend where
the performance of the PRDetect model gradually
diminishes as text length decreases. This observed
decline in performance on shorter texts is attributed
to the predominance of longer texts in the GPT-3.5-
Mixed dataset, leading to a more significant impact
on the model’s performance when handling with
shorter text segments. Consequently, PRDetect
appears to be less proficient in detecting shorter
text segments, which is a critical aspect to consider
for further refinement of the detection algorithm.

5.7 Efficiency
In real-world scenarios, online texts are being gen-
erated every minute. This requires detectors to have
sufficiently high efficiency.

In this experiment, we compared the time spent
by PRDetect and other baselines at each stage, with
the results shown in Table 6. We control the equip-
ment, training epochs, and data to be exactly the
same in our experiments. Then, we record the time
spent by each method at every stage.

The results indicate that PRDetect is faster than
other baselines at every stage. Although Detect-

Model Preprocessing (s) Train (s) Test (s)

RoBERTa - - 27.6
DetectGPT - - 1298.4
CoCo 2545.3 1655.0 28.3
PRDetect 1754.5 629.7 2.5

Table 6: The time consumed by PRDetect and other
baselines at each stage. "Preprocessing" refers to the
time required for graph construction from the text.
"Train" refers to the time required for training the model.
Among them, RoBERTa is a pre-trained model, and De-
tectGPT is a zero-shot method, so their training times
are not considered. The number of training epochs is
fixed at 15. "Test" refers to the duration required for
testing the model. The experiments are conducted on an
RTX 4090. The dataset utilized is GPT3.5-Mixed.

GPT has shown certain perturbation-robustness on
HC3 shown in Table 2, it spends an extremely high
amount of time during detection. Compared to
CoCo, PRDetect reduces the test time spent to
one-tenth, which is highly significant in practical
applications because the texts to be detected are
often voluminous. Detection time is an indispens-
able factor in evaluating detection tools. However,
since Coco and PRDetect utilize graph informa-
tion within the text, a substantial amount of time is
spent in the preprocessing stage converting text into
adjacency matrices, which is an area for potential
future improvement.

6 Conclusion

In this paper, we propose PRDetect, a perturbation-
robust detection method for LLM-generated text
that leverages differences in syntax trees to train
a GCN. It identifies generated text effectively and
shows strong perturbation robustness. To simulate
the polishing of generated text before its actual
use, we introduce a perturbation method based on
synonym replacement, It perturbs the text while
maintaining its readability. PRDetect is minimally
affected by text perturbations on the HC3 and
GPT3.5 datasets, and its accuracy is significantly
higher than that of other baselines. Additionally,
PRDetect spends the least amount of time during
training and testing, which demonstrates its supe-
riority in practical applications, particularly valu-
able in scenarios where rapid detection is necessary,
such as in content moderation or academic integrity
assessments.
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Limitations

Although PRDetect demonstrates robustness
against perturbations, there are still some imper-
fections that need to be addressed.

The types of perturbations: The text perturba-
tions discussed in this paper are at the token-level.
We have not tested methods such as backtranslation
and rewriting at the sentence-level for two reasons.
First, sentence-level perturbations significantly im-
pact the graph structure, making detection difficult
to detect using the approach of this paper. Sec-
ond, it is challenging to specify the proportion of
perturbation at the sentence-level, and texts with
more than 50% perturbation are difficult to label.
The issue of sentence-level perturbations requires
further definition and analysis.

Different Length and Cross-Dataset Detec-
tion: Short text detection remains a challenge
for most classifiers. As shown in the Subsection
5.6 and 5.4, the performance of PRDetect, when
trained on long texts, significantly declines when
the text length falls below 100 tokens, with accu-
racy levels between 0.58 and 0.68. However, when
trained on the short text dataset HC3, the perfor-
mance drop is not as pronounced. Furthermore, we
have observed that model trained with short texts
achieves an accuracy of 0.88 when detecting long
texts. Conversely, when model trained on long texts
is used to detect short texts, the accuracy is only
0.73. The specific reasons behind this discrepancy
are yet to be discovered.
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Figure 4: The average node depth in the syntactic trees
of the dataset.
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Figure 5: The average number of nodes in the syntactic
trees of the dataset.
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Figure 6: The average height of root nodes in the syn-
tactic trees of the dataset.

A Text Analysis in the Dataset

Figure 4, 5, 6 demonstrate the differences in syn-
tax trees between human-written and machine-
generated texts in the datasets. The distribution
differences in syntax trees determine the effective-
ness of the methodology employed in this experi-
ment.

B The Impact of Perturbations on Syntax
Trees

In Table 7, we show the changes in syntactic tree
features under different perturbation ratios.
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Labels Perturbation Ratio(%) Depth of Nodes Number of Nodes Height of Root

ChatGPT 0 3.2620 25.1101 6.3754
ChatGPT 5 3.2266 24.9980 6.2874
ChatGPT 30 3.2245 25.0424 6.2913
Human 0 2.7268 18.9947 4.5711
Human 5 2.7172 18.9029 4.5480
Human 30 2.7201 18.8982 4.5476

Table 7: Analysis of the changes in the syntax tree
structure of test samples before and after perturbation
in the HC3 dataset

Labels 0% 5% 30%

HC3 0.9338 0.9190 0.9022
GPT3.5-Mixed 0.9540 0.9550 0.9560

Table 8: Under the similar text distribution, the recogni-
tion accuracy of PRDetect.

Label 0% 30% Decline Ratio

HC3 82.31 75.50 8.27%
GPT3.5-Mixed 85.20 77.95 8.51%

Table 9: The readability scores assigned by ChatGPT-4o
mini and the percentage decrease in scores before and
after perturbation.

Table 7 can illustrate two points:

• The syntax tree features of humans and ma-
chines are different, which is the key to classi-
fication.

• Token-level perturbations have a minimal im-
pact on syntax tree features, which is the key
to robustness against perturbations.

C Detection under the Similar Length
Distribution

In this paper, we utilized datasets from other stud-
ies. Among them, there are differences in the length
distribution between texts generated by LLMs and
those written by humans.

To address this difference, we select pairs of
texts with similar lengths to reduce the differences
in length distribution. Then, we use the previously
trained model for detection. The accuracy is as
follows in the table below. As shown in Table 8,
the accuracy of PRDetect remains above 90%.

D Readability

Table 10 shows a few examples from test samples
with the largest replacement ratios. To analyze the
impact of perturbation on sentence readability, we

used ChatGPT-4o mini to assess the readability of
the text. The prompt used was: "Whether the fol-
lowing text is valid for the human reader? Ranking
it from 0 to 100. Only return the score:text". The
results are presented in Table 9. The score has
decreased by approximately 8.5%.
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Original text Perturbed text

Do you use any other online features of Quicken?
How many unique ticker symbols do you have?

Do you use any other on-line features of Quicken?
How many singular ticker symbols do you have?

Ending up with nothing is an unlikely situation unless
you invest 100% in a company stock and the company
goes under.

Ending up with nothing is an improbable situation
unless you invest 100% in a company stock and the
company goes under.

The electoral college almost always votes the way
the popular vote does.

The electoral college almost always votes the way
the pop vote does.

Table 10: The changes in the text before and after perturbation. The changed parts are indicated in italic.
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