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Abstract

Sentence representation learning benefits from
data augmentation strategies to improve model
performance and generalization, yet existing
approaches often encounter issues such as se-
mantic inconsistencies and feature suppression.
To address these limitations, we propose a
method for generating Syntactically Aligned
Negative (SAN) samples through a semantic
importance-aware Masked Language Model
(MLM) approach. Our method quantifies se-
mantic contributions of individual words to pro-
duce negative samples that have substantial tex-
tual overlap with the original sentences while
conveying different meanings. We further intro-
duce Hierarchical-InfoNCE (HiNCE), a novel
contrastive learning objective employing differ-
ential temperature weighting to optimize the
utilization of both in-batch and syntactically
aligned negative samples. Extensive evalua-
tions across seven semantic textual similarity
benchmarks demonstrate consistent improve-
ments over state-of-the-art models1.

1 Introduction

Sentence embeddings map sentences into fixed-
length vectors using machine learning techniques,
such as neural networks, making semantically sim-
ilar sentences closer together in vector space. Sen-
tence representation learning plays a crucial role in
various natural language processing (NLP) tasks,
including information retrieval (Le and Mikolov,
2014), semantic similarity comparison (Penning-
ton et al., 2014), and translation quality evalua-
tion (Zhang et al., 2020). With the rise of pre-
trained language models (PLMs), researchers have
achieved significant success by employing fine-
tuning strategies based on PLMs. Specifically,
BERT and its variants, such as RoBERTa (Liu et al.,
1907), often use the [CLS] token from the final

* Corresponding author
1Code, data, and resources are available for research pur-

poses: https://github.com/bcai01/SAN.

layer to represent sentence vectors. In recent years,
with the emergence of large language models like
GPT and LLaMA, researchers have started to ex-
plore the potential of these models in generating
more expressive embedding representations. For
example, Wang et al. (2024a) utilize Mistral-7B as
an embedding model. However, such methods typ-
ically require substantial computational resources
and processing power, while yielding only marginal
performance improvements.

In sentence representation learning, model train-
ing typically employs either supervised or unsu-
pervised learning approaches. For the semantic
textual similarity (STS) task, supervised learning
generally outperforms unsupervised methods. For
instance, when using RoBERTalargeas the base
model and trained, supervised SimCSE (Gao et al.,
2022) achieved a top score of 83.76 - a score that no
unsupervised model has yet surpassed. However,
the supervised approach requires extensive man-
ual annotation, which makes it difficult to scale.
In contrast, unsupervised learning has become a
mainstream approach due to the relative ease of
acquiring unlabeled data. Nevertheless, due to
the limitations of unsupervised data diversity, re-
searchers have focused on developing various data
augmentation methods to improve the performance
of unsupervised models.

To overcome these challenges and enhance the
efficiency of data utilization in unsupervised learn-
ing, researchers have proposed various data aug-
mentation methods, such as cutoff, word repetition,
random word deletion, noise injection, and dropout
noise. However, these methods come with cer-
tain limitations. The augmented samples may alter
the overall or local semantics of the original sam-
ples, potentially causing semantic inconsistencies
between the original and augmented data. This,
in turn, would result in inconsistent embedding
distributions.

In the existing training paradigm of unsupervised
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Original Sentences Syntactically Aligned Negative Samples

The first series was confirmed on the 17 August 2017. The last edition was held on the 20th May 2017.
His wife moved to Australia in 1956 along with a daughter. They moved to london in 2013, with their son.
His first recording Artiste was the late Ebony Reign. His first release on record was his first album release.
On Day 20, he was nominated to face the fourth eviction. On may 20, she was nominated for being the first eviction.

Table 1: Examples of syntactically aligned negative samples, which share a significant amount of text with the
original samples but have irrelevant sentence meanings.

contrastive learning, negative samples are derived
from other sentences in the same mini-batch which
share minimal textual overlap with anchor samples.
In such cases, this can leads to feature suppression,
a concept extensively discussed in the vision do-
main (Robinson et al., 2021) and explored in the
NLP field by SNCSE (Wang et al., 2022). Fea-
ture suppression refers to a model’s difficulty in
distinguishing between textual similarity and se-
mantic similarity. This can lead to inflated similar-
ity scores for pairs with substantial lexical overlap,
even when their underlying meanings diverge. To
alleviate feature suppression, SNCSE introduced
soft negative samples, which are constructed by
adding negation to the original sentence. However,
soft negative samples face a similar yet entirely
opposite dilemma: these samples overlap too much
with the original sentences at a literal level, differ-
ing only in the negation words, while being almost
entirely semantically opposed. Such an augmenta-
tion method fails to enable the model to discern the
subtle semantic variations caused by differences
in lexical and grammatical structures. In this sce-
nario, the effectiveness of soft negative samples in
mitigating feature suppression is limited.

Is there a way to generate augmented samples
that share substantial textual overlap with the orig-
inal text while conveying distinct semantics? To
better address the aforementioned issues, our work
aims to explore the following two aspects: First,
can we generate these samples that effectively cap-
ture the diversity, richness, and non-linearity of
language concerning textual overlap and seman-
tic relatedness? Second, how can these samples
be effectively utilized within a contrastive learn-
ing framework? In contrast to existing approaches
that employ rule-based methods or large language
models for augmentation, we propose a novel sen-
tence augmentation technique based on Masked
Language Models (MLMs). This method gener-
ates new samples by predicting tokens that have
been randomly masked. By controlling the mask-
ing ratio and the randomness of predictions, we

can generate sentences that exhibit a wider range
of diversity.

Specifically, we assess the semantic contribution
of different words and use these values to determine
the probability of masking them in the MLM task.
Unlike previous negative samples, as demonstrated
in Table 1, our constructed syntactically aligned
negative samples maintain the original sentence’s
syntactic structure while altering the content words
(such as nouns, verbs, adjectives, and adverbs). We
refer to them as isomorphic negative samples.

Syntactically aligned negative samples share sub-
stantial textual overlap with the original samples
but differ in meaning, making it possible to disen-
tangle textual similarity and semantic similarity in
unsupervised contrastive learning.

We conduct a comprehensive evaluation across
seven STS tasks, using the representative BERT
and RoBERTa models as our backbones. We as-
sess the performance of our approach against four
baselines: SimCSE, SNCSE, RankCSE (Liu et al.,
2023), and RLRD (Wang et al., 2024b). We im-
prove the embedding of state-of-the-art models on
all seven STS tasks, achieving superior results. A
series of ablation studies further confirms that our
approach successfully disentangles textual simi-
larity from semantic similarity, thereby mitigating
feature suppression.

2 Related Work

2.1 Sentence Representation Learning

Early sentence representation learning relied
on methods like Bag of Words, TF-IDF, and
Word2Vec. With the rise of PLMs such as
BERT (Devlin, 2018), transformer-based models
have become the standard for sentence embed-
dings, as seen in ConSERT (Yan et al., 2021), Sim-
CSE (Gao et al., 2022), and PromptBERT (Jiang
et al., 2022). PLMs typically use the [CLS] token
or pooled representation, yielding higher-quality
embeddings. Recent advances like RankCSE fur-
ther refines sentence embeddings by incorporating
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The quick brown fox jumps over the lazy dog.

The big brown cat flew over the rushing water.

M L M

SIA Masking

Nx

M L M

SIA
Masking

The big brown cat jumps over the lazy dog .

SIA
Masking

The quick brown fox jumps over the lazy dog .
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Figure 1: (a) The architecture of the Semantic Importance-Aware (SIA) MLM with multiple masking iterations. (b)
An illustration of the SAN data augmentation process, where words are masked based on their semantic contributions.
Red indicates the highest masking probability, followed by yellow, green, and black, representing progressively
lower probabilities.

ranking consistency and distillation into contrastive
learning with teacher models.

2.2 Data Augmentation Methods

The current trend in sentence embeddings primar-
ily relies on PLMs such as BERT and RoBERTa,
combined with contrastive learning for training and
inference. Originally applied in computer vision,
contrastive learning has been adopted in sentence
representation learning and has proven to be an
effective method. One of the key challenges in con-
trastive learning is the construction of positive and
negative sample pairs. Supervised SimCSE utilizes
the NLI (Natural Language Inference) dataset for
training, achieving better performance compared to
unsupervised methods. However, labeled datasets
are often difficult to obtain. Therefore, designing
and employing data augmentation methods to con-
struct positive and negative sample pairs, as well as
applying unsupervised contrastive learning, have
become mainstream approaches.

ConSERT (Yan et al., 2021) employs adversarial
attacks, token shuffling, truncation, and dropout
strategies on the token embedding matrix to cre-
ate positive samples. SNCSE (Wang et al., 2022)
introduces the concept of soft negative samples
and designs the Bidirectional Margin Loss (BML),
demonstrating better performance than SimCSE on
both BERT and RoBERTa. Existing data augmen-
tation methods include word repetition, random
word deletion, word shuffling, and cutoff. However,
these methods share a common limitation. First,

they are primarily applied to construct positive sam-
ples, but the randomness introduced by these op-
erations can alter the local or overall semantics of
the sentence, leading to semantic inconsistencies.
Second, soft negative sentence pairs share a large
portion of the text or are even completely identical,
which can hinder the model’s ability to correctly
interpret sentence meaning and impair its capacity
to effectively learn sentence representations.

3 Method

3.1 Syntactically Aligned Data Augmentation

In existing contrastive learning approaches for STS,
the design of positive and negative sample pairs
can lead to feature suppression, where the model
overly relies on superficial features, such as sen-
tence length and lexical overlap, while neglecting
deeper semantic nuances. This overreliance not
only adversely affects the model’s generalization
ability in complex linguistic tasks but also results
in the degradation of the model’s representational
space, causing an inconsistent distribution of em-
beddings.

In linguistics, verbs and nouns are often con-
sidered the core elements in constructing sentence
semantics, while the semantic contributions of mod-
ifying words such as adjectives and adverbs are rel-
atively minor. This perspective is supported by vari-
ous linguistic theories, including Transformational-
Generative Grammar (TGG) and Systemic Func-
tional Grammar (SFG). Based on this theoretical
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POS Score POS Score POS Score

NOUN 9 VERB 9 ADJ 8
PROPN 8 ADV 7 PRON 7
CCONJ 6 DET 6 ADP 5
CONJ 5 SCONJ 5 AUX 4
NUM 4 PART 3 INTJ 2

PUNCT 1 SYM 1 X 1

Table 2: Human-annotated importance scores indicating
the semantic impact of different parts of speech (POS).

foundation, we propose a method for generating
syntactically aligned negative samples by modify-
ing words that contribute significantly to meaning,
thus creating syntactically similar pairs with high
textual overlap but opposite or irrelevant semantics.

Our study follow three steps: (1) assessing the
magnitude of semantic effects of various parts of
speech; (2) conducting parts-of-speech tagging on
the training dataset; (3) replacing words that sig-
nificantly influence meaning. The initial step in-
volves quantifying the semantic influence of parts
of speech, where the "en_core_web_sm" model of
spaCy2 will be utilized as the tagging tool. This
approach not only automates the tagging process
but also allows for precise quantification of the se-
mantic impact of different parts of speech through
manual review.

Related research has shown that nouns and verbs
contribute most significantly to the overall seman-
tics of sentences (Pollard and Sag, 1994; Bresnan,
2001; Chomsky, 1957; Matthiessen and Halliday,
2009). Once these parts of speech are removed, the
original meaning of the sentence becomes difficult
to discern, leading to an assigned importance score
of 9 for these categories. In contrast, adjectives,
adverbs, and pronouns primarily contribute to se-
mantic nuances, resulting in scores ranging from
6 to 8. Auxiliary verbs and prepositions play a
role in grammatical structure comprehension but
have a lesser direct semantic contribution, receiv-
ing scores of 3 to 5. Words that are difficult to
classify are marked as "X," typically indicating a
lower semantic importance. Detailed quantification
results are presented in Table 2.

We employ an MLM to perform token replace-
ment, leveraging its ability to generate suitable re-
placements based on context, ensuring semantic
consistency and diversity. By masking the target
words and feeding them into the MLM, we obtain
sentences with appropriate substitutions.

2The model and tool are available at: https://spacy.io
and https://huggingface.co/spacy/en_core_web_sm.

We adopt a static tagging approach by first com-
piling a lexicon and assigning parts-of-speech tags
to each entry. In subsequent data processing, we
assign a masking probability to each word based
on its part of speech and semantically importance
score. In the experiments below, we use the se-
mantically importance score divided by 20 to de-
termine the masking probability for each part of
speech. Further experiments related to the deter-
mination of the masking probability can be found
in Appendix D. Verbs and nouns are assigned the
highest masking probabilities, while punctuation
and "X" receive the lowest. After masking, the
masked sentence is fed into the MLM to generate
replacements. This mask-predict cycle is repeated
several times to create syntactically aligned nega-
tive samples. Notably, in each iteration, the overall
masking probabilities are kept low to avoid distort-
ing the output by masking too many words at once.
Through multiple iterations, even with low masking
probabilities per iteration, we are able to generate
diverse augmented data, as shown in Figure 1.

Our method performs well on longer sentences;
however, it encounters issues when applied to
shorter sentences or phrases. In such cases, the
process can lead to the replacement of most words
with punctuation marks or other meaningless to-
kens. For instance, the sentence "Stafford acting
General Secretary." might be augmented into "-.,
p." after applying data augmentation, which results
in nonsensical token combinations that do not align
with the definition of syntactically aligned nega-
tive samples and could negatively impact model
training.

3.2 Hierarchical-InfoNCE

We first present the mathematical formulation for
InfoNCE, as shown in Equation 1. In InfoNCE,
negative samples are the other examples in the
mini-batch excluding the anchor itself, and these
negative samples generally share little textual simi-
larity with the anchor. The objective of InfoNCE is
to maximize the similarity between the anchor and
the positive sample while minimizing the similarity
between the anchor and the negative samples.

LInfoNCE = −
N∑

i=1

log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,hj)/τ
, (1)

where τ is a temperature hyperparameter and
sim(h1, h2) is the cosine similarity h⊤

1 h2

∥h1∥·∥h2∥ . In
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this work, we encode input sentences using a pre-
trained language model such as BERT or RoBERTa:
h = fθ(x), and then fine-tune all the parameters.

Based on the discussion in Section 3.1, the simi-
larity between syntactically aligned negative sam-
ples and the anchor should be lower than the simi-
larity between the anchor and the positive samples.
To further optimize this process, we propose ad-
justing the temperature parameter to influence the
model’s behavior. By increasing the temperature
between syntactically aligned negative samples, we
can thus decouple textual similarity from seman-
tic similarity. This adjustment prevents the model
from focusing excessively on syntactically aligned
negative samples and neglecting other types of neg-
ative samples. While this approach may make the
model more sensitive to certain negative samples,
it risks reducing its ability to distinguish between
others. Therefore, we increase the temperature
between anchor and syntactically aligned nega-
tive samples, as reflected in our improved HiNCE,
shown in Equation 2.

LHiNCE = −∑N
i=1 log

esim(hi,h
+
i

)/τ1

∑N
j=0(e

sim(hi,hj)/τ1+e
sim(hi,h

−
j

)/τ2 )
, (2)

where τ1 represents the temperature hyperparame-
ter for the similarity between positive and negative
sample pairs, while τ2 is the temperature for the
syntactically aligned negative sample pairs. h−i de-
notes the sentence embedding of the syntactically
aligned negative sample produced by the encoder.

3.3 Combination with Other Methods
Syntactically aligned negative samples can be in-
tegrated into most existing methods within the
same domain using HiNCE or other loss functions.
We combine syntactically aligned negative sam-
ples with SimCSE (Gao et al., 2022), SNCSE,
RankCSE (Liu et al., 2023), and RLRD (Wang
et al., 2024b).

Combination with SimCSE The unsupervised
SimCSE utilizes the standard InfoNCE loss func-
tion. To apply our method within the unsupervised
SimCSE framework, we replace it with the HiNCE
loss function, which is expressed in Equation 3.

LSimCSE+SAN = LHiNCE. (3)

Combination with SNCSE. SNCSE constructs
soft negative samples through explicit negation and
trains using both the InfoNCE and BML loss. We
replace the InfoNCE loss function with HiNCE

while keeping the other components in their orig-
inal configuration. The final loss function is ex-
pressed in Equation 4.

LSNCSE+SAN = LHiNCE + λLBML. (4)

Combination with RankCSE. RankCSE inte-
grates ranking consistency and ranking distillation
with contrastive learning into a unified framework
by introducing teacher models.

The Lrank term can take one of two forms:
ListMLE (Xia et al., 2008) or ListNet (Cao et al.,
2007). We choose ListMLE loss as the baseline
for improvement. During training, the value of
ListMLE loss is usually three orders of magnitude
larger than that of InfoNCE loss in in the RankCSE
framework. Given the minimal contribution of the
InfoNCE loss term within the total RankCSE loss,
we apply syntactically aligned negative samples to
both HiNCE and ListMLE. ListMLE, a machine
learning algorithm for list ranking tasks, optimizes
ranking outcomes by maximizing the pairwise rank-
ing probabilities of all items in the list. We replace
its inputs with anchor samples and corresponding
syntactically aligned negative samples to derive
the ListMLE+SAN loss term, as indicated in Equa-
tion 5. The final loss function combining RankCSE
with our method is presented in Equation 6.

LListMLE+SAN = −
N∑

i=1

logP (πT
i |S

′
(xi), τ3), (5)

where S
′
(xi) = {sim(hi, h

−
j )/τ3}

∑N
j=1, denot-

ing the similarity list between the anchor samples
obtained from the encoder and the embedding vec-
tors of the syntactically aligned negative samples
within the current batch. πT

i represents the sorted
indices of the similarity scores calculated by the
teacher model.

It is noteworthy that low-quality samples within
syntactically aligned negative samples can signif-
icantly impact the performance of ListMLE. To
address this issue, we introduce a post-processing
step where we replace these low-quality samples
with soft negative samples from SNCSE. This re-
finement enhances the overall quality of our train-
ing data and mitigates potential performance degra-
dation. P (π|S, τ) is the permutation probability∏n

i=1
eSπ(i)/τ∑n
j=i e

Sπ(j)/τ .

LRankCSE+SAN = βLconsistency + γLListMLE

+ LHiNCE + λLListMLE+SAN
, (6)
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Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERTbase 68.59 82.62 74.60 81.87 78.67 78.06 72.04 76.64
+SAN 70.92 81.77 75.20 82.57 78.88 78.66 71.33 77.05↑
SNCSE-BERTbase 70.80 84.72 76.81 83.44 79.73 80.82 74.26 78.65
+SAN 71.12 84.48 77.12 83.77 80.68 81.52 75.24 79.13↑
RankCSE-BERTbase 74.89 85.85 77.86 84.82 81.78 81.95 73.94 80.16
+SAN 75.34 86.03 78.26 84.72 81.14 81.84 74.97 80.33↑
RLRD-BERTbase 75.44 86.31 79.15 85.81 81.34 82.91 75.12 80.87
+SAN 75.68 86.38 79.47 85.93 81.43 83.05 75.15 81.01↑
SimCSE-BERTlarge 69.01 80.40 73.50 82.71 77.89 77.18 73.95 76.38
+SAN 70.40 84.68 77.04 84.16 78.86 78.88 75.13 78.45↑
SNCSE-BERTlarge 71.48 86.25 78.12 85.24 80.17 81.84 75.15 79.75
+SAN 72.39 86.50 78.38 85.41 80.45 82.11 75.08 80.05↑
RankCSE-BERTlarge 74.68 86.00 78.59 85.27 80.98 81.15 74.15 80.12
+SAN 74.99 86.04 78.92 85.22 80.38 81.17 74.96 80.24↑
RLRD-BERTlarge 75.47 86.68 79.22 86.13 80.79 82.62 75.25 80.88
+SAN 75.65 86.80 79.26 86.20 81.03 82.46 75.68 81.01↑
SimCSE-RoBERTabase 68.99 81.46 73.53 81.85 81.14 80.52 69.31 76.69
+SAN 69.14 81.54 73.09 81.61 81.97 81.08 70.14 76.94↑
SNCSE-RoBERTabase 69.03 83.40 75.56 84.01 80.21 81.31 71.39 77.84
+SAN 70.85 83.90 76.50 84.61 81.24 82.42 72.29 78.83↑
RankCSE-RoBERTabase 73.34 84.11 75.65 83.97 82.71 82.89 70.67 79.05
+SAN 73.25 84.44 75.99 84.25 82.72 82.68 70.84 79.17↑
SimCSE-RoBERTalarge 71.24 84.07 76.27 84.79 82.14 82.53 71.02 78.87
+SAN 71.62 84.32 75.94 84.68 81.38 82.61 71.75 78.90↑
SNCSE-RoBERTalarge 72.04 85.98 79.32 86.39 82.45 83.95 76.88 80.86
+SAN 73.17 85.57 79.22 86.72 82.05 83.61 76.83 81.02↑
RankCSE-RoBERTalarge 74.05 84.59 77.14 85.62 81.87 83.20 71.25 79.67
+SAN 74.32 84.59 76.86 85.39 82.39 83.19 71.69 79.78↑

Table 3: Main results of various contrastive learning methods on seven semantic textual similarity (STS) datasets.
Each method is evaluated on full test sets by Spearman’s correlation, “all” setting. Bold marks the best result among
all competing methods under the same backbone model.

where β, γ, λ are hyperparameters that control the
contribution of each loss component.

Combining with RLRD. The RLRD method en-
hances RankCSE by incorporating reinforcement
learning techniques and additional loss functions,
specifically InfoNCE, BML, and ListMLE. We re-
place the InfoNCE with HiNCE and introduce a
new loss term, as presented in Equation 7.

LRLRD+SAN = µLBML + λLListMLE

+ ζLHiNCE + βLListMLE+SAN
. (7)

4 Experiment

4.1 Datasets
We adopt a method similar to SimCSE, randomly
selecting one million sentences from Wikipedia
for unsupervised training. Ultimately, we com-

pute similarity scores for sentence pairs in the STS
dataset and calculate Spearman’s correlation with
human ratings as the final evaluation metric. We
evaluate our method on the Semantic Textual Simi-
larity (STS) dataset, which consists of seven sub-
tasks, including STS12-STS16 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STSbenchmark (STS-
B) (Cer et al., 2017), and SICK-Relatedness (SICK-
R) (Marelli et al., 2014).

4.2 Implementation Details
We retrained four unsupervised sentence em-
bedding models—SimCSE (Gao et al., 2022),
SNCSE (Wang et al., 2022), RankCSE (Liu
et al., 2023), and RLRD (Wang et al.,
2024b)—integrating them with our proposed
syntactically aligned augmentation approach. We
utilized pre-trained models including BERT-base-
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uncased, BERT-large-uncased, RoBERTa-base,
and RoBERTa-large as encoders across all
experiments. We employed the Wiki dataset from
SimCSE (Gao et al., 2022) as our self-supervised
training dataset. All experiments were conducted
on a single A100 40G GPU with mixed precision
(FP16) training. We reproduced the results using
the original settings from the corresponding papers.
Further details on the training can be found in
Appendix C.

4.3 Main Results

Table 3 presents the results of a single run, showing
the performance of our method when integrated
with various existing works. As demonstrated,
our approach surpasses baseline scores in most
cases. Notably, when combined with SimCSE
and SNCSE, our method achieves significant im-
provements over the original methods. Specifically,
the average Spearman’s correlation coefficient for
SimCSE-BERTbaseincreased from 76.64 to 77.05,
while for SNCSE-BERTlarge, it rose from 78.65
to 79.75. Additionally, when applied to RankCSE,
our method yielded even more pronounced results,
with the average Spearman’s correlation coefficient
for RankCSE-BERTbaseimproving from 80.16 to
80.33, and for RankCSE-BERTlarge, from 80.12
to 80.24. Furthermore, among methods utilizing
BERTbase, the combination with RLRD achieved
the highest result of 81.01. These confirm that inte-
grating our method with existing approaches stably
improves the quality of sentence representation.

4.4 Downstream Tasks

To assess the generalization capability of our
method, we conducted extensive experiments
across multiple task types: reranking, retrieval, and
classification. For classification tasks, we evalu-
ated our method on ten diverse tasks: Amazon-
Counterfactual (O’Neill et al., 2021), AmazonRe-
views (Keung et al., 2020), Banking77 (Casanueva
et al., 2020), Emotion (Saravia et al., 2018), Mas-
siveIntent (FitzGerald et al., 2022), MassiveSce-
nario (FitzGerald et al., 2022), MTOPDomain (Li
et al., 2021), MTOPIntent (Li et al., 2021), Tox-
icConversations (cjadams, 2019) and TweetSen-
timentExtraction (Maggie, 2020). We report the
classification accuracy as the main metric. We fur-
ther evaluated our method on four reranking and re-
trieval tasks: AskUbuntuDupQuestions (Lei et al.,
2016), SciDocsRR (Cohan et al., 2020), Stack-
OverflowDupQuestions (Liu et al., 2018) and Quo-

Model Avg. Classification Accuracy

SimCSE 0.6068
+SAN 0.6113↑

SNCSE 0.6170
+SAN 0.6106

RankCSE 0.6169
+SAN 0.6290↑
RLRD 0.6145
+SAN 0.6072

Table 4: Performance evaluation on classification tasks.
Bold values highlight the highest classification accuracy,
while underlined values denote the second-highest accu-
racy.

Abs. MAP@10(%) Diff Avg. Abs. MRR@10(%) Diff Avg.

2

1

0

1

2

3

SimCSE+SAN
SNCSE
SNCSE+SAN
RankCSE
RankCSE+SAN
RLRD
RLRD+SAN

Figure 2: Absolute performance difference on reranking
and retrieval tasks compared to SimCSE.

raRetrieval (Thakur et al., 2021). We report the
mean MRR@1 and MAP@1 as the main results.
As shown in Figure 2, both SimCSE+SAN and
RankCSE+SAN outperformed their correspond-
ing baseline models in reranking and retrieval
tasks, with RankCSE+SAN achieving the highest
scores in both tasks. Additionally, we assessed our
method’s performance on sentence-level classifica-
tion tasks, with Table 4 presenting the average ac-
curacy across ten sentence-level classification tasks.
The results indicate that our method enhances the
performance of certain baseline models on these
tasks.

5 Ablation Study

5.1 Influence of Hyperparameters in HiNCE
Loss

The performance of HiNCE is influenced by two
hyperparameters: the dropout probabilities for syn-
tactically aligned negative samples and the temper-
ature hyperparameter associated with the similarity
of anchor samples and syntactically aligned nega-
tive embeddings. This section examines the effects
of these parameters on model performance. The
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Figure 3: Influence of hyperparameters of HiNCE loss.
τ2 is the temperature hyperparameter corresponding
to the similarity of sentence embeddings for anchor
samples and syntactically aligned negative samples. p2
is the dropout probability of the model for syntactically
aligned negative samples.

dropout probabilities for syntactically aligned nega-
tive samples were adjusted within the range of [0.1,
0.15, 0.2], while the temperature hyperparameter
was varied between [0.05, 0.06, 0.07, 0.08, 0.09,
0.1]. As shown in Figure 3, when the dropout prob-
abilities remain constant, model performance im-
proves with increasing values of τ2. Notably, when
τ2 is greater than or equal to 0.08, models with dif-
ferent dropout probabilities exhibit relatively high
and consistent performance. These findings indi-
cate that the temperature hyperparameter τ2 is a
critical factor, and its selection is essential for op-
timizing model performance. In contrast, while
the dropout probabilities do impact performance to
some extent, the variation is not as pronounced.

5.2 Alleviation of Feature Suppression

To conduct a more comprehensive analysis of our
method’s impact on feature suppression, we se-
lected 1,900 sentence pairs from the STS task
dataset that have a similarity score of at least 4
and a lexical overlap ratio below 0.6. These sen-
tence pairs, while exhibiting low textual similarity,
exhibit high semantic similarity, making them chal-
lenging for discrimination.

As illustrated in Figure 4, both SimCSE+SAN
and SimCSE peak around 0.9; however, the dis-
tribution of SimCSE+SAN is more concentrated
near this value. In contrast, SimCSE exhibits
greater variability in its similarity estimates across
a wider range of sentence pairs. These results high-
light the strength of our proposed method, as Sim-
CSE+SAN achieves a more stable and dependable

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30 SimCSE
SimCSE + SAN

Figure 4: Cosine similarity distribution on different
pairs.

performance, particularly for challenging cases.

5.3 Comparison with LLM-based Data
Augmentation Methods

To further investigate the generalizability of our
approach, we compared it with data augmentation
methods based on LLMs. In the experiments, the
baseline used the NLI-partial dataset (Zhang et al.,
2023), which is constructed from anchor samples
in the NLI dataset, with positive and hard nega-
tive samples generated by GPT-3.5. We conducted
the comparative analysis using the following two
strategies: (1) directly using syntactically aligned
negative samples as hard negative samples, and (2)
integrating syntactically aligned negative samples
into the training process via the HiNCE loss term.
The results are shown in Table 5.

The experimental results indicate that directly us-
ing syntactically aligned negative samples as hard
negative samples yields inferior performance com-
pared to the original method. This is primarily be-
cause the design of syntactically aligned negative
samples focuses on enhancing the model’s ability
to distinguish subtle semantic differences, which
differs from the primary objective of hard nega-
tive samples. However, when syntactically aligned
negative samples are combined with the hard neg-
ative sampling method, the model’s performance
improves. This outcome not only demonstrates the
effectiveness of our approach but also further vali-
dates its generalizability across different scenarios.

6 Conclusion

In this paper, we propose a method that leverages
the semantic impact of different parts of speech
to generate syntactically aligned negative samples
using MLM. We also introduce HiNCE loss, which
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Loss InfoNCE NL HiNCE

STS-B 84.99 83.07 85.83

Table 5: Comparison of different sample combination
strategies (STS-B development set, Spearman’s corre-
lation). ’NL’ refers to using syntactically aligned neg-
ative samples as hard negative samples directly, while
’HiNCE’ indicates integrating syntactically aligned neg-
ative samples into the training process through the
HiNCE loss term.

utilizes these syntactically aligned negative sam-
ples to improve sentence embedding performance.
Furthermore, our methods demonstrate improved
performance when combined with other existing
methods.

We evaluate our method across multiple tasks,
including semantic textual similarity, re-ranking,
retrieval, and classification, showcasing its excel-
lent performance and generalization capability. Ad-
ditionally, we conduct detailed ablation studies to
analyze the mechanisms of syntactically aligned
negative samples and HiNCE loss, and to evaluate
their impact on the model’s performance.

7 Limitations

Our study has several limitations. First, seman-
tic impact values for different parts of speech
were manually assigned and need further refine-
ment. Second, our model’s input size increased
by 50%, extending training time. Third, syntacti-
cally aligned negative samples were only applied
to HiNCE and ListMLE. Lastly, all experiments
were conducted on English datasets, with no multi-
lingual evaluation.

STS technology also poses risks, including pri-
vacy concerns, potential biases in training data, and
misuse for generating misleading content.

Future work will focus on refining semantic
importance scoring, developing more efficient al-
gorithms, and expanding the use of syntactically
aligned negative samples.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Static tagging and dynamic tagging

In Section 3.1, we introduce two parts-of-speech
tagging approaches: dynamic and static tagging.
Dynamic tagging uses spaCy to tag each corpus
sample, ensuring higher accuracy but with in-
creased processing time. Static tagging pre-assigns
part of speech to all vocabulary words using a pre-
defined dictionary and tags the corpus via a map-
ping table. To balance accuracy and efficiency, we
adopt static tagging with BERTbase’s vocabulary
as the dictionary in our experiments.

BERTbase

SimCSE SNCSE RankCSE RLRD
+SAN +SAN +SAN +SAN

τ2 0.08 0.1 0.05 0.1
p2 0.2 0.2 0.2 0.2

LHiNCE Y Y Y Y
Post-processing - - Y Y
LListMLE+SAN - - 0.4 0.2

Table 6: Hyperparameters of SAN.

B Comparison with Existing Methods

We compared various methods using BERTbaseas
the backbone, with results from original papers (Ta-
ble 9). Our method improves SimCSE, SNCSE,
and RLRD. For RankCSE, it achieves 80.33, sur-
passing the reproduced 80.16 but slightly below the
original 80.36. This gap may stem from using a
community implementation, as RankCSE’s official
code is unavailable, leading to potential differences
in code details and hyperparameters.

C Hyperparameters of HiNCE

We re-trained four previous unsupervised sen-
tence embedding methods on STS tasks – Sim-
CSE, SNCSE, RankCSE and RLRD – with our
novel method, SAN. All embedding training
models used BERTbase(110M), BERTlarge(340M),
RoBERTabase(125M) or RoBERTalarge(355M) as
a starting checkpoint. We replicated the results
using the original settings from the corresponding
papers, adjusting only the relevant parameters for
the additional loss terms in the experiments that
combined our method as shown in Table 6. We
carry out grid-search of τ2 ∈ {0.05, 0.06, 0.07, 0.08,
0.09, 0.1}, p2 ∈ {0.1, 0.15, 0.2} and the weight of
LListMLE+SAN ∈ {0.1, 0.15, 0.2}, where τ2 is the
temperature for the syntactically aligned negative
sample pairs. p2 is the dropout probabilities of
the model for syntactically aligned negative sam-
ples. post-processing is lower-quality samples in
the syntactically aligned negative samples dataset
are replaced with soft negative samples generated
from SNCSE. LListMLE+SAN is the ListMLE loss
function using the similarity list of anchor samples
and syntactically aligned negative samples as input.
Following Gao et al. (2022), we used the valida-
tion performance on STS-B (one of the seven STS
benchmark datasets) to select the best models.

8272

https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://arxiv.org/abs/2201.05979
https://arxiv.org/abs/2201.05979
https://arxiv.org/abs/2201.05979
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1390156.1390306
https://arxiv.org/abs/2105.11741
https://arxiv.org/abs/2105.11741
https://arxiv.org/abs/2105.11741
https://doi.org/10.18653/v1/2023.emnlp-main.238
https://doi.org/10.18653/v1/2023.emnlp-main.238
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675


Scaling Factor 10 20 30 40

Avg. 76.94 77.05 75.82 76.55

Table 7: Performance on STS Test Set with Different
Masking Probability Scaling Factors (Semantically Im-
portance Score divided by {10, 20, 30, 40}).

D Experiments on Masking Probability
Assignment

We evaluate different masking probabilities for
each part of speech by dividing the semantically
importance score by 10, 20, 30, and 40. Experi-
ments are conducted on BERTbasewith the Wiki1M
dataset and HiNCE loss, using hyperparameters
consistent with the experimental section and Ap-
pendix C. Table 7 reports the model’s average
Spearman correlation on the STS test set, with the
best results observed when dividing by 20. This
may be because a low masking probability leads
to insufficient differences between syntactically
aligned negative samples and the original samples,
limiting the training signal, while a high mask-
ing probability causes excessive differences that
disrupt contextual information, both negatively im-
pacting performance.

E Computational Cost

All experiments were conducted on a single A100
(40GB) GPU with the same initialization and ran-
dom seed. BERTbasewas used to generate syntac-
tically aligned negative samples, with an average
training time of 2.5 hours. As shown in Table 10,
incorporating our method increased training times
for all baseline models, averaging 25% longer due
to the additional negative samples introduced by
our approach.

F Case Study

We present several examples from the STS dataset
with their similarity scores in Table 11, where the
similarity scores of the sentence pairs exceed 4.8
(with a maximum score of 5) and the lexical over-
lap is below 0.6. These indicate that, after incorpo-
rating our method, SimCSE generates more effec-
tive similarity scores that are closer to the ground
truth. This further demonstrates that while Sim-
CSE primarily captures high-level semantic infor-
mation through contrastive learning, our approach
enhances its ability to capture more nuanced se-
mantic details.

G Using LLM to generate Syntactically
Aligned Negative Samples

In addition to using MLM to generate syntactically
aligned negative samples, we also explored the
use of an LLM (GPT-4o mini) to generate them.
In this approach, we used the first 200k instances
from the Wiki1M dataset and generated samples
based on the prompt shown in Table 12, which
were then used for training. The experimental re-
sults, as shown in Table 8, demonstrate that the
SAN-based method achieves improvements across
various metrics, further validating the effective-
ness of our approach. Moreover, the syntactically
aligned negative samples generated by the LLM
outperform those generated by the MLM in terms
of overall performance. This suggests that LLM-
generated negative samples offer data quality and
diversity, providing more substantial support for
the optimization of contrastive learning.

Use SAN Generation Method Avg.

SimCSE-BERTbase

N - 76.74
Y MLM 77.05
Y LLM 77.57

SNCSE-RoBERTalarge

N - 80.86
Y MLM 81.02
Y LLM 81.53

Table 8: Comparison of training results using syntacti-
cally aligned negative samples generated by different
methods. Syntactically aligned negative samples are in-
troduced into the training process via HiNCSE, and the
LLM used refers to GPT-4o mini. The reported results
represent the average performance on the STS task test
set.

H Scientific Artifacts and Licensing

In this study, we used several open-source artifacts,
including BERT and RoBERTa (Apache 2.0 and
MIT License, respectively), and datasets from Sim-
CSE (MIT License). We also incorporated code
and pre-trained models from SNCSE, RLRD, and
RankCSE, all licensed under the MIT License. All
artifacts were used in accordance with their respec-
tive licenses. Artifacts we created will be released
under the MIT License to encourage open sharing
and further research.
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Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SAN-SimCSE 70.92 81.77 75.20 82.57 78.88 78.66 71.33 77.05
PromptBERT 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
SNCSE 70.67 84.79 76.99 83.69 80.51 81.35 74.77 78.97
SAN-SNCSE 71.12 84.48 77.12 83.77 80.68 81.52 75.24 79.13
SAN-RankCSE 75.34 86.03 78.26 84.72 81.14 81.84 74.97 80.33
RankCSE 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
RLRD 75.84 86.28 79.22 85.80 81.43 82.90 74.79 80.89
SAN-RLRD 75.68 86.38 79.47 85.93 81.43 83.05 75.15 81.01

Table 9: Sentence embedding performance on STS tasks (Spearman’s correlation). We highlight the best performance
among models with the same pre-trained encoder.

SimCSE SNCSE RankCSE RLRD
Baseline +SAN Baseline +SAN Baseline +SAN Baseline +SAN

Epochs 1 1 1 1 1 1 4 4
Time 50min 63min 75min 99min 127min 143min 673min 793min

Time per epoch 50min 63min 75min 99min 127min 143min 168min 198min

Table 10: Training minutes for different models on BERTbase. Baseline denotes the training minutes of a method
without adding any additional methods or components.

Sentence1 Sentence2 Label SimCSE SimCSE+SAN

ahmadinejad is embarking on an adventure ; bernanke is not. ahmadinejad board in an adventure, not bernanke 5 0.7689 0.9200
The motocross rider is wearing blue and black pants Blue and black pants are being worn by the motocross rider 5 0.7856 0.9096
bulb a and b are still contained within closed paths bulbs a and b are in a closed path 5 0.7855 0.9003
the european union has got to do something and do it quickly. the european union must be involved and do so quickly. 4.8 0.7967 0.9007
iran, atomic agency in first talks since rowhani election iaea, iran to hold first nuclear talks since rohani election 4.8 0.7967 0.9007
Broccoli are being cut by a woman A woman is cutting broccoli 4.8 0.8218 0.9220

Table 11: Examples from the STS dataset with their similarity scores. The label scores are from human annotations.
The SimCSE and SimCSE+SAN similarity scores are from the model predictions respectively. It can be seen that
our method generates more accurate similarity scores than SimCSE.

Prompt

Task Description:
Please modify the given sentence according to the following requirements:Only change the nouns, verbs,
adjectives, and adverbs, while keeping the syntactic structure of the sentence unchanged.
Input:
Original sentence: {origin-sent}
Modification requirements: Replace all nouns, verbs, adjectives, and adverbs with antonyms, but do not
change their parts of speech.
Output:
Modified sentence: {your-outputs}
Notes:
Only modify nouns, verbs, adjectives, and adverbs.
Keep the syntactic structure of the original sentence unchanged. If there are no suitable antonyms, the
original words can be replace with semantically unrelated vocabularies. The modified sentence should
still be a grammatically correct sentence.

Table 12: Prompt used for generating syntactically aligned negative samples.
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