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Abstract

Large language models (LLMs) have achieved
remarkable success in natural language process-
ing (NLP), demonstrating significant capabili-
ties in processing and understanding text data.
However, recent studies have identified limita-
tions in LLMs’ ability to manipulate, program,
and reason about structured data, especially
graphs. We introduce GraphEval36K1, the first
comprehensive graph dataset, comprising 40
graph coding problems and 36,900 test cases to
evaluate the ability of LLMs on graph problem-
solving. Our dataset is categorized into eight
primary and four sub-categories to ensure a
thorough evaluation across different types of
graphs. We benchmark ten LLMs, finding that
private models outperform open-source ones,
though the gap is narrowing. We also analyze
the performance of LLMs across directed vs
undirected graphs, different kinds of graph con-
cepts, and network models. Furthermore, to
improve the usability of our evaluation frame-
work, we propose Structured Symbolic Decom-
position (SSD), an instruction-based method de-
signed to enhance LLM performance on com-
plex graph tasks. Results show that SSD im-
proves the average passing rate of GPT-4, GPT-
4o, Gemini-Pro and Claude-3-Sonnet by 8.38%,
6.78%, 29.28% and 25.28%, respectively.

1 Introduction

Large language models (LLMs) such as
GPTs (Achiam et al., 2023; Brown et al.,
2020a; Chen et al., 2021), Gemini (Team et al.,
2023; Reid et al., 2024), Claude-3 (Anthropic,
2024), LLaMA-3 (Touvron et al., 2023), Mix-
tral (Jiang et al., 2024), DeepSeek-V3 (Liu et al.,
2024a) and Qwen-2.5-coder(Hui et al., 2024) have
achieved remarkable success in solving a wide
range of natural language processing (NLP) tasks:

*These authors contributed equally.
1GraphEval36K is available at https://grapheval36k.

github.io/, under MIT license.

for example, question answering (Devlin et al.,
2018; Brown et al., 2020b; Raffel et al., 2020)),
machine translation (Raffel et al., 2020; Brown
et al., 2020b), text classification (Raffel et al.,
2020; Yang et al., 2019; Liu et al., 2019), and text
generation (Yang et al., 2019; Achiam et al., 2023).
However, LLMs have difficulty with complex
coding problems, particularly those involving
structured data like graphs (Zhang, 2023).

Current research highlights that while LLMs
can handle basic graph-related queries, their per-
formance declines on more complex coding chal-
lenges involving graph algorithms and multi-step
problem solving (Liu and Wu, 2023; Wang et al.,
2024; Creswell et al., 2022). These shortcom-
ings highlight the need for targeted evaluation and
improvement of LLM’s coding abilities in graph-
related tasks (Liu et al., 2024b; Cai et al., 2024).

To analyze the above gaps, we propose
GraphEval36K, the first dataset designed to evalu-
ate the graph-solving capabilities of LLMs through
coding problems. GraphEval36K includes 40
graph coding problems with 36,900 test cases, cov-
ering a wide range of graph characteristics and al-
gorithmic challenges. Each problem provides: (1)
a problem statement, (2) data examples, (3) con-
straints, and (4) a coding framework for LLMs to
build solutions. The dataset is organized into eight
primary categories of graph structures: sparse, pla-
nar, regular, dense, complete (Diestel, 2024), Small-
world (Watts and Strogatz, 1998), Erdos-Renyi (Er-
dos et al., 1960), and Power-law (Barabási and
Albert, 1999) graphs, with sub-categories such as
connected, disconnected, cyclic, and acyclic graphs
to ensure comprehensive coverage. Based on
GraphEval36K, we propose an evaluation frame-
work that is designed to give immediate feedback
by returning failed test cases and execution details,
promoting deeper model understanding and trou-
bleshooting. This mechanism differentiates our
approach from traditional coding platforms (e.g.,
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Figure 1: Overview of the Evaluation Framework. For each problem, we input problem statement, data examples,
and code framework to LLMs. The LLMs generate the corresponding code and provide explanations. Finally, we
evaluate the code on GraphEval36K and return the score details.

LeetCode), where test case details are often hidden
from users (Hou and Ji, 2024; Hu et al., 2024).

To further enhance the usability of our evalu-
ation framework and GraphEval36K, we propose
an instruction-based method, Structured Symbolic
Decomposition (SSD). Inspired by human problem-
solving techniques (Paas and van Merriënboer,
2020), SSD decomposes complex tasks into man-
ageable components: a “cognitive step” for un-
derstanding the problem and an “action step” for
implementing the solution. The experiments show
that SSD enhances the average passing rate of GPT-
4, GPT-4o, Gemini-Pro and Claude-3 Sonnet by
8.38%, 6.78%, 29.28% and 25.28%, respectively.

Figure 1 presents an overview of our evaluation
framework that consists of three steps: problem
selection, code generation, and evaluation. Our
contributions are summarized as follows:

1. We introduce GraphEval36K, a graph coding
and benchmarking dataset with 40 coding prob-
lems and 36,900 test cases, designed to evaluate
LLMs’ graph-solving abilities across diverse
and complex graphs.

2. We evaluate the performance of ten LLMs
across various graph types (directed vs. undi-
rected, Power-law, Small-world, Erdos-Renyi),
fundamental graph concepts (traversal, con-
struction, path finding, topological sorting, cy-
cle detection), and problem difficulty levels
(easy, medium, hard).

3. We propose SSD, an instruction-based method
that decomposes complex problems into rea-
soning components for LLMs. Experiments
show SSD improves performance by an average
of 17.43% across GPT-4, GPT-4o, Gemini-Pro,
and Claude-3-Sonnet.

4. We develop an evaluation framework with real-
time feedback, paired with SSD to improve

LLM performance on complex graph tasks, par-
ticularly for models with lower baseline perfor-
mance, yielding up to a 48.50% improvement.

Our work examines LLM performance on graph
problems by categorizing difficulty levels, funda-
mental concepts, and graph types while evaluating
state-of-the-art LLMs. We provide insights into
LLM capabilities in graph coding and manipula-
tion, offering a roadmap for future advancements.
For LLM users, our work clarifies when and how
LLMs can effectively solve graph problems, high-
lighting their strengths and limitations. Addition-
ally, we introduce SSD to improve LLM perfor-
mance on complex graph tasks.

2 Related Work

2.1 LLMs on Graph Problem-Solving

Recent research on using LLMs for graph-related
tasks follows two approaches: (1) natural language
interaction, and (2) code generation.

In the natural language interaction approach,
LLMs are provided with a graph and they generate
answers based on their understanding of the graph
structure. Current research finds that they per-
form adequately on basic graph problems, however,
their performance declines on more complex graph
problems (Jin et al., 2023; Wang et al., 2024; Liu
and Wu, 2023; Guo et al., 2023). Inspired by the
Chain-of-Thought (CoT) method (Wei et al., 2022;
Kojima et al., 2022), researchers propose a step-
by-step reasoning framework to help LLMs solve
graph problems in a more structured way (Chai
et al., 2023; Wang et al., 2024; Liu and Wu, 2023;
Guo et al., 2023; Zhang et al., 2023b; Fatemi et al.,
2023; Sun et al., 2023a). Notably, when LLMs are
provided with additional example solutions, their
performance improves. However, the improvement
is marginal (Zhang et al., 2023b; Fatemi et al.,
2023; Chai et al., 2023).
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Figure 2: The GraphEval36K dataset is constructed through a pipeline that begins with data collection from code
contests (LeetCode). Next, problems are randomly sampled according to their difficulty levels, and corresponding
graphs are generated using NetworkX. These graphs are then clustered and labeled based on whether they are
connected (c), disconnected (dc), cyclic (cy), or acyclic (acy). Verification steps ensure labeling accuracy, though
the exact labels may vary depending on each graph’s characteristics.

In the code generation approach, recent research
demonstrates that LLMs exhibit significantly im-
prove problems-solving abilities through code gen-
eration, instead of relying solely on natural lan-
guage responses (Suzgun et al., 2022; Liang et al.,
2023; Hendy et al., 2023). Researchers transform
complex problems into code problems to facilitate
effective interaction and enhance the performance
of LLMs (Madaan et al., 2022; Zhang et al., 2023a;
Bi et al., 2024; Dong et al., 2022; Yan et al., 2023;
Cai et al., 2024).

2.2 LLMs vs. Traditional Graph Machine
Learning

Traditional graph machine learning (ML) models,
such as Graph Neural Networks (GNNs) (Kipf and
Welling, 2016; Velickovic et al., 2017), demon-
strate strong performance in tasks like node classi-
fication (Xiao et al., 2022), link prediction (Zhang
and Chen, 2018), and graph classification (Zhang
et al., 2018). However, they are designed for spe-
cific tasks with certain architectures (Garg et al.,
2020). In contrast, LLMs have the potential to gen-
eralize across different graph-related tasks, without
requiring specific tuning (Jin et al., 2024a; Sun
et al., 2023b). In this work, we aim to evaluate
the ability of LLMs to solve graph problems by
generating correct code.

2.3 Comparison with Existing Datasets

Table 1 presents a comparative comparison of
GraphEval36K with existing datasets designed to
evaluate LLMs in graph-related tasks. Unlike
previous datasets, which focus primarily on spe-
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Figure 3: Distribution of graph problems on concepts
and difficulty levels.

cific aspects of graph reasoning, such as algorith-
mic problem solving (CLRS-30 (Veličković et al.,
2022)), logical inference (ProofWriter (Tafjord
et al., 2021), PrOntoQA (Misra et al., 2023)) or
hybrid graph analysis (HGB (Li et al., 2023)),
GraphEval36K offers a comprehensive evalua-
tion framework that includes both graph coding
and reasoning. Furthermore, while datasets such
as BIG-Bench (Srivastava et al., 2022) and Gra-
CoRe (Yuan et al., 2024) include graph-related rea-
soning tasks, they are often constrained to small-
scale graphs or heterogeneous structures, limit-
ing their applicability to broader graph problem-
solving.

3 Dataset Construction

An overview of the dataset construction pipeline
is illustrated in Figure 2. The two major steps
consist of (a) selection of graph problems with
varying degrees of user-defined difficulty levels
and graph concepts, (b) generation of graphs of
different types.
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Dataset Name Graph Problems Reasoning Scope Graph Types Scale LLM Benchmark

CLRS-30 (Veličković et al., 2022) Algorithmic Limited Planar, Trees 30 Problems No
BIG-Bench (Srivastava et al., 2022) Logic Puzzles Indirect Small Graphs 204 Tasks Yes
ProofWriter (Tafjord et al., 2021) Logical Reasoning Limited Implicit graphs 16k Examples Yes
PrOntoQA (Misra et al., 2023) Ontology Reasoning Specific Taxonomies 80k QA pairs Yes
GraCoRe (Yuan et al., 2024) Graph Reasoning Pure & Heterogeneous

Graphs
— 5k Graphs Yes

HGB (Li et al., 2023) Hybrid Graph Analysis Complex Structures Biology, Social 23 Datasets No

GraphEval36K (Ours) Graph Coding and Reasoning Comprehensive 8 Main Categories with
4 Sub-categories

40 Problems with
36.9k Cases

Yes

Table 1: Comparison of GraphEval36K with existing datasets for evaluating LLMs on graph-related tasks.

3.1 Problem Collection
We collect a total of 40 graph data structure prob-
lems from the LeetCode2, comprising 20 undi-
rected and 20 directed graph problems. Most of
these problems are recently released, which mini-
mizes the likelihood of their inclusion in the train-
ing sets of the verification LLMs. The distribution
of the problems across difficulty levels and graph
concepts is presented in Figure 3. For each prob-
lem, we collect: problem statement, input/output
examples, data constraints, and code framework.

3.2 Graph Generation
Consider a graph G = (V,E), where V denotes
the set of vertices and E denotes the set of edges
in the graph. We classify graphs into eight main
categories: Sparse Graph, Planar Graph, Regular
Graph, Dense Graph, Complete Graph (Diestel,
2024), Small-world Graph (Watts and Strogatz,
1998), Erdos-Renyi Graph (Erdos et al., 1960) and
Power-law Graph (Barabási and Albert, 1999). Be-
low, we provide definitions of these graphs and
how they are generated.

Sparse Graph A graph G = (V,E) is consid-
ered sparse if the number of edges |E| is much less
than the maximum possible number of edges (Bol-
lobás and Riordan, 2011):




|E| ≪ |V |(|V |−1)
2 (undirected graph),

|E| ≪ |V |(|V | − 1) (directed graph).
(1)

Planar Graph A planar graph can be drawn with-
out edge intersections, except at vertices (Schnyder,
1989). For a finite, connected planar graph with F
faces following Euler’s formula, we have:

|V | − |E|+ |F | = 2. (2)

Regular Graph A graph G is k-regular if every
vertex has the same degree k (Stanić, 2017).

2https://leetcode.com/tag/graph/

Dense Graph For an undirected graph, the den-
sity D is given by Dundirected = 2|E|

|V |(|V |−1) (Lee and
Streinu, 2008). For a directed graph, the density D

is Ddirected = |E|
|V |(|V |−1) . In our experiment, we fix

D = 0.7.

Complete Graph A graph G is complete if there
is an edge between every pair of distinct ver-
tices (Pirnot, 2001).

Small-World Graphs Small-world graphs, gen-
erated via the Watts-Strogatz model (Watts and
Strogatz, 1998), use parameters n (nodes), k (near-
est neighbors), and p (rewiring probability), where
k is randomly chosen between 2 and n

2 , and p
between 0.1 and 0.3. Starting with a ring lattice
where each node i connects to its k nearest neigh-
bors, each edge (u, v) is rewired with probability
p to a random node. The resulting graph has a log-
arithmic path length L(G) and a high clustering
coefficient C(G).

Erdos-Renyi Graphs Erdos-Renyi graphs (Er-
dos et al., 1960) follow the G(n, p) model, where
n is the number of nodes, and p is the probability
of forming an edge between any two nodes. Each
edge (u, v), where u ̸= v, is included in E with
probability p.

Power-Law Graphs Power-law graphs are gen-
erated using the Barabasi-Albert (BA) model with
parameters n (nodes) and m (edges per new
node) (Barabási and Albert, 1999), where m is
randomly chosen between 1 and 10. New nodes
connect to m existing nodes via preferential attach-
ment. This process yields a scale-free network with
a Power-law degree distribution:

P (k) ∼ k−γ .

Graph Generation We use the “NetworkX” (De-
velopers, 2024) to generate graph samples. By
leveraging it, we construct both directed and undi-
rected graphs according to our classification results
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Figure 4: Structure of GraphEval36K. “U” denotes undi-
rected graphs, “D” denotes directed graphs, with num-
bers indicating the count of cases in each category. The
graphs are classified into eight main categories: sparse,
planar, regular, dense, complete, Small-world, Erdos-
Renyi, and Power-law. Some are further divided into
four sub-categories: connected, disconnected, cyclic,
and acyclic. Sub-categories may vary based on the
characteristics of the main categories. Detailed dataset
analysis is shown in Appendix A.

(as shown in Figure 4). We generate 100 graph
samples for each sub-category, where the number
of vertices in each graph is randomly chosen be-
tween 20 and 200. This enables us to create the
dataset with varying levels of complexity.

3.3 LLMs under Consideration

We evaluate ten LLMs in this study: Claude-3-
Sonnet (Anthropic, 2024), Gemini-Pro (Reid et al.,
2024), GPT-3.5 (Brown et al., 2020b), GPT-4, GPT-
4o (Achiam et al., 2023), Llama-3-8b, Llama-3-
70b (Dubey et al., 2024), Mixtral-8x7b (Jiang et al.,
2024), Qwen2.5-Coder-32B (Hui et al., 2024) and
DeepSeek-V3 (Liu et al., 2024a). The first five
models are private, while the latter five are open-
source. These models are selected for their diver-
sity in scale, architecture, and relevance within the
research community. Our objective is to assess
their graph-solving capabilities and compare their
performance on the GraphEval36K dataset.

4 Evaluation of LLMs on Graph
Problems

In this section, we evaluate the LLMs’ capability
in solving graph problems. We first discuss the
broad results of evaluating LLMs on graph prob-
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Figure 5: Average passing rate on sparse and planar
graphs. We mark the absolute value of the difference
between results of directed and undirected graphs.
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Figure 6: Passing rate of LLMs on graph concepts. Part
(a) presents the passing rate on easy concepts, and part
(b) presents the passing rate on difficult concepts.

lems (Table 2), and then perform three analytical
studies. First, we evaluate how well LLMs under-
stand core graph theory concepts in their problem-
solving strategies (Figure 6). Second, we analyze
the impact of directed vs. undirected graphs on
LLM coding performance (Table 2 and Figure 5).
Finally, we evaluate model generalization to com-
plex graphs, including Small-world, Erdos-Renyi,
and Power-law graphs (Figure 7).

In Table 2, we observe that private models consis-
tently outperform open-source models in all graph
categories, especially GPT-4 and GPT-4o. The per-
formance gap is notable in complex graph types
such as dense and complete graphs, where private
models achieve passing rates close to 100%, while
open-source models like Mixtral-8x7b perform in a
lower range of 70-80%. However, Qwen2.5-Coder-
32B and DeepSeek-V3 have narrowed the perfor-
mance gap. They perform better than private mod-
els on sparse and planar graphs.

Results on Graph Problem Concepts We clas-
sify graph problems into nine concepts: Topologi-
cal Sort, Cycle Detection, Parent-Child Relations,
General Graph, Path Finding, Path Planning, Graph
Construction, Graph Traversal and DAG-Related
Calculations. As shown in Figure 6, LLMs per-
form better on the concepts in Figure 6(b), and face
more difficulty with those in Figure 6(a). For exam-
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Claude-3
-Sonnet

Gemini
-Pro

GPT
-3.5

GPT
-4

GPT
-4o

Llama-3
-8b

Llama-3
-70b

Mixtral
-8x7b

Qwen2.5
-Coder-32B

DeepSeek
-V3

SG

c 68 | 39 55 | 41 69 | 48 61 | 66 64 | 77 46 | 27 59 | 70 81 | 57 74 | 72 61 | 92
dc 54 | 37 31 | 40 59 | 61 66 | 68 76 | 81 25 | 32 51 | 62 64 | 60 73 | 66 70 | 96
cy 69 | 48 46 | 32 64 | 71 50 | 80 59 | 88 42 | 40 67 | 74 73 | 64 73 | 79 67 | 97
acy 63 | 50 41 | 38 75 | 48 68 | 59 78 | 69 36 | 25 51 | 58 68 | 53 84 | 64 79 | 89

PG

c 80 | 30 47 | 26 63 | 41 60 | 55 60 | 65 45 | 21 75 | 60 60 | 48 75 | 56 75 | 75
dc 64 | 39 39 | 37 61 | 47 80 | 70 88 | 69 29 | 20 52 | 44 65 | 56 86 | 62 80 | 89
cy 68 | 38 46 | 28 61 | 59 58 | 71 67 | 73 37 | 30 64 | 62 64 | 53 68 | 70 61 | 84
acy 61 | 40 42 | 39 69 | 42 73 | 55 85 | 65 36 | 20 41 | 47 61 | 51 90 | 61 80 | 79

RG
c NA | 65 NA | 39 NA | 68 NA | 85 NA | 97 NA | 53 NA | 81 NA | 75 NA | 89 NA | 95
dc NA | 61 NA | 38 NA | 58 NA | 86 NA | 94 NA | 42 NA | 79 NA | 73 NA | 77 NA | 93
cy NA | 68 NA | 50 NA | 74 NA | 87 NA | 99 NA | 56 NA | 84 NA | 77 NA | 90 NA | 97

DG c 38 | 60 32 | 36 37 | 60 48 | 75 48 | 81 49 | 27 37 | 70 39 | 46 27 | 65 20 | 82
CG c NA | 33 NA | 38 NA | 67 NA | 86 NA | 64 NA | 43 NA | 50 NA | 57 NA | 67 NA | 68

Table 2: Evaluation Results on GraphEval36K. Passing rates (%) of ten LLMs across graph categories. The first
column categorizes graphs: “SG” (sparse), “PG” (planar), “RG” (regular), “DG” (dense), and “CG” (complete).
Abbreviations include “c” (connected), “dc” (disconnected), “cy” (cyclic), and “acy” (acyclic). Results are shown as
“Directed | Undirected” for each category, with “NA” indicating not applicable. Bold values highlight the highest
passing rate per row.

ple, LLMs consistently show strong performance
on Topological Sort, with Claude-3-sonnet, GPT-4,
and GPT-4o achieving rates above 80%. LLMs
generally excel at structured problems involving
clear hierarchical relationships. However, Claude-
3-sonnet and Gemini-pro perform poorly on Path
Finding, with passing rates of 6.25% and 21.94%,
respectively. In contrast, GPT-4 and GPT-4o show
a stronger result on DAG-related Calculations, with
GPT-4o achieving 87.50%. The results highlight
the strengths and weaknesses of LLMs across dif-
ferent graph concepts, emphasizing the need for
further research to improve performance on more
complex graph problems.

Results on Directed and Undirected Graphs
Most LLMs perform better on directed graphs, but
it is hard to draw firm conclusions due to poten-
tial differences in problem complexity between di-
rected and undirected graphs. As shown in Table 2
and Figure 5, the performance gap between pri-
vate and open-source models is more notable on
directed graphs, indicating strong capabilities of
private LLMs in handling directed graph complex-
ities. Furthermore, private models show a larger
performance gap between directed and undirected
graphs compared to open-sourced models. How-
ever, an interesting observation is that DeepSeek-
V3 demonstrates superior performance on undi-
rected graphs compared to directed graph cases.
Notably, DeepSeek-V3 outperforms all evaluated
LLMs on undirected sparse and planar graph cases,
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Llama3-8b

Llama3-70b

Mixtral-8x7b

Qwen2.5-Coder-32B
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20%
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80%

100%
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Figure 7: Evaluation results of LLM-generated code
on complex graphs: Small-world, Erdos–Renyi, and
Power-law.

highlighting its strength in these specific graph
structures. Further analyses can be found in Ap-
pendix B and C.

Results on Complex Graphs The evaluation re-
sults of LLMs across three practical graph types,
Small-world, Erdos–Renyi, and Power-law, are
summarized in Figure 7. GPT-4o demonstrates the
highest performance across all graph types, main-
taining a passing rate of 99%. DeepSeek-V3 fol-
lows closely with a passing rate of 93%. Addition-
ally, GPT-4, Qwen2.5-Coder-32B, and Llama-3-
70B exhibit strong performance, with passing rates
ranging from 84% to 87%, demonstrating their ro-
bust capability in solving graph-related problems.
In contrast, Gemini-pro and Llama-3-8b show the
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lowest passing rates across all graph types, particu-
larly for Small-world graphs where it achieves only
29%. Claude-3-sonnet, GPT-3.5, and Mixtral-8x7b
occupy a middle ground, showing moderately high
but varied performance across different graph types,
with rates ranging from 66% to 76%. The results
indicate that while models like GPT-4o and GPT-4
excel at generating code to solve practical graph
problems, performance is variable across different
LLMs. This highlights the need for further fine-
tuning or architectural improvements to enhance
the code generation capabilities of weaker models,
particularly in complex graph scenarios.

5 Improving LLM Graph Solving

To enhance the usability of our evaluation
framework and GraphEval36K, we introduce
Structured Symbolic Decomposition (SSD), an
instruction-based method utilizing test cases from
GraphEval36K for graph problems. Our approach
aims to enable LLMs to perform better graph
problem-solving processes.

Methodology We hypothesize that decompos-
ing complex graph problems into smaller, more
manageable sub-problems and turning them into
symbolic forms (Dinu et al., 2024; Fang et al.,
2024; Yang et al., 2024) will enhance the graph-
solving capabilities of LLMs. Current methods
rely on implicit knowledge and lack explicit guid-
ance (Wei et al., 2022; Jin et al., 2024b; Huang
et al., 2024), leading to suboptimal performance,
especially in complex scenarios. Our method mir-
rors human cognitive strategies (Paas and van Mer-
riënboer, 2020; Romero et al., 2023), which sim-
plify complex tasks by decomposing them into two
parts: cognitive step and action step, thereby im-
proving comprehension and facilitating more ef-
fective solutions. We selected the problems from
GraphEval36K to be evaluation problems. The test
cases are used for problem understanding and pro-
gram testing.

Instructions for LLMs The instructions are com-
posed of four parts: problem clarification, problem
breakdown, solution formulation, and program im-
plementation.

• Problem Clarification:
Cognitive Step: You must first understand and
clearly articulate the problem, including all in-
puts and desired outputs.
Action Step: Identify and list any specific rules,

constraints, or conditions that influence the solu-
tion. Use the {test_case} examples to assist the
understanding.

• Problem Breakdown:
Cognitive Step: Decompose the problem into
smaller, manageable sub-problems, translating it
into a symbolic form and identifying the key com-
ponents and relationships within the problem.
Action Step: Outline the sequential steps re-
quired to solve the overall problem.

• Solution Formulation:
Cognitive Step: Formulate solving strategies
using the symbolic form developed in the previ-
ous step and define the algorithms and methods
needed to address each sub-problem.
Action Step: Detail the algorithms and ap-
proaches for each sub-problem, ensuring they
are logically connected and comprehensive.

• Program Implementation:
Cognitive Step: Conceptualize the implementa-
tion of each solution component.
Action Step: Write a program for each break-
down part, ensuring it aligns with the formulated
strategy. Run {test_cases} to verify the correct-
ness of each component.

We demonstrate the comparison of SSD-
enhanced method with CoT-based graph solving
in the following example. The demonstration in-
volves a “shortest path” question and test cases
from GraphEval36K:

Problem Statement: Let G = (V,E) be a bi-directional graph
with n vertices, labeled from 0 to n − 1. The edges in the
graph are given as a 2D integer array edges, where each edges[i]
= [ui, vi] represents an edge between vertex ui and vertex vi.
There is no self-loop, and at most one edge exists between any
two vertices. Return the length of the shortest cycle in the graph.
If no cycle exists, return −1. A cycle is a path that starts and
ends at the same vertex, using each edge only once.
Test Cases:
Input: {‘edges’: [[0, 1], [2, 4], [4, 0], [2, 1], [4, 1], [0, 2], [3,
2], [1, 3]]}, {‘edges’: [[0, 1], [0, 4], [1, 5], [4, 2], [3, 0], [2, 3],
[5, 3], [4, 1], [5, 2]]}, {‘edges’: [[0, 1], [1, 2], [3, 1], [0, 3], [2,
3], [0, 2]]}, {‘edges’: [[0, 1], [1, 2]]}, {‘edges’: [[4, 2], [5, 1],
[5, 0], [0, 3], [5, 2], [1, 4], [1, 3], [3, 4]]}
Number of vertices (n): {‘n’: 5}, {‘n’: 6}, {‘n’: 4}, {‘n’: 4},
{‘n’: 6}
Output: {‘label’: 3}, {‘label’: 3}, {‘label’: 3}, {‘label’: -1},
{‘label’: 3}

class Solution:
def findShortestCycle(self , n:int , edges:List[List[int ]])

-> int:
adjacency_list = [[] for _ in range(n)]
for u, v in edges:
......
def bfs(start):

......
while queue:

node , parent , depth = queue.popleft ()
for neighbor in adjacency_list[node]:

if neighbor == parent:
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GPT-4 GPT-4o Gemini-Pro Claude-3-Sonnet
Vanilla +SSD Vanilla +SSD Vanilla +SSD Vanilla +SSD

Path Finding 80.25 88.83 82.15 88.76 0 0.37 85.24 95.56
Path Planning 100.00 100.00 100.00 100.00 36.78 66.67 68.96 100.00
Graph Construction 16.13 19.29 22.32 25.49 12.97 19.04 31.44 36.75
DAG Related 85.50 100.00 90.35 100.00 0 2.44 54.88 84.15
Directed 51.25 64.92 91.67 92.31 15.54 40.71 66.67 75.00
Undirected 89.87 92.00 84.35 92.00 25.61 64.00 52.91 83.20
Small-World 100.00 100.00 100.00 100.00 0 68.50 50.00 98.50
Erdos-Renyi 98.00 100.00 100.00 100.00 33.33 79.33 64.67 95.67
Power-Law 100.00 100.00 100.00 100.00 33.33 80.00 66.67 100.00

Table 3: Passing rates of four LLMs (GPT-4, GPT-4o, Gemini-Pro, and Claude-3-Sonnet) across different graph
problems and types of graph samples. We randomly sampled six problems, a total of 6,000 graph samples from our
dataset, to compare model performance with and without (vanilla) the proposed SSD method.

continue
if neighbor in visited:

# Cycle detected
cycle_length = depth + visited[neighbor]

+ 1
if cycle_length >= 3:

shortest_cycle = min(shortest_cycle ,
cycle_length)

else:
visited[neighbor] = depth + 1
queue.append ((neighbor , node , depth + 1)

)
for i in range(n):

bfs(i)
......

TestCase: n=6, edge =[[4,2],[5,1],[5,0],[0,3], \
[5,2],[1,4],[1,3],[3,4]]

Output: 3 (Correct)

Code 1: Code output generated by the SSD-enhanced
GPT-4o.

class Solution:
def findShortestCycle(self , n:int , edges:List[List[int
]]) -> int:

graph = defaultdict(list)
......
def bfs(start):
dist = [-1] * n
dist[start] = 0
queue = deque ([(start , -1)])
while queue:

current , parent = queue.popleft ()
# Hallucination Happens!
for neighbor in graph[current ]:

if dist[neighbor] == -1:
dist[neighbor] = dist[current] + 1
queue.append ((neighbor , current))

elif neighbor != parent:
return dist[current] + dist[neighbor] +

1
return float('inf')

shortest_cycle = float('inf')
for i in range(n):

shortest_cycle = min(shortest_cycle , bfs(i))
......

TestCase: n=6, edge =[[4,2],[5,1],[5,0],[0,3], \
[5,2],[1,4],[1,3],[3,4]]

Output: 4 (Incorrect)

Code 2: Code output generated by the CoT-based GPT-
4o (hallucinated).

We use GPT-4o as the demo model. The gener-
ated code details are shown in Code 1 and 2. More
reasoning details and examples can be found in the
Appendix F, G and H. We observe that the SSD-
enhanced method GPT-4o reduces hallucinations
and improves graph problem-solving capabilities.
In the following, we further evaluate SSD on vari-
ous graph problems selected from GraphEval36K.

The results are shown in Table 3, which compares
the performance of GPT-4, GPT-4o, Gemini-pro,
and Claude-3-sonnet. More results can be found in
Appendix E.

Results on Graph Problem Concepts SSD leads
to significant improvements across most prob-
lem types. For Path Finding, GPT-4 improves
from 80.25% to 88.83%, GPT-4o from 82.15% to
88.76%, Claude-3-sonnet from 85.24% to 95.56%,
while Gemini-pro shows a slight improvement from
0% to 0.37%. In Path Planning, GPT-4 and GPT-
4o maintain 100% with or without SSD, while
Gemini-pro and Claude-3-sonnet have a notable
improvement from 36.78% to 66.67%, and 68.96%
to 100%, respectively. For Graph Construction,
GPT-4 improves from 16.13% to 19.29%, GPT-4o
from 22.32% to 25.49%, Gemini-pro from 12.97%
to 19.04%, and Claude-3-sonnet from 31.44% to
36.75%. In DAG-Related Calculations, GPT-4
and GPT-4o achieve 100% with SSD, compared to
85.50% and 90.35%, respectively, Claude-3-sonnet
improves from 54.88% to 84.15%, while Gemini-
pro from 0% to 2.44%. The results show that SSD
improves performance across all models, highlight-
ing our effectiveness in enhancing LLMs with vary-
ing capacities. GPT-4 and GPT-4o, already strong
in tasks, reach near-perfect performance, while
Claude-3-sonnet benefits greatly in more complex
problems. Gemini-pro shows substantial gains, due
to its original lower performance.

Results on Directed and Undirected Graphs In
directed graphs, GPT-4 improves from 51.25%
to 64.92%, and GPT-4o sees a slight increase
from 91.67% to 92.31%. Gemini-pro shows a
clear jump from 15.54% to 40.71%, and Claude-3-
sonnet improves from 66.67% to 75.00%. In undi-
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rected graphs, the models generally perform better,
with GPT-4 improving from 89.87% to 92.00%
and GPT-4o from 84.35% to 92.00%. Gemini-
pro shows a notable improvement from 25.61%
to 64.00%, and Claude-3-sonnet from 52.91% to
83.20%. The results demonstrate that SSD effec-
tively enhances model performance on both di-
rected and undirected graphs, particularly for those
with lower baseline performance.

Results on Complex Graphs SSD leads to sig-
nificant improvements across all models for com-
plex graph types. For Small-World graphs, GPT-4
and GPT-4o maintain 100%, while Gemini-pro im-
proves from 0% to 68.50%, and Claude-3-sonnet
from 50.00% to 98.50%. In Erdos-Renyi graphs,
Gemini-pro jumps from 33.33% to 79.33%, and
Claude-3-sonnet from 64.67% to 95.67%, with
GPT-4 and GPT-4o both reaching 100%. Simi-
larly, in Power-Law graphs, Gemini-pro improves
from 33.33% to 80.00%, and Claude-3-sonnet from
66.67% to 100%. The results show that SSD sig-
nificantly enhances models like Gemini-pro and
Claude-3-sonnet, which initially perform poorly
on complex graphs. SSD enables them to handle
diverse structures more effectively.

6 Conclusion

In this work, we introduce GraphEval36K, the first
graph dataset designed to benchmark LLMs’ graph
reasoning abilities through coding challenges. It
includes 40 graph problems and 36,900 graph test
cases, covering a range of difficulty levels and
graph concepts. To enhance LLM performance,
we propose SSD, an instruction-based approach
aimed at improving reasoning capabilities on graph-
related problems. Our experiments demonstrate the
effectiveness of GraphEval36K and SSD in analyz-
ing LLM performance across different graph types
and concepts. Our findings highlight potential ar-
eas for improvement and identify the graph coding
tasks where LLMs perform well and where they
face challenges.

Limitation

Despite the strengths of our proposed dataset
GraphEval36K, there are certain limitations to con-
sider. The dataset includes 40 coding problems and
36,900 graph samples, which, while comprehen-
sive, is smaller in size compared to other LLM eval-
uation datasets. Expanding the dataset could offer
broader coverage and further insights into model

performance across a wider array of graph prob-
lems. Additionally, while we evaluate ten promi-
nent LLMs (GPT-3.5, GPT-4, GPT-4o, Claude-
3 Sonnet, Gemini-Pro, llama3-8b, llama3-70b,
Mixtral-8x7b, Qwen2.5-Coder-32B and DeepSeek-
V3), we were unable to include all available models
due to the fast-evolving nature of LLM develop-
ment. This rapid progression in the field may mean
that newer models could offer improved perfor-
mance or demonstrate different behavior on the
dataset. However, our dataset is designed to be
flexible and general enough to accommodate future
LLMs, enabling the research community to use it
for evaluating a wide range of models, regardless of
advancements in LLM development. Future work
can also focus on expanding the dataset size and
further refining its categories to address evolving
needs in LLM evaluation.

Ethical Considerations

In conducting this study, we do not foresee any
ethical concerns. Our dataset consists solely of
synthetic graph coding problems and generated
test cases, ensuring no involvement of personal
data or human participants. The development of
GraphEval36K and our evaluation of LLMs aimed
at improving the understanding of graph problem-
solving capabilities in large language models. Fur-
thermore, all data used is anonymous, and the re-
search is compliant with ethical guidelines for re-
sponsible AI research. No identifiable information,
real-world consequences, or human subjects are
involved in this work, thereby minimizing ethical
risks.

Acknowledgment

This material is based upon work supported by
the National Science Foundation under grant no.
2229876 and is supported in part by funds provided
by the National Science Foundation, by the De-
partment of Homeland Security, and by IBM. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the National Science Foundation or its federal
agency and industry partners.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

8118



Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Introducing the next generation of
claude. https://www.anthropic.com/ news/claude-3-
family/.

Albert-László Barabási and Réka Albert. 1999. Emer-
gence of scaling in random networks. science,
286(5439):509–512.

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo,
Huajun Chen, and Ningyu Zhang. 2024. Codekgc:
Code language model for generative knowledge
graph construction. ACM Transactions on Asian
and Low-Resource Language Information Process-
ing, 23(3):1–16.

Béla Bollobás and Oliver Riordan. 2011. Sparse graphs:
metrics and random models. Random Structures &
Algorithms, 39(1):1–38.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020a. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Qiaolong Cai, Zhaowei Wang, Shizhe Diao, James
Kwok, and Yangqiu Song. 2024. Codegraph: En-
hancing graph reasoning of llms with code. arXiv
preprint arXiv:2408.13863.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han,
Xiaohai Hu, Xuanwen Huang, and Yang Yang. 2023.
Graphllm: Boosting graph reasoning ability of large
language model. arXiv preprint arXiv:2310.05845.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

NetworkX Developers. 2024. Networkx homepage.
https://networkx.org/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Reinhard Diestel. 2024. Graph theory. Springer (print
edition); Reinhard Diestel (eBooks).

Marius-Constantin Dinu, Claudiu Leoveanu-Condrei,
Markus Holzleitner, Werner Zellinger, and Sepp
Hochreiter. 2024. Symbolicai: A framework for
logic-based approaches combining generative models
and solvers. arXiv preprint arXiv:2402.00854.

Yijiang River Dong, Lara J Martin, and Chris Callison-
Burch. 2022. Corrpus: Code-based structured
prompting for neurosymbolic story understanding.
arXiv preprint arXiv:2212.10754.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Paul Erdos, Alfréd Rényi, et al. 1960. On the evolution
of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling
Chen, Mykola Pechenizkiy, and Jun Wang. 2024.
Large language models are neurosymbolic reasoners.
arXiv preprint arXiv:2401.09334.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2023. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola.
2020. Generalization and representational limits of
graph neural networks. In International Conference
on Machine Learning, pages 3419–3430. PMLR.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gpt4graph: Can large
language models understand graph structured data?
an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066.

Amr Hendy, Mohamed Gomaa Abdelrehim, Amr
Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu
Matsushita, Young Jin Kim, Mohamed Afify, and
Hany Hassan Awadalla. 2023. How good are gpt
models at machine translation? a comprehensive
evaluation. ArXiv, abs/2302.09210.

Wenpin Hou and Zhicheng Ji. 2024. A systematic eval-
uation of large language models for generating pro-
gramming code. arXiv preprint arXiv:2403.00894.

Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang,
and Fei Wu. 2024. Leveraging print debugging to
improve code generation in large language models.
arXiv preprint arXiv:2401.05319.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc,
Daniel Zeng, Percy S Liang, and Jure Leskovec. 2024.
Prodigy: Enabling in-context learning over graphs.
Advances in Neural Information Processing Systems,
36.

8119

https://api.semanticscholar.org/CorpusID:257038384
https://api.semanticscholar.org/CorpusID:257038384
https://api.semanticscholar.org/CorpusID:257038384


Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji,
and Jiawei Han. 2023. Large language models on
graphs: A comprehensive survey. arXiv preprint
arXiv:2312.02783.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji,
and Jiawei Han. 2024a. Large language models on
graphs: A comprehensive survey. IEEE Transactions
on Knowledge and Data Engineering.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar
Roy, Yu Zhang, Suhang Wang, Yu Meng, and Jiawei
Han. 2024b. Graph chain-of-thought: Augmenting
large language models by reasoning on graphs. arXiv
preprint arXiv:2404.07103.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Audrey Lee and Ileana Streinu. 2008. Pebble game
algorithms and sparse graphs. Discrete Mathematics,
308(8):1425–1437.

Zehui Li, Xiangyu Zhao, Mingzhu Shen, Guy-Bart
Stan, Pietro Liò, and Yiren Zhao. 2023. Hybrid
graph: A unified graph representation with datasets
and benchmarks for complex graphs. arXiv preprint
arXiv:2306.05108.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher R’e, Diana Acosta-Navas, Drew A.
Hudson, E. Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan S. Kim,
Neel Guha, Niladri S. Chatterji, O. Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas F. Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models. Annals of the New York
Academy of Sciences, 1525:140 – 146.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Chang Liu and Bo Wu. 2023. Evaluating large language
models on graphs: Performance insights and compar-
ative analysis. arXiv preprint arXiv:2308.11224.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu,
Zhicheng Zhang, Wenmeng Zhou, Fei Wang, and
Michael Shieh. 2024b. Codexgraph: Bridging large
language models and code repositories via code
graph databases. arXiv preprint arXiv:2408.03910.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Dipendra Misra, Christopher Hayes, John Kummer-
feld, and Yoav Artzi. 2023. Prontoqa: A chal-
lenge dataset for ontology reasoning. arXiv preprint
arXiv:2305.12515.

Fred Paas and Jeroen JG van Merriënboer. 2020.
Cognitive-load theory: Methods to manage working
memory load in the learning of complex tasks. Cur-
rent Directions in Psychological Science, 29(4):394–
398.

T.L. Pirnot. 2001. Mathematics All Around. Addison
Wesley.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Oscar J Romero, John Zimmerman, Aaron Steinfeld,
and Anthony Tomasic. 2023. Synergistic integration
of large language models and cognitive architectures
for robust ai: An exploratory analysis. In Proceed-
ings of the AAAI Symposium Series, volume 2, pages
396–405.

Walter Schnyder. 1989. Planar graphs and poset dimen-
sion. Order, 5:323–343.

8120

https://api.semanticscholar.org/CorpusID:253553585
https://api.semanticscholar.org/CorpusID:253553585
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90


Abhijit Srivastava, Nathan Major, Jasmine D. Hernan-
dez, and et al. 2022. Beyond the imitation game:
Quantifying and extrapolating llm capabilities with
big-bench. arXiv preprint arXiv:2206.04615.

Zoran Stanić. 2017. Regular graphs: a spectral ap-
proach, volume 4. Walter de Gruyter GmbH & Co
KG.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023a. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. arXiv preprint arXiv:2307.07697.

Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng,
Yun Xiong, and Jia Li. 2023b. Graph prompt learn-
ing: A comprehensive survey and beyond. arXiv
preprint arXiv:2311.16534.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin
Chi, Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Annual Meeting of the Association for
Computational Linguistics.

Alexander Tafjord, Peter Clark, and Oyvind Tafjord.
2021. Proofwriter: Generating implications, proofs,
and abductive statements over natural language.
arXiv preprint arXiv:2012.13048.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
2017. Graph attention networks. stat, 1050(20):10–
48550.
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A Analysis of GraphEval36K

In this section, we analyze our dataset from several
perspectives: data distributions, the complexity of
graph test cases, and the time and memory usage
during evaluations on GraphEval36K.Distribution of Directed and Undirected Graph Problems by Concept

Figure 8: Word cloud of the distribution of data structure
problems on concepts.

A.1 Data Distributions
We begin by enumerating the graph test cases.
There are 13,400 samples in the directed graph
category and 23,500 in the undirected graph cate-
gory. Therefore, GraphEval36Khas 36,900 graph
samples in total. Additionally, we examine the
distribution of problems across different difficulty
levels and concepts, as illustrated in Figure 3. Our
dataset, GraphEval36K, includes eight main graph
categories (as shown in Figure 9 and Figure 10,
sparse, planar, regular, dense, complete, Small-
world, erdos-renyi and Power-law) and four sub-
categories (connected, disconnected, cyclic, and
acyclic) within each main category. For each sub-
category, we generated ten graph test cases. Due
to the specific characteristics of the main cate-
gories, our final dataset comprises 13,400 graph
samples for directed graphs and 23,500 for undi-
rected graphs. These samples are designed to eval-
uate and improve the graph reasoning abilities of
LLMs. Additionally, we generate the word cloud
(Figure 8) of our dataset by different graph problem
concepts.
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Figure 9: Graph Samples. We use NetworkX (https:
//networkx.org/) to plot the graph samples of eight
main categories in our dataset.

Small-World Graph Erd s-Rényi Graph Power-Law Graph

Figure 10: Graph Samples of Small-world, Erdos-Renyi
and Power-law graphs. We use NetWorkX to plot these
graph samples with the number of nodes to be 20.

The graph problems were collected from Leet-
Code (https://leetcode.com/tag/graph/),
and we calculated the distribution of problems
across different difficulty levels3. Given the
near-perfect performance of LLMs on easy-level
data structure problems, we focused primarily on
medium- and hard-level problems.

A.2 Dataset Statistics
To analyze the complexity of the graph test cases in
GraphEval36K, we include several key metrics: the
average number of nodes and edges, the average
degree, and the average degree variance. These
metrics provide a comprehensive understanding of
the structural characteristics of the graphs in our
dataset, allowing for a more detailed assessment of
the complexity and diversity of the test cases. The
results are summarized in Table 4.

To begin with, we first introduce the evaluation
metrics. Consider Ni to be number of nodes in the
i-th graph, Ei represents the number of edges in
the i-th graph. Then, average number of nodes N
across m graph test cases is

N =
1

m

m∑

i=1

Ni, (3)

and average number of edges E across m graph
test cases is

E =
1

m

m∑

i=1

Ei. (4)

The degree of a node in a graph is the number
of edges connected to it. The average degree of a
graph is the mean degree of all its nodes. For an
undirected graph with N nodes and E edges, the
average degree d is

d =
2E

N
. (5)

3The difficulty level is defined by LeetCode.
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Figure 11: Evaluation results of LLMs on the LeetCode platform. This figure shows the passing rates of LLMs on
selected graph data structure problems, categorized into 3 easy-level problems, 5 medium-level problems, and 9
hard-level problems.

Graph Type Average Number
of Nodes

Average Number
of Edges

Average
Degree

Average
Degree Variance

Directed Sparse 103.97 268.21 4.79 3.72
Directed Planar 41.09 43.64 2.28 1.18

Undirected Sparse 88.51 89.16 1.95 0.72
Undirected Planar 70.52 71.89 1.98 0.74
Undirected Regular 82.96 201.16 5.01 0.64
Undirected Complete 73.04 4019.89 72.05 0.0

Small-world 101.22 1660.99 26.05 4.33
Erods-Renyi 103.43 824.91 12.74 10.65
Power-law 103.17 543.54 10.18 46.09

Table 4: Complexity Analysis of Graphs. We include the average number of nodes and edges, average degree, and
average degree variance to analyze the graph test cases in GraphEval36K.

For a directed graph, the average degree is

d =
E

N
. (6)

Across multiple graphs, the average degree is
the mean of the average degrees of each graph.
The degree variance measures the variability of the
degrees of the nodes in a graph. For a graph with
N nodes and degrees d1, d2, . . . , dN , the variance
of the degrees is calculated as:

Var(d) =
1

N

N∑

i=1

(di − d)2 (7)

Here, d is the average degree of the nodes in that
graph. Across multiple graphs, the average degree

variance is the mean of the degree variances of each
graph.

A.3 Summary
In our dataset, the directed graph has two cate-
gories: sparse and planar. The undirected graph
has five categories: sparse, planar, regular, dense
and complete. We summarized the experimental
results based on these categories:

• Directed sparse graphs have a moderate num-
ber of nodes and edges. The average degree is
relatively low, indicating sparsity. The degree
variance suggests variability in node connectiv-
ity.

• Directed planar graphs have fewer nodes and
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edges compared to sparse graphs. The average
degree and variance are low, indicating even
sparser connectivity with less variation in node
degree.

• Undirected sparse graphs have a similar num-
ber of nodes to directed sparse graphs but sig-
nificantly fewer edges. The average degree is
just below 2, with low degree variance, indicat-
ing very sparse and consistent connectivity.

• Undirected planar graphs are similar to undi-
rected sparse graphs in terms of average degree
and degree variance but have fewer nodes and
edges. They maintain sparse and consistent
connectivity.

• Undirected regular graphs have a higher av-
erage number of edges and degree compared
to sparse and planar graphs, indicating denser
connectivity. The low degree variance suggests
uniformity in node connectivity.

• Undirected complete graphs have a very high
number of edges, as expected. Each node is
connected to every other node, resulting in the
maximum possible average degree for the given
number of nodes. The degree variance is zero,
indicating perfect uniformity in connectivity.

B Time and Memory Usage

In addition to evaluating the passing rates of LLMs
on our dataset, we also present the time and mem-
ory usage data, summarized in Figure 12. These
metrics are crucial for assessing the efficiency of
the code generated by LLMs.

B.1 Results on Directed Graphs

For directed graphs, GPT-3.5 stands out as the most
efficient model, demonstrating the lowest average
execution times and memory usage across planar
and sparse graphs. Claude-3-sonnet also performs
well, particularly for sparse graphs, achieving the
lowest execution time. Gemini-pro and Mixtral-
8x7b show good memory efficiency, with Mixtral-
8x7b being particularly efficient for sparse graphs.
Conversely, Llama-3-70b consistently exhibits the
highest memory usage, making it the least efficient
in terms of memory management. Although GPT-4
is powerful, it has higher execution times and mem-
ory usage compared to GPT-3.5. Both Qwen2.5-
Coder-32B and DeepSeek-V3 show lower usage of

time and memory, compared to other LLMs. Over-
all, GPT-3.5 emerges as the most balanced and
efficient model across the tested scenarios, whereas
Llama-3-70B exhibits notable inefficiencies, partic-
ularly in memory consumption. However, this anal-
ysis is based solely on execution time and memory
usage; in practice, researchers should also consider
model accuracy to obtain a more comprehensive
evaluation.

B.2 Results on Undirected Graphs

The performance of models on undirected graphs
varies significantly across different graph types.
Claude-3-sonnet displays notably high execution
times for planar, sparse, and regular graphs but
performs exceptionally well with complete graphs,
showing the lowest execution time albeit with rela-
tively higher memory usage. Gemini demonstrates
consistently low memory usage and good execution
times, particularly excelling with sparse graphs.
GPT-3.5 and GPT-4 show balanced performance,
with GPT-3.5 achieving better execution times for
planar graphs and GPT-4 managing memory more
efficiently except for complete graphs, where it
uses significantly more memory. GPT-4o is simi-
lar to GPT-4 but with slightly improved times and
memory efficiency. Llama-3-8b and Llama-3-70b
exhibit higher memory usage, especially for com-
plete graphs, with Llama-3-70b showing the high-
est memory usage for complete graphs. Mixtral-
8x7b presents high execution times and memory us-
age across all graph types but performs moderately
well with regular graphs. For low-density graphs,
Qwen2.5-Coder-32B and DeepSeek-V3 exhibit per-
formance comparable to other LLMs. However,
when processing more complex structures, such as
complete graphs, both models maintain high ex-
ecution time and memory consumption. Overall,
Gemini and GPT-3.5 emerge as the most efficient
models in terms of execution time and memory
usage across various graph types, while Claude-3-
sonnet and GPT-4 show significant variations based
on the graph type.

It is important to note that high efficiency in code
execution does not always guarantee a high passing
rate. Occasionally, code may produce incorrect
answers, which can result in accelerated program
execution.
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Figure 12: Time and Memory usage results of LLMs on GraphEval36K.

C LLM Performance on Directed and
Unidirected Graphs

In the experiment section, we found that the pass-
ing rate of directed graphs is generally higher than
that of undirected graphs. However, it is difficult
to make a definitive statement since the Leetcode
problems on directed and undirected graphs may
not be at a similar level of difficulty. Also, we did
not find analogous problems involving undirected
graphs and directed graphs within Leetcode and so
it is difficult to compare the performance of LLMs
on directed and undirected graphs. We compute the
statistical significance of the gap between directed
graphs and undirected graphs (assuming that the
ensemble of problems had a similar level of diffi-
culty). We found that across most categories and
models, there were statistically significant differ-
ences in the performance outcomes.

The p-value results in Table 5 reveal notable
differences in the performance of LLMs when
solving graph-related problems on directed versus
undirected graph samples. Among the eight mod-
els evaluated, Claude-3, Gemini, GPT-3.5, Llama-
3-8b, and Mixtral-8x7b demonstrate statistically
significant differences, with p-values well below
the conventional threshold of 0.05. This suggests
that these models exhibit distinct behavior or per-

formance when handling directed and undirected
graphs. In contrast, GPT-4, GPT-4o, and Llama-3-
70b show no statistically significant difference, as
indicated by their higher p-values (all above 0.05),
implying that these models handle directed and
undirected graph structures similarly. The variance
in statistical significance across models may point
to differing architectural strengths or limitations
in their ability to generalize graph-based reason-
ing across different types of graph inputs. Overall,
these results highlight the need for further investiga-
tion into model-specific behavior on varying graph
structures, as some LLMs clearly struggle more
than others with the distinction between directed
and undirected graphs. For completeness, we also
show examples of LLM reasoning on directed and
undirected graphs in Section F.1.

C.1 Comparison with Traditional Graph
Machine Learning (ML) methods

The objective of our work is to establish a bench-
mark that evaluates how well LLMs understand and
reason about graph data structures, rather than com-
paring their performance with specialized graph
machine learning models. Graph machine learn-
ing models (e.g., GNNs) are designed explicitly
to solve graph-based problems and are optimized
for such tasks. In contrast, our focus is on under-
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Model P-value Statistical Significance
Claude-3-sonnet 3.23e-6 Significant
Gemini-pro 2.16e-2 Significant
GPT-3.5 7.56e-3 Significant
GPT-4 8.28e-1 Not Significant
GPT-4o 8.02e-1 Not Significant
Llama-3-8b 1.36e-2 Significant
Llama-3-70b 6.93e-1 Not Significant
Mixtral-8x7b 1.79e-3 Significant

Table 5: Statistical Results of Directed vs. Undirected
Graphs for LLMs.

standing the extent to which LLMs, which are not
specifically trained on graph problems, can gener-
alize their capabilities to this domain. Our target
is to assess their broader applicability in scenar-
ios where graph reasoning is required but where
graph-specific models might not be available or
practical.

Our framework tests LLMs with graph problem
statements and generates a program to solve them.
The correctness of the program serves as a direct in-
dicator of the LLMs’ understanding and reasoning
abilities. Our evaluation is based on this criterion,
which is different from the evaluation of specialized
graph machine learning models. We show the ca-
pabilities of LLMs on graph-structure problems in
Table 2, and we also demonstrate the improvement
of LLMs with SSD in Table 3 and Table 7. These
results provide insights into the reasoning capabili-
ties of LLMs on graph problems and show that our
work serves as a complementary effort to existing
graph ML research by exploring a different aspect
of LLM capabilities. For any problem instance,
our characterization is binary (either the produced
code solved the problem or not) as opposed to the
statistical evaluation in graph ML. Table 6 expands
further on this comparison.

C.2 Statistical Analysis
We compute the p-value to evaluate whether there
are statistically significant differences in the pass-
ing rates of eight LLMs when applied to three types
of graph structures. Small-world, Erdos-Renyi, and
Power-law. A p-value below 0.05 indicates that the
difference in performance between the models in
the compared data sets is statistically significant,
meaning that such a difference is unlikely to be due
to random variation.

The statistical analysis of the passing rate results
reveals that the differences in model performance

between Small-world and Erdos-Renyi graph sam-
ples (p-value = 0.833) as well as between Small-
world and Power-law graph samples (p-value =
0.762) are not statistically significant. These p-
values, being substantially greater than typical sig-
nificance thresholds (e.g., 0.05), indicate that there
is no compelling evidence to suggest a significant
difference in the performance of LLMs across these
graph types. This implies that, from the perspective
of coding and reasoning tasks involving connected
graphs, the LLMs evaluated demonstrate compa-
rable abilities when presented with Small-world,
Erdos-Renyi, and Power-law structures.

Such findings are indicative of the generalization
capabilities of LLMs in handling different types
of graph topologies, which are commonly seen in
practical scenarios. Given the similarities in model
performance across these graph types, it can be
inferred that the LLMs possess a consistent level of
competence in reasoning and generating code for
graph problems, regardless of the specific struc-
tural properties represented by these categories.
This consistency is a promising outcome, suggest-
ing that LLMs are potentially versatile in solving
graph-related challenges irrespective of the com-
plexity or type of underlying graph distributions.
However, further investigation is needed to deter-
mine whether this generalizability holds for more
complex graph characteristics beyond connectivity
or across more challenging graph-related problem
domains.

D Evaluation on the LeetCode Platform

We selected a total of 17 graph coding problems
from the LeetCode platform for evaluation, cate-
gorized into 3 easy-level, 5 medium-level, and 9
hard-level problems, with difficulty levels defined
by LeetCode. The evaluation process involved in-
corporating the problem statement, data examples,
and code framework into a prompt. The LLMs are
tasked with generating a complete code based on
this prompt. The generated code is subsequently
tested on the LeetCode platform to assess its accu-
racy and performance. The summarized results of
this assessment are presented in Figure 11:

• For easy-level problems, most LLMs success-
fully pass the directed graph problems. Inter-
estingly, private LLMs (e.g., the GPT family,
Gemini-pro, and Claude-3-sonnet) outperform
open-source LLMs (e.g., the Llama family and
Mixtral-8x7b) on undirected graph problems.
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Feature Our Work Traditional ML Methods (e.g., GNNs)
Input Type Language-based queries Pure graph-structure data

Main Process
1. Understand graph problem queries
2. Generate code to solve the problem
3. Evaluate graph reasoning via
36k test cases

1. Apply graph algorithms directly
2. Analyze graph structures

Understanding
and Reasoning

Uses pre-trained knowledge and
language understanding to interpret
graph-related queries

Uses graph topology and properties
for algorithmic reasoning

Key Strengths Code generative capabilities, natural
language queries, and unstructured in-
puts

High accuracy and efficiency in specific
graph tasks

Typical Applica-
tions

Language-interactive graph data
analysis, automatic code generation,
interpreting complex graph data queries

Node classification,
graph classification, link prediction

Table 6: Comparison between our work and traditional machine learning methods.

• For medium-level problems, LLMs demon-
strate a better understanding of directed graph
problems compared to undirected ones. Open-
source LLMs perform worse than private
LLMs, with a passing rate lower than 50%.
However, private LLMs and open-source
LLMs perform comparably on directed graph
problems.

• For hard-level problems, only GPT-4 and GPT-
4o achieve a 50% passing rate on directed graph
problems and a 20% passing rate on undirected
ones. All other LLMs fail to pass these prob-
lems, indicating that the GPT model exhibits
the strongest reasoning ability among the tested
LLMs.

E SSD Results on Difficulty Levels

We evaluate three versions of GPT models (GPT-
3.5, GPT-4, and GPT-4o) on different difficulty
levels of graph problems (same as the settings in
Figure 11). We focus on the hard-level problems
due to the near-perfect performance on easier tasks.
We compare the performance of SSD method with
the CoT-based method. The results are shown in
Table 7. Our method outperforms the CoT-based
method on three GPT models, improving the pass-
ing rate from 0% to 11.11% for GPT-3.5, and from
33.30% to 66.67% for GPT-4 and GPT-4o. The re-
sults confirm the effectiveness of SSD in enhancing
LLMs’ graph-solving capabilities. We observe a
smaller improvement for GPT-3.5, likely due to its
smaller model size and limited knowledge, making
it less effective on hard-level graph tasks.

GPT-3.5 GPT-4 GPT-4o

Easy-level (3) 100.00% 100.00% 100.00%
Medium-level (5) 80% 100.00% 100.00%

Hard-level (9) 0% 33.30% 33.30%
Hard-level (9) + SSD 11.11% 66.67% 66.67%
Performance Gain +11.11% +33.37% +33.37%

Table 7: Passing rate comparison of GPT-3.5, GPT-4,
and GPT-4o on graph problems, demonstrating LLM’s
graph reasoning can be enhanced by SSD.

F Complete Reasoning Example

Here, we provide further details on the SSD-
enhanced graph reasoning and CoT-based graph
reasoning: Figure 13 and Figure 14 (“SSD-
enhanced GPT-4o’s Graph Reasoning” and “CoT-
based GPT-4o’s Graph Reasoning”).
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✔ Complete SSD-enhanced GPT-4o’s Graph
Reasoning

<Problem Clarification>
The goal is to find the length of the shortest cycle in a bi-directional
graph, where:
1. Each vertex is labeled from 0 to n − 1.
2. Edges are given as a list of pairs, each representing a connection
between two vertices.
Inputs: n: Number of vertices in the graph. edges: List of edges
where each edge is a pair [ui, vi] indicating a bi-directional con-
nection between vertices ui and vi.
Outputs: The function returns the length of the shortest cycle if it
exists, otherwise returns -1.
Constraints: Each pair of vertices has at most one edge between
them. No self-loops (edges where a vertex has an edge to itself).
<Problem Breakdown>
1. Graph Representation: Convert the list of edges into an adja-
cency list to efficiently represent the graph.
2. Cycle Detection: Implement a strategy to find and determine the
length of the shortest cycle using BFS or DFS.
Steps to Solve:
1. Create an adjacency list from the given edges.
2. Traverse the graph from each vertex using BFS to find the
shortest cycle involving that vertex.
3. Track and update the shortest cycle found during the traversals.
<Solution Formulation>
Algorithm:

• Breadth-First Search (BFS):

– Initialize an adjacency list from the edges.
– For each vertex, perform a BFS to detect the shortest cycle

starting from that vertex:

* Keep track of visited nodes and the level of each node
during the BFS using a queue.

* When a visited node is encountered, calculate the potential
cycle’s length and update the shortest cycle length if this
cycle is shorter than the previously found ones.

• Handling Edge Cases:

– If no cycles are found after all vertices are processed, return
-1.

<Program Implementation>
(the code is shown in Code (3)).

Figure 13: Graph Reasoning by GPT-4o with SSD.

✘ CoT-based GPT-4o’s Graph Reasoning

[GPT-4o’s Response]
To solve the problem of finding the shortest cycle in an undirected
graph, we can use the Breadth-First Search (BFS) technique. BFS is
particularly suitable for this task because it explores all vertices
at the present depth level before moving on to vertices at the next
depth level, allowing us to find the shortest paths efficiently.
Here’s an approach to implement this solution:
(the code is in Code (4), where hallucination happens.)
Graph Representation: Represent the graph using an adjacency list.
BFS from Each Node: For each node, perform a BFS to find the
shortest cycle starting and ending at that node. Cycle Detection:
During the BFS, if we encounter a previously visited node that is
not the parent of the current node, we have detected a cycle. Track
Minimum Cycle Length: Track the length of the shortest cycle found
during all BFS traversals. Edge Cases: If no cycle is found after all
BFS traversals, return -1.

Figure 14: Graph Reasoning by GPT-4o with CoT.

The detailed code for SSD-enhanced Graph Rea-
soning and CoT-based Graph Reasoning is pro-
vided in Listings 1 and 2, respectively. Notably, the
instances of hallucinations in the CoT-based Graph
Reasoning are highlighted for clarity.
class Solution:

def findShortestCycle(self , n:int , edges:List[List[int
]]) -> int:

adjacency_list = [[] for _ in range(n)]
for u, v in edges:

adjacency_list[u]. append(v)
adjacency_list[v]. append(u)

shortest_cycle = float('inf')

def bfs(start):
nonlocal shortest_cycle
queue = deque ([(start , -1, 0)])
visited = {start: 0}

while queue:
node , parent , depth = queue.popleft ()
for neighbor in adjacency_list[node]:

if neighbor == parent:
continue

if neighbor in visited:
# Cycle detected
cycle_length = depth + visited[

neighbor] + 1
if cycle_length >= 3:

shortest_cycle = min(
shortest_cycle , cycle_length)

else:
visited[neighbor] = depth + 1
queue.append ((neighbor , node , depth

+ 1))

for i in range(n):
bfs(i)

return -1 if shortest_cycle == float('inf') else
shortest_cycle

Code 3: Code generated by the SSD-enhanced GPT-4o.

class Solution:
def findShortestCycle(self , n:int , edges:List[List[int
]]) -> int:

graph = defaultdict(list)
for u, v in edges:

graph[u]. append(v)
graph[v]. append(u)

def bfs(start):
dist = [-1] * n
dist[start] = 0
queue = deque ([(start , -1)])
while queue: # Hallucination Happens!

current , parent = queue.popleft ()
for neighbor in graph[current ]:

if dist[neighbor] == -1:
dist[neighbor] = dist[current] + 1
queue.append ((neighbor , current))

elif neighbor != parent:
return dist[current] + dist[neighbor

] + 1
return float('inf')

shortest_cycle = float('inf')
for i in range(n):

shortest_cycle = min(shortest_cycle , bfs(i))

return -1 if shortest_cycle == float('inf') else
shortest_cycle

Code 4: Code generated by the CoT-based GPT-4o
(hallucinated).
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F.1 Reasoning Examples of LLM on Directed
and Undirected Graphs

For completeness, we show below how the reason-
ing process proceeds for undirected and directed
graphs with GPT-4o.

✔ GPT-4o Reasoning on Undirected
Graphs

[Undirected Graph Example]
There is an infrastructure of n cities with some number of roads
connecting these cities. Each roads[i] = [ai, bi] indicates that there
is a bidirectional road between cities ai and bi. The network rank
of two different cities is defined as the total number of directly
connected roads to either city. If a road is directly connected to both
cities, it is only counted once. The maximal network rank of the
infrastructure is the maximum network rank of all pairs of different
cities. Given the integer n and the array roads, return the maximal
network rank of the entire infrastructure.
[GPT-4o’s Reasoning Steps]

• Step 1: Initialize Data Structures
- We need an array degree to store the number of roads connected
to each city.
- We also need a set direct_connection to keep track of whether
two cities are directly connected.

• Step 2: Populate the Degree Array and Direct Connection Set
- Iterate through each road in the roads array. For each road
connecting cities ai and bi:
a. Increment the degree of both ai and bi.
b. Add the pair (ai, bi) (or (bi, ai)) to the direct_connection set.

• Step 3: Calculate the Maximal Network Rank
- Iterate over all pairs of different cities (i, j):
a. Calculate their combined network rank as degree[i] + degree[j].
b. If cities i and j are directly connected, subtract 1 from their
combined network rank (because we don’t want to count the direct
road twice).
- Keep track of the maximum network rank encountered.

• Step 4: Return the Result
- Return the maximum network rank found during the iteration.

Figure 15: Reasoning process of GPT-4o on undirected
graphs.

✔ GPT-4o Reasoning on Directed Graphs

[Directed Graph Example]
There are a total of numCourses courses you have to take, labeled
from 0 to numCourses - 1. You are given an array prerequisites
where prerequisites[i] = [ai, bi] indicates that you must take course
ai first if you want to take course bi. For example, the pair [0, 1]
indicates that you have to take course 0 before you can take course
1. Prerequisites can also be indirect. If course a is a prerequisite of
course b, and course b is a prerequisite of course c, then course a is
a prerequisite of course c. You are also given an array queries where
queries[j] = [uj, vj]. For the jth query, you should answer whether
course uj is a prerequisite of course vj or not. Return a boolean array
answer, where answer[j] is the answer to the jth query.
[GPT-4o’s Reasoning Steps]

• Step 1: Model the Courses as a Graph
- Each course can be represented as a node in a directed graph, and
a prerequisite relationship between two courses can be represented
as a directed edge.

• Step 2: Build the Graph
- We’ll use an adjacency list to represent the graph. The adjacency
list for the graph is a dictionary where each key is a course, and
its value is a list of courses that depend on it (i.e., courses that can
be taken after completing the key course).

• Step 3: Precompute Reachability with Floyd-Warshall Algorithm
- Initialize a 2D matrix reachable where reachable[i][j] is True if
there’s a path from course i to course j.
- Iterate over each prerequisite to update the matrix: if there’s
a direct prerequisite relation, set the corresponding entry in the
matrix to True.
- Use the Floyd-Warshall algorithm to update the matrix:
a. For each intermediate course k, check if reachable[i][k] and
reachable[k][j] are both True for any pair of courses (i, j). If so,
set reachable[i][j] to True.

• Step 4: Return the Results
- For each query [uj, vj], return reachable[uj][vj] as the answer.

Figure 16: Reasoning process of GPT-4o on directed
graphs.
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G Sample Problems under Different
Graph Concepts

In this section, we will present problem samples
under each graph concept from our dataset. We
have 9 concepts in total: Topological Sorting, Path
Planning, Path Finding, Cycle Detection, Graph
Traversal, Parent-Child Relations, Graph Construc-
tion, DAG Related Calculations and General Graph
Problems. Note that we are only presenting the
"problem statement" here.

Concept: Topological Sorting
Problem Statement:
You are given an integer n, which indicates that there are n
courses labeled from 1 to n. You are also given a 2D integer ar-
ray relations where relations[j] = [prevCoursej, nextCoursej] de-
notes that course prevCoursej has to be completed before course
nextCoursej (prerequisite relationship). Furthermore, you are
given a 0-indexed integer array time where time[i] denotes how
many months it takes to complete the (i+1)th course. You must
find the minimum number of months needed to complete all the
courses following these rules: You may start taking a course at
any time if the prerequisites are met. Any number of courses can
be taken at the same time.Return the minimum number of months
needed to complete all the courses. Note: The test cases are
generated such that it is possible to complete every course (i.e.,
the graph is a directed acyclic graph)

Concept: Path Planning
Problem Statement:
You are given a directed graph of n nodes numbered from 0 to
n - 1, where each node has at most one outgoing edge. The
graph is represented with a given 0-indexed array edges of size
n, indicating that there is a directed edge from node i to node
edges[i]. If there is no outgoing edge from node i, then edges[i]
== -1. Return the length of the longest cycle in the graph. If no
cycle exists, return -1. A cycle is a path that starts and ends at
the same node.

Concept: Path Finding
Problem Statement:
There is a bi-directional graph with n vertices, where each vertex
is labeled from 0 to n - 1 (inclusive). The edges in the graph are
represented as a 2D integer array edges, where each edges[i]
= [ui, vi] denotes a bi-directional edge between vertex ui and
vertex vi. Every vertex pair is connected by at most one edge, and
no vertex has an edge to itself. You want to determine if there is
a valid path that exists from vertex source to vertex destination.
Given edges and the integers n, source, and destination, return
true if there is a valid path from source to destination, or false
otherwise.

Concept: Cycle Detection
Problem Statement:
You are given a positive integer n representing the number of
nodes in an undirected graph. The nodes are labeled from 1 to n.
You are also given a 2D integer array edges, where edges[i] = [ai,
bi] indicates that there is a bidirectional edge between nodes ai
and bi. Notice that the given graph may be disconnected. Divide
the nodes of the graph into m groups (1-indexed) such that: Each
node in the graph belongs to exactly one group. For every pair
of nodes in the graph that are connected by an edge [ai, bi], if
ai belongs to the group with index x, and bi belongs to the group
with index y, then |y - x| = 1. Return the maximum number of
groups (i.e., maximum m) into which you can divide the nodes.
Return -1 if it is impossible to group the nodes with the given
conditions.

Concept: Graph Traversal
Problem Statement:
There is an undirected graph with n nodes, numbered from 0 to
n - 1. You are given a 0-indexed integer array scores of length
n where scores[i] denotes the score of node i. You are also
given a 2D integer array edges where edges[i] = [ai, bi] denotes
that there exists an undirected edge connecting nodes ai and bi.
A node sequence is valid if it meets the following conditions:
There is an edge connecting every pair of adjacent nodes in the
sequence. No node appears more than once in the sequence. The
score of a node sequence is defined as the sum of the scores of the
nodes in the sequence. Return the maximum score of a valid node
sequence with a length of 4. If no such sequence exists, return -1.

Concept: Parent-Child Relations
Problem Statement:
You are given an integer n denoting the number of cities in a
country. The cities are numbered from 0 to n - 1. You are also
given a 2D integer array roads where roads[i] = [ai, bi] denotes
that there exists a bidirectional road connecting cities ai and bi.
You need to assign each city with an integer value from 1 to n,
where each value can only be used once. The importance of a
road is then defined as the sum of the values of the two cities
it connects. Return the maximum total importance of all roads
possible after assigning the values optimally.

Concept: Graph Construction
Problem Statement:
You are given an array pairs, where pairs[i] = [xi, yi], and there
are no duplicates. xi < yi. Let ways be the number of rooted
trees that satisfy the following conditions: The tree consists of
nodes whose values appeared in pairs. A pair [xi, yi] exists in
pairs if and only if xi is an ancestor of yi or yi is an ancestor of
xi. Note: the tree does not have to be a binary tree. Two ways
are considered to be different if there is at least one node that
has different parents in both ways. Return 0 if ways equal to 0.
Return 1 if ways equal to 1. Return 2 if ways are larger than 1.
A rooted tree is a tree that has a single root node, and all edges
are oriented to be outgoing from the root. An ancestor of a node
is any node on the path from the root to that node (excluding the
node itself). The root has no ancestors.

Concept: DAG Related Calculations
Problem Statement:
You are given a directed graph of n nodes numbered from 0 to
n - 1, where each node has at most one outgoing edge. The
graph is represented with a given 0-indexed array edges of size
n, indicating that there is a directed edge from node i to node
edges[i]. If there is no outgoing edge from node i, then edges[i]
== -1. Return the length of the longest cycle in the graph. If no
cycle exists, return -1. A cycle is a path that starts and ends at
the same node.

Concept: General Graph Problems
Problem Statement:
There is an undirected graph consisting of n nodes numbered
from 1 to n. You are given the integer n and a 2D array edges
where edges[i] = [ai, bi] indicates that there is an edge between
nodes ai and bi. The graph can be disconnected. You can add at
most two additional edges (possibly none) to this graph so that
there are no repeated edges and no self-loops. Return true if it
is possible to make the degree of each node in the graph even,
otherwise return false. The degree of a node is the number of
edges connected to it.
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H An Example of How LLMs Solve
Difficult Problems

In this section, we will present how do LLMs solve
a difficult concept problem. We choose Claude-3,
Gemini, GPT-4 and GPT-4o to be verification mod-
els. First, we will present the chosen problem. And
then, the reasoning and coding process of LLMs
will be shown.

Graph Question - Concept: Path Finding

[Problem Statement]
You are given three positive integers n, x, and y. In a city, there
exist houses numbered 1 to n connected by n streets. There is a
street connecting the house numbered i with the house numbered
i + 1 for all 1 <= i <= n - 1 . An additional street connects the
house numbered x with the house numbered y. For each k, such
that 1 <= k <= n, you need to find the number of pairs of houses
(house1, house2) such that the minimum number of streets that
need to be traveled to reach house2 from house1 is k. Return a
1-indexed array result of length n where result[k] represents the total
number of pairs of houses such that the minimum streets required
to reach one house from the other is k. Note that x and y can be equal.
[Data Examples]
Input: n = 3, x = 1, y = 3 Output: [6,0,0]
Input: n = 5, x = 2, y = 4 Output: [10,8,2,0,0]

GPT-4o Solution

Steps to solve:
1. Initialize result array: Start with an array of zeroes to store the
count of pairs.
2. Iterate through pairs: For each pair (i, j), compute both the
direct distance and the alternative path distance using the extra street
between x and y.
3. Calculate min distance: Find the minimum of the two distances
and update the corresponding index in the result array.
4. Return the result: Once all pairs are processed, return the result
array.

class Solution:
def countOfPairs(self , n: int , x: int , y: int) -> List[
int]:

# Initialize the result array with n zeroes
result = [0] * n

# Adjust x and y for 0-based indexing
x -= 1
y -= 1

# Iterate over all possible pairs of houses (i, j)
for i in range(n):

for j in range(i + 1, n):
# Direct distance between i and j
direct_dist = j - i

# Distance via the special street between x
and y

via_x_y = abs(i - x) + 1 + abs(j - y)
via_y_x = abs(i - y) + 1 + abs(j - x)

# Minimum distance between the direct path
and the path via x and y

min_dist = min(direct_dist , via_x_y , via_y_x
)

# Increment the count for the corresponding
distance

result[min_dist] += 1

return result

Code 5: Code generated by the GPT-4o.

GPT-4 Solution

Steps to solve:
1. Construct the Graph: We’ll use a simple adjacency list to represent
the graph.
2. Shortest Path Calculation: For small values of n, a simple Floyd-
Warshall algorithm can be considered since it computes shortest
paths for all pairs. But the time complexity is too high. Given the
specific graph structure (almost a path plus one edge), BFS from
each node could be more efficient, leveraging the linear structure for
faster computation.
3. Count the Pairs: After determining the shortest path distances,
count the number of pairs for each distance.

class Solution:
def countOfPairs(self , n: int , x: int , y: int) -> List[
int]:

# Create the graph
graph = defaultdict(list)
for i in range(1, n):

graph[i]. append(i + 1)
graph[i + 1]. append(i)

if x != y: # Add the additional connection if x and
y are not the same

graph[x]. append(y)
graph[y]. append(x)

# Function to calculate distances using BFS
def bfs(start):

distances = [-1] * (n + 1)
queue = deque([start ])
distances[start] = 0
while queue:

current = queue.popleft ()
current_dist = distances[current]
for neighbor in graph[current ]:

if distances[neighbor] == -1:
distances[neighbor] = current_dist +

1
queue.append(neighbor)

return distances

# Distance array where result[k] counts the pairs of
distance k
result = [0] * (n + 1) # Using n+1 for convenience ,

will slice later

# Calculate distances for each house and count the
pairs

for i in range(1, n + 1):
distances = bfs(i)
for j in range(i + 1, n + 1): # Only count each

pair once
if distances[j] > 0:

result[distances[j]] += 1

return result [1:n] # We return the list from 1 to n
-1 as specified

Code 6: Code generated by the GPT-4.

Gemini Solution

Steps to solve:
1. Graph Representation: Create an adjacency list to represent
the graph, where each node represents a house and edges connect
adjacent houses.
2. BFS for Distances: Perform breadth-first search (BFS) starting
from house x to calculate the shortest distances to all other houses.
3. Distance-Based Counting: Iterate through all pairs of houses and
count the number of pairs where the sum of their distances is less
than n (to avoid counting pairs that wrap around the circle).
4. Result Array: Store the counts in the result array, where result[k]
represents the number of pairs with a distance of k.

class Solution:
def countOfPairs(self , n: int , x: int , y: int) -> List[
int]:

# Create a graph representation using an adjacency
list

graph = [[] for _ in range(n)]
graph[x - 1]. append(y - 1)
graph[y - 1]. append(x - 1)

# Perform breadth -first search (BFS) to calculate
distances

queue = [(0, x - 1)] # Start with distance 0 from
house x

visited = set()
distances = [0] * n
while queue:
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distance , node = queue.pop(0)
if node not in visited:

visited.add(node)
distances[node] = distance
for neighbor in graph[node]:

if neighbor not in visited:
queue.append (( distance + 1, neighbor

))

# Count pairs based on distances
result = [0] * n
for i in range(1, n):

for j in range(i + 1, n):
distance = distances[i - 1] + distances[j -

1]
if distance < n:

result[distance] += 1

return result

Code 7: Code generated by the Gemini.

Claude-3 Solution

Steps to solve:
1. We start by initializing a distance matrix dist with dimensions n x
n, setting all initial distances to infinity.
2. We set the distances for adjacent houses (i and i+1) to 1, and
the distance from each house to itself to 0. We also set the special
connection between houses x and y to 1.
3. We use the Floyd-Warshall algorithm to compute the shortest
paths between all pairs of houses. This algorithm has a time com-
plexity of O(n3), but it’s efficient for this problem size and gives us
all the information we need.
4. After computing all shortest paths, we count the number of pairs
for each distance. We iterate through all pairs of houses (i, j) where
i < j, and increment the count for the corresponding distance. We
increment by 2 to account for both (i, j) and (j, i) pairs.
5. Finally, we return the count array, which represents the number
of pairs for each distance from 1 to n.

class Solution:
def countOfPairs(self , n: int , x: int , y: int) -> List[
int]:

# Initialize the distance matrix
dist = [[ float('inf')] * n for _ in range(n)]

# Set distances for adjacent houses and the special
connection

for i in range(n):
if i > 0:

dist[i][i-1] = dist[i-1][i] = 1
dist[i][i] = 0

dist[x-1][y-1] = dist[y-1][x-1] = 1

# Floyd -Warshall algorithm to compute all -pairs
shortest paths

for k in range(n):
for i in range(n):

for j in range(n):
dist[i][j] = min(dist[i][j], dist[i][k]

+ dist[k][j])

# Count pairs for each distance
count = [0] * n
for i in range(n):

for j in range(i+1, n):
d = dist[i][j]
if d < n:

count[d-1] += 2 # Count both (i,j) and
(j,i)

return count

Code 8: Code generated by the Claude-3.
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