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Abstract

At the forefront of state-of-the-art human align-
ment methods are preference optimization
methods (*PO). Prior research has often con-
centrated on identifying the best-performing
method, typically involving a grid search over
hyperparameters, which can be impractical
for general practitioners. In this paper, we
examine the robustness of existing state-of-
the-art methods to varying hyperparameters
in a realistic out-of-distribution (OOD) sce-
nario that mirrors real-world applications of
human alignment. Our goal is to empirically
find the method that increases the likelihood
of achieving better results through the lens of
various metrics, such as KL divergence and
response length. We also introduce LN-DPO,
a simple length-normalized version of DPO
that is more stable across hyperparameters, ef-
fectively reduces the average response length,
and improves performance. Our analysis of
state-of-the-art reference-free (i.e., SimPO) and
reference-dependent (i.e., DPO and LN-DPO)
methods reveals that they perform similarly at
their peak (i.e., best possible scenario). How-
ever, we uncover that the pattern of change in
performance greatly varies as we move away
from the best possible scenario.

1 Introduction

In recent years, the quality of large language mod-
els (LLMs) has been constantly increasing (Chi-
ang et al., 2024), achieving impressive results
across tasks and benchmarks (Abdin et al., 2024;
AI@Meta, 2024; Achiam et al., 2023; Team, 2023;
Yang et al., 2024). However, even with the most
rigorous filtering heuristics, the training data (Com-
puter, 2023; Penedo et al., 2024) is typically con-
taminated with undesirable content that can lead
to unacceptable behaviors (Bender et al., 2021;
Gehman et al., 2020). To improve the model’s

*Work done during an internship at Microsoft.

DPO LN-DPO SimPO

Mean Score 1.6 +0.3% +2.7%

Mean Length 119.8 -15.9% -22.9%

KL Divergence 55.0 -26.0% -20.7%

Win vs. Chosen 77.1% +0.8% +3.1%

Win vs. SFT 60.7% +2.1% +5.0%

Table 1: Best *PO Performance. The metrics are nor-
malized by the respective DPO performance. The un-
derlined values indicate the best performance.

alignment with human preferences, the de-facto ap-
proach has been to learn from human/AI-generated
preference data (e.g., a chosen and a rejected re-
sponse for each prompt). In particular, off-policy
preference optimization methods (*PO) have been
prevalent given their good performance and ease of
implementation (Rafailov et al., 2024; Hong et al.,
2024; Meng et al., 2024).

One commonly occurring practice when report-
ing the performance of new methods is to compare
their best-performing variant (after a hyperparam-
eter grid search) to a default baseline with a fixed
set of hyperparameters. However, from a practical
perspective for future users, these comparisons do
not provide a good answer to the problem of which
method is expected to achieve higher performance,
given a fixed budget for hyperparameter search, as
doing broad grid searches is often computationally
infeasible for many practitioners. To this end, in
this work, we aim to empirically identify the more
robust method to hyperparameter variations while
still being competitive in performance.

We set up our experiments in a realistic out-
of-distribution (OOD) setting, focused on safety
and helpfulness domains, where the train and test
datasets share a common core goal, but their sam-
ples are generated from different distributions (e.g.,
AI and human expert). This setting resembles real-
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Method Objective Hyperparameters

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ {0.01, 0.05, 0.1, 0.3, 0.5}

SimPO − log σ
(

β
|yw| log πθ(yw|x)−

β
|yl| log πθ(yl|x)− γ

) β ∈ {1.0, 1.5, 2.0, 2.5}
γ ∈ {0.5, 0.8, 1.0, 1.2, 1.4, 1.6}

LN-DPO − log σ
(

β
|yw| log

πθ(yw|x)
πref(yw|x) −

β
|yl| log

πθ(yl|x)
πref(yl|x)

)
β ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5}

Table 2: *PO Optimization Objectives. The preference data is formulated as D = (x, yw, yl), where x is the
prompt and yw and yl are the chosen and rejected responses.

world scenarios as it simulates the release of large
generative models for public use. Moreover, to
better understand the behavior of the state-of-the-
art models, we take the best-performing reference-
free and reference-dependent models (as reported
by Meng et al. (2024)) and analyze them through
the lens of standard metrics such KL divergence,
response length, and win rate. We also introduce
an embarrassingly simple length-normalized ex-
tension of vanilla Direct Preference Optimization
(DPO) (Rafailov et al., 2024), LN-DPO, that ef-
fectively mitigates the issue of lengthy generations
without any apparent performance degradation1. In
summary, our contributions are as follows:

• We examine state-of-the-art reference-free
and reference-dependent preference optimiza-
tion methods across a wide range of hyperpa-
rameters in a real-world setup.

• We analyze the performance of these meth-
ods on critical metrics such as mean response
length, mean score on a gold reward model,
win rate vs. chosen and SFT, and KL vs. SFT.

• We introduce and examine LN-DPO, a sim-
ple length-normalized version of DPO that
is more stable across hyperparameters, effec-
tively reduces the average response length and
improves performance.

2 Related Work

Since the introduction of DPO (Rafailov et al.,
2024), there has been a body of works with new
optimization objectives improving the performance
and efficiency (Azar et al., 2024; Tang et al., 2024;
Hong et al., 2024; Rosset et al., 2024; Meng et al.,
2024; Xu et al., 2024a; Ethayarajh et al., 2024).
These methods can be partitioned into two groups:
reference-free (Meng et al., 2024; Hong et al.,

1Concurrently, Meng et al. (2024) have added a similar
method to their experiments (updated on July 7th, 2024). Here,
we present a more thorough analysis and comparison.

2024) and reference-dependent (Rafailov et al.,
2024; Park et al., 2024). Reference-free methods
generally benefit from fast training runs, while
reference-dependent methods have terms baked
into their objective to control divergence from
the reference model. In this work, we compare
SimPO (Meng et al., 2024), a recent state-of-the-
art reference-free method, with DPO and LN-DPO
as reference-dependent methods (see Appendix A
for extended related work).

3 Experimental Setup

3.1 Datasets

For our datasets, we follow the setup introduced
by Xu et al. (2024b). Specifically, we use
the double safe/unsafe filtered train subset of
SafeRLHF (Dai et al., 2024) for training and the
test subset of HH-RLHF (Ganguli et al., 2022) for
evaluation. This setup closely resembles real-world
scenarios where even though models are trained on
various domains (e.g., safety and helpfulness in
our experiments), they have to generalize to similar
unseen queries while interacting with the users.

3.2 Models

For all our experiments, we chose the Phi-3
Medium model (Abdin et al., 2024) due to its high
performance across benchmarks and small size, en-
suring computational tractability. To evaluate the
trained models, we use the OpenAssistant reward
model (Köpf et al., 2024) to score the quality of
their generated responses. We chose this model due
to its small size and use in prior works (Xu et al.,
2024b), ensuring fast and correct evaluations.

3.3 Optimization Objectives

Considering the performances reported by Meng
et al. (2024), we choose DPO as our reference-
dependent method and SimPO as our reference-free
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Figure 1: *PO Performance Distribution. Each sample in the distribution represents the performance of one set of
hyperparameters on the denoted metric. The dashed line indicates the performance of the initial SFT model.

Figure 2: Response Length. The top k% (k ∈ {1, 10, 25}) denotes the percentage of best-performing hyperparame-
ters taken from each method’s runs.

method. While DPO has an implicit length normal-
ization through the reference model, the variance
of the reward (i.e., log πθ

πref
) increases with response

length. As such, inspired by explicit length regular-
ization in SimPO and R-DPO (Park et al., 2024),
we further normalize it with the response length
similar to SimPO, which we call LN-DPO (see
Section 3.4 for more details).

3.4 Connection between LN-DPO and SimPO
LN-DPO is similar to an adaptive margin version
of SimPO with per sample margin defined as

γw,l = log
πref(yw|x)

|yw|
− log

πref(yl|x)
|yl|

. (1)

Essentially, this adaptive margin encourages larger
margins for pairs with large margins in the ref-
erence policy. Depending on the quality of the
reference model and the labels, this change could
be beneficial compared to SimPO’s constant mar-
gin. The adaptive margin focuses more on "easier"
pairs (i.e., pairs that have some prior evidence to
be different) while less on "harder" pairs (i.e., pairs
that are closer), which means that LN-DPO is po-
tentially less prone to overfitting and less sensitive

to wrong labels.

4 Training Regimen

Following the common practice, before the pref-
erence optimization step we do a supervised fine-
tuning (SFT) step. Specifically, we first run a grid
search over the following hyperparameters: epochs
∈ {1, 3} and learning rate ∈ {1e− 6, 3e− 6, 1e−
5, 2e− 5}. Then we evaluate the final checkpoints
against the test set and choose the one with the
highest performance. This procedure ensures that
the preference optimization methods are initialized
from a good checkpoint. For the preference opti-
mization methods, we run a grid search using 1)
the same ranges as SFT for epochs and learning
rate and 2) common values for method-specific hy-
perparameters as used in prior works (Meng et al.,
2024; Rafailov et al., 2024; Hong et al., 2024). Ta-
ble 2 presents the method-specific ranges used in
our experiments. In all of our experiments, the
batch size is set to 256.

5 Metrics

Our analysis focuses on the following five metrics:
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Figure 3: KL Divergence. The top k% (k ∈ {1, 10, 25}) denotes the percentage of best-performing hyperparameters
taken from each method’s runs.

• Mean Score: The average score of the gener-
ated responses, as judged by the gold reward
model.

• Win vs. Chosen: The fraction of samples
where the gold reward model assigns a higher
score to the generated response compared to
the chosen response in the dataset.

• Win vs. SFT: The fraction of samples where
the gold reward model scores the generated
response higher than the initial SFT model’s
response.

• KL divergence: The summed difference
of log probabilities between the SFT and the
trained models over the samples.

• Response length: The number of tokens in
the generated response under the tokenization
space of the base model.

6 Implementation Details

We generate all the responses by sampling with a
temperature = 0.7, and top_p = 0.95. More-
over, max_generation_length is set to 256 across
all experiments, following the setup by Xu et al.
(2024b). All our experiments are carried out on
a cluster with 256×A100 80GB GPUs. Finally,
we implemented our code using the Transform-
ers (Wolf et al., 2020), TRL (von Werra et al.,
2020), and PyTorch (Paszke et al., 2019) libraries.

7 Experimental Results

7.1 Hyperparameter Robustness
Best Performance. Following the common prac-
tice, we compare the best performance achieved
by each method in Table 1. As evident, at their
peaks, SimPO, LN-DPO, and DPO score similarly
(within a 0.05 point on average). However, SimPO
and LN-DPO show an edge in terms of the rest

% DPO LN-DPO SimPO

DPO - 49.04 47.51

LN-DPO 49.47 - 46.43

SimPO 51.12 51.09 -

(a) Best

% DPO LN-DPO SimPO

DPO - 45.72 44.33

LN-DPO 51.77 - 47.28

SimPO 54.34 50.13 -

(b) 75th Percentile

Table 3: Head-to-head *PO Comparison. Each cell
represents the win rate of the row method over the col-
umn method. The underlined values indicate the row
method beating the column method.

of the metrics. Specifically, we can observe the
effectiveness of the length normalization term. We
also notice a significant decrease in KL divergence.
However, KL for SimPO decreases less than LN-
DPO, showcasing a more significant divergence
from SFT. For more details on tuning these models,
see Appendix B.

Head-to-head Performance. While comparing
the pure performances achieved on the desired met-
rics is usually good enough to contrast different
methods, there are potential cases where the aver-
aging could be exploited (e.g., outliers with high
rewards). Hence, it is essential also to do a head-
to-head per sample comparison, which provides
more fine-grained insights. Table 3 compares each
method’s best and 75th percentile performance. No-
tably, we observe a sharp performance drop in DPO
from the best to the top 25% model, in contrast to
the other two. This occurrence highlights the prac-
tical flaw in only comparing the best performances.
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Expected Performance. Given the limited re-
sources that most users have, it is extremely diffi-
cult to run broad hyperparameter searches to find
the best-performing combination. As such, it be-
comes crucial to analyze hyperparameter robust-
ness, which provides insights into the expectation
of finding good hyperparameters set from a lim-
ited search. Figure 1 presents the performance
distribution *PO methods following a grid search
over the hyperparameters denoted in Table 2 and
Section 4. As evident, SimPO and LN-DPO ef-
fectively increase the average performance (i.e.,
shifting the distributions to the right) across hyper-
parameters, showcasing their superiority. Note that
we stretched the range of hyperparameters until a
plateau or an extreme variance was observed.

7.2 Response Length

Since length exploitation is a critical issue (Park
et al., 2024), we compare the response lengths
across samples generated by the top k% (k ∈
{1, 10, 25}) of each method’s best-performing hy-
perparameters. As illustrated in Figure 2, on the
best set of hyperparameters (i.e., top 1%), the non-
DPO methods showcase a left shift in length distri-
bution (compared to DPO), which is a desired ef-
fect. However, this phenomenon starts to diminish
as we include worse-performing hyperparameters.
For example, LN-DPO has a higher rate than DPO
in the tail-end of the top 25% distribution. Overall,
we observed that both length-normalized models
perform superior to DPO, with SimPO producing
the shortest responses across the distribution.

7.3 KL Divergence (vs. SFT)

Since reference-free methods are not normalized
against a reference policy (e.g., the SFT model),
reward hacking might occur (i.e., lower loss with
degraded performance). Therefore, we compare
the KL divergence in Figure 3 across samples gen-
erated by the top k% (k ∈ {1, 10, 25}) of each
method’s best-performing hyperparameters. As
evident, both SimPO and LN-DPO achieve lower
KLs at their peak. However, as we move toward
worse-performing models, DPO achieves lower KL
(at 10%). This phenomenon is due to many DPO
runs failing to learn beyond the SFT model.

8 When to use LN-DPO over SimPO?

While SimPO achieves superior performance on
most metrics compared to LN-DPO, the lack of a

reference policy regularization could lead to dras-
tic divergence from the initial checkpoint, as also
shown in our experiments. This issue then could
cause a degradation of performance on other bench-
marks, which is a critical pitfall (as also observed
in Korbak et al. (2022)). As such, we believe there
are various scenarios where LN-DPO should be
preferred to SimPO. We leave further experiments
over this direction to future works.

9 Conclusion

In this work, we introduce LN-DPO, a length-
normalized variation of DPO that reduces the
average response length while staying reference-
dependent. Moreover, we present a thorough anal-
ysis of LN-DPO and two state-of-the-art reference-
dependent and reference-free preference optimiza-
tion methods in a simulated real-world scenario for
safety and helpfulness domains. Specifically, we
cover the behavior of these methods across a wide
range of hyperparameters under metrics such as
mean response length, KL divergence (vs. SFT),
and win rate (vs. chosen and SFT). Our experi-
ments showcase state-of-the-art methods’ strengths
and weaknesses and provide insights for other prac-
titioners.

Limitations

Due to the extremely high costs of running such
experiments (i.e., roughly 86000 GPU hours for the
current experiments), in this work, we only experi-
mented with a small set of models, methods, and
datasets. While this might limit generalizability,
we believe the existence of such analysis is critical
to help practitioners save costs. Moreover, since the
conclusion of our experiments, new reward models
with higher performance have been released (e.g.,
ArmoRM (Wang et al., 2024)); however, we still
rely on older, smaller models to keep the evaluation
tractable on such a high number of runs.
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A Extended Related Work

Online Algorithms. Reinforcement learning
from human/AI feedback (RLHF/RLAIF) is among
the common approaches for aligning LLMs to hu-
man preferences (Christiano et al., 2017; Bai et al.,
2022a; Stiennon et al., 2020; Bai et al., 2022b),
and has been used to train models such as GPT-
4 (Achiam et al., 2023) and Llama-3 (AI@Meta,
2024). In most cases, these approaches are
comprised of three stages: 1) supervised fine-
tuning (Taori et al., 2023; Zhou et al., 2024; Xia
et al., 2024), 2) reward modeling (Gao et al., 2023;
Chen et al., 2024; Lightman et al., 2023), and 3)
policy optimization (Schulman et al., 2017). The
prominent method for policy optimization is Prox-
imal Policy Optimization (PPO), an online on-
policy approach (Schulman et al., 2017). While
PPO has shown promising performances (Stien-
non et al., 2020; Ouyang et al., 2022; Achiam
et al., 2023), it suffers from problems such as
having too many subtle details for reproducibil-
ity (Huang et al., 2024b), 2) taking a long time
for training (Huang et al., 2024a), and 3) reward
over-optimization (Skalse et al., 2022).

Offline Algorithms. To address the drawbacks of
RLHF/RLAIF, recent works have proposed simpler
and more efficient offline algorithms, particularly
Direct Preference Optimization (DPO) (Rafailov
et al., 2024), which is based on the Bradley-Terry
model (Bradley and Terry, 1952). These offline
algorithms directly optimize an objective on the
preference data with an implicit reward model with-
out needing to have separate stages. Some recent
works have focused on making a broad compar-
ison between PPO and DPO. Specifically, they
showcase the potential for PPO with a gold reward
model (∼ +10%) while underlying the similar-
ity to DPO (∼ +1% averaged across benchmarks)

when trained on the same data (Ivison et al., 2024;
Xu et al., 2024b).

B Hyperparameter Tuning
Considerations

DPO. As presented in Figure 4, lower β leads to
higher performances; however, as β decreases, the
performance variance increases, which showcases
the method’s instability. Overall, β = 0.05 pro-
vides the best balance of stability and performance.

LN-DPO. While we initially borrowed β’s range
from SimPO (Meng et al., 2024), more experi-
ments showed benefits in further decreasing its
value. Figure 5 presents the performance spread
across different runs. From these experiments,
β ∈ [1.0, 2.0] contains most of the best-performing
models. Moreover, we observe the relatively low
(compared to DPO) variance across the perfor-
mances, showcasing another benefit of LN-DPO.

SimPO. In contrast to the other two methods,
SimPO has two method-specific hyperparameters:
β and γ. As illustrated in Figure 6, on average,
lower β values lead to better performance. We be-
lieve the performance uptick in the lower range is
due to a difference in the average length of this
work’s and the original work’s training sets. More-
over, as showcased in Figure 7, the best performing
models have a γ ∈ [1.0, 1.4], in line with the sug-
gestion by Meng et al. (2024). Notably, β and γ
have a relatively low variance across experiments,
another upside of SimPO.

C The Answer to the Ultimate Question

Based on our collective empirical results, we be-
lieve SimPO to be the best starting point among the
three methods, mainly due to its robustness toward
hyperparameter variations and effective length re-
duction. As for SimPO’s hyperparameters, we rec-
ommend β ∈ {1.0, 1.5} and γ ≈ 1.2. Moreover,
while LN-DPO is consistently second-best in most
of our experiments, we discuss scenarios for choos-
ing it over SimPO in Section 8.
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Figure 4: DPO β. Each point indicates a run with the corresponding β value.

Figure 5: LN-DPO β. Each point indicates a run with the corresponding β value.

Figure 6: SimPO β. Each point indicates a run with the corresponding β value.

Figure 7: SimPO γ. Each point indicates a run with the corresponding γ value.
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