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Abstract

Language models perform well on emotion
datasets but it remains unclear whether these
models indeed understand emotions expressed
in text or simply exploit supperficial lexical
cues (e.g., emotion words). In this paper, we
present two novel test evaluation sets sourced
from two existing datasets that allow us to eval-
uate whether language models make real infer-
ential decisions for emotion detection or not.
Our human-annotated test sets are created by
iteratively rephrasing input texts to gradually
remove explicit emotion cues (while preserv-
ing the semantic similarity and the emotions)
until a strong baseline BERT model yields in-
correct predictions. Using our new test sets,
we carry out a comprehensive analysis into the
capabilities of small and large language mod-
els to predict emotions. Our analysis reveals
that all models struggle to correctly predict
emotions when emotion lexical cues become
scarcer and scarcer, but large language models
perform better than small pre-trained language
models and push the performance by 14% over
the 5% BERT baseline. We make our evalua-
tion test sets and code publicly available.1

1 Introduction

Emotions are an integral element of the human
nature, often affecting our everyday life and activi-
ties. Detecting emotions expressed in language has
many applications, including the detection of harm-
ful behavior on social media (Mohammad, 2012;
Wang et al., 2012; Mohammad and Kiritchenko,
2015; Volkova and Bachrach, 2016; Abdul-Mageed
and Ungar, 2017; Demszky et al., 2020), under-
standing the impact of public policy making on the
society (e.g., in large-scale crises and pandemics)
(Sosea et al., 2022; Desai et al., 2020; Beck et al.,
2021; Kabir and Madria, 2021; Adikari et al., 2021;
Choudrie et al., 2021; Scarpina, 2020; Calbi et al.,

1https://github.com/tsosea2/HardEmotionDatasets

2021; Halse et al., 2016), designing empathetic con-
versational agents (Buechel et al., 2018; Hosseini
and Caragea, 2021a,b), or enabling emotional intel-
ligence skills to computers (Picard, 1997). There-
fore, an increasing number of datasets for emotion
detection have been made available in recent years
(Singh et al., 2024; Sabour et al., 2024; Zhan et al.,
2022; Desai et al., 2020; Sosea and Caragea, 2020;
Demszky et al., 2020; Abdul-Mageed and Ungar,
2017; Volkova and Bachrach, 2016; Mohammad
and Kiritchenko, 2015), among which GoEmotions
(Demszky et al., 2020) and CancerEmo (Sosea
and Caragea, 2020) are two large human annotated
datasets with multiple annotations per sample for
quality assurance. GoEmotions (Demszky et al.,
2020) is created from Reddit comments and en-
ables fine-grained emotion classification (with 27
emotions in total), whereas CancerEmo (Sosea and
Caragea, 2020) is created from a health forum with
each sample classified into one of the Plutchik-8
emotions (Plutchik, 1980).

Although these datasets are instrumental in the
progress of emotion detection, oftentimes emo-
tions are expressed in a very explicit way in these
datasets. For example, in the sentence I’ve never
been this sad in my life! extracted from GoEmo-
tions, the words “this sad” are highly indicative
lexical cues of the emotion “sadness”. Deep learn-
ing models are known to exploit idiosyncrasies
from the data allowing them to imitate desired be-
havior such as pattern matching or negation (Pa-
pernot et al., 2017; Gururangan et al., 2018). In
fact, Sosea and Caragea (2020) found that lexi-
cal cues such as emotion words (Mohammad and
Turney, 2013) (e.g., the words “this sad” in the
example above) are strong signals for pre-trained
language models like BERT (Devlin et al., 2019).
Thus, it remains unclear whether language models
indeed understand emotions expressed in text or
rely blindly on surface-level lexical cues and lack a
deep understanding of the expressed emotions. To
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Label Text Confidence

Sadness Wife left me and I am just broken. relapsed tonight from
7 years clean and just not seeing a point anymore

0.78

R1 After being clean for 7 years, my wife leaving has caused
me to relapse

0.47

R2 After being clean for 7 years, my wife abandoning me
has led to be to stop being clean

0.42

R3 After being clean for 7 years, my wife not wanting to be
with me has led to be to stop being clean

0.48

R4 After being clean for 7 years, my wife not wanting to be
with me has led me to pick up my old habits

0.23⋆

Gratitude Easy money, thank you [NAME] 0.99

R1 Easy money, shout out to you [NAME] 0.21⋆

Table 1: Examples in our model-annotator feedback
loop annotation process. Given an initial text labeled
correctly by the model, our annotators carry out several
rounds of rephrasings (R) until a rephrased example
manages to yield an incorrect prediction by the model.
We show the model confidence on each rephrased text
and indicate by ⋆ a successful rephrasing (or in other
words, an incorrect prediction), i.e., when the confi-
dence of the gold label is not the highest confidence.

this end, we present two novel and challenging test
evaluation sets sourced from the existing datasets,
GoEmotions (Demszky et al., 2020) and Cancer-
Emo (Sosea and Caragea, 2020), that allow us to
evaluate the capabilities of language models at un-
derstanding emotions—whether language models
can make subtle inferential decisions for emotion
detection when lexical cues or emotion words are
less frequent in the data.

To construct these challenging test evaluation
sets, we utilize a model-annotator feedback loop in
which human annotators are instructed to iteratively
rephrase examples from the test sets of GoEmo-
tions and CancerEmo that are correctly predicted
by a BERT model (Devlin et al., 2019) aiming to
make the BERT model return an incorrect predic-
tion on these examples. In rephrasing a text, we ask
our annotators to remove potential spurious corre-
lations and “de-explicitize” emotion words to the
entent possible, i.e., use more implicit expressions
of emotions and less emotion words (while preserv-
ing the original emotions and the overall semantic
meaning of the text). Table 1 shows two test exam-
ples and their rephrasings produced by our humman
annotators. The first example Wife left me and I am
just broken. relapsed tonight from 7 years clean
and just not seeing a point anymore is correctly
predicted by BERT with the sadness emotion with
0.78 confidence. We observe that the 4th rephras-
ing attempt eliminates lexical cues such as left, bro-
ken, and relapse, and yields an incorrect prediction
(making the example more challenging for BERT).

Similarly, in Easy money, thank you..., the rephras-
ing of thank you, a clear lexical cue indicative of
gratitude leads to an incorrect prediction by BERT.

Using our new challenging test sets, we establish
strong baselines and evaluate increasingly powerful
language models—small pre-trained language mod-
els designed to address the limitations of BERT,
i.e., RoBERTa (Liu et al., 2019b), XLNet (Yang
et al., 2019), and eMLM BERT (Sosea and Caragea,
2021), and large language models, OPT-IML (Iyer
et al., 2022) and ChatGPT to evaluate their capabil-
ities on examples where a vanilla BERT performs
poorly. We observe that all models struggle to
correctly predict emotions when emotion lexical
cues become scarcer and scarcer, and even pow-
erful large language models incur significant per-
formance degradations and are unable to obtain
good performance. Notably, OPT-IML (LoRA fine-
tuned) obtains 0.65 F1 on original GoEmotions
test set but scores only 0.15 F1 on our rephrased
GoEmotions test set, which is a significant per-
formance gap demonstrating the difficulty of our
dataset. Still, large language models perform better
than fine-tuned small language models and push the
performance by 14% over the 5% BERT baseline.

Our contributions are as follows: 1) We intro-
duce two new challenging emotion detection test
sets: GoEmotions.v2 and CancerEmo.v2, using a
model-annotator feedback loop; 2) We carry out
extensive experiments to analyze the capabilities
of various language models on our challenging
test sets; 3) We show that using a small amount
of rephrased examples during training or in the
prompt for LLMs significantly boosts the capabil-
ities of both small and large language models.

2 Related Work

Emotion Detection Emotion detection has been
studied extensively (Singh et al., 2024; Hosseini
and Caragea, 2023a,b; Sosea et al., 2023; Maratos
et al., 2023; Hosseini and Caragea, 2022; Cambria
et al., 2017; Poria et al., 2018; Cambria et al., 2020;
Stappen et al., 2021; Cambria et al., 2013) with
applications in music (Strapparava et al., 2012),
social networks (Mohammad, 2012; Islam et al.,
2019), online news (Bao et al., 2009), health com-
munities (Sosea and Caragea, 2021; Khanpour and
Caragea, 2018; Khanpour et al., 2018; Biyani et al.,
2014a,b), and literature (Liu et al., 2019a). All
these domains can be examined with the help of
large curated datasets.
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Using these datasets, many methods have been
developed for emotion detection. In the past, most
approaches used feature-based methods, which
usually leveraged hand-crafted lexicons, such as
EmoLex (Mohammad and Turney, 2013) or the
Valence Arousal Lexicon (Mohammad, 2018).
However, due to the recent advancements in deep
learning as well as large pre-trained language
models, all state-of-the-art approaches (Chen
et al., 2023; Shah et al., 2023; Suresh and Ong,
2021; Sosea and Caragea, 2021; Desai et al.,
2020; Sosea and Caragea, 2020; Demszky et al.,
2020) employ language model-based (Devlin
et al., 2019) classifiers. In this work, we propose
two challenging emotion test evaluation datasets
aimed at exploiting the weaknesses of language
models that can serve as a test bed to facilitate
improvements in language models’ capabilities.

Language Models Pre-trained language models
have been used in a pre-train then fine-tune manner
where a language model is pretrained on a large
unlabeled corpus then adapted to a target task by
fine-tuning (Devlin et al., 2019). However, it was
recently observed that scaling models to 100B+ pa-
rameters leads to capabilities of few-shot learning
(Brown et al., 2020) by way of in-context learn-
ing. Therefore, these models have excelled at effec-
tively leveraging very few examples to solve any
NLP task (Brown et al., 2020; Touvron et al., 2023;
Jiang et al., 2023; Wang et al., 2023) using prompt-
ing. Prompting is achieved by altering the input-
output space of a model depending on the task at
hand to effectively leverage the knowledge of the
model. Various methods were proposed to improve
the prompting mechanism ranging from the struc-
ture and quality of the prompt template (Shin et al.,
2020; Gao et al., 2020; Schick and Schütze, 2020;
Jiang et al., 2020) to chain-of-thought prompting
(Wei et al., 2022) or optimizing the few-shot ex-
ample ordering (Lu et al., 2021). To overcome the
difficulties of prompt engineering, instruction tun-
ing has been proposed as a method to improve the
perfomance by fine-tuning LLMs on a wide vari-
ety of tasks, ranging from chat and summarization
to text classification, sentiment analysis and entity
extraction. Popular instruction-tuned LLMs such
as the open-source LLaMa-based OPT-IML (Iyer
et al., 2022) and ChatGPT have started to receive
attention in emotion detection as well (Tu et al.,
2023; Singh et al., 2023; Kang and Cho, 2024;
Zhang et al., 2023; Lei et al., 2023). In this paper,

Figure 1: Overview of our annotation process.

we use these models to benchmark their capabilities
on our challenging emotion datasets and analyze
how well they perform in zero or few-shot setups.

3 Emotion Test Evaluation Datasets
Construction

We now present the construction of our new
test evaluation datasets sourced from GoEmotions
(Demszky et al., 2020) and CancerEmo (Sosea and
Caragea, 2020), designed to probe the capabilities
of language models in understanding emotions. We
show an overview of our annotation process in Fig-
ure 1 and describe it in more details below.

Setup Let T = {t1, t2, ..., tn} be the test set of
an emotion dataset D (i.e., GoEmotions or Cancer-
Emo in our case). In constructing our new test sets,
we utilize a model-annotator feedback loop, with
the BERT language model (Devlin et al., 2019) as
the backbone model, where human annotators it-
eratively rephrase a test example to make it more
difficult for BERT to return a correct prediction.
We chose BERT as our baseline language model
since BERT was established as a strong baseline
in the original papers that introduced the datasets
GoEmotions (Demszky et al., 2020) and Cancer-
Emo (Sosea and Caragea, 2020), and, at the same
time, it allows us to evaluate increasingly powerful
language models—from small pre-trained language
models that are trained in a more robust way com-
pared with BERT to Large Language Models that
often reach human performance (Chiang and Lee,
2023; Duong and Solomon, 2024).

Formally, we first train a BERT model M on the
training set of D, and then use M to generate pre-
dictions on the test set T of D. Let T correct ⊂ T be
the subset of examples from T where M makes cor-
rect predictions and let T incorrect = T \T correct be
the subset of examples from T incorrectly predicted
by M . We are mainly interested in rephrasing ex-
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amples from T correct since the rest of the examples
incorrectly predicted by M are already challenging
for M , and hence, we do not consider them for hu-
man rephrasing. Our annotation goal is to generate
a rephrased version tR of t ∈ T correct such that: 1.
The semantic meaning of tR does not diverge from
t (i.e., they remain semantically similar), and 2. tR
expresses the same emotion as t. In rephrasing a
text, we asked our annotators to remove spurious
correlations and “de-explicitize” emotion words to
the entent possible, i.e., use more implicit expres-
sions of emotions and less emotion words.

Annotation Process We hired five undergrad-
uate students with expertize in natural language
processing and linguistics and asked them to iter-
atively rephrase test examples that were correctly
predicted by BERT model M . Our annotators are
shown an example t and its gold label e. The an-
notation interface provides a textbox in which the
annotators can type a candidate rephrasing tc. After
the rephrasing is typed in, we run inference on tc

using model M . If M incorrectly predicts tc (i.e.,
the model prediction is no longer e), we consider
tR = tc as our successful rephrasing for t and con-
tinue with the rephrasing of the next test example
in T correct. If M continues to predict tc in class
e, we indicate that the rephrasing was unsuccess-
ful and iterate the process (i.e., ask for additional
rephrasings). We also show the confidence of M in
class e on the rephrased text as a feedback signal to
inform the annotators how well the generated text
manages to change the confidence of the model.
If our annotators are unable to create a successful
rephrasing in at most four trials, they continue with
the next test example. At any point, the annotators
have the possibility to skip a particular example.

Each example t ∈ T correct is annotated by one
of the five annotators. We provide more details on
the annotator qualification and training in Appendix
A. In total, the process took 3 months to complete.

Quality Assessment To assess the quality of our
annotations we sampled 175 examples from each
dataset and verified using an external set of an-
notators that the original and rephrased texts are
semantically similar and they convey the same emo-
tion. We computed the inter-annotator agreement
between the external annotators and our student
annotators and obtained a Krippendorff alpha of
0.75, indicating strong agreement.

CancerEmo GoEmotions

Total 2, 254 3, 067
Correct 1, 603 1, 745

Incorrect 651 1, 322

Table 2: Total number of examples in the two test
datasets and the number of examples correctly and in-
correctly predicted by the baseline BERT model.

Model-in-the-Loop (BERT) Performance Ta-
ble 2 shows the number of test examples correctly
and incorrectly predicted by BERT on each dataset,
GoEmotions and CancerEmo. On GoEmotions,
BERT obtains an F1 score of 0.59 and correctly
classifies 1, 745 examples from the test set, while
on CancerEmo, BERT obtains an F1 score of 0.73
and correctly classifies 1, 603 examples. These ex-
amples constitute our T correct sets which we aimed
to rephrase with our student annotators.

Training Subsets Additionally, we also used hu-
man annotators to rephrase 500 examples from the
training set of each dataset to explore various ways
of using the rephrasings during training to improve
the model robustness. We call our datasets GoE-
motions.v2 and CancerEmo.v2.

4 Datasets Characteristics

The annotation process of our test evaluation
datasets, GoEmotions.v2 and CancerEmo.v2
produced 6, 104 total rephrasings, yielding an
average of 1.82 rephrasings per sample. Our test
sets differentiate themselves from existing datasets
in that they are created to be challenging by nature
and can be viewed as a tool to understand the
weaknesses of language models when emotions are
expressed in more implicit ways. We also contrast
our datasets with their backtranslated versions
since backtranslation (Tiedemann and Scherrer,
2017) is well-known to introduce diversity in input
text while maintaining similar semantic meaning.
Backtranslation rephrases a text by translating it
to a foreign language and back to English. We
aim to understand how our manual rephrasings
compare to rephrasings produced by this type of
automatic approaches. To this end, we propose to
analyze two backtranslation methods for obtaining
rephrasings for T correct. We leverage the OPUS-
MT model (Tiedemann, 2012) to translate our
text to German and back to English using top-50
sampling decoding and 1) A softmax temperature
of 1 (BT-1) and 2) A softmax temperature of 10
(BT-10). Note that a softmax temperature of 10
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Figure 2: The number of examples at various rephras-
ings and on the T incorrect set for CancerEmo (a) and
GoEmotions (b), respectively. (c) shows the average KL
divergence between the word distribution of original
examples and their rephrasings for both datasets.

introduces more variability in model predictions.
We present characteristics of our datasets below.

Number of Rephrasings We show in Figures
2(a) and 2(b) the number of examples originally
incorrectly predicted by BERT T incorrect and the
number of examples from T correct that require
from 1 to 4 rephrasings on CancerEmo and GoE-
motions, respectively. We observe that 523 exam-
ples need a single rephrasing to reach an incorrect
prediction by the model for GoEmotions and 498
for CancerEmo. Additionally, in total there are 93
examples in GoEmotions and 61 in CancerEmo
where the annotators were unable to produce a suc-
cessful rephrasing in four or less attempts.

Vocabulary Divergence We show in Figure 2(c)
the differences in the word distribution of origi-
nal examples in T correct, their rephrasings TR by
our annotators, and the backtranslated versions of
T correct. Concretely, the values in the figure mea-
sure the KL divergence between original samples
(T correct) and their nth rephrasing and the KL di-
vergence between original samples and backtrans-
lated versions of T correct. We observe that our an-
notators tend to introduce more diversity the more
attempts are needed to make an incorrect prediction.
Notably, the KL divergence between the distribu-
tion of the 4th rephrasings and the original samples
(R4) is twice as large as that between the 1st and
the original (R1). Interestingly, we observe that
BT-1 has a similar word distribution to T correct,
indicating that backtranslation tends to leverage the
same words in their outputs. We see that raising the
temperature of the softmax introduces significantly
more diversity: the KL divergence increases from
0.1 in BT-1 to 0.24 in BT-10 on CancerEmo and
from 0.1 to 0.21 on GoEmotions.

Explicit Emotion Word Frequency Let an ex-
plicit emotion word be any emotion word in the
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Figure 3: (a) Average amount of explicit emotion words
for both datasets. (b) and (c) Distribution of explicit,
implicit, and misleading examples in GoEmotions and
CancerEmo, respectively.

input text that is associated with the same emotion
as the emotion label of the text. For example, in I
am happy annotated with the emotion joy, happy
is an explicit emotion word since it is associated
with the emotion joy. We also denote a text that
contains such words by explicit text. To obtain
the labels of individual words we use the EmoLex
(Mohammad and Turney, 2013) emotion-word as-
sociation lexicon, which associates words with one
of the Plutchik-8 basic emotions (Plutchik, 1980).
We show in Figure 3(a) how the average amount of
explicit emotion words changes across the rephras-
ings of T correct from R1 to R4. We observe a
steady decrease in frequency on both datasets, indi-
cating that the challenging examples created by our
annotators contain fewer explicit emotion words
with more rephrasing attempts. Interestingly, the
average number of explicit emotion words in the
T incorrect set of originally challenging examples
is 0.59 on CancerEmo and 0.62 on GoEmotions,
is similar to that of R1 and is significantly higher
than that of R4 where the ratio of explicit words
is 0.32 on CancerEmo and 0.33 on GoEmotions.
Additionally, we can see that both BT-1 and BT-10
retain a large fraction of explicit emotion words
after backtranslating the text.

Lexical Cues Besides the explicit text category
defined above, we introduce here two additional
categories: implicit and misleading. We define
implicit text as any text where emotion lexical
cues are absent. For example, in Not sure what
will happen to me when I get home, no lexical
information hints towards the fear emotion, hence
this example is implicit. We define misleading text
such as amazing, I love when the rules change just
before the deadline any text that contains emotion-
specific cues which are indicative of an emotion but
that emotion is different than the gold annotated
label. Here, amazing and love hint towards joy,
however the conveyed emotion is anger.
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Figure 4: Ratio of explicit, implicit and misleading
examples on variations of T correct on GoEmotions (a)
and on CancerEmo (b).

We show in Figures 3(b) and 3(c) the frequency
of explicit, implicit, and misleading examples
in various subsets of the test data: T , T correct,
T incorrect, and TR for GoEmotions and Cancer-
Emo, respectively. Interestingly, we see a clear
pattern. The original correctly predicted examples
T correct contain mostly explicit examples, which
validates our assumption that these types of exam-
ples are easy to classify. Specifically, these easy
examples can be classified by simply learning spu-
rious correlations between the data and the labels
(Wang et al., 2021). Notably, the T correct set con-
tains 886 explicit examples in GoEmotions and
954 in CancerEmo, twice as many as in the set
of incorrect predictions T incorrect. T incorrect also
predominantely contains implicit or misleading ex-
amples. Comparing T correct with TR also offers
valuable information: although the two subsets ef-
fectively contain the same examples in terms of
semantic and emotional meaning, the rephrased
texts contain 2.5 times as many implicit examples,
2 times as many misleading examples, and a much
smaller amount of explicit examples. These results
can therefore be viewed as strong evidence that
de-explicitizing a piece of text, i.e., removing sur-
face lexical cues that can artificially hint towards
the emotion label or inserting misleading cues can
pose significant challenges to language models.

Types of Examples at Each Rephrasing We
show in Figures 4(a) and 4(b) the ratio of ex-
plicit, implicit, and misleading examples on
T correct, backtranslations of T correct, and at dif-
ferent rephrasing attempts of T correct. This result
shows that the more rephrasings an example re-
quires, the more likely it is that the rephrasing is an
implicit or misleading example. Moreover, at the
4th rephrasing, the ratio of misleading examples be-
comes close to that of explicit examples, denoting
that the use of misleading lexical cues is the most

effective way to make the model return an incor-
rect prediction. We also show in Appendix B the
negation statistics and analysis in our rephrasings.

5 Language Models

In this section, we describe the language models
that we use in our experiments to evaluate the diffi-
culty of our new test datasets. We detail the experi-
mental setup of our methods in Appendix C.

5.1 Small Language Models (SLMs)
Fine-tuning on the original training set We
fine-tune the following small pre-trained language
models on the original training set of each dataset,
GoEmotions and CancerEmo: (a) BERT (Devlin
et al., 2019) - pre-trained using the masked lan-
guage modeling (MLM) objective; (b) RoBERTa
(Liu et al., 2019b) - pre-trained in a more robust
way than BERT, i.e., using dynamic masked lan-
guage modeling where different words are masked
in different epochs during training and is pre-
trained on significantly more data than BERT; (c)
XLNet (Yang et al., 2019) - pre-trained with a “Per-
mutation Language Modeling” objective instead of
MLM; and (d) eMLM BERT (Sosea and Caragea,
2021) - pre-trained with an emotion masked lan-
guage modeling objective that assigns higher mask-
ing probabilities to emotion-relevant words during
pre-training.

Fine-tuning on the original training set +
rephrased challenging training examples For
each dataset, GoEmotions and CancerEmo, in
addition to the test evaluation datasets, we also
created challenging rephrased examples for 500
original training examples. Thus, we fine-tuned
BERT, RoBERTa, XLNet, and eMLM BERT on
the combination of original training examples and
the 500 rephrased challenging examples. How-
ever, instead of using a simple combination of
original + challenging examples with a standard
cross-entropy loss, we use a cross-entropy loss
on the original examples and a KL-divergence
loss on the rephrased examples as follows: Given
a batch B = {(t1, e1), ..., (t|B|, e|B|)} of origi-
nal examples, the cross entropy loss between the
model predictions and the gold label is: LCE =∑|B|

i=0CE(M(ti), ei). For the subset of 500 train-
ing examples with rephrasings, we minimize the
KL divergence between the outputs of the model on
different rephrasings of an example. For each exam-
ple ti, we denote by TR(ti) = {tR1 (ti), tR2 (ti), ...}
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Model
Dataset Original BT-10 1 Rephrasing (1R) 2 Rephrasings (2R) 3 Rephrasings (3R) 4 Rephrasings (4R)

GoEmotions.v2

BERT 0.59±.032 0.55±.025 0.49±.053 0.23±.055 0.11±.042 0.05±.029

XLNet 0.58±.033 0.56±.026 0.46±.061 0.18±.043 0.08±.027 0.05±.022

RoBERTa 0.58±.035 0.55±.031 0.46±.046 0.22±.048 0.08±.029 0.06±.019

eMLM 0.61±.029 0.58±.039 0.50±.038 0.25±.036 0.14±.028 0.10±.029

BERT + KL 0.61±.031 0.60±.029 0.52±.047 0.26±.045 0.16±.043 0.08±.022

XLNet + KL 0.57±.035 0.55±.037 0.47±.039 0.19±.041 0.10±.031 0.08±.027

RoBERTa + KL 0.59±.028 0.55±.029 0.48±.035 0.23±.041 0.13±.039 0.11±.027

eMLM + KL 0.64±.041 0.61±.037 0.52±.058 0.27±.055 0.17±.042 0.13±.027

OPT-IML (ZS) 0.61±.000 0.59±.000 0.51±.000 0.35±.000 0.21±.000 0.14±.000

OPT-IML (FS) 0.61±.000 0.60±.000 0.51±.000 0.34±.000 0.20±.000 0.15±.000

OPT-IML (LoRA) 0.65±.051 0.62±.048 0.51±.062 0.43±.075 0.20±.053 0.15±.032

OPT-IML (FS-R) 0.62±.000 0.61±.000 0.52±.000 0.41±.000 0.23±.000 0.19±.000

ChatGPT (ZS) 0.63±.000 0.59±.000 0.55±.000 0.39±.000 0.22±.000 0.17±.000

ChatGPT (FS) 0.61±.000 0.59±.000 0.54±.000 0.40±.000 0.20±.000 0.18±.000

CancerEmo.v2

BERT 0.73±.024 0.71±.029 0.62±.043 0.45±.045 0.15±.051 0.09±.022

XLNet 0.72±.027 0.70±.031 0.63±.052 0.48±.048 0.14±.045 0.09±.043

RoBERTa 0.75±.038 0.71±.042 0.62±.053 0.46±.055 0.16±.047 0.11±.041

eMLM 0.75±.028 0.71±.033 0.64±.035 0.49±.056 0.19±.059 0.12±.042

BERT + KL 0.74±.028 0.72±.034 0.63±.058 0.49±.061 0.17±.063 0.15±.024

XLNet + KL 0.72±.024 0.71±.036 0.64±.048 0.48±.055 0.16±.49 0.15±.041

RoBERTa + KL 0.75±.022 0.72±.025 0.63±.067 0.48±.055 0.19±.038 0.15±.033

eMLM + KL 0.77±.041 0.74±.042 0.66±.055 0.50±.058 0.22±.047 0.16±.044

OPT-IML (ZS) 0.71±.000 0.70±.000 0.65±.000 0.48±.000 0.15±.000 0.15±.000

OPT-IML (FS) 0.75±.000 0.74±.000 0.65±.000 0.45±.000 0.21±.000 0.17±.000

OPT-IML (LoRA) 0.80±.041 0.76±.051 0.65±.066 0.52±.059 0.23±.048 0.14±.028

OPT-IML (FS-R) 0.77±.000 0.76±.000 0.64±.000 0.49±.000 0.25±.000 0.20±.000

ChatGPT (ZS) 0.73±.000 0.73±.000 0.61±.000 0.48±.000 0.22±.000 0.16±.000

ChatGPT (FS) 0.75±.000 0.74±.000 0.63±.000 0.46±.000 0.23±.000 0.17±.000

Table 3: F1 score on the GoEmotions.v2 and CancerEmo.v2 stress tests. Blocks in order from top to bottom: (1)
Small language models. (2) Small language models trained using the original training set + annotated rephrasings.
(3) Open-source Large Language Model OPT-IML with its variants (with prompting and fine-tuning). (4) Closed-
source Large Language Model ChatGPT (with prompting).

all the rephrasing attempts of the annotators. The
size of this set for different input examples is vari-
able and depends on how hard it is to produce a
successful rephrasing to make the model return
an incorrect prediction for that particular example.
Given a batch B′ of rephrased training examples,
the pairwise KL divergence between the output of
the model on every available rephrasing is:

LKL =

|B′|∑

i=0

|TR(ti)|∑

j=0

|TR(ti)|∑

k=j

KL(M(tRj (ti)),M(tRk (ti)))

(1)
The final loss is the sum of the two independent
losses: L = LCE + LKL.

5.2 Large Language Models (LLMs)

We benchmark an open-source large language
model OPT-IML (Iyer et al., 2022) as well as a
state-of-the-art closed-source model, ChatGPT.

Open-source LLM OPT-IML is instruction-
tuned on 2, 000 NLP tasks and achieves significant
performance improvements over prior work in nu-
merous evaluation benchmarks (Iyer et al., 2022).
We explore two variants zero-shot (ZS) and few-
shot (FS) using as many as 10 few-shot examples
in the prompt (from the original training set) for all
models. We detail our prompts for zero-shot and
few-shot in Appendix D. Additionally, we train our
OPT-IML using LoRA (Hu et al., 2021) on the en-
tire original training set of each dataset. Finally,
we integrate rephrasings of training examples into
our few-shot prompts to boost the robustness and
performance of our model. Specifically, for each
example in the few-shot prompt, we indicate in the
prompt that its rephrasings have the same meaning
and hence express the same emotion. We detail
our updated prompt in Appendix D and denote this
modified few-shot approach by OPT-IML (FS-R).
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Closed-source LLM We conduct a comparative
evaluation using the closed-source ChatGPT model,
where we explored both zero-shot (ZS) and few-
shot (FS) using as many as 10 few-shot examples
in the prompt (from the original training set) for all
models. The prompts are the same as for OPT-IML.

6 Results and Observations

We show the results of the language models (SLMs
and LLMs) in Table 3 in three settings: (a) on the
original test sets of each dataset, GoEmotions and
CancerEmo, (b) on the backtranslated test sets of
each dataset, and (c) on our challenging test sets
with various number of rephrasings. Specifically,
the column denoted by 1 Rephrasing (1R) indicates
that the evaluation was performed on the union
between the first rephrasings generated by our an-
notators on T correct (irrespective if the rephrasing
is successful or not) and T incorrect. Similarly, 2
Rephrasings (2R) represents the test set composed
of the union between the successful rephrasings of
R1, the second rephrasings generated by our anno-
tators (irrespective if the rephrasing is successful
or not) and T incorrect, and so on for 3R and 4R.

6.1 SLM Results

We show in the first block of Table 3 for each
dataset the results using the small language models.
We observe that BERT obtains an F1 of 59% and
73% on GoEmotions and CancerEmo but a low F1
score of 5% and 9%, respectively, across the fourth
rephrasing (4R) of GoEmotions and CancerEmo,
indicating that the rephrased examples pose signifi-
cant challenges for the BERT model. We note that
evaluating on examples that required more rephras-
ings leads to lower overall performance. For exam-
ple, BERT obtains an F1 of 0.49 on the 1R test set
and only 0.11 F1 on the 3R test set. RoBERTa
and eMLM both ourperform BERT on the two
datasets on the 4R test set. Critically, among the
small language models, eMLM outperforms all
approaches and obtains the best results. With an
F1 score of 10% on the 4R test set, eMLM outper-
forms RoBERTa by 4% on GoEmotions. Moreover,
eMLM obtains good results on the 2R and 3R test
sets as well, improving upon BERT by an average
of 3%. These results show the challenging nature
of our test sets as well as that pretraining using the
eMLM objective, which takes into consideration
emotion information produces a better approach for
emotion detection, which is more robust in the face

of challenging examples. We also observe from the
results on the backtranslated BT-10 test dataset that
the performance drops only slightly compared to
the original test set, indicating that backtranslation
tends to leverage the same words in their translated
outputs (as in the original input text).

Training with cross-entropy and KL divergence
The second block in Table 3 shows the results of our
language models trained using the original train-
ing set + 500 challenging training examples as
described in Section 5.1. The results show that
leveraging the rephrased training examples is ex-
tremely effective in improving the performance on
both datasets. eMLM+KL outperforms eMLM by
3% on the 4R test datasets of GoEmotions and
by 4% on CancerEmo. Interestingly, leveraging
the KL-divergence loss term improves the perfor-
mance on the original dataset as well. Specifically,
eMLM+KL pushes the performance over eMLM
by 3% on GoEmotions and by 2% on CancerEmo
on the original test sets.

6.2 LLM Results

The LLM results are shown in the third and fourth
blocks of Table 3 of each dataset. We see that
even though LLMs such as ChatGPT have access
to only zero or a few examples from the original
training set, ChatGPT consistently outperforms the
traditional language models on both datasets. No-
tably, on the 4R GoEmotions test dataset, ChatGPT
(ZS) outperforms eMLM + KL by 5%. Addition-
ally, ChatGPT (ZS) improves the performance over
both OPT-IML (ZS) and OPT-IML (FS).

We observe that training OPT-IML using LoRA
yields the best performance on the original test set,
outperforming other approaches considerably. On
GoEmotions original test set, OPT-IML (LoRA)
outperforms BERT by 6% F1 and by 7% F1 on
CancerEmo. However, we observe that the perfor-
mance of OPT-IML (LoRA) is similar to few-shot
(i.e., OPT-IML (FS)) on both GoEmotions and
CancerEmo 4R test set. These results show that the
proposed test evaluation datasets pose significant
challenges to LLM generalization as well since the
improvements on the original test set do not trans-
late to the 4R test set. On the other hand, OPT-IML
(FS-R) outperforms OPT-IML (FS) in most setups
on both GoEmotions and CancerEmo, indicating
that including challenging examples in the few-shot
prompt boosts the performance of the model.

7952



7 Conclusion

In this paper, we introduced GoEmotions.v2 and
CancerEmo.v2, two novel test evaluation datasets
which contain challenging examples in the context
of emotion detection. We carried out a comprehen-
sive analysis into the performance of deep learning
methods including large language models to under-
stand their weaknesses in emotion detection and
found that these models frequently rely blindly on
surface-level lexical cues and lack understanding
of emotions. Our test sets can be viewed as a novel
contribution not only for evaluating the capabilities
of LLMs at understanding emotions, but also com-
batting data contamination (Golchin and Surdeanu,
2023; Shi et al., 2024; Roberts et al., 2023), since
they have significantly different distributions than
examples that appear in the current training sets
of large language models. We make our annotated
datasets available on GitHub and we hope that our
work can spur research in this area.
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Limitations

In this paper, we proposed novel test evaluation
datasets that probe the capabilities of small pre-
trained language models and large language models
to evaluate their understanding of the emotions ex-
pressed in text. Using a human-and-model-in-the-
loop annotation process, we created two datasets
GoEmotions.v2 and CancerEmo.v2 having as a
starting point the existing datasets, GoEmotions
and CancerEmo. However, both these datasets are
English datasets and cover only two limited do-
mains: Reddit and Online Health Communities. In
the future, we plan to study non-English languages,
as well as other domains such as online news.
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A Annotator Qualification and Training

Prior to the annotation process, we carried out a
3− stage qualification process to train our anno-
tators to produce difficult rephrasings. In each
stage, we sampled 50 examples from T correct and
asked our annotators to produce rephrasings for
these examples. These rephrasings are then cross-
checked by expert annotators that evaluate their
quality. After cross-checking, we carried out a dis-
cussion with the annotators on various identified
errors, provided feedback, and interactively pro-
duced adequate rephrasings. This training process
proved extremely effective. While the 1st stage
produced an average annotator accuracy of 86%,
the last stage indicated an accuracy of 96%.

B Negation statistics in rephrasings

A common way to rephrase an input example is to
add a negation that does not change the meaning of
the example. For instance, the text I feel good can
be rephrased into I don’t feel bad at all, maintain-
ing the original meaning and conveyed emotion.
To explore such cases in our annotation, we show
in Figure 5 the percentage of input examples that
contain negations. First, we observe that backtrans-
lations and the T correct set of each dataset do not
contain a significant number of negations. Addi-
tionally, we note that the number of negations rises
with the first rephrasing, however, with three or four
rephrasings, this number becomes constant. This
may indicate that examples that are more challeng-
ing to rephrase require more sophisticated changes
than simple negations (e.g, de-explicitization, cre-
ating a misleading example).

C Experimental Setup

We carry out all our experiments on a cluster of
4 Nvidia A5000 GPUs. We use the HuggingFace
Transformers (Wolf et al., 2020) library for our
model implementations and we will make the code
for our methods and data available. For the closed
source model, we use the ChatGPT API. We report
the performance for emotion detection in terms of
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macro F1 score. We run our approaches that require
training and can produce variable results from run
to run five times and report average values. These
are traditional language models (i.e., BERT-like
models) and the Lora-trained OPT-IML.

D Zero-shot and Few-shot Prompts

We show the design of our zero-shot (ZS), few-shot
(FS), and few-shot adversarial (FS-ADV) prompts
in Table 4.
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t
Zero-shot Prompt (ZS)
Given the following text: (Instruction)
After being clean for 7 years, my wife not wanting to be with me has led me to pick up my old habits (Input Example)
Classify the text into one of the following categories depending on the emotion expressed by the text: (Instruction)
1. Anger 2. Joy 3. Sadness 4. Fear 5. Disgust 6. Anticipation 7. Trust 8. Surprise (Classes/Emotions)
model_completion

Few-shot Prompt (FS)

Given the text above: (Instruction)
Classify the text into one of the following categories depending on the emotion expressed by the text: (Instruction)
1. Anger 2. Joy 3. Sadness 4. Fear 5. Disgust 6. Anticipation 7. Trust 8. Surprise (Classes/Emotions)
I just cant stand seeing her like this. (Few-shot example #1 text)
3. Sadness (Few-shot example #1 label)
It is so awesome to hear news like yours! (Few-shot example #2 text)
8. Surprise (Few-shot example #2 label)
...
Guess I am more scared cause this has been very speedy. (Few-shot example #N text)
4. Fear (Few-shot example #N label)
After being clean for 7 years, my wife not wanting to be with me has led me to pick up my old habits (Input Example)
model_completion

Few-shot Adversarial Prompts (FS-ADV)

Given the text above: (Instruction)
Classify the text into one of the following categories depending on the emotion expressed by the text: (Instruction)
1. Anger 2. Joy 3. Sadness 4. Fear 5. Disgust 6. Anticipation 7. Trust 8. Surprise (Classes/Emotions)
A lot of amazing things happened after you left, however, the fact that we missed the mark by 2 meters really disappointed us. (Few-shot example #1 text)
The text expresses 3. Sadness (Few-shot example #1 label) because it has the same meaning as: (Instruction)
While good things happened after you left, unfortunately, we missed the mark which left us extremely disappointed. (Rephrasing of Few-shot Example #1)
which clearly expresses 3. Sadness (Few-shot example #1 label)
Was in a very happy mood for a while, but then exams started getting closer and closer. (Few-shot example #2 text)
The text expresses 4. Fear (Few-shot example #2 label) because it has the same meaning as: (Instruction)
Used to be happy but the exams coming up are terrifying. (Rephrasing of Few-shot Example #2)
which clearly expresses 4. Fear (Few-shot example #2 label)
...
After being clean for 7 years, my wife not wanting to be with me has led me to pick up my old habits (Input Example)
The text expresses:
model_completion

Table 4: Prompt designs for our LLM models.
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