
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 7900–7912

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Meta-Reasoning Improves Tool Use in Large Language Models

Lisa Alazraki
Imperial College London

lisa.alazraki20@imperial.ac.uk

Marek Rei
Imperial College London

marek.rei@imperial.ac.uk

Abstract

External tools help large language models suc-
ceed at tasks where they would otherwise typ-
ically fail. In existing frameworks, choosing
tools at test time relies on naive greedy decod-
ing, regardless of whether the model has been
fine-tuned on tool-annotated data or prompted
with in-context examples. In contrast, we find
that gathering and choosing among a suitable
set of candidate tools has greater potential to
lead to an optimal selection. We present Tool
selECTion via meta-reasONing (TECTON), a
two-phase system that first reasons over a task
and outputs candidate tools using a custom fine-
tuned language modelling head. Then, with the
custom head disabled, it meta-reasons (i.e., it
reasons over the previous reasoning process) to
make a final choice. We show that TECTON re-
sults in substantial gains—both in-distribution
and out-of-distribution—on a range of math
reasoning datasets.

1 Introduction

Augmentation with external tools has proven effec-
tive at boosting the performance of large language
models (LLMs) in knowledge-intensive tasks such
as QA and math problem-solving (Hao et al., 2023;
Paranjape et al., 2023; Parisi et al., 2022; Schick
et al., 2023). Tools are self-contained programs
or APIs which the model can execute with cho-
sen arguments as needed. To teach an LLM how
to use tools, previous work adopts one of three
main strategies: (1) tool demonstrations via in-
context learning (ICL) (Gao et al., 2023; Gupta
and Kembhavi, 2023; Hsieh et al., 2023; Surís
et al., 2023), (2) full model fine-tuning on a dataset
where text samples are interleaved with tool annota-
tions (Parisi et al., 2022; Schick et al., 2023; Tang
et al., 2023; Patil et al., 2023), or (3) parameter-
efficient fine-tuning (PEFT) on tool annotated data
(Hao et al., 2023; Qiao et al., 2024; Wang et al.,

2024). Similarly to full fine-tuning, PEFT meth-
ods can teach LLMs a very large number of tools,
while ICL is limited by the fixed size of the context
window (Hao et al., 2023; Patil et al., 2023). Al-
though the fine-tuning paradigm in general binds
the model to the set of tools learned during train-
ing, parameter-efficient learning reduces the cost
of tuning, thus facilitating potential future exten-
sions of the tool set. In contrast, adding further
tools via a new round of full-model tuning incurs
a significant computational cost (Hao et al., 2023).
We note that a further advantage of PEFT is that it
tunes a handful of additional task-specific parame-
ters, which can be selectively disabled to reinstate
the frozen model and its original capabilities (Ding
et al., 2023; Han et al., 2024).

In existing literature, inference-time tool selec-
tion is made by greedily decoding the most likely
tool (Gao et al., 2023; Hao et al., 2023; Schick et al.,
2023; Wang et al., 2024), regardless of whether the
model has been fully fine-tuned, PEFT-tuned, or
prompted in-context. In this work, we revisit the
paradigm that selects tools solely based on their
probability at decoding time. We propose an al-
ternative, novel framework for Tool selECTion
via meta-reasONing (TECTON) that gathers and
chooses among a suitable set of candidate tools.
We train a parameter-efficient language modelling
head on tool-annotated data, similar to Hao et al.
(2023), which can be switched on or off as needed.
TECTON thus comprises two distinct phases: in
the reasoning phase, it investigates a task and out-
puts candidate tools with the aid of the tuned LM
head. Then, in the meta-reasoning phase, it uses
the frozen LLM to re-examine the candidates and
make a final decision. Fig. 1 illustrates the frame-
work. We train and evaluate TECTON on math
reasoning datasets, following established work on
LLM tool calling (Chen et al., 2024; Das et al.,
2024; Gou et al., 2024). Among tasks that benefit
from tools, math reasoning is particularly challeng-

7900



Figure 1: An overview of TECTON. In the reasoning phase, the system inspects the task and decodes a set
of candidate tools, followed by argument insertion and evaluation of the tools via the Python interpreter. In
the meta-reasoning phase, the model is asked to select the most useful tool, either by scoring multiple options
(TECTON-SCORE) or by continuing the generation given the decoded tools as hints (TECTON-GENERATE).

ing, since it requires chains of multiple tool calls
with errors that compound. This is evidenced by
existing tool-augmented LLMs, which achieve the
lowest performance on math reasoning when eval-
uated on multiple tasks (Hao et al., 2023; Schick
et al., 2023). In summary, our main contributions
are:

• We introduce TECTON, a novel two-phase
framework that combines a custom fine-tuned
head with a frozen LLM to improve tool use
(Section 2).

• We show that TECTON outperforms strong
baselines in math reasoning tasks, both on in-
distribution data and on unseen benchmarks
(Section 3).

• We enhance three popular math reasoning
datasets to make them more challenging for
current LLMs. We share our data and code at
https://github.com/lisaalaz/tecton.

2 Method

2.1 Preliminaries
We augment the language modelling head of a base
model with additional token embeddings T to rep-
resent math operations, and train them via a stan-

dard language modelling objective. Once trained,
T comprises the tools available to the LLM for
solving math problems. Prior work has shown the
effectiveness of tuning additional tokens for both
math tasks (Hao et al., 2023; Wang et al., 2024)
and general reasoning (Goyal et al., 2024; Herel
and Mikolov, 2024).

Our preliminary experiments show that in cases
where the LLM has failed to generate the correct
tool by greedy sampling, this can usually be found
among tokens that have only slightly lower proba-
bilities (Figure 3). Over-sampling an appropriate
set of candidate tools may thus be a better strategy
than greedily decoding the most likely tool, pro-
vided this is combined with a reliable method for
choosing among the candidates. To this end, we
design a two-phase framework that leverages both
the specialised, augmented LM head (reasoning
phase) and the underlying generalist LLM (meta-
reasoning phase). The rest of the section describes
this in detail.

2.2 Reasoning Phase

Given a math problem where individual reason-
ing steps are separated by newline tokens, we ask
the LLM to solve it line by line, and collect a
set of candidate tools for each line using the aug-

7901

https://github.com/lisaalaz/tecton


mented LM head. We experiment with both tem-
perature sampling and greedy decoding of multiple
tokens (see Appendix A). We find that looking at
the top k most likely tokens at every position in
the sequence is the most promising approach to
gather a diverse yet relevant pool of candidates.
Hence, we generate an intermediate solution to
each line of the problem, gathering tools from
the top k tokens at each decoding step. For each
line, the multiset C of candidate tools is given by
C = {{Wij ∈ T, 1 ≤ i ≤ l, 1 ≤ j ≤ k}}, where
T is the set of available tool tokens, and W is the
matrix resulting from decoding k top-probability
tokens at each of the l token positions in the line of
text. We set k = 5 as a trade-off between search
space size and computation cost. We then prompt
the LLM to produce arguments for each candidate
tool given the previous context. Identical tools with
the same arguments are dropped from the pool. Fi-
nally, we pass each candidate tool and arguments
into the Python interpreter, and keep those that are
successfully evaluated. Once a line of text toward
the solution has been processed in this way, we
move onto the meta-reasoning phase.

2.3 Meta-Reasoning Phase
In this phase, we disable the custom-tuned head
and let the underlying LLM analyse its previous
reasoning process to choose among the candidate
tools. Frozen LLMs have been used to self-evaluate
and meta-reason over previous answers in existing
literature (Alazraki et al., 2023; Shinn et al., 2023;
Yao et al., 2023a; Zeng et al., 2024b). We exper-
iment with two ways of eliciting meta-reasoning:
TECTON-SCORE and TECTON-GENERATE.

TECTON-SCORE. We join each candidate tool
with the previous context, and present these as
options for the LLM to score. We prefix each
option with an uppercase letter label and select
as the answer continuation the option whose la-
bel is assigned highest probability by the model,
i.e., arg maxti∈Vsub

p(ti | t<i with t<i ∈ V), where
Vsub denotes a subset of the vocabulary containing
only the uppercase letter tokens that are in the label
set. In this setup, we limit the number of candidates
to a maximum of four.

TECTON-GENERATE. We pass the candidate
tools as hints and ask the model to generate an
appropriate continuation of the answer. Here, the
hints serve as mere guidance for the LLM (i.e., the
model could choose to ignore all candidates and

A B
0

0.2

0.4

0.6

0.8

A B C A B C D

Figure 2: Averaged biased probability distributions over
n labels (for n = {1, 2, 3}), obtained on GSM8K-XL’s
validation set. The dotted lines indicate the uniform
averaged distribution that would be given by an unbi-
ased model. Note that the label distribution is similarly
skewed for FuncQA.

generate something different). In this version of the
system, the model benefits from dynamically re-
trieved few-shot exemplars demonstrating the tools
in the candidate set.

2.4 Bias Calibration

Upon running TECTON-SCORE without recalibra-
tion of the label probabilities, we find that the
validation results are poor. Visual inspection of
the samples reveals that the model assigns highest
likelihood to the same label in most instances, as
shown in Fig. 2. This is consistent with Zheng et al.
(2024)’s finding that LLMs are prone to selection
bias in multiple-choice tasks. To solve a similar
problem, Duarte et al. (2024) measure their model’s
bias over the labels A, B, C, D using a set of neu-
tral samples where a uniform distribution would be
expected, and subtract that bias from each label’s
likelihood at inference time. Our math reasoning
task does not lend itself to finding neutral samples,
so we adopt a different strategy. Having created
data samples of questions and options (by running
the reasoning phase of TECTON on a validation set),
we compute n! permutations of the n options while
keeping the letter labels in the same position. We
have the model score the labels for each permuta-
tion, and average over all permutations and all data
samples to obtain an averaged biased distribution
B(n). Since the number of options in our task is
variable, we run this process independently for data
samples with n = 2, n = 3 and n = 4 labels. At
inference time, given a set of labels L(n) of size n,
we retrieve the corresponding B(n) and compute
the calibrated probability p̂i of each label li in the
set as

p̂i = pi +
1

n
−B(n)

i

7902



where pi is the probability assigned by the model
to label li for the current sample, B(n)

i is the pre-
computed biased probability of label li, and n is
the total number of labels.

2.5 Retrieval of Tool Demonstrations

To aid answer generation in TECTON-GENERATE,
we dynamically retrieve and add to the context few-
shot exemplars demonstrating the candidate tools.
We create the retrieval pool by extracting training
samples and collecting candidate tools for each,
by running the reasoning phase of TECTON. We
construct each exemplar to simulate the inference
task, as follows: (1) we append to the sample its
set of candidate tools, and (2) we append to it the
golden answer demonstrating how the correct tool
is used to obtain the final solution. At inference
time, we retrieve only the exemplars whose golden
answers contain the tools currently in the candidate
set. It is worth noting that dynamic retrieval was not
included in TECTON-SCORE as it did not improve
validation performance.

3 Experiments

3.1 Experimental Setup

Our system is model-agnostic and can be applied to
any open-weights LLM. Here, we use Llama 3 8B
Instruct (Dubey et al., 2024) (henceforth referred
to as Llama 3) as the base model in all experiments.
Implementation details and hyperparameters are
given in Appendix B.

3.2 Datasets

We train and evaluate TECTON on GSM8K-XL
(Cobbe et al., 2021; Hao et al., 2023) and FuncQA
(Hao et al., 2023). The test set of the latter is com-
prised of two distinct subsets: a ‘one-hop’ cor-
pus containing problems solvable with one single
operation (FuncQA-OH), and a ‘multi-hop’ one
requiring multiple operations (FuncQA-MH). For
GSM8K-XL we tune four additional tokens corre-
sponding to the four basic operations, and extend
these to 13 in the case of FuncQA. The complete
set of tools for each dataset is shown in Appendix
B. Additionally, we evaluate on out-of-distribution
datasets that were not observed during fine-tuning.
For this purpose we choose a range of math reason-
ing datasets: ASDiv (Miao et al., 2020), MAWPS
(Koncel-Kedziorski et al., 2016) and SVAMP (Pa-
tel et al., 2021). These were found by Ott et al.
(2023) to be OOD with respect to GSM8K: not

only do they display minimal n-gram overlap, but
they also require reasoning chains of different av-
erage lengths from GSM8K to be solved. These
datasets have been used to evaluate LLMs in previ-
ous works, both with and without the aid of tools
(Kojima et al., 2022; Schick et al., 2023). Follow-
ing a strategy similar to the one used by Hao et al.
(2023) for constructing GSM8K-XL, we magnify
the numbers in these datasets to make them chal-
lenging for current LLMs (the enhancement pro-
cess is described in Appendix D). We thus obtain
ASDiv-XL, MAWPS-XL, and SVAMP-XL. We use
these datasets to test models tuned on GSM8K-XL.

3.3 Baselines

We implement recent tool-augmented models
as baselines: TRICE (Qiao et al., 2024) and
ToolkenGPT (Hao et al., 2023). These share a
parameter-efficient approach with TECTON (see
Appendix C for details). Despite their relatively
low computational cost, they have been shown to
outperform strong systems: TRICE paired with Al-
paca (Taori et al., 2023), ChatGLM (Zeng et al.,
2024a) and Vicuna (Zheng et al., 2023) surpasses
the much larger GPT-3.5 as well as tool learning via
supervised fine-tuning. In addition to outperform-
ing GPT-3.5, ToolkenGPT paired with LLaMA
(Touvron et al., 2023) is more accurate than Re-
Act (Yao et al., 2023b). It should also be noted that
LLMs are increasingly able to solve math problems
and perform difficult arithmetic without tools, as
shown by the high accuracy (79.6%) achieved by
Llama 3 on the non-enhanced version of GSM8K
(Dubey et al., 2024). Hence we additionally com-
pare against a vanilla version of Llama 3 as well
as Chain-of-Thought (CoT) prompting (Wei et al.,
2022) with exemplars extracted from the train set.

3.4 Results

Table 1 shows TECTON’s gains on math reasoning.
Both versions of the system achieve scores above
baselines for in-distribution and out-of-distribution-
data, with the exception of TECTON-GENERATE on
GSM8K-XL, whose performance is slightly below
that of ToolkenGPT.

In-distribution performance. On GSM8K-XL,
our best implementation scores 7.2 percentage
points above TRICE and 2.3 above ToolkenGPT.
When evaluated on in-distribution data, TEC-
TON’s most significant gains are on FuncQA: the
GENERATE setting doubles the performance of

7903



In-distribution Out-of-distribution

FuncQA-OH FuncQA-MH GSM8K-XL ASDiv-XL MAWPS-XL SVAMP-XL

Llama 3 10.0 2.9 13.0 25.8 26.2 27.8
+ CoT 25.0 5.9 37.3 40.6 58.7 51.9
+ TRICE - - 43.5 52.2 71.2 49.6
+ ToolkenGPT 65.0 10.3 48.4 45.3 68.3 60.4
+ TECTON-SCORE 66.7 17.6 50.7 53.6 76.9 62.2
+ TECTON-GENERATE 70.0 20.6 45.8 55.3 77.4 66.7

Table 1: Accuracies on math reasoning datasets measured via exact match of the result rounded to 2 decimal places.
We do not tune TRICE on FuncQA as this dataset lacks the necessary annotations for RLEF training. Note that the
separation between in-distribution and out-of-distribution data does not apply to the vanilla version of Llama 3.

In-distribution Out-of-distribution

FuncQA-OH FuncQA-MH GSM8K-XL ASDiv-XL MAWPS-XL SVAMP-XL

TECTON-SCORE
– bias calibration

58.3 8.8 49.3 52.2 75.0 61.9

TECTON-GENERATE
– dynamic exemplar retrieval

58.3 13.2 43.5 50.8 71.2 62.9

Table 2: Results of ablating components of TECTON-SCORE and TECTON-GENERATE, on in-distribution and
out-of-distribution data.

ToolkenGPT in the challenging multi-hop task,
reaching 20.6% accuracy. For context, Llama 3
can only solve 2.9% of the dataset and CoT only
raises performance to 5.9%.

Out-of-distribution performance. On OOD
datasets, TECTON’s advantage is substantial: on
average, TECTON-GENERATE gains 8.5 percent-
age points over ToolkenGPT and 8.8 over TRICE.
TECTON-SCORE achieves 6.2 and 6.6 above the
two baselines, respectively. This highlights the
adaptability of the method to unseen data.

3.5 Ablations

To gain more insight into these results, we perform
an ablation study on the meta-reasoning phase of
TECTON, shown in Table 2. We ablate bias cal-
ibration from TECTON-SCORE and dynamic ex-
emplar retrieval from TECTON-GENERATE. On
average, TECTON-SCORE’s ablated accuracy is 6.2
percentage points lower than the non-ablated ver-
sion on in-distribution data, and 1.2 on unseen
datasets. Additionally, TECTON-GENERATE’s av-
erage performance drops by 7.2 on in-distribution
data and 4.9 on OOD data. The most significant
performance loss is on FuncQA: the ablated ver-
sions of TECTON-SCORE and TECTON-GENERATE

see a decrease of 8.4 and 11.7 percentage points,
respectively, on the one-hop test set. They also
drop by 8.8 and 7.4, respectively, on the multi-

hop split. On GSM8K, the decline is less severe:
−1.4 for TECTON-SCORE and −2.3 for TECTON-
GENERATE. TECTON-SCORE’s decrease after ab-
lation is similarly modest on OOD datasets, while
TECTON-GENERATE’s is more significant: its ab-
lated performance drops by 6.2 points on MAWPS,
4.5 on ASDiv and 3.8 on SVAMP. This highlights
the benefit of dynamic exemplar retrieval during
the meta-reasoning phase of TECTON-GENERATE.
Despite the performance decline, we find that
both ablated versions of TECTON outperform CoT
on all datasets. They also consistently surpass
ToolkenGPT’s accuracy on OOD datasets, and ei-
ther match or outperform TRICE, with the sole
exception of TECTON-GENERATE on ASDiv-XL.

4 Conclusion

We introduce TECTON, a novel two-phase frame-
work that first samples a set of candidate tools
and then selects the optimal candidate via meta-
reasoning. We implement two versions of the
system and find that both achieve superior per-
formance on math reasoning datasets, surpassing
our strongest baseline by ∼ 4% on in-distribution
data and ∼ 9% on unseen benchmarks, on average.
These results confirm our hypothesis that a spe-
cialized, custom-tuned framework and a generalist
pre-trained model can work together to improve
tool use in challenging tasks.

7904



Limitations

This paper solely focuses on math reasoning tasks.
While this is consistent with established literature,
there are other domains (e.g., knowledge-intensive
QA, virtual environment navigation) that can bene-
fit from the use of tools. Future work can investi-
gate a wider range of tasks.

Ethical Considerations

We have verified that all datasets and software uti-
lized in this paper allow for their use, distribution
and modification. Our non-commercial purpose is
consistent with all licenses. The distribution of our
code and data is accompanied by the licenses and
credits to the original authors.

Acknowledgments

The authors would like to thank Joe Stacey for his
insightful comments on the first draft of this paper.

References
Lisa Alazraki, Lluis Castrejon, Mostafa Dehghani, Fan-

tine Huot, Jasper Uijlings, and Thomas Mensink.
2023. How (not) to ensemble LVLMs for VQA.
In Proceedings on "I Can’t Believe It’s Not Better:
Failure Modes in the Age of Foundation Models"
at NeurIPS 2023 Workshops, volume 239 of Pro-
ceedings of Machine Learning Research, pages 1–20.
PMLR.

Nuo Chen, Hongguang Li, Baoyuan Wang, and Jia Li.
2024. From good to great: Improving math reasoning
with tool-augmented interleaf prompting. In Proceed-
ings of the 2nd Workshop on Natural Language Rea-
soning and Structured Explanations (@ACL 2024),
pages 64–79, Bangkok, Thailand. Association for
Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Debrup Das, Debopriyo Banerjee, Somak Aditya, and
Ashish Kulkarni. 2024. MATHSENSEI: A tool-
augmented large language model for mathematical
reasoning. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 942–966,
Mexico City, Mexico. Association for Computational
Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Yang
Zonghan, Yusheng Su, Shengding Hu, Yulin Chen,

Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2023. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine
Intelligence, 5:1–16.

André V. Duarte, Xuandong Zhao, Arlindo L. Oliveira,
and Lei Li. 2024. DE-COP: Detecting copyrighted
content in language models training data. Preprint,
arXiv:2402.09910.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,

7905

https://proceedings.mlr.press/v239/alazraki23a.html
https://aclanthology.org/2024.nlrse-1.7
https://aclanthology.org/2024.nlrse-1.7
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2024.naacl-long.54
https://doi.org/10.18653/v1/2024.naacl-long.54
https://doi.org/10.18653/v1/2024.naacl-long.54
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://arxiv.org/abs/2402.09910
https://arxiv.org/abs/2402.09910


Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,

Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The Llama 3
herd of models. Preprint, arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. 2023. PAL: Program-aided lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. ToRA: A tool-integrated reasoning
agent for mathematical problem solving. In Pro-
ceedings of the Twelfth International Conference on
Learning Representations, ICLR’24.

7906

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://dl.acm.org/doi/10.5555/3618408.3618843
https://dl.acm.org/doi/10.5555/3618408.3618843
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452


Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In Proceedings of
the Twelfth International Conference on Learning
Representations, ICLR’24.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 14953–14962.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
Preprint, arXiv:2403.14608.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. ToolkenGPT: Augmenting frozen language
models with massive tools via tool embeddings. In
Advances in Neural Information Processing Systems,
volume 36, pages 45870–45894. Curran Associates,
Inc.

David Herel and Tomas Mikolov. 2024. Think-
ing tokens for language modeling. Preprint,
arXiv:2405.08644.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. Preprint, arXiv:2308.00675.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,
and Ashwin Kalyan. 2022. Lila: A unified bench-
mark for mathematical reasoning. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Simon Ott, Konstantin Hebenstreit, Valentin Liévin,
Christoffer Egeberg Hother, Milad Moradi, Maxi-
milian Mayrhauser, Robert Praas, Ole Winther, and
Matthias Samwald. 2023. Thoughtsource: A central
hub for large language model reasoning data. Scien-
tific Data, 10:528.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. ART: Automatic multi-
step reasoning and tool-use for large language mod-
els. Preprint, arXiv:2303.09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
TALM: Tool augmented language models. Preprint,
arXiv:2205.12255.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive APIs. Preprint,
arXiv:2305.15334.

Shuofei Qiao, Honghao Gui, Qianghuai Jia, Huajun
Chen, and Ningyu Zhang. 2024. Making language
models better tool learners with execution feedback.
In Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information
Processing Systems, volume 36, pages 68539–68551.
Curran Associates, Inc.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 8634–8652. Curran
Associates, Inc.

7907

https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://arxiv.org/abs/2405.08644
https://arxiv.org/abs/2405.08644
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://aclanthology.org/2022.emnlp-main.392/
https://aclanthology.org/2022.emnlp-main.392/
https://doi.org/10.1038/s41597-023-02433-3
https://doi.org/10.1038/s41597-023-02433-3
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2205.12255
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://aclanthology.org/2024.naacl-long.195/
https://aclanthology.org/2024.naacl-long.195/
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf


Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
ViperGPT: Visual inference via python execution
for reasoning. Proceedings of IEEE International
Conference on Computer Vision (ICCV).

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. ToolAlpaca: Gener-
alized tool learning for language models with 3000
simulated cases. Preprint, arXiv:2306.05301.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A strong,
replicable instruction-following model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMa: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Xinyi Wang, Lucas Caccia, O. Ostapenko, Xingdi Yuan,
and Alessandro Sordoni. 2024. Guiding language
model reasoning with planning tokens. Preprint,
arXiv:2305.15334.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2023a.
Tree of Thoughts: Deliberate problem solving with
large language models. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 11809–
11822. Curran Associates, Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
ReAct: Synergizing reasoning and acting in language
models. In Proceedings of the Eleventh International
Conference on Learning Representations, ICLR’23.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,
Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang,
Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lin-
dong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang,
Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan,
Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An,
Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi
Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
2024a. ChatGLM: A family of large language mod-
els from GLM-130b to GLM-4 All Tools. Preprint,
arXiv:2406.12793.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun
Jiang, and Jiaya Jia. 2024b. MR-GSM8K: A meta-
reasoning benchmark for large language model eval-
uation. Preprint, arXiv:2312.17080.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2024. Large language models are not
robust multiple choice selectors. In The Twelfth Inter-
national Conference on Learning Representations.

Lianmin Zheng, Hao Zhang, Wei-Lin Chiang, Zhuo-
han Li, Zi Lin, Ying Sheng, Zhanghao Wu, Siyuan
Zhuang, Yonghao Zhuang, Gonzalez Joseph E, Ion
Stoica, and Eric P Xing. 2023. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* Chat-
GPT quality.

7908

https://openaccess.thecvf.com/content/ICCV2023/papers/Suris_ViperGPT_Visual_Inference_via_Python_Execution_for_Reasoning_ICCV_2023_paper.pdf
https://openaccess.thecvf.com/content/ICCV2023/papers/Suris_ViperGPT_Visual_Inference_via_Python_Execution_for_Reasoning_ICCV_2023_paper.pdf
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/pdf/2210.03629
https://arxiv.org/pdf/2210.03629
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://openreview.net/forum?id=shr9PXz7T0
https://openreview.net/forum?id=shr9PXz7T0
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna


A Preliminary Experiments

A.1 Top-k Decoding

We run ToolkenGPT (in its original implementa-
tion based on the first version of LLaMA) on the
validation set of FuncQA. We find that in samples
where the system has generated an incorrect tool
by greedy sampling, the correct one—complete
with correct arguments—is among the top five most
likely tokens in over 60% of cases. These include
samples where the correct tool can be found by
searching the top tokens at a different position from
the one that has produced the incorrect tool. Over-
all, the system decodes the correct tool (regardless
of the arguments it generates for it) in 76.9% of
samples; this rises by over 10% to 87.2% when we
consider the top k = 5 tokens at each decoding step
(Fig. 3). Further increasing k to 10 incurs a higher
computational cost without raising the proportion
of decoded golden tools.

A.2 Temperature Sampling

We experiment with temperature sampling and find
that it is not an optimal strategy to gather candi-
date tools, as lower temperatures do not lead to
enough diversity while higher ones generate irrele-
vant tools.

A.3 Tool Selection by Self-Consistency

We select tools by self-consistency on FuncQA’s
validation set. We try choosing the tool that is
most represented in the candidate set both before
and after argument insertion. In both cases, We
find that tool choice by self-consistency performs
poorly (over 6% below ToolkenGPT in the best
case).

k=1

k=5 k=10

0.6

0.7

0.8

0.9

1
Proportion of decoded golden tools for value of k

pr
op

or
tio

n 
of

 g
ol

de
n 

to
ol

s

Figure 3: Proportion of golden tools across the FuncQA
validation set, for k=1, k=5 and k=10, where k is the
number of top-probability tokens at each decoding step.

B Model Implementation and Training

We do all training and inference on a single
NVIDIA Tesla V100 GPU.

B.1 Tools

GSM8K-XL and FuncQA (Hao et al., 2023) are
annotated with four and 13 tools respectively, each
representing a math operation. We illustrate these
in Table 3. Tools are trained as additional tokens
added to the standard language modelling head of
Llama 3, which comprises 128,256 token represen-
tations. Therefore, we extend these representations
to 128,269 in the case of FuncQA and 128,260 for
GSM8K-XL.

B.2 Details of the Training Process

The LM head of TECTON consists of the stan-
dard head of Llama 3 8B Instruct (Dubey
et al., 2024) concatenated with an additional
linear layer of size embedding_dimension ×
number_of_tools. The tool token embeddings
are randomly initialized and trained on math rea-
soning QA pairs from GSM8K-XL and FuncQA,
following a standard language modelling objective.
Both datasets are annotated with the token positions
at which each tool should be generated. Note that
the original datasets made available by Hao et al.
(2023) are annotated according to SentencePiece
tokenization (Kudo and Richardson, 2018). We
edit the annotations to be compatible with Llama
3’s Byte-Pair Encoding tokenizer (Sennrich et al.,
2016). We tune two distinct sets of special tokens,
one on each dataset, as each requires a different set
of tools as shown in Table 3. We train at half preci-
sion (FP16) for ten epochs, using learning rates
{1e−4, 1e−3}, batch size 1, and saving check-
points at each epoch. We select the best checkpoint
by measuring performance on a validation set.

Table 4 gives an overview of our training, val-
idation, and testing data. It should be noted that
GSM8K-XL’s training and validation sets coincide
with those of GSM8K, as only the test portion of
the dataset was enhanced by Hao et al. (2023). Ta-
ble 5 reports the hyperparameter combinations of
our chosen checkpoints.

B.3 Inference-time Hyperparameters

At inference, we decode with temperature t = 0,
p = 0.95, k = 5. In the reasoning phase, we
apply logit bias to the tool tokens to promote their
generation. We use logit bias 3.0 for GSM8K-XL

7909



and 4.0 for FuncQA. Since our generation strategy
is deterministic, all our accuracies are reported on
a single run, rounded to 1 decimal place.

Task Tools

GSM8K-XL

<add>
<subtract>
<multiply>
<divide>

FuncQA

<add>
<subtract>
<multiply>
<divide>
<power>
<sqrt>
<log>
<ln>
<lcm>
<gcd>
<remainder>
<choose>
<permutate>

Table 3: Math reasoning datasets and their correspond-
ing tools.

Dataset Train Validation Test

GSM8K-XL 5054 1000 568

FuncQA 611 39 128

ASDiv-XL N/A N/A 360

MAWPS-XL N/A N/A 416

SVAMP-XL N/A N/A 270

Table 4: Sizes of our training and testing datasets. Note
that we use ASDiv-XL, MAWPS-XL and SVAMP-XL
only for testing. For FuncQA the reported test data size
includes both splits—FuncQA-OH and FuncQA-MH.

Dataset Epoch Learning Rate

GSM8K-XL 9 1e−3

FuncQA 4 1e−4

Table 5: Hyperparameter combinations of the chosen
model checkpoints for GSM8K-XL and FuncQA.

C Baselines Implementation

All baselines are built upon Llama 3 8B Instruct.

Llama 3 8B Instruct. We measure our base
model’s performance in the zero-shot setting.
We experiment with CoT zero-shot prompting
(prepending to the question the instruction Let’s
think step by step) but find that just using the
raw question as input results in better performance.

Chain-of-Thought (CoT). We extract from the
training set six pairs of questions and answers
demonstrating maths operations and their use. For
comparability, we use the same exemplars as in
the implementation of ToolkenGPT and TECTON.
Note that Llama 3 8B Instruct achieves 79.6% ac-
curacy (Dubey et al., 2024) on the non-enhanced
version of GSM8K when prompted in few-shot
CoT fashion. Our experiments show that it per-
forms significantly worse (37.3%) on GSM8K-XL,
highlighting the difficulty of the enhanced dataset.

TRICE. TRICE is a two-stage system where in-
struction tuning is followed by reinforcement learn-
ing from environmental feedback (RLEF), leverag-
ing LoRA at both stages. We train TRICE using
the same hyperparameters as in the original imple-
mentation, with the exception of the batch size in
the first phase of training, reduced to 128 with 8
gradient accumulation steps due to the memory lim-
itations of our hardware. Since we train on a single
dataset (GSM8K-XL), our implementation corre-
sponds to the setup referred to as TRICE-SPLIT

in the original paper. Note that Qiao et al. (2024)
implement TRICE on top of Alpaca (Taori et al.,
2023), ChatGLM (Zeng et al., 2024a) and Vicuna
(Zheng et al., 2023). For comparability with TEC-
TON and the other baselines, here we use Llama 3
as the base model. We thus adjust TRICE’s prompt
templates and special tokens to be consistent with
Llama 3’s model card1.

ToolkenGPT. Like TECTON, ToolkenGPT aug-
ments the output matrix of an LLM with additional
special tokens, each representing a tool. Only the
additional tokens are tuned while the rest of the
weights remain frozen.We implement ToolkenGPT
with Llama 3 and train it on the same annotated
datasets as we train TECTON, using the same sets
of tools and the same hyperparameter combinations
for direct comparability.

1https://www.llama.com/docs/model-cards-and-prompt-
formats/meta-llama-3

7910



Test set Original XL version

ASDiv 618 360

MAWPS 505 416

SVAMP 299 270

Table 6: Test set sizes of our OOD math reasoning
datasets, in their original version and in the XL version
enhanced via an automated process.

D Out-of-distribution Datasets

We enhance the test sets of ASDiv, MAWPS and
SVAMP and obtain ‘XL’ versions of each. Our goal
is to replace the numbers in each test sample with
larger-magnitude ones in an automated manner, yet
ensuring that the new numbers in each question
correctly map to a new numerical answer. To this
end, we use datasets that have been annotated with
the golden sequence of operations. Since the origi-
nal versions of ASDiv and SVAMP do not contain
such annotations, we use the versions that are part
of the Lila benchmark (Mishra et al., 2022).

Firstly, we extract all the numbers from the chain
of operations using regular expressions. Secondly,
we search for these numbers in the question text
(we use the num2words library2 to include numbers
expressed as words) and replace them with random
numbers in the interval [−105, 105]. We replace the
numbers in both the text and the annotated chain
of operations. Note that we replace negative num-
bers with negative numbers and positive numbers
with positive numbers. We also take care to substi-
tute integers with integers and floats with floats. If
we cannot match any of the numbers in the oper-
ations to the text, we discard that sample. Lastly,
we evaluate the new chain of operations with the
substituted numbers and store the result as the new
golden answer for that data point.

This process results in datasets containing ques-
tions with the same structure and wording as the
original ones, but with the numbers greatly magni-
fied. This provides a real challenge for contempo-
rary large language models, which can otherwise
easily solve small-number arithmetic.

As our automated process discards any data sam-
ples that it is unable to process, our final test sets
are typically smaller than their original counter-
parts. Table 6 reports the sizes of the original and
modified test sets.

2https://github.com/savoirfairelinux/num2words

Prompt 1: TECTON-SCORE meta-
reasoning prompt

In this task, you must select the

correct and most plausible continuation

for the answer in the text below.

You should use your common sense and

logical and mathematical abilities. You

should directly answer by choosing the

correct option. Output only the letter

corresponding to the correct option.

[FIXED EXEMPLARS]

Text to continue:

Question: [QUESTION]

Answer: [PARTIAL ANSWER]

Possible answer continuations:

[OPTIONS]

The correct continuation is:

Prompt 2: TECTON-GENERATE meta-
reasoning prompt

Complete the answers below. In square

brackets you will find some hints showing

the possible math operations. You may use

one of these hints if you think it is

correct.

[DYNAMIC EXEMPLARS]

Question: [QUESTION]

Answer: [HINTS] [PARTIAL ANSWER]

E Prompts

In the reasoning phase, we prompt TECTON to gen-
erate an answer to a math reasoning question step
by step, aided by in-context exemplars. Prompts
1 and 2 illustrate how we elicit tool choice in the
meta-reasoning phase, for TECTON-SCORE and
TECTON-GENERATE respectively. In both cases,
we show the model in-context exemplars, followed
by the current question and the current partial
answer. The latter consists of the lines of text

7911



generated during the previous iterations of TEC-
TON, if any. In Prompt 1, the placeholder [FIXED
EXEMPLARS] is replaced with six in-context exem-
plars extracted from the training set. The num-
ber of options in each exemplar matches the num-
ber of available options in the current sample. In
Prompt 2, we have [DYNAMIC EXEMPLARS] that
are retrieved to demonstrate the tools currently in
the candidate set. Here, the partial answer also
includes the tokens generated during the current
iteration, up to the sequence position where the first
tool is found among the k top probability tokens.
The hints are prepended to the partial answer in
this setting.

F Efficiency

We compare the efficiency of our method with the
fine-tuned baselines—TRICE and ToolkenGPT.

F.1 Comparison with TRICE

TECTON is more efficient than TRICE, as it only
requires tuning additional embeddings in the output
layer, with minimal backpropagation. In contrast,
TRICE performs two rounds of finetuning each time
updating LoRA modules throughout the model.

F.2 Comparison with ToolkenGPT
We train TECTON in the same way as the
ToolkenGPT baseline, by only updating the ad-
ditional token embeddings in the output layer. At
inference, TECTON requires generating additional
text for each line in the problem. Note that for
TECTON-SCORE this overhead is negligible, as we
generate only one additional token per line.

7912


