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Abstract

Entity matching (EM), which identifies whether
two data records refer to the same real-world
entity, is crucial for knowledge base construc-
tion and enhancing data-driven AI systems. Re-
cent advances in language models (LMs) have
shown great potential in resolving entities with
rich textual attributes. However, their perfor-
mance heavily depends on how structured en-
tities are "talked" through serialized text. The
impact of this serialization process remains un-
derexplored, particularly for entities with com-
plex relations in knowledge graphs (KGs). In
this work, we systematically study entity serial-
ization by benchmarking the effect of common
schemes with LMs of different sizes on diverse
tabular matching datasets. We apply our find-
ings to propose a novel serialization scheme
for KG entities based on random walks and uti-
lize LLMs to encode sampled semantic walks
for matching. Using this lightweight approach
with open-source LLMs, we achieve a leading
performance on EM in canonical and highly
heterogeneous KGs, demonstrating significant
throughput increases and superior robustness
compared to GPT-4-based methods. Our study
on serialization provides valuable insights for
the deployment of LMs in real-world EM tasks.

1 Introduction

Entity matching (EM) aims to identify whether
two data records refer to the same real-world en-
tity, even if their descriptions differ (Herzog et al.,
2007). As a core challenge in data cleaning and
integration, EM has a wide range of applications,
from knowledge base construction to empowering
data-driven AI systems (Diefenbach et al., 2018;
Guu et al., 2020; Frey et al., 2023). The flourishing
of knowledge-based AI applications (e.g., recom-
mendation, question answering, and information re-
trieval) has particularly driven the need to integrate
entities from different knowledge graphs (KGs).

*Work done during an internship at Amazon.

Classic EM tasks (Getoor and Machanavajjhala,
2012) focus on structured data in relational tables
with homogeneous schemas, while more recent
studies (Köpcke et al., 2010; Sun et al., 2020; Wang
et al., 2021) have expanded to semi-structured (e.g.,
JSON, XML), unstructured (e.g., text) and com-
plex relational data (e.g., KGs), as well as entities
with missing and/or noisy attributes (see Fig. 1).
The complexity of EM lies in identifying and link-
ing inconsistent, incomplete, denormalized records
across multiple data sources. Typically, EM in-
volves two steps: blocking, which eliminates clear
non-matches to reduce the number of pairwise
comparisons, and matching, which identifies true
matches from the filtered candidate set. While
rule-based (Fan et al., 2009; Singh et al., 2017)
and traditional learning-based (Konda et al., 2016)
matchers work well for tabular data, they strug-
gle with tasks that involve noisy or unstructured
data (Mudgal et al., 2018). Neural network-based
methods, particularly those that utilize word em-
beddings and sequence models (Manning, 2017),
have demonstrated their effectiveness in matching
entities with rich textual attributes (Parikh et al.,
2016; Ebraheem et al., 2018).

Recent research (Brunner and Stockinger, 2020;
Li et al., 2020; Peeters and Bizer, 2021; Paganelli
et al., 2022; Akbarian Rastaghi et al., 2022; Wang
et al., 2022; Zeakis et al., 2023; Peeters and Bizer,
2025; Wang et al., 2025; Wadhwa et al., 2024;
Huang and Zhao, 2024) has explored using pre-
trained encoder models and large language mod-
els (LLMs) to resolve and match entities based
on their textual attributes. Modern language mod-
els can generate highly contextualized embeddings
that capture semantic meaning across the entire
input, greatly alleviating the word ambiguity prob-
lem when comparing entity attributes. Particularly,
with more grounded knowledge and generalization
capability, LLMs show better performance than
classic pretrained encoder models on challenging
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EM tasks (Mudgal et al., 2018; Wang et al., 2021;
Jiang et al., 2024b). However, existing LLM-based
matchers use chat-based interactions, which are
severely limited by high latency, computational
complexity, and API call cost. As a result, previ-
ous studies are unable to fully evaluate the target
LLM without downsampling the test set (Peeters
and Bizer, 2025; Li et al., 2024).

To use language models (LMs) for matching,
entities must first be serialized into sequences, a
process known as entity serialization. For instance,
a restaurant record comes with attributes of "title",
"address", and "phone". Its serialization can be
done by sequentially concatenating all attributes,
which imposes an artificial order, placing "title"
ahead of "address" and "phone". This practice
breaks the permutation invariance of the attributes,
which has unknown effects on model utility. Nested
attributes (e.g., "address" consists of "street", "city",
and "zipcode") in semi-structured data are often
flattened, which loses hierarchical information and
dilutes key signals. These issues further deteriorate
for graph-structured data, where serialization often
results in either significant loss of structural infor-
mation or increased overhead to preserve relations
between entities in sequences.

So far, no comprehensive study has been per-
formed to analyze the serialization effect on LMs
for structured entity matching. Existing schemes
to serialize tabular and semi-structured data are ad
hoc (Brunner and Stockinger, 2020; Li et al., 2020;
Wang et al., 2021; Peeters and Bizer, 2025), forcing
attributes into predefined orders that may distort
their inherent non-sequential and/or hierarchical re-
lationships as shown in the above examples. Such
practices potentially hamper the model’s under-
standing of the entity, thereby harming its utility.
While structured entities with complex relations
are commonly serialized through verbal descrip-
tions (Agarwal et al., 2021; Fatemi et al., 2023;
Wang et al., 2023; Wadhwa et al., 2024), which
greatly limits the model’s ability to generate rich
and concise representations for matching, partic-
ularly for knowledge graph entities with hyper-
relations (Galkin et al., 2020).

In this study, we systemically benchmark seven
common serialization schemes (see Table 1) for
LMs on tabular and semi-structured data and ex-
plore new strategies for LLMs to efficiently per-
form matching on entities with complex relations.
There are three key questions to be answered: RQ1
whether attribute order matters under the settings

{ "title": "chinois on main",
  "phone": "(310)392-9025",
  "address": { "street": "2709 main st.",
                      "city": "santa monica",
                      "zipcode": "90405”},
  "category": "french" }

Tabular:

Semi-structured:

title address phone category
21 club 21 w. 52nd st. new york 212/582 -7200 american

Graph-structured:

Louvre ParisMuseum

is a is located 
in

Funded: August 
10, 1793 

Walk-based Serialization
(“Louvre”, “is located in”, “Paris”)

(“Paris”, “is a”, “Place”)

Sampled Fact Path

“Louvre is located in Paris, 
Paris is a Place.”

<latexit sha1_base64="HUO7GKc9Q0j7moHchFnHmmjfqLI=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUQ8eCl48VrQf0C4lm2bb0CS7JFmhLP0JXjwo4tVf5M1/Y9ruQVsfDDzem2FmXpgIbqznfaPC2vrG5lZxu7Szu7d/UD48apk41ZQ1aSxi3QmJYYIr1rTcCtZJNCMyFKwdjm9nfvuJacNj9WgnCQskGSoecUqskx7afdkvV7yqNwdeJX5OKpCj0S9/9QYxTSVTlgpiTNf3EhtkRFtOBZuWeqlhCaFjMmRdRxWRzATZ/NQpPnPKAEexdqUsnqu/JzIijZnI0HVKYkdm2ZuJ/3nd1EbXQcZVklqm6GJRlApsYzz7Gw+4ZtSKiSOEau5uxXRENKHWpVNyIfjLL6+S1kXVv6zW7muV+k0eRxFO4BTOwYcrqMMdNKAJFIbwDK/whgR6Qe/oY9FaQPnMMfwB+vwBNXqNvg==</latexit>

Wm

is a

Place

<latexit sha1_base64="Y2Qyu3F9tY1X7UH5srf59CWDfTo=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoMQm3AnQS0sAjaWEcwHJEfY2+wlS3b3zt09IRz5EzYWitj6d+z8N+4lV2jig4HHezPMzAtizrRx3W+nsLa+sblV3C7t7O7tH5QPj9o6ShShLRLxSHUDrClnkrYMM5x2Y0WxCDjtBJPbzO88UaVZJB/MNKa+wCPJQkawsVJX4LjaGYjzQbni1tw50CrxclKBHM1B+as/jEgiqDSEY617nhsbP8XKMMLprNRPNI0xmeAR7VkqsaDaT+f3ztCZVYYojJQtadBc/T2RYqH1VAS2U2Az1steJv7n9RITXvspk3FiqCSLRWHCkYlQ9jwaMkWJ4VNLMFHM3orIGCtMjI2oZEPwll9eJe2LmndZq9/XK42bPI4inMApVMGDK2jAHTShBQQ4PMMrvDmPzovz7nwsWgtOPnMMf+B8/gBUM49/</latexit>

map(Wm)

Step L=2
<latexit sha1_base64="Xy5XYT++U7jswaBw8eK6tFMTWsM=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4kLIrRT14KHjxWMF+QLuUbJptQ5NsSLJKWfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvEhxZqzvf3srq2vrG5uFreL2zu7efungsGmSVBPaIAlPdDvChnImacMyy2lbaYpFxGkrGt1O/dYj1YYl8sGOFQ0FHkgWM4Ktk1pPvUycB5NeqexX/BnQMglyUoYc9V7pq9tPSCqotIRjYzqBr2yYYW0Z4XRS7KaGKkxGeEA7jkosqAmz2bkTdOqUPooT7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vw4xJlVoqyXxRnHJkEzT9HfWZpsTysSOYaOZuRWSINSbWJVR0IQSLLy+T5kUluKxU76vl2k0eRwGO4QTOIIArqMEd1KEBBEbwDK/w5invxXv3PuatK14+cwR/4H3+AAX7j1s=</latexit>wm,1
<latexit sha1_base64="4AZbpgaFyZdv6Cmm8m1frglb8vc=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgIeEuBLWwCNhYRjAfkBxhb7OXLNndO3b3lHDkR9hYKGLr77Hz37iXXKGJDwYe780wMy+IOdPGdb+dwtr6xuZWcbu0s7u3f1A+PGrrKFGEtkjEI9UNsKacSdoyzHDajRXFIuC0E0xuM7/zSJVmkXww05j6Ao8kCxnBxkqdp0EqLmqzQbniVt050CrxclKBHM1B+as/jEgiqDSEY617nhsbP8XKMMLprNRPNI0xmeAR7VkqsaDaT+fnztCZVYYojJQtadBc/T2RYqH1VAS2U2Az1steJv7n9RITXvspk3FiqCSLRWHCkYlQ9jsaMkWJ4VNLMFHM3orIGCtMjE2oZEPwll9eJe1a1bus1u/rlcZNHkcRTuAUzsGDK2jAHTShBQQm8Ayv8ObEzovz7nwsWgtOPnMMf+B8/gAHgI9c</latexit>wm,2

addr city phone1 type class
2709 main st. santa monica 310-392-9025 pacific new wave NULL

Figure 1: Real-world matching tasks involve various
types of structured entities, posing great challenges in
their serialization for applying language models.

of zero-shot and with fine-tuning; RQ2 how dif-
ferent ways of handling missing or dirty values
affect the model; and RQ3 are special tokens in
serialization helpful for matching structured enti-
ties. Based on our findings, we propose a novel
serialization scheme for LLMs based on random
walks: it efficiently captures both semantic and
structural contexts from KG entities, leading to ro-
bust entity embeddings for matching. Our results
show that open-source LLMs with the proposed
walk-based strategy achieve state-of-the-art (SoTA)
performance with superior throughput for matching
entities in four canonical and highly heterogeneous
KG datasets (Sun et al., 2020; Jiang et al., 2024b).

Our contributions are summarized as follows: (1)
We are the first to systematically study the effect of
entity serialization on LMs for matching across tab-
ular, semi-structured, and graph-structured data. (2)
We empirically evaluate and compare how serial-
ization schemes affect LMs with different sizes and
backbones. (3) We propose a scalable paradigm for
applying open-source LLMs with walk-based seri-
alization to generate robust embeddings for match-
ing KG entities, outperforming previous SoTA
GPT-4-based systems by 2995× speedup.

2 Preliminaries and Prior Work

2.1 Notations & Problem Formulation

Entity matching (EM) takes two collections D
and D′ of data records as input and outputs a set
M ⊆ D × D′ of entity pairs, where each pair
(e, e′) ∈ M is identified as the same real-world
entity. An entity e is a set of key-value pairs
e = {(attri, vali)}ki=1, where attri denotes the at-
tribute name and vali is the corresponding value
in base types of number, string or list. Classic
EM (Getoor and Machanavajjhala, 2012; Christen,
2012) assumes that entities in relational tables have
a homogeneous schema, where e and e′ share the
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same set of attributes {attri}ki=1; while generalized
EM (Wang et al., 2021) removes this assumption,
allowing entities e to have a heterogeneous schema,
with nested or unstructured attributes.

In addition to tables and semi-structured data,
another classic type of structured entity is stored
in graphs (see Fig. 1). In particular, knowledge
graph (KGs) G = (E ,R,F) is an organized repre-
sentation of real-world entities E and their relation-
ship R through triplets of facts (eh, r, et) ∈ F ,
where eh, et ∈ E and r ∈ R. The integra-
tion of real-world entities from KGs is known
as entity alignment: Given G = (E ,R,F) and
G′ = (E ′,R′,F ′), the task is to find the identi-
cal entity set {(e, e′)|e ∈ E , e′ ∈ E ′}, where each
pair (e, e′) represents the same real-world entity
but exists in different KGs.

2.2 Language Models for Entity Matching
Pretrained encoder models, including BERT (De-
vlin et al., 2019) and RoBERTa (Liu, 2019), show
great abilities in natural language understanding for
various downstream tasks. For EM tasks, the model
takes a pair of entities serialized by the function
S(·) as input and is fine-tuned with objectives in
two common settings: (1) cross-encoder: the joint
of serialized entities e, e′ is fed into model fLM si-
multaneously, followed by a classifier g predicting
"match" or "no match" (Li et al., 2020; Brunner
and Stockinger, 2020; Wang et al., 2021; Peeters
and Bizer, 2021) as g(fLM(S(e, e′))) → {0, 1};
(2) bi-encoder: serialized entities e, e′ are fed to
model fLM independently and their similarity is
computed by a scoring function d (or neural net-
works) over their embeddings (Paganelli et al.,
2022; Zeakis et al., 2023) as d(he,he′) ∈ [0, 1],
where he = fLM(S(e)).

LLMs, including GPT (Radford et al., 2019) and
Llama (Touvron et al., 2023), are designed pri-
marily for language generation. They often show
greater generalizability and zero-shot performance
than pretrained encoder models on new tasks,
which is particularly useful for EM tasks with lim-
ited samples for training or out-of-distribution sam-
ples for inference. Several studies have utilized
LLMs to solve EM problems through chat-based
interactions, but suffer from high latency and in-
ference cost (Peeters and Bizer, 2025; Li et al.,
2024). To save prompting token budgets, serial-
ization schemes adopted in these works are all
plain text. Fan et al. (2024); Wang et al. (2025);
Huang and Zhao (2024); Jiang et al. (2024a) stud-

Index Scheme Attribute Order Special Tokens NULL
S1 Fixed Order (Li et al., 2020) Fixed [COL], [VAL] ✓
S2 Random Order Random [COL], [VAL] ✓
S3 Pairwise Order (Naeim abadi et al., 2023) Pairwise [COL], [VAL] ✓
S4 Valid Value (Wang et al., 2021) Fixed [COL], [VAL] x
S5 Plain Format (Brunner and Stockinger, 2020) Fixed x x
S6 Span Typing (Li et al., 2020) Fixed [COL], [VAL], [LAST] ✓
S7 JSON Format (Sisaengsuwanchai et al., 2023) Fixed / Nested x x

Table 1: Summary & Comparison of Common Serial-
ization Schemes for Structured Entities.

ied how to cost-effectively deploy LLMs for match-
ing but mainly focused on improving throughput by
prompt engineering or blocking techniques. How-
ever, the bottleneck of text generation ultimately
limits their applicability.

2.3 Prior work on Serialization

The serialization process converts an entity e from a
set of key-value pairs {(attri, vali)}ki=1 into a mean-
ingful sequence that can be ingested by LMs. Exist-
ing serialization schemes can be divided into three
categories based on entity structure types.

Serialization for Tabular Data. For pretrained
BERT models, the standard scheme for serializ-
ing entities in relational tables is introduced by Li
et al. (2020): S(e) → "[COL] attr1 [VAL] val1 . . .
[COL] attrk [VAL] valk", where [COL] and [VAL]
are special tokens indicating the start of attribute
names and values, respectively. This scheme is
flexible in serializing tabular data with homoge-
neous and heterogeneous schema. To serialize
an entity pair (e, e′), let S(e, e′) → "[CLS] S(e)
[SEP] S(e′) [SEP]", where [SEP] is the token that
separates two sequences and [CLS] is the token
used in BERT models to encode serialized entity
pairs into a joint representation for classification.

Multiple schemes are developed with variations
in (1) Attribute order: S1 Fixed order concate-
nates attributes sequentially following the given
order of the table schema (Wang et al., 2021; Miao
et al., 2021; Hegselmann et al., 2023). S2 Ran-
dom order permutes entity attributes during serial-
ization, leading to misaligned attributes between
pairs of serialized entities. S3 Pairwise order puts
the values of common attributes together in seri-
alized entity pairs (Naeim abadi et al., 2023) and
fills the mismatched attributes with the value NULL
as Sp(e, e

′) → "[CLS] [COL] attr1 [VAL] vale1,
vale

′
1 . . . [COL] attrk [VAL] valek, NULL [SEP]." (2)

Special tokens: S4 Valid value removes attributes
with missing values from the output (Wang et al.,
2021). S5 Plain format omits [COL] and [VAL]
tokens (Brunner and Stockinger, 2020) and sim-
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ply concatenates the names and values of all at-
tributes as S(e) → "attr1 val1 . . . attrk valk." Due
to its simplicity, this scheme is widely adopted to
pair with matching query prompts for decoder-only
models (Peeters and Bizer, 2025; Sisaengsuwan-
chai et al., 2023; Wang et al., 2024). S6 Span typing
is introduced by Li et al. (2020) to inject domain
knowledge into serialized entities by annotating
the type of a span of their attribute values. Spe-
cial tokens are inserted to reflect the type of the
recognized span {(si, ti, typei)}i≥1 from attribute
values, where si, ti are the start/end positions of
the span with the annotated type. For instance,
the phone number "(123)456-7890" can be re-
placed with "( 123 ) 456 - [LAST] 7890 [/LAST]",
where [LAST], [/LAST] are added to indicate the
start/end of the last 4 digits of phone number that
might help the model compare between entities.

Serialization for Semi-Structured Data. An
attribute attri of semi-structured entities can be
either values in base types or an entity itself, such
as JSON format with nested attributes. Its serializa-
tion can follow a similar fashion as tabular data, but
differs in: the [COL] and [VAL] tokens are recur-
sively added along with attribute names and values
nested at each level i (underlined) as S(e) →
"[CLS] [COL] attr1 [VAL] val1 . . . [COL] attrk
[VAL]. . . [COL] attrki [VAL] valki . . . [SEP]."
For list-type attribute values, all elements in the
list are merged into a single string, separated by
commas. Alternatively, one can skip all the special
tokens and directly use S7 JSON format or XML-
style parentheses structures (Sisaengsuwanchai
et al., 2023), which preserves the hierarchical
information in some sense. All seven serialization
variants are summarized and compared in Table 1.

Serialization for Graph Data. Unlike tabular
or semi-structured data, the inherent relationships
between entities in a graph make serialization an
open challenge. Plain graphs are often serialized
as a flat list of nodes and edges. To better align
with the text corpora that LMs were pretrained
on, graphs often get contextualized through a
mapping function (Wang et al., 2023; Fatemi
et al., 2023), such as using TV character names
and friendships "G describes a friendship graph
among Ned, Cat, Daenerys, ... In this friendship
graph: Ned and Cat are friends..." For entities
with complex relations, Agarwal et al. (2021)
formulates it as a data-to-text generation task and
uses Seq2seq models to verbalize KG entities.

For example, the KG entity "Louvre" in Fig. 1
is described as "Louvre is a museum located in
Paris." Madaan et al. (2022); Jiang et al. (2024a)
exploit code format to aid LLMs processing
graphs by providing a structure abstraction defined
in Python-style classes. For instance, the KG
entity class is defined as "class Entity(): def
__init__(self,name,id,tuples=[]):. . . def
get_neighbors(self):. . . " These methods
primarily focus on flattening graphs, while the
new serialization strategy we proposed exploits
both semantic relationship and structural context
between structured entities in KGs through random
walks, detailed in Sec. 3.2.

3 Serialization for Structured Entities

In this section, we investigate how different serial-
izations of structured entities affect the utility and
efficiency of language models for matching tasks.
Building on our findings, we explore new strategies
for LLMs to efficiently encode structured entities
with complex relations, especially with application
to entity alignment in KGs.

3.1 Effects of Entity Serialization on Tabular
& Semi-structured Data

To study the impact of entity serialization on
LMs, we decompose the problem into serialization
scheme and model size. The serialization scheme
determines how structured entities are converted
into sequences, which affects the model’s ability to
interpret the input. Specifically, we benchmark the
effect of serialization schemes S(·) listed in Table
1 for pretrained encoder models and open-source
LLMs on EM tasks under zero-shot and fine-tuning
settings. We quantify and analyze the impact of
attribute order (e.g., fixed, random, or pairwise),
special tokens (e.g. COL, VAL, span typing), and
sequence formats (e.g., plain, JSON) in entity seri-
alization on the model performance.

The model size determines the capacity of a
model to represent entities, which affects the util-
ity of learned representations used for matching.
Pretrained encoder models are cost-effective for
EM due to their compact sizes and low inference
cost. Previous work (Pham et al., 2021; Sugawara
et al., 2020; Albilali et al., 2021) has shown that
input shuffle can lead to significant performance
degradation for BERT models in natural language
understanding, which may be amplified through
serializing structured entities for matching. LLMs
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are known to accept various input formats, and they
have strong generalizations and capabilities of con-
text understanding in new domains. Preliminary
studies (Peeters and Bizer, 2025; Sisaengsuwan-
chai et al., 2023; Wang et al., 2024) directly pair
entities serialized as plain text with prompts to
query LLMs and collect their responses in natural
language. This QA-based matching is greatly lim-
ited by the high latency and inference cost. Instead,
we propose to utilize a bi-encoder framework to
obtain entity embeddings from the target LLM for
matching and study the impact of serialization. For
open-source LLMs, such conversion can be done
by LLM2Vec (BehnamGhader et al., 2024).

Our empirical study seeks to understand the opti-
mal form of serialization to maximize the matching
performance of different LMs on tabular and semi-
structured data. We briefly summarize the most
exciting results here and defer the detailed analysis
to Sec. 4.2:

• With fine-tuning, pretrained encoder models are
more sensitive to how entities are serialized than
LLMs on structured EM tasks;

• Both encoder models and LLMs have a prefer-
ence for serialization schemes that are close to
the corpus they were pretrained on, especially
plain text without special tokens.

• Injecting randomness into attribute orders during
serialization can be beneficial for models under
supervised fine-tuning, especially on noisy data.

Our benchmark results show that: (1) plain text
is sufficient for LMs to capture subtle differences
between entities with rich attributes. (2) the pre-
defined attribute order is not optimal for matching,
while the injected randomness can improve the
model’s robustness to input perturbations. These
two key observations will play an important role in
designing new strategies for serializing structured
entities with complex relations.

3.2 Serialization Strategies for Knowledge
Graph Entities

KG entities not only contain attributes but are also
connected to each other through complex relations.
The knowledge stored in the form of fact triples
poses unique challenges for applying LM to their
matching. Classical methods rely on measuring
the similarity of entity embeddings derived from
knowledge representation learning (KRL) tech-
niques (Zhang et al., 2022). Recent studies (Yang

et al., 2024; Jiang et al., 2024a) have begun to lever-
age the reasoning power of LLMs to align entities
across KGs, but suffer from high latency and infer-
ence cost. The fundamental challenge lies in how
to effectively encode KG entities and efficiently
use LLMs to extract their semantic and structural
information for matching.

To tackle this challenge, we apply our findings in
Sec. 3.1 to propose a lightweight serialization Sw

for graph-structured entities by sampling seman-
tically meaningful paths on KGs through random
walks (see Fig. 1). Specifically, given a target entity
ei ∈ E , the walk-based serialization:

• Samples M -many L-step walks starting from the
root entity ei on graph G, and obtains a collec-
tion of sampled facts {Wm}Mm=1, where Wm =
(wm,1, . . . , wm,L) and wm,1 = (ei, r, ej).

• Applies a function map(·) on each path Wm that
maps the entities and their relations from all L
sampled facts into a sentence, separated by com-
mas. For example, the path Wm that contains two
facts wm,1 =("Louvre", "located in", "Paris")
and wm,2 =("Paris", "is a", "Place") can be pro-
cessed by map(Wm) = "Louvre located in Paris,
Paris is a Place."

• Concatenates sentences of all M paths into a
paragraph as Sw(ei;G) = ∪M

m=1map(Wm).

If entities contain other attributes, previous serial-
ization schemes can be used to obtain an entity-
level description and then call the map(·) function.

This walk-based serialization Sw naturally en-
codes the local structures of KG entities in a se-
quential form, in which relative positions and se-
mantic relationships between entities are embed-
ded. By adjusting the number M of path sam-
pling and the step size L, the output sequence
can be controlled according to the model’s con-
text window and desired neighborhood coverage,
without being affected by irregular sizes of entity-
induced subgraphs. We further extend the bi-
encoder framework of LLMs to KG entities by
pairing it with the proposed strategy Sw, i.e., he =
fLLM(Sw(e;G)). The proposed Walk-LLM pro-
vides a scalable paradigm that can efficiently utilize
the extensive parametric knowledge from off-the-
shelf LLMs through sampled semantic-rich paths
to match KG entities at scale.
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Index Dataset Format Domains |D| |D′| #Attr k #Pos Index Dataset Format #Entities |E| #Relations |R| #Facts |F| #Anchors
D1 Rel-HETER Hetero. Table POI 534 332 6; 7 946 D7 DBP15K(EN-FR) KG 15,000 193; 166 96,318; 80,112 15,000
D2 Semi-Rel Table; JSON Movies 29,180 32,823 8; 13.81 2,183 D8 DBP-WIKI KG 100,000 413; 261 293,990; 251,708 100,000
D3 iTunes-Amazon Homo. Table (Dirty) Music 6,907 55,923 8 539 D9 ICEWS-WIKI KG 11,047; 15,896 272; 226 3,527,881; 198,257 5,058
D4 Walmart-Amazon Homo. Table (Dirty) Electronics 2,554 22,074 5 10,242 D10 ICEWS-YAGO KG 26,863; 22,734 272; 41 4,192,555; 107,118 18,824
D5 IMDb-TVDB Hetero. Table TV Shows 5,118 7,810 30; 9 1,072 /
D6 IMDb-DBpedia Hetero. Table Movies 27,615 23,182 4; 7 22,863 /

Table 2: Dataset Summary & Statistics (D1-6 Tabular and Semi-structured Data; D7-10 Knowledge Graphs).

Scheme
D1 (MRR) D2 (MRR) D3 (MRR) D4 (MRR) D5 (MRR) D6 (MRR)

RoBERTa Mistral Llama RoBERTa Mistral Llama RoBERTa Mistral Llama RoBERTa Mistral Llama RoBERTa Mistral Llama RoBERTa Mistral Llama
S1 Fixed 1.000 0.995 1.000 0.888 0.826 0.914 0.634 0.787 0.771 0.958 0.972 0.962 0.929 0.933 0.929 0.944 0.923 0.942
S2 Random 0.991 1.000 1.000 0.868 0.828 0.824 0.672 0.770 0.753 0.960 0.970 0.976 0.940 0.946 0.944 0.929 0.925 0.939
S3 Pairwise 0.995 / / 0.906 / / 0.672 / / 0.929 / / 0.928 / / 0.931 / /
S4 Valid 1.000 1.000 1.000 0.854 0.942 0.964 0.546 0.790 0.789 0.965 0.964 0.968 0.929 0.929 0.931 0.930 0.924 0.943
S5 Plain 1.000 1.000 1.000 0.837 0.891 0.926 0.736 0.795 0.764 0.973 0.953 0.970 0.929 0.931 0.930 0.924 0.920 0.942
S6 Span 1.000 1.000 1.000 0.860 0.920 0.913 0.663 0.778 0.803 0.965 0.963 0.971 0.610 0.932 0.932 0.934 0.923 0.936
S7 JSON 0.994 0.987 1.000 0.884 0.833 0.877 0.667 0.782 0.759 0.970 0.965 0.970 0.920 0.932 0.930 0.936 0.926 0.942

Table 3: Language Models (Fine-tuned) for Structured EM with Different Serialization (1st bold, 2nd underline).

4 Experiments

4.1 Experiment Settings

Dataset. Six diverse and challenging datasets
(Das et al.; Wang et al., 2021; Obraczka et al., 2021;
Papadakis et al., 2011) are selected to quantify the
impact of serialization schemes on LMs for struc-
tured EM. D1 Rel-HETER, D5 IMDb-TVDB, and
D6 IMDb-DBPedia are heterogeneous tabular data
of entities from restaurants, TV shows, and movies,
respectively. D2 Semi-Rel contains book entities
with nested attributes in JSON format. We also
adopted a dirty version of the D3 iTunes-Amazon
and D4 Walmart-Amazon datasets by randomly
shifting attribute values to different fields. These
two datasets are used to measure the model’s ro-
bustness against noisy attribute value pairs.

To address the alignment of structured entities
in KGs, we pick four evaluation datasets. D7
DBP15K(EN-FR) is a classical dataset for aligning
bilingual entity pairs of DBpedia. D8 DBP-WIKI
is used for entity alignment across Wikipedia and
DBpedia. Both datasets (Sun et al., 2020) have
an equal number of entities in KGs with similar
structural features, such as the number of facts
and density. D9 ICEWS-WIKI and D10 ICEWS-
YAGO (Jiang et al., 2024b) are two new datasets of
highly heterogeneous KGs (HHKG) with different
numbers of entities and distinct structures.

Table 2 summarizes the statistics of selected
datasets for evaluation. The attribute names of
datasets D1-D6 are listed in Table 7, Appx. B.1.
The license information and source for all datasets
can be found in Table 8, Appx. B.1.

Backbone Models. BERT (Devlin et al., 2019)
and RoBERTa (Liu, 2019) are the most commonly
used encoder models on EM tasks, which have

shown high utility in practice. Two popular LLMs
of Llama3-8B (AI@Meta, 2024) and Mistral-7B
(Jiang et al., 2023) are also evaluated. We utilize
LLM2Vec (BehnamGhader et al., 2024) to trans-
form these open-source LLMs into text encoders,
where no additional prompts are required other than
serialized entities. To our knowledge, this is the
first exploration of using Llama3-8B and Mistral-
7B as text encoders for EM.

Baselines. Three types of methods are selected
for matching KG entities, which cover differ-
ent input features of KGs and KRL techniques:
translation-based method MTransE (Chen et al.,
2017), GNN-based methods of RDGCN (Wu et al.,
2019) and Dual-AMN (Mao et al., 2021), LM-
based methods of BERT (Devlin et al., 2019),
BERT-INT (Tang et al., 2020), and the previous
SoTA methods of Simple-HHEA (Jiang et al.,
2024b) and two-stage GPT-4-based ChatEA (Jiang
et al., 2024a).

Metrics. In line with widely adopted evaluation
methods for EM tasks, we use two ranking met-
rics: Hits@K, measuring the percentage of correct
predicted entity pairs among the top-K matches,
and mean reciprocal rank (MRR), calculating the
average inverse ranking of correct predicted match
pairs. For datasets D1-6, we use the BM25 algo-
rithm (Robertson et al., 2009) to pair each matched
pair with K = 10 hard non-match entities to ob-
tain the ranking. For datasets D7-10, we follow the
same evaluation setting as in Jiang et al. (2024a).

Implementation Details. For encoder models,
we incorporate their base models with the Ditto
framework (Li et al., 2020) as cross-encoder for
matching, which is one of the first dedicated EM
systems using pretrained LMs (see Fig. 4 in Appx.
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Models
DBP15K(EN-FR) DBP-WIKI ICEWS-WIKI ICEWS-YAGO

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
MTransE † 0.247 0.577 0.360 0.281 0.520 0.363 0.021 0.158 0.068 0.012 0.084 0.040
RDGCN† 0.873 0.950 0.901 0.974 0.994 0.980 0.064 0.202 0.096 0.029 0.097 0.042
Dual-AMN† 0.954 0.994 0.970 0.983 0.996 0.991 0.083 0.281 0.145 0.031 0.144 0.068
BERT 0.811 0.859 0.829 0.800 0.852 0.818 0.609 0.739 0.655 0.794 0.871 0.822
BERT-INT † 0.990 0.997 0.993 0.996 0.997 0.996 0.561 0.700 0.607 0.756 0.859 0.793
Simple-HHEA† 0.959 0.995 0.972 0.975 0.991 0.988 0.720 0.872 0.754 0.847 0.915 0.870
ChatEA (GPT-4)† 0.990 1.000 0.995 0.995 1.000 0.998 0.880 0.945 0.912 0.935 0.955 0.944
Walk-Mistral-7BM=10 0.980 0.999 0.988 0.980 0.998 0.988 0.986 0.999 0.992 0.980 0.994 0.986
Walk-Llama3-8BM=10 0.983 0.999 0.990 0.974 0.997 0.984 0.988 1.000 0.993 0.974 0.995 0.983

Table 4: Result Comparison on Matching Entities from Canonical KGs and HHKGs (1st bold, 2nd underline).

A.1). The probability of a pair match predicted
by the model is used for ranking. For open-source
LLMs, we use them as bi-encoders, which are fine-
tuned by contrastive-based objectives (see Fig. 6
in Appx. A.2). The scheme S3 pairwise order is
incompatible with bi-encoders and thus skipped.
The source code is available at https://github.
com/amazon-science/serializeEM.

4.2 Experiments on Tabular &
Semi-structured Entities

Table 3 shows how serialization schemes shape
language models of different sizes and backbones
on datasets D1-6 with fine-tuning. The results for
zero-shot are reported in Table 9, Appx. B.3.

RQ1-2 Randomly shuffling attribute orders does
not necessarily hurt the matching performance; in
fact, the randomness injected by S2 Random order
can improve the robustness of RoBERTa, especially
on dirty datasets D3-4. Instead, S1 Fixed order, the
common by default choice, does not show an ad-
vantage over other schemes, especially falling far
behind on D3-4. This result suggests that break-
ing the permutation invariance of attributes can
negatively affect the model, especially when data
quality is not ideal. S3 Pairwise order shows its
strength in matching semi-structured entities on
D2, suggesting that aligning common attributes
between entity pairs can potentially enhance the
signal and mitigate the side effects of flattening
nested attributes. In addition, removing attributes
with missing values through S4 Valid value is gen-
erally not beneficial to pretrained encoder models.

As for LLMs, they perform reasonably well on
the noisy datasets D3-4 for zero-shot. Randomly
permuting the order of attributes without supervis-
ing signals usually hurts the model, but the perfor-
mance drop is not substantial. These two obser-
vations show the overall robustness of LLMs to
input perturbations. After fine-tuning, the results
of LLMs with all types of serialization are greatly

improved, with S2 and S4 achieving the largest
gains and the best performance in general. This
observation suggests that structural properties of
entity attributes and data quality play a crucial role
in fine-tuning LLMs for matching.

RQ3 S5 Plain format leads four of six datasets,
and comparable results can be observed from S7
JSON format. This indicates that using special to-
kens to retain the structure of the input by S1,2,4
or inject domain knowledge by S6 Span typing is
not helpful in improving encoder models and po-
tentially causes more overhead. For LLMs, the
model without fine-tuning shows a strong prefer-
ence for S5 and S7, which do not contain special
tokens and are mostly close to the text corpus on
which the model was pretrained. Surprisingly, with
fine-tuning, LLMs were able to capture the domain
knowledge injected by S6 on D3. However, it is not
as effective on other datasets, which are similarly
observed on pretrained encoder models.

4.3 Experiments on KG Entities

Table 4 compares different baseline models on
matching entities in canonical and highly heteroge-
neous KGs. Results marked with † are from Jiang
et al. (2024a). Pairing walk-based serialization with
open-source LLMs achieves performance compa-
rable to BERT-INT and GPT-4-based ChatEA on
canonical KG datasets. On two HHKG datasets,
our proposed method Walk-LLM obtains MRR
scores of 0.993 (+8.88%) and 0.986 (+4.45%), re-
spectively, which is a significant improvement over
ChatEA. These results highlight the uniform effec-
tiveness and consistent superiority of the proposed
Walk-LLM on various types of KG datasets. It also
shows that the power of LLMs can be effectively
exploited through entity embeddings in combina-
tion with rich contextual input produced by the
walk-based strategy but does not suffer from high
interactive inference costs like ChatEA.
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Models
ICEWS-WIKI (non-trivial) ICEWS-YAGO (non-trivial) ICEWS-WIKI (dirty) ICEWS-YAGO (dirty)

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
BERT 0.359 0.587 0.438 (↓33.1%) 0.566 0.726 0.624 (↓24.1%) 0.211 0.235 0.220 0.225 0.250 0.234
Simple-HHEA 0.490 0.777 0.579 (↓23.2%) 0.614 0.788 0.675 (↓22.4%) 0.298 0.522 0.374 0.309 0.497 0.373
Llama3-8B (MNTP) 0.653 0.895 0.737 0.571 0.790 0.647 0.226 0.358 0.296 0.234 0.297 0.258
Mistral-7B (MNTP) 0.821 0.948 0.868 0.822 0.924 0.860 0.385 0.553 0.444 0.339 0.467 0.384
Walk-Mistral-7BM=10 0.981 0.998 0.989 (↓0.3%) 0.942 0.985 0.959 (↓2.7%) 0.834 0.975 0.888 0.786 0.944 0.844
Walk-Llama3-8BM=10 0.980 1.000 0.989 (↓0.4%) 0.937 0.977 0.954 (↓3.0%) 0.745 0.907 0.804 0.673 0.840 0.732

Table 5: Result Comparison on Matching Non-trivial and Dirty Entities from HHKGs (1st bold, 2nd underline).
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Figure 2: Per-query Runtime Comparison of LLM-
based Methods on Matching Entities across HHKGs.

4.3.1 Ablation Study
Hard Examples. Table 5 (Left, non-trivial) re-
ports results on entity pairs with non-identical
names in the source and target KGs (23% over-
all) from the HHKG datasets. Here, we focus on
LM-based methods because they rely primarily on
name attributes to differentiate entities. BERT and
Simple-HHEA suffer more than 20% performance
degradation on these non-trivial entity pairs, while
the proposed Walk-LLM barely drops. We pro-
vide the results by comparing embeddings of en-
tity names directly generated from LLMs for refer-
ence. These models are trained through LLM2Vec
with the objective of masked next token prediction
(MNTP), where the structure in KG is excluded
from the input. The model performance gap be-
tween MNTP and Walk-LLM further emphasizes
that the proposed walk-based strategy introduces a
strong ability to distinguish hard examples.

Model Robustness. Table 5 (Right, dirty) com-
pares different LM-based methods on the noisy
version of HHKG datasets, where either half of
the "name" attribute is masked or gets mixed with
its URL uniformly at random. This simulates one
kind of dirty data commonly seen in practice while
keeping the modification simple. Both BERT and
Simple-HHEA suffer severe performance degra-
dation due to their over-reliance on entity names,
while Walk-LLM is robust to such perturbations.
Semantic paths sampled by random walks can mit-
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Figure 3: Effect of Walk Numbers M on LLMs with
Fine-tuning for Matching Tabular and Semi-structured
Entities. M represents the number of entity attributes
sampled in the serialized input, and increasing M even-
tually leads to the input sequence equivalent to S2 Ran-
dom order without downsampling.

igate the impact of input noise on model utility.
A direct comparison with ChatEA cannot be done
due to its limited accessibility. Based on results
over noisy embeddings (see Fig. 3 of Jiang et al.
(2024a)), both Walk-LLM and ChatEA achieve
better robustness than Simple-HHEA. Note that
ChatEA has 2 stages, where the first stage relies on
embeddings generated by Simple-HHEA (or other
encoders) and thus is still sensitive to input noise.

4.3.2 Efficiency Analysis
Fig. 2 compares the averaged inference time per
entity between LLM-based methods to match
KG entities. Note that, the runtime results of
GPT-based methods are obtained from Table 5 of
ChatEA (Jiang et al., 2024a). Walk-LLM (M =
10) achieves a speedup of more than 538 × and
2995 × than ChatEA with the GPT-3.5 and GPT-4
backbones, respectively. The reduction in inference
cost comes from two main aspects: (1) Replacing
chat-based queries with a bi-encoder framework
that matches entities based on comparing their em-
beddings generated from context-rich features sam-
pled by random walks. (2) Running open-source
LLMs with fewer parameters locally is cheaper
than the API calls of online GPT models.
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Models
ICEWS-WIKI ICEWS-YAGO

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
Walk-Mistral-7BM=5 0.977 0.999 0.987 0.969 0.994 0.980
Walk-Mistral-7BM=10 0.986 0.999 0.992 0.980 0.994 0.986
Walk-Mistral-7BSubg 0.982 1.000 0.990 0.974 0.995 0.983

Walk-Llama3-8BM=5 0.983 1.000 0.991 0.972 0.994 0.981
Walk-Llama3-8BM=10 0.988 1.000 0.993 0.974 0.995 0.983
Walk-Llama3-8BSubg 0.987 1.000 0.993 0.973 0.994 0.982

Table 6: Effect of Walk Numbers M on LLMs with
Fine-tuning for Matching Entities from HHKGs. subg
indicates the use of all neighboring entities in KGs as
the input without downsampling.

4.4 Hyperparameter Study

We start with the effect of the number of walks on
model performance using walk-based serialization
over tabular and semi-structured datasets. Fig. 3
shows that the walk-based serialization of sampling
M entity attributes (M = 3, 5) provides reason-
able results compared to S2 Random order without
downsampling. The number of entity attributes in
D1-6 is mostly between 4 and 9. The performance
of the walk-based strategy improves with the in-
crease of M and eventually converges to the results
of S2. For the KG dataset, Table 6 summarizes
the comparison of model performance when sam-
pling different numbers of paths M for each entity.
Similarly, increasing M can improve the matching
performance of the model, and it is sufficient to
set the step L to 1. However, when all neighbor-
ing entities in the induced subgraph are used as
input without downsampling, the performance is
not substantially boosted. Meanwhile, using the
full subgraph increases the training and inference
time by 4 times compared to M = 10. Considering
the trade-off between complexity and utility, the
choice of M should generally follow the density of
the input graph.

5 Conclusion

In this work, we systematically study the effect of
entity serialization on language models with differ-
ent sizes and backbones for matching structured
entities. We empirically find that BERT-based en-
coder models are more sensitive to serialization
than LLMs, especially in terms of attribute order
and data quality. Both types of language models
prefer serialization schemes that are close to the
text corpus on which they are pretrained. When
entity attributes are noisy, injecting randomness
into the input can benefit the model’s performance.
By applying these findings, we propose a random
walk-based serialization for open-source LLMs to

scalably generate robust embeddings for matching
KG entities. The proposed LLM-Walk achieves
SoTA performance and is three orders of magni-
tude faster than GPT-4-based methods.

6 Limitations

While our study provides a comprehensive analy-
sis of serialization strategies for entity matching,
several limitations remain. First, the scope of the
benchmark datasets is mainly tabular and knowl-
edge graph entities, which may not generalize to
other types of structured data, such as complex
nested or temporal entities. Second, although our
proposed random walk-based serialization method
demonstrates strong performance in knowledge
graphs, it may struggle with entities that lack well-
defined or sufficient graph structure, potentially
impacting the method’s efficacy in domains with
sparse or incomplete relations. Third, our explo-
ration in this work is limited to open-source LLMs
like Llama and Mistral. We have not evaluated our
methods over proprietary or closed-source models
like GPT-4o (and inter alia). Lastly, the implica-
tions of entity serialization on downstream tasks
that leverage structured data and LLMs, e.g., in
question answering with knowledge graphs, are not
explored in this work.

Overall, these limitations suggest that while the
findings offer valuable insights, further work is
needed to fully understand the generalizability and
practical applicability of the studied serialization
approaches in real-world scenarios.

7 Ethics Statement

This work focuses on studying how the serialization
of structured entities affects language models on
matching tasks and is conducted under the guide-
lines of the ACL Ethics Policy. The datasets used
for experiments are publicly available, widely rec-
ognized by the research community, and, to the
best of our knowledge, contain no personally iden-
tifiable information or content that is harmful, of-
fensive, or biased.
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A Architecture of Entity Matching
Systems Using Language Models

A.1 Pretrained Encoder Models
Entity matching requires rich contextualized repre-
sentations, where pretrained encoder models such
as BERT can produce entity embeddings with high
throughput and low latency but have limited ability
of reasoning and generalization. The most common
entity matching (EM) system using pretrained lan-
guage models (LMs) is based on the cross-encoder
framework 1 proposed by Li et al. (2020), where
the model takes serialized entities in pairs as input
and formulates their matching as a classification
task, as shown in Fig. 4.

Figure 4: Architecture of Ditto (Li et al., 2020).

A.2 Large Language Models (Decoder-only)
Compared to encoder models, LLMs with billions
of parameters contain more knowledge from per-
taining, but their decoding part is very expensive
and time-consuming. LLM2vec 2 (BehnamGhader
et al., 2024) can transform any pretrained decoder-
only LLM into a (universal) text encoder, where
the model can be used in the bi-encoder framework
for matching that breaks the bottleneck of text gen-
eration in chat-based matching (See Figs. 5, 6).

B More Experimental Details

B.1 Benchmark Datasets
The following provides a detailed description of
the 10 datasets selected for entity matching and
alignment tasks. Table 7 lists the attribute names
for tabular and semi-structured datasets.

• D1 Rel-HETER: This task is for matching
between structured tables with heterogeneous

1https://github.com/megagonlabs/ditto
2https://github.com/McGill-NLP/llm2vec

Figure 5: Architecture of Decoder-only Transformer
Model (Vaswani et al., 2017). Image source (Wolfe,
2024).

Figure 6: 3 Steps of LLM2vec to convert decoder-only
models as universal text embedding models: enabling
bidirectional attention, fine-tuning with masked next
token prediction and unsupervised contrastive learning
(BehnamGhader et al., 2024).

schema. The source is the Fodors-Zagats task
from the Deep Matcher datasets (Bilenko, 2019).

• D2 Semi-Rel: This task is for matching between
semi-structured and structured tables. The source
is the set of 5 Movie tasks collected by the Mag-
ellan project (Das et al.).

• D3 iTunes-Amazon (Dirty) contains music data
from iTunes and Amazon. This was created by
students in the CS 784 data science class at UW-
Madison. The dirty version was obtained by
modifying the structured iTunes-Amazon dataset
to simulate dirty data. Specifically, for each at-
tribute other than "title", they randomly moved
each value to the attribute "title" in the same tuple
with 50% probability.

• D4 Walmart-Amazon (Dirty) contains product
data from Walmart and Amazon. The procedure
for generating the dirty version of this dataset is
the same as that for D3.

• D5 IMDb-TVDB consists of two individual
data sources, which comprise movie descriptions
from imdb.com (IMDb) and TV shows from
TheTVDB.com (TVDB) (Obraczka et al., 2021).

• D6 IMDb-DBpedia matches movies from IMDb
and DBpedia (Papadakis et al., 2011), but has no
overlap with the IMDb data source of D5.
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Dataset D attribute names D′ attribute names
D1 Rel-HETER name, address, phone, category addr, city, phone, type, class
D2 Semi-Rel id, title, authors, venue, year Movie1: id, name, year_range, relase_date, director, creator, cast, du-

ration, rating:[rating_value, content_rating], genre, url, description;
Movie2: id, name, year, director, writers(list), actor(list); Movie3: id,
title, year, director, creators, cast, genre, duration, rating: [rating, con-
tent_rating], summary; Movie4: id, title, time, director, year, stars(list),
rating:[rotten_tomatoes, audience_rating, review(list)]; Movie5: id, mo-
vide_name, year, directors, actors, movide_rating, genre, duration.

D3 iTunes-Amazon id, Song_Name, Artist_Name, Album_Name, Genre, Price, CopyRight Time, Released same as D
D4 Walmart-Amazon id, title, category, brand, modelno, price same as D
D5 IMDb-TVDB title, name, episodeNumber, seasonNumber, deathYear, birthYear, endYear, startYear,

genre_list, primaryProfessions, runtimeMinutes
title, name, abstract, episodeNumber, seasonNumber, releaseDate, job

D6 IMDb-DBpedia id, title, starring, writer, editor, aggregate value id, title, actor name, director name, year, genre, aggregate value

Table 7: The schema (attribute names) of tabular and semi-structured data.

Backbone Model #param License Model Card

BERT.base 110M Apache License 2.0 https://huggingface.co/google-bert/bert-base-uncased
RoBERTa.base 125M MIT License https://huggingface.co/FacebookAI/roberta-base
LLM2Vec-Mistral-7B-Instruct-v2-mntp 7B MIT License https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp
LLM2Vec-Meta-Llama-3-8B-Instruct-mntp 8B MIT License https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp

Dataset Type License Data Source
D1 Rel-HETER, D2 Semi-Rel Clean, Hetero. BSD-3-Clause https://github.com/megagonlabs/machamp
D3 iTunes-Amazon, D4 Walmart-Amazon Dirty, Homo. GPL-3.0 license https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
D5 IMDb-TVDB, D6 IMDb-DBpedia Clean, Homo. CC BY 4.0 https://zenodo.org/records/6950980
D7 DBP15K(EN-FR), D8 DBP-WIKI KG, Canonical GPL-3.0 license https://github.com/nju-websoft/OpenEA
D9 ICEWS-WIKI, D10 ICEWS-YAGO KG, Highly Hetero. CC BY 4.0 https://github.com/IDEA-FinAI/Simple-HHEA/tree/main/data

Table 8: Data license and model card of pretrained language models.

• D7 DBP15K(EN-FR) and D8 DBP-WIKI
are two canonical entity alignment datasets.
DBP15K(EN-FR) is for bilingual entity align-
ment on DBpedia, and DBP-WIKI is for aligning
entities obtained from Wikipedia and DBpedia.

• D9 ICEWS-WIKI and D10 ICEWS-YAGO come
from Highly Heterogeneous Knowledge Graph
Datasets (Jiang et al., 2024b). Both datasets are
for KG entity alignment, integrating the event
knowledge graph derived from the Integrated Cri-
sis Early Warning System (ICEWS) and general
KGs (i.e., WIKIDATA, YAGO).

B.2 Experimental Settings

To benchmark the effect of entity serialization
schemes on pretrained encoder models, we use
the default setting of the Ditto framework (Li et al.,
2020), which only modifies how entity serialization
is performed, to fine-tune the encoder model for
each scheme S listed in Table 1 on datasets D1-6,
and report the results in Table 3. For LLMs, we first
transform the base model (listed in Table 8) using
LLM2vec and then obtain the entity embeddings
directly. For matching tasks, the default instruc-
tion used by LLM2Vec is replaced by "Given a
description of a real-world entity, retrieve the most
relevant entities that match or align with the given
entity." The matching score for each entity tuple
(one positive versus k negative pairs) in datasets
D1-6 is computed under each serialization scheme,
and the zero-shot performance is summarized in Ta-

ble 9. We further fine-tune each model on the train
set of all six datasets at once for each serialization
and report their performance in Table 3.

For all baselines compared for matching KG
entities, we followed the original hyperparameter
settings reported in their papers with the same 3:7
splitting ratio in the training/testing set. All base-
lines use the same preprocessing procedure to ob-
tain the initial features from four KG datasets. We
fine-tuned the base model of open-source LLMs un-
der supervised fine-tuning through LLM2vec with
recommended parameters and entity pairs serial-
ized by the walk-based strategy (M = 10, L = 1)
as input. Datasets D7-8 and D9-10 have common
domains with DBpedia and ICEWS, respectively.
Thus, we fine-tune one model for datasets with a
sharing domain. The reported results are the aver-
age of 5 runs.

The code base is developed based on Pytorch
2.3.1 with Transformer 4.40.2, and llm2vec
0.2.2. The experiments are performed on a server
of Ubuntu 24.04LTS OS with 3.0 GHz 2nd Gen
Intel Xeon processors (96 cores) and 8 NVIDIA
A100 Tensor Core GPUs (40G).

B.3 More Experimental Results

Zero-shot EM with LLMs To study how at-
tribute order, special tokens, or missing/dirty at-
tributes affect LLMs for entity matching under the
zero-shot setting, we compare the entity embed-
dings generated by off-the-shelf LLMs in one run
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Scheme
D1 (MRR) D2 (MRR) D3 (MRR) D4 (MRR) D5 (MRR) D6 (MRR)

Mistral Llama Mistral Llama Mistral Llama Mistral Llama Mistral Llama Mistral Llama
S1 Fixed 0.903 0.901 0.843 0.813 0.739 0.612 0.840 0.780 0.713 0.544 0.695 0.685
S2 Random 0.883 0.892 0.839 0.812 0.696 0.626 0.834 0.769 0.707 0.499 0.670 0.663
S4 Valid 0.903 0.901 0.852 0.830 0.703 0.548 0.815 0.743 0.718 0.579 0.712 0.719
S5 Plain 0.917 0.964 0.836 0.839 0.698 0.636 0.856 0.827 0.702 0.595 0.702 0.733
S7 JSON 0.939 0.929 0.881 0.869 0.708 0.539 0.839 0.774 0.721 0.583 0.709 0.745

Table 9: LLMs for Zero-shot Structured EM with Different Serialization (1st bold, 2nd underline)

under the bi-encoder framework and report the re-
sults in Table 9. S3 Pairwise order is skipped as
the bi-encoder framework encodes the serialized
entities separately. S6 Span typing is designed to
be paired with supervised training, which is also
skipped under the zero-shot setting.

C Use of Generative AI

In this work, generative AI services are used to
study several GPT-based baselines, test corner
cases in entity matching, and polish writing at the
sentence level.
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