
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 7355–7371

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

GeoCoder: Solving Geometry Problems by Generating Modular Code
through Vision-Language Models

Aditya Sharma1,2, Aman Dalmia1,3, Mehran Kazemi5,
Amal Zouaq1,2, Christopher J. Pal1,2,4

1Mila, 2Polytechnique Montréal, 3Université de Montréal,
4Canada CIFAR AI Chair, 5Google DeepMind

Correspondence: aditya.sharma@mila.quebec

Abstract

Geometry problem-solving demands advanced
reasoning abilities to process multimodal in-
puts and employ mathematical knowledge ef-
fectively. Vision-language models (VLMs)
have made significant progress in various mul-
timodal tasks. Yet, they still struggle with ge-
ometry problems and are significantly limited
by their inability to perform mathematical op-
erations not seen during pre-training, such as
calculating the cosine of an arbitrary angle, and
by difficulties in correctly applying relevant
geometry formulas. To overcome these chal-
lenges, we present GeoCoder, which leverages
modular code-finetuning to generate and exe-
cute code using a predefined geometry function
library. By executing the code, we achieve
accurate and deterministic calculations, con-
trasting the stochastic nature of autoregressive
token prediction, while the function library min-
imizes errors in formula usage. We also pro-
pose a multimodal retrieval-augmented variant
of GeoCoder, named RAG-GeoCoder, which
incorporates a non-parametric memory mod-
ule for retrieving functions from the geometry
library, thereby reducing reliance on paramet-
ric memory. Our modular code-finetuning ap-
proach enhances the geometric reasoning capa-
bilities of VLMs, yielding an average improve-
ment of over 16% across various question com-
plexities on the GeomVerse dataset compared
to other fine-tuning methods.

1 Introduction

Geometry problem solving requires interpreting a
figure, comprehending a question, and applying the
appropriate geometry formulas to derive the answer.
This presents an ideal test-bed for evaluating multi-
modal models’ visual and mathematical reasoning
capabilities, with practical relevance in fields such
as education, architecture, and engineering.

Various vision-language models (VLMs) like
GPT-4V (Achiam et al., 2023), GPT-4o (OpenAI,
2024), Gemini (Team et al., 2024), PaLI (Chen

et al., 2022b) and LLaVA (Liu et al., 2024) have
been introduced and benchmarked on tasks involv-
ing geometric reasoning (Gao et al., 2023; Kazemi
et al., 2023). Despite this progress, the inherent
nature of auto-regressive language model training,
which focuses on next-token prediction, presents
challenges in modeling mathematical reasoning
that requires precise calculations and the correct
application of formulas (Kazemi et al., 2023; Liao
et al., 2024). While language models can handle
computations they were exposed to during training,
such as cos 45, they tend to struggle with unseen
calculations, for instance, cos 18. The Chain-of-
Thought (CoT) approach aims to improve reason-
ing in language models by eliciting a step-by-step
natural language reasoning along with the final an-
swer (Wei et al., 2022) but suffers from the same
problems of imprecise computations and wrong for-
mula usage (Gou et al., 2023; Kazemi et al., 2023).
This problem is especially aggravated when the
geometry problems require multi-hop mathemati-
cal reasoning over figures with multiple complex
shapes like in the GeomVerse dataset (Kazemi et al.,
2023), as seen in figure 1.

Mathematical code generation, where a model
generates code that is then executed to obtain the
solution to a mathematical problem, addresses the
issue of inaccurate calculations (Chen et al.; Wang
et al., 2023; Liao et al., 2024). Code execution en-
sures precise and deterministic results, unlike the
stochastic behavior of autoregressive next-token
prediction. However, this method does not fully re-
solve the issue of incorrect formula application, as
the language model relies on its parametric memory
to recall and implement the relevant formulas.

In this study, we answer the following research
question: "Can VLMs enhance their multimodal
mathematical reasoning capabilities by using mod-
ular code generation and execution instead of re-
lying on autoregressive answer generation?" We
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propose GeoCoder1, a multi-modal modular code
generation approach for geometric reasoning using
VLMs, which generates code that includes calls to
predefined mathematical functions and mitigates
this limitation by offloading the responsibility of
recalling formulas to a function library. Modular
code generation offers the additional advantage of
improving interpretability by including templated
print statements in the function outputs. Solving
most geometry questions involves applying multi-
ple functions in sequence, which produces a series
of templated explanations outlining each step of
the problem-solving process.

Figure 1: Sample geometry problem from the Geom-
Verse (Kazemi et al., 2023) dataset. Question: If the
ABCD shape is a rectangle where a semi-circle has been
removed from one side of it, the area of the BAF right
triangle is 40, and the area of the BGHF parallelogram
is 102, compute the area of the ABCD shape.

While recent LLMs (large language models)
have demonstrated remarkable performance in
Python code generation tasks (Jiang et al., 2024),
VLMs still encounter difficulties, largely due to
the lack of datasets pairing images and questions
with code. To address this gap, we capitalize on the
code generation capabilities of LLMs to construct
the first multimodal code instruction-tuning dataset
for solving geometry problems and subsequently
finetune a VLM on this data to create GeoCoder. In
addition, we introduce a retrieval-augmented ver-
sion of our model, named RAG-GeoCoder, which
leverages a non-parametric function memory and
generates modular code that uses functions more
often than GeoCoder (see Section 5.4). Given its re-
liance on non-parametric memory, RAG-GeoCoder
has the potential to adapt to both modifications
in the function library and significantly larger li-
braries. However, we leave further investigation of

1Code and data available at https://github.com/
Lama-West/Geocoder

this capability for future work.
This work makes the following contributions:

1. Our work presents a modular code-finetuning
framework for VLM-based geometry
problem-solving utilizing a predefined
function library. The VLM trained via this
process is referred to as GeoCoder.

2. We propose a retrieval-augmented variant of
GeoCoder, called RAG-GeoCoder, which in-
cludes a non-parametric memory to reduce the
VLM’s reliance on its parametric memory for
recalling geometry functions, thus increasing
function usage.

3. GeoCoder and RAG-GeoCoder outperform
models trained with alternate finetuning strate-
gies on the GeomVerse dataset by more than
16% on average across question complexities
and by 14.2% on the GeoQA-NO dataset (see
Section 4.1.2).

4. GeoCoder and RAG-GeoCoder add inter-
pretability to VLM-based geometry problem-
solving through templated print statements in
the proposed geometry function library.

5. We release a first-of-its-kind multimodal
dataset for code instruction-tuning for solv-
ing geometry problems, with geometry ques-
tions and images paired with corresponding
code generated by our approach. This dataset
contains 35k data points from GeomVerse
(Kazemi et al., 2023) and 48k from Geo170k
(Gao et al., 2023).

2 Related Work

In this section, we discuss a literature review of
existing approaches.

2.1 VLMs for solving geometry problems

Recent advancements have seen the development
of various general-purpose VLMs (Liu et al., 2024;
OpenAI, 2024; Team et al., 2024; Li et al., 2024;
Han et al., 2024), but they continue to underper-
form on geometry tasks. Gao et al. (2023) and
Zhang et al. (2024b) argue that VLMs struggle to
comprehend basic geometric visual elements accu-
rately and release two large geometry instruction-
tuning datasets called Geo170k and MAVIS, re-
spectively. Kazemi et al. (2023) release a new
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Tikz
Illustration

LLM

def solution():
    perimeter = 80
    diameter = 12
    arc_length = arc_of_semi_circle(diameter)
    unknown_side = (perimeter - diameter - arc_length) / 2
    output = runknown_side
    return output

Question

CoT

Function
Library

Interpreter Answer

Figure 2: The first step in our methodology consists of generating modular code by employing few-shot prompting
with a code generation-capable LLM, utilizing questions, TikZ image illustrations, CoT reasoning, and the predefined
function library. The generations that execute to produce the correct answer are selected as the basis for our "gold"
code-tuning data, as discussed in Section 3.1.

large synthetic dataset called GeomVerse for solv-
ing multi-hop geometry problems that require com-
plex reasoning. They benchmark state-of-the-art
VLMs on this dataset and show that these models
are not as capable in subjects like geometry, which
require long chains of reasoning. Our geometry
code-tuning dataset is built using the Geo170k and
GeomVerse datasets. Additionally, AlphaGeome-
try (Trinh et al., 2024) introduces a neuro-symbolic
system that solves geometry theorem-proving prob-
lems. In contrast to our model which generates
modular code through a VLM, AlphaGeometry’s
generation combines a VLM with a rule-bound de-
duction engine. GeoGPT4V (Cai et al., 2024) is a
dataset that contains 4.9k basic geometry questions
and images in the style of GeoQA (Chen et al.,
2021) and Geometry3k (Lu et al., 2021) generated
by GPT4V + 19k questions from existing datasets
like GeoQA. We use Geo170k (Gao et al., 2023) in
this work, a much larger dataset augmented from
GeoQA and Geometry3k, for finetuning our mod-
els to generate code.

2.2 Code generating LLMs for non-visual
mathematical reasoning

Wang et al. (2023) and Liao et al. (2024) suggest
a methodology for producing new datasets com-
prising textual math problems and their code-based
solutions using large LLMs as teachers for smaller
LLMs. We modify this knowledge-distillation ap-
proach to address multimodal mathematical rea-
soning by using a teacher LLM to generate our
geometry code instruction-tuning dataset. (see Sec-
tion 3.1). Additionally, we extend this approach to
modular code generation by incorporating a prede-
fined geometry function library, ensuring the model
applies precise mathematical formulas instead of
relying on its parametric memory. Gou et al. (2023)
propose text-only mathematical reasoning agents
that interweave natural language rationale genera-

tion with program-based tool use, this is in contrast
to our multimodal approach where the VLM gen-
erates modular code which is executed to get the
answer as well as the rationale through templated
print statements.

2.3 Code generating VLMs for general VQA

While there have been approaches like ViperGPT
(Surís et al., 2023) and VizProg (Gupta and Kem-
bhavi, 2023) for generating code for tasks like vi-
sual question answering (VQA), they do so using
LLMs, ignoring the image information completely
and only looking at the question. Subsequently,
they add the image information while executing the
generated code. In contrast, our approach builds
a VLM that looks at the geometry images and in-
corporates this information with the question to
generate code for solving geometry problems. Mul-
timodal Self-Instruct (Zhang et al., 2024c) uses an
LLM to generate code to synthesize a benchmark
with abstract images and visual reasoning instruc-
tions. This paper reinforces our observation that
VLMs are not good coders because of the lack of
paired image-plus-question and code datasets, re-
sulting in a lack of training to condition VLMs to
generate code while looking at both the text and
the image.

3 Proposed Method

Existing approaches that finetune VLMs to gener-
ate CoT for geometry problems (Gao et al., 2023;
Kazemi et al., 2023) help VLMs become better
geometric reasoners, as compared to finetuning
VLMs to generate just the final answer. Even
so, these CoT finetuned VLMs significantly suffer
from wrong calculation and wrong formula usage
errors, especially for geometry problems requir-
ing long chains of reasoning (Kazemi et al., 2023),
due to the autoregressive nature of VLM language

7357



If the ABCD shape is a rectangle where a 
semi-circle has been removed from one side and 
the perimeter of the ABCD shape is 80…

GeoCoder
VLM

def solution():
    perimeter = 80
    diameter = 12
    arc_length = arc_of_semi_circle(diameter)
    unknown_side = (perimeter - diameter - arc_length) / 2
    output = runknown_side
    return output

Code Finetuning

Figure 3: During modular code-finetuning, we utilize the code-tuning data produced by our teacher LLM (see
Section 3.1) to finetune a significantly smaller VLM, which we refer to as GeoCoder (as discussed in Section 3.2).

If the ABCD shape is a 
rectangle where a semi-circle 
has been removed from one 
side of it and the area of the 
ABCD shape is 114…

Multimodal
Encoder FAISS

Function
Memory

1. arc_of_semi_circle
2. diameter_of_semi_circle_given_area
3. area_of_semi_circle
4. perimeter_of_rectangle_with_side_removed
5. area_of_rectangle

Retriever

Figure 4: For each geometry problem, given the image and question text, our multimodal retriever retrieves the
most similar functions from the function memory, as discussed in Section 3.3.1.

generation. To address these limitations, we pro-
pose modular code-finetuning as an alternative to
CoT finetuning for training VLMs to solve geome-
try problems. The proposed approach, where the
VLM generates Python code with calls to modules
or functions from a predefined geometry library
(discussed in Section 3.1), offers three key advan-
tages: (1) code execution guarantees precise and
deterministic calculations; (2) the generated code
references predefined mathematical functions, re-
ducing errors related to incorrect formula usage;
and (3) using templated print statements in each
function enhances the interpretability of the com-
putational process. We propose a two-step code-
finetuning strategy, capitalizing on knowledge dis-
tillation, described in the following sections.

3.1 Generating geometric code-tuning data

We first generate "gold" code-tuning data by CoT
few-shot prompting an LLM skilled in code gener-
ation, using the TikZ image illustrations (Tantau,
2013). As illustrated in figure 2, we start by prompt-
ing a large LLM to generate multiple Python codes
that leverage pre-defined functions to solve geome-
try questions in a few-shot manner (6-shot in this
study). We call this model our teacher LLM. We

employ CoT prompting to guide the model genera-
tion, along with the TikZ illustration of the image
(Tantau, 2013) (which is a textual representation of
a geometry figure, as seen in the example in Fig-
ure 8) and a function library. We interpret the code
generated by the model and use the answers it gets
correct as a source of code-finetuning data for our
student VLM described in section 3.2. We define a
correct code as one that executes to give a floating
point answer that matches the ground truth answer
for that geometry question. Codes that execute
but whose output does not match the ground truth
answer are rejected. We also developed a Python
function library that includes all formulas present
in the GeomVerse dataset, as well as a selection
of commonly applied geometry formulas. Along
with code for calculating answers using geometry
formulas, the functions in the proposed library also
include templated print statements. The final li-
brary contains 47 geometry functions, which are
listed in the Appendix.

3.2 GeoCoder

We use the modular code-finetuning data generated
by our teacher LLM (discussed in Section 3.1) to
finetune a much smaller VLM called the student
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VLM. As shown in figure 3, the student VLM is
finetuned to generate code directly given the image
and textual question. We call the resulting code-
finetuned student VLM, GeoCoder. At inference
time, GeoCoder takes the image and question as in-
put and generates Python code which is interpreted
to give the final answer. In contrast to preceding
models that generate code using an LLM and add
the image information subsequently (Surís et al.,
2023; Gupta and Kembhavi, 2023), our methodol-
ogy is the first one to finetune a VLM specifically
to generate code while looking at the image.

3.3 RAG-GeoCoder

Additionally, we propose RAG-GeoCoder which
is a retrieval-augmented version of GeoCoder
based on the popular retrieval-augmented gener-
ation (RAG) paradigm (Lewis et al., 2020). RAG-
GeoCoder first employs a multimodal retriever (dis-
cussed in Section 3.3.1) to retrieve relevant func-
tions from the function library, which are then pro-
vided as input, along with the question and image,
to the student VLM during both code-finetuning
and inference. This approach allows the student
VLM to use a non-parametric memory to select
the most appropriate functions, rather than relying
on its parametric memory, thus increasing function
usage (see Section 5.4).

3.3.1 Multimodal Retriever

Given an image and accompanying question text
from a geometry problem, our multimodal retriever
identifies the most similar functions from the func-
tion memory. As illustrated in Figure 4, the mul-
timodal encoder first encodes the image and text
into an embedding, and then FAISS (Douze et al.,
2024; Johnson et al., 2019) is used to retrieve a set
of functions from a non-parametric memory whose
embedding is closest to the input embedding.
Multimodal Encoder. In this work, we utilize the
VISTA model (Zhou et al., 2024) as our multimodal
encoder, as it embeds text, image, and image-text
data into a shared vector space, facilitating dense
retrieval across different modalities.
Function Memory. We employ a non-parametric
function memory structured as a dictionary, where
multimodal encoder-generated embeddings of func-
tion names, arguments, and descriptions serve as
keys, with the corresponding function names as
values. This module stores a dictionary with em-
beddings and names for all functions in our library.

Dataset Train Test
GeomVerse 10k 3k

Geo170k-NO 110k ✗

GeoQA-NO ✗ 754
MathVerse
(testmini)

✗ 3.94k

Table 1: Statistics of datasets used in this work, as
discussed in Section 4.1.

3.3.2 Finetuning and inference
RAG-GeoCoder student VLM receives the image,
question text and a set of retrieved functions (de-
tails in Section 4.3) and learns to generate modular
code using the code-finetuning data generated by
our teacher LLM (described in Section 3.1). At
inference time, we give the image, question and
retrieved functions to RAG-GeoCoder, which gen-
erates modular code which is executed to get the
final answer.

4 Experimental Setup

4.1 Datasets

We evaluate our proposed models on three datasets:
GeomVerse (Kazemi et al., 2023), GeoQA (Chen
et al., 2021), and MathVerse testmini (Zhang et al.,
2024a). Additionally, we use the Geo170k (Gao
et al., 2023) geometry instruction-tuning dataset
and the train set of GeomVerse to create code-
tuning data for finetuning GeoCoder, as described
in Section 3.1. An overview of the dataset statistics
is outlined in Table 1.

4.1.1 Training Datasets
GeomVerse is a synthetically generated dataset of
geometry questions designed to require multi-step
mathematical reasoning across both text and im-
ages. The dataset categorizes questions into three
levels of complexity: depth 1, depth 2, and depth
3. As seen in Figure 7, depth 1 questions address
a single geometric shape, while higher-depth ques-
tions involve multiple shapes, requiring a more
complex reasoning process with multiple formula
application steps. Furthermore, all questions in Ge-
omVerse are designed to necessitate models to look
at the image to find the answer, as some critical in-
formation like relevant angles and side lengths are
only mentioned in the image and not in the textual
question. The dataset contains 10k questions each
in the train and validation sets. For our experiments
on GeomVerse, we use the train set of GeomVerse
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to create a code-finetuning dataset by generating
5 Python codes per geometry problem (using the
process detailed in Section 3.1), with 35k unique
image-question and code pairs encompassing 8.5k
unique geometry problems.
Geo170k is an instruction-tuning dataset divided
into two components: alignment and QA-tuning,
with no test set. The alignment portion of the
dataset contains 60k geometry image-caption pairs,
while QA-tuning includes 110k geometry question-
answering problems derived by augmenting Geom-
etry3k (Lu et al., 2021) and GeoQA+ (Cao and
Xiao, 2022). In Geo170k, each question is ac-
companied by four answer options for the model
to select from, whereas in GeomVerse, the model
must directly predict the final answer. Even though
the final answer prediction task is much harder,
we argue it is more realistic than selecting from
options, as real-world geometry problems rarely
provide answer choices. Therefore, we create and
utilize a ’no-option’ version of QA-tuning in this
study, where the task is to predict the final an-
swer. We call this version Geo170k-NO, which
contains 110k CoT-annotated questions, to fine-
tune our models. As there are no TikZ illustrations
available in Geo170k, we use our teacher LLM
to generate single code solutions for problems in
Geo170k-NO given only the CoT, question and
function library using the method mentioned in
Section 3.1. This creates a code-finetuning dataset
with 48k unique image-question and code pairs.

4.1.2 Evaluation Datasets
GeomVerse: We evaluate our models on the test set
of GeomVerse which contains 1k questions from
each depth, resulting in 3k test questions overall.
GeoQA includes geometry questions derived from
Chinese middle school exams, with each problem
annotated with the associated CoT (as seen in Ta-
ble 8). The test set in GeoQA contains 754 prob-
lems. Since the original dataset is in Chinese, we
follow Gao et al. (2023); Liang et al. (2023) and uti-
lize the English version from Chen et al. (2022a) to
ensure consistency in language across datasets. As
with Geo170k, each question in GeoQA is provided
with four answer options for the model to choose
from. In this work, we evaluate using GeoQA-NO,
a version of the dataset where models predict the
final answer without multiple-choice options.
MathVerse is a visual math benchmark crafted to
evaluate multi-modal mathematical reasoning skills
of VLMs and spans three areas: plane geometry,

solid geometry, and functions. We evaluate on the
plane geometry subset of the testmini set of Math-
Verse. As with GeoQA-NO, we convert MathVerse
to a "no-options" setting and evaluate on questions
where the model has to give the final floating point
answer without seeing any options.

4.2 Metrics

Relaxed Accuracy: Following the methodology
of Kazemi et al. (2023), Masry et al. (2022) and
Methani et al. (2020), we assess model perfor-
mance based on relaxed accuracy, where a predic-
tion is deemed correct if it is within three percent
of the ground truth label. This adjustment accounts
for slight floating point computational differences
arising from rounding during each calculation step.

4.3 Our Models

Teacher LLM. We use Llama 3.1 70B Instruct
(Dubey et al., 2024) as our teacher LLM in this
study because it is open-source and has strong code
generation performance.
Student VLM. We use LLaVA 1.5 7B as the stu-
dent VLM for code-finetuning GeoCoder and RAG-
GeoCoder in this study, as discussed in Section 3.
We generate 4 codes using beam search and select
the first one that executes as the model’s answer in
our experiments.
Multimodal Retrieval. During training, we pro-
vide the VLM with k (here k= 7) retrieved func-
tions, in addition to the "gold" functions extracted
from the corresponding "gold" code in the fine-
tuning dataset. These "gold" functions are supplied
during training to encourage the model to consis-
tently select functions from the input list. Dur-
ing inference, RAG-GeoCoder is supplied with 10
retrieved functions, where recall is 76% (see Fig-
ure 6). These choices are intended to optimize
the recall of relevant functions while keeping the
context length of the VLM manageable.

4.4 Baselines

In this study, we specifically compare the advan-
tages of code-finetuning over CoT-finetuning. On
the GeomVerse dataset, we report results from
experiments with three popular VLMs namely
LLaVA 1.5 (Liu et al., 2024), PaLI (Chen et al.,
2022b) and GPT4V (Achiam et al., 2023)2. We con-
sider five settings: zero-shot prompting (GPT4V),

2The results on GPT4V are from Kazemi et al. (2023) and
were obtained on a subset of randomly selected 10 examples
per depth, and the correctness was determined manually.
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Model Type Depth 1 Depth 2 Depth 3
Human Human 80% 65% 55%

PaLI 55B CoT few-shot 0.1% 0.3% 0.2%
GPT4V CoT few-shot 70% 0% 0%
PaLI 5B Finetuned 22.8% 15.6% 14.5%
PaLI 5B CoT-finetuned 69.5% 46.8% 25.8%

LLaVA 1.5 7B CoT-finetuned 82% 64% 42%
GeoCoder 7B (ours) Code-finetuned 95.0% 77.5% 60.1%

RAG-GeoCoder 7B (ours) Code-finetuned 95.7% 80.1% 58.1%

Table 2: Relaxed accuracy (described in Section 4.2) on the GeomVerse dataset shows that our best-performing
code-finetuned model, RAG-GeoCoder, surpasses the corresponding CoT-finetuned LLaVA 1.5 by a margin of
13.7% on depth 1 and 16.1% on depth 2, while GeoCoder outperforms CoT-finetuned LLaVA 1.5 by 18.1% on
depth 3, as discussed in Section 5.1.

Type Overall Vision
Intensive

Vision
Dominant

Text
Lite

Text
Dominant

Vision
Only

G-LLaVA 7B CoT Finetuned 14.95 17.14 11.83 16.78 21.07 7.88
GeoCoder 7B

(ours)
Code Finetuned 25.18 27.86 20.07 31.07 35.71 11.11

Table 3: Code-finetuned GeoCoder outperforms the corresponding CoT-finetuned G-LLaVA by 10.23% overall on
the plane geometry subset of the MathVerse testmini dataset, as discussed in Section 5.1.

Model Type Relaxed
Accuracy

G-LLaVA 7B CoT-finetuned 28.0%
GeoCoder 7B Code-finetuned 42.3%

Table 4: Code-finetuned GeoCoder outperforms the
corresponding CoT-finetuned G-LLaVA by 14.3% on
the GeoQA-NO dataset, as discussed in Section 5.1.

few-shot (4-shot) prompting with CoT (PaLI 55B),
finetuning to predict the label directly (PaLI 5B),
finetuning to predict CoT (PaLI 5B, which is
the state-of-the-art on GeomVerse (Kazemi et al.,
2023) and LLaVA 1.5 7B) and our proposed code-
finetuning (GeoCoder 7B, RAG-GeoCoder 7B),
described in Section 3. To show the difficulty of
the GeomVerse dataset, we also report human accu-
racy on a small subset of the test split of the dataset
from Kazemi et al. (2023). In our experiments
on GeoQA-NO and MathVerse, we compare code-
finetuning with CoT-finetuning using the G-LLaVA
7B VLM (Gao et al., 2023). The original G-LLaVA
model is LLaVA 1.5 CoT finetuned on their pro-
posed Geo170k dataset, where every question has 4
answer options. To work with our ’no-options’ set-
ting, we CoT finetune LLaVA 1.5 on the Geo170k-
NO dataset (discussed in Section 4.1.1) and call
this finetuned model G-LLaVA.

5 Results and discussion

5.1 Quantitative Results

Results on GeomVerse dataset: As seen in Ta-
ble 2, code-finetuning demonstrates significantly
superior performance to CoT finetuned baselines
on GeomVerse across depths, with or without
retrieval-based augmentation. RAG-GeoCoder,
outperforms CoT-finetuned PaLI 5B (the state-of-
the-art on this dataset) by 26.2% on depth 1 and
33.3% on depth 2, while GeoCoder does so by
36.3% on depth 3. Code-finetuned RAG-GeoCoder
exceeds the performance of the corresponding CoT-
finetuned LLaVA 1.5 by 13.7% on depth 1 and
16.1% on depth 2, while GeoCoder outperforms
it by 18.1% on depth 3. The most significant
improvement occurs at depths 2 and 3, which
shows that modular code-finetuning enables lan-
guage models to handle problems with long chains
of mathematical reasoning and formula usage steps
better than other finetuning approaches.
Results on GeoQA-NO dataset: Unlike the
GeoQA dataset which has four answer choices
for every geometry problem, in GeoQA-NO there
are no options available and the task is to di-
rectly predict the final answer (as discussed in Sec-
tion 4.1). As seen in Figure 4, G-LLaVA (Gao et al.,
2023) (LLaVA 1.5 7B CoT finetuned on Geo170k-
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Correct
Output

Wrong
Output

Error
Count

Math-domain
Errors

Name
Errors

Syntax
Errors

Zero Div.
Errors

Other
Errors

GeoCoder
Depth 1 950 38 12 0 2 9 1 0
Depth 2 775 211 14 0 0 13 0 1
Depth 3 601 365 34 2 9 21 0 2

RAG-GeoCoder
Depth 1 957 43 0 0 0 0 0 0
Depth 2 801 178 21 0 17 2 0 2
Depth 3 581 369 50 3 34 2 1 10

Table 5: Error analysis of GeoCoder and RAG-GeoCoder on the test set of GeomVerse with 1000 examples per
depth, as discussed in Section 5.2.

Model D1 D2 D3
GeoCoder 71.7% 72.6% 70.6%

RAG-GeoCoder 90.3% 85.2% 90.0%

Table 6: Function usage analysis. RAG-GeoCoder uses
functions for 17% more questions on average across
depths as compared to GeoCoder on the test set of Ge-
omVerse, as discussed in Section 5.4.

NO) gets 28% relaxed accuracy on the test set of
GeoQA-NO. In contrast, GeoCoder gets 42.3% af-
ter code-finetuning on the gold code-tuning data
made (discussed in Section 3.1) using Geo170k-
NO. Although this performance far exceeds (by
14.3%) that of the CoT-finetuned model, it remains
relatively low. This indicates that GeoQA-NO is
more challenging than GeoQA, as models tend to
underperform when the task shifts from predicting
options to predicting final answers. In contrast to
GeomVerse, where the figures consist of combina-
tions of relatively simple shapes and the CoTs are
detailed (see Table 7), GeoQA-NO and Geo170k-
NO involve figures that require more sophisticated
image understanding. Additionally, the CoTs are
brief and often lack clear explanations of the solu-
tion (see Table 8). This also results in open code
and low function usage in the solutions produced
by our teacher LLM. Hence, we do not evaluate
RAG-GeoCoder in our experiments with GeoQA-
NO.
Results on MathVerse dataset: As seen in Table 3,
we also evaluate GeoCoder on the plane geometry
subset of the MathVerse testmini dataset under the
no-options setting (as discussed in Section 4.1.2).
GeoCoder outperforms the comparable CoT fine-
tuned G-LLaVA model (trained on Geo170k-NO)
across all question categories and by more than
10% overall.

5.2 Error Analysis

In this study, ’wrong outputs’ refer to cases where
the generated code runs but yields an incorrect
answer, whereas ’error count’ refers to instances
where the code fails to execute and throws an excep-
tion. These exceptions are classified into five cate-
gories: math-domain errors (input values outside
the function’s domain), name errors (calling a func-
tion not present in the library), syntax errors (incor-
rect Python syntax), zero-division errors, and other
uncategorized exceptions. As seen in Table 5, on
the GeomVerse dataset, RAG-GeoCoder reduces
the amount of syntax errors compared to GeoCoder,
but the number of name errors increases. RAG-
GeoCoder introduces more exceptions in depth 2
and 3 problems compared to GeoCoder. The pri-
mary cause of this increase is the rise in name errors
for higher-depth problems. We attribute this to the
relatively low recall rate of approximately 76% dur-
ing multimodal retrieval at test time (see Figure 6).
In depth 2 and 3 problems, where multiple func-
tions are needed within a single solution, missing
functions in the prompt lead the model to select
incorrect ones, unlike GeoCoder which relies on
its parametric memory.

5.3 Interpretability

In addition to geometric formula calculations, the
functions in our proposed function library integrate
templated print statements, making the computa-
tion process more interpretable. As seen in the ex-
ample in Figure 5, the manually created templates
in our functions are filled in automatically with the
values from the arguments of the function and the
computed results, thus introducing deterministic
interpretability. This contrasts with the stochastic
interpretability provided by CoT solutions where
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Templated print statement

GeoCoder

def solution():
angle_BAC = 40
angle_BCA = 50
angle_CBA = third_angle_of_triangle(angle_BAC, 

angle_BCA)
return angle_CBA

Compute the degree 
of the CBA angle. Interpreter

Since angle_1 = 40, angle_2 = 50 and the 
sum of all angles of a triangle = 180, we 
calculate the third angle of the given 
triangle as 180 - 40 - 50 = 90.

Figure 5: Modular functions add interpretability, as discussed in Section 5.3. In this example, the underlined values
are filled in the template by the ’third_angle_of_triangle’ function.

the autoregressive language model can hallucinate
the rationale behind the computation and still arrive
at the correct result.

5.4 Function Usage Analysis
Functions add interpretability (see Section 5.3) and
ensure correct geometry formula usage. To un-
derstand how well our models use functions, we
compare the number of times they use functions
to solve a given geometry problem. Specifically,
we find that out of 1000 questions per depth in
the GeomVerse test set, RAG-GeoCoder uses func-
tions to answer 903 problems in depth 1, 852 in
depth 2 and 900 in depth 3. In contrast, GeoCoder
uses functions for only 717 problems in depth 1,
726 in depth 2 and 706 in depth 3. As seen in Ta-
ble 6, RAG-GeoCoder demonstrates a 17% higher
function usage on average across different depths,
compared to GeoCoder on the GeomVerse dataset.
This shows the effectiveness of RAG-GeoCoder at
generating modular, interpretable code for solving
geometry problems.

6 Conclusion

In this work, we present GeoCoder, a novel modu-
lar framework for code-finetuning aimed at solving
geometry problems using VLMs. Our experiments
demonstrate that code-finetuning outperforms CoT-
finetuning for training autoregressive VLMs, as the
deterministic calculations provided by code execu-
tion overcome the stochastic nature of VLM-based
next-token prediction. To apply correct geome-
try formulas, mitigate errors from incorrect usage,
and increase interpretability, GeoCoder uses a pre-
defined function library that encodes widely used
geometry formulas. In addition, we present RAG-
GeoCoder, a retrieval-augmented variant that uses
a non-parametric memory module to retrieve func-

tions from the geometry function library, avoid-
ing dependence on the model’s parametric memory.
The code-finetuned models we propose consistently
outperform CoT-finetuned models across question
complexity and different datasets.

7 Limitations

Although GeoCoder is designed to utilize func-
tions from our predefined geometry library, it is not
strictly required to do so while solving problems,
as there is no enforced constraint on function usage.
In the prompt provided to the teacher LLM, we en-
courage the use of functions from the library, but
the model is not restricted to generating code solely
from the listed functions. While the majority of the
"gold" code produced by the teacher LLM includes
library functions, some instances deviate from this,
marking a limitation in our method. As a result,
on the GeomVerse test set, RAG-GeoCoder does
not use any functions for 9.7% problems in depth
1, 14.8% problems in depth 2 and 10% problems
in depth 3 (see Table 6). Another limitation of our
work is that the proposed geometric function library
may not cover all the formulas required for solving
every geometry question. However, our approach
is designed to accommodate larger libraries and ex-
ternal function APIs to remedy this. We leave that
exploration for future work. Moreover, since the
vision modules in VLMs are typically pre-trained
on real-world imagery, they struggle with interpret-
ing geometric figures. The images in GeomVerse
and GeoQA-NO differ significantly, requiring us
to finetune our models on their respective training
datasets in this study. This limitation may be ad-
dressed as future VLMs are pre-trained on a more
diverse set of geometric figures. Furthermore, our
approach for generating code-tuning datasets relies
on and is limited by the need for existing geometry
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datasets with questions and images. To address this,
approaches like GeoGPT4V (Cai et al., 2024) can
be used in conjunction with our approach for gen-
erating synthetic geometry code-tuning datasets.
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A Appendix

A.1 Geometry Functions Library

Here is the list of functions in our proposed func-
tion library along with their descriptions:

1. radius_of_sector_given_arc_length(arc_length,
angle) # Calculates the radius of a sector
given the angle and the arc length.
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2. side_of_parallelogram_given_area(area, side,
angle) # Calculates the second side of a paral-
lelogram given the area, the first side and the
sine of the angle (in degrees) between them.

3. height_of_triangle_given_area(area, base) #
Calculates the height of a triangle given the
area and the base.

4. base_of_triangle_given_area(area, height) #
Calculates the base of a triangle given the area
and the height.

5. arc_length_of_sector(angle, radius) # Calcu-
lates arc length of a sector given the angle and
the radius.

6. length_of_third_side(side_1, side_2, angle)
# Calculates the length of the third side of
a triangle given two sides and the angle be-
tween them in degrees, according to the law
of cosines.

7. height_of_equilateral_triangle(base) # Calcu-
lates the height of an equilateral triangle given
the base, according to the sine rule.

8. diagonal_of_square(side) # Calculates diago-
nal of a square given side.

9. hypotenuse_of_right_triangle(side_1, side_2)
# Calculates hypotenuse of a right triangle
given two sides, according to Pythagorean the-
orem.

10. side_of_right_triangle_given_side(side, hy-
potenuse) # Calculates the second side of
a right triangle given the first side and hy-
potenuse, according to Pythagorean theorem.

11. diameter_of_semi_circle_given_perimeter
(perimeter) # Calculates the diame-
ter of a semi-circle given the perime-
ter/circumference.

12. side_of_right_triangle_given_angle (oppo-
site_angle, hypotenuse) # Calculates the
length of the side of a right triangle given
opposite angle (in degrees) and hypotenuse.

13. side_of_equilateral_triangle(height) # Calcu-
lates the side of an equilateral triangle given
the height, according to the sine rule.

14. side_of_square_given_area(area) # Calculates
the side of a square given the area.

15. arc_of_semi_circle(diameter) # Calculates the
arc length or arc circumference of a semi-
circle given the diameter.

16. diagonal_of_rectangle(side_1, side_2) # Cal-
culates the diagonal of a rectangle given two
sides, according to Pythagorean theorem.

17. side_of_rectangle_given_diagonal(side, diag-
onal) # Calculates the second side of a rectan-
gle given the first side and diagonal, according
to the Pythagorean theorem.

18. diameter_of_semi_circle_given_area(area) #
Calculates the diameter of a semi-circle given
the area.

19. area_of_rectangle(side_1, side_2) # Calcu-
lates area of a rectangle given two sides.

20. area_of_square_given_side(side) # Calculates
the area of a square given a side.

21. area_of_square_given_diagonal(diagonal) #
Calculates the area of a square given the diag-
onal.

22. area_of_triangle_given_base_height(base,
height) # Calculates the area of a triangle
given the base and height.

23. area_of_right_triangle(side_1, side_2) # Cal-
culates the area of a right triangle given two
perpendicular sides.

24. area_of_semi_circle(diameter) # Calculates
the area of a semi-circle given the diameter.

25. area_of_circle(diameter) # Calculates the area
of a circle given the diameter.

26. area_of_parallelogram(side_1, side_2, angle)
# Calculates the area of a parallelogram given
two sides and the sine of the angle (in degrees)
between them.

27. area_of_triangle_given_semi_perimeter
(semi_perimeter, side_1, side_2, side_3) #
Calculates the area of a triangle given three
sides and the semi-perimeter, using Heron’s
formula.

28. area_of_trapezoid(base_1, base_2, height) #
Calculates the area of a trapezoid given the
two bases and the height.
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29. area_of_equilateral_triangle(side) # Calcu-
lates the area of an equilateral triangle given
the side.

30. area_of_sector(angle, radius) # Calculates the
area of a sector given the angle and radius.

31. side_of_square_given_perimeter(perimeter) #
Calculates the length of a side of a square
given the perimeter.

32. perimeter_of_shape(sides) # Calculates the
perimeter of a shape given a list of sides.

33. perimeter_of_square(side) # Calculates the
perimeter of a square given a side.

34. perimeter_of_rectangle_with_side_removed
(side_1, side_2) # Calculates perimeter of
a rectangle with one side (side_2) removed
given two sides.

35. perimeter_of_square_given_diagonal(diagonal)
# Calculates the perimeter of a square given
the diagonal.

36. perimeter_of_trapezoid(base_1, base_2,
side_1, side_2) # Calculates the perimeter
of a trapezoid given both the bases and the
lateral sides.

37. perimeter_of_rectangle(width, height) # Cal-
culates the perimeter of a rectangle given both
the width and the height.

38. perimeter_of_parallelogram(side_1, side_2) #
Calculates perimeter of a parallelogram given
two sides.

39. perimeter_of_triangle(side_1, side_2, side_3)
# Calculates perimeter of a triangle given all
three sides.

40. perimeter_of_semi_circle(diameter) # Calcu-
lates the perimeter/circumference of a semi-
circle given the diameter.

41. third_angle_of_triangle(angle_1, angle_2) #
Calculates the third of a triangle given the
other two angles.

42. tangent_of_angle(angle) # Calculates the tan-
gent of an angle. The tangent of an angle in
a right triangle gives the ratio between the
opposite and the adjacent sides.

43. angle_of_right_triangle(opposite_side, hy-
potenuse) # Calculates the angle (in degrees)
of a right triangle given the opposite side and
hypotenuse.

44. complementary_angle(angle) # Calculates the
complementary angle for a given angle.

45. angle_of_sector(arc_length, radius) # Calcu-
lates the angle of a sector given the radius and
the arc length.

46. ngle_of_parallelogram_given_area(side_1,
side_2, area) # Calculates angle between two
sides of a parallelogram given two sides and
the area.

47. solve_for_x(eq_1, eq_2) # Solves a system of
equations to get value of x.

A.2 Hyper Parameters Used
In this work, we used 4-bit QLoRA (Dettmers et al.,
2024) to finetune all our models. The LoRA Rank
and LoRA Alpha (Hu et al., 2021) values were set
to 128 and 256, respectively, to control the rank of
the low-rank adaptation layers, allowing efficient
fine-tuning. A Projection Learning Rate of 2e-5
was chosen to ensure stable gradient updates dur-
ing training. The model was trained for 10 epochs,
with an initial learning rate of 2e-4, following a co-
sine decay schedule that progressively reduced the
learning rate for smoother convergence. A learn-
ing rate warmup ratio of 0.03 was employed to
avoid sharp transitions at the start of training, pre-
venting instability. Additionally, no weight decay
was applied, as regularization through this method
was unnecessary for the dataset and the size of the
model used.

A.3 Additional Figures
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Figure 6: Precision-Recall for multimodal retrieval in RAG-GeoCoder on GeomVerse dataset.

(a) Depth 1 (b) Depth 2 (c) Depth 3

Figure 7: Complexity levels at different depths in the GeomVerse dataset.

Figure 8: TikZ representation of an image from the GeomVerse dataset.
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Image Chain-of-Thought

Question: Compute the area of the ABC triangle. Round
computations to 2 decimal places.
Chain-of-Thought: The lengths of the BD and CD sides of the
BCD triangle are 21 and 9, so the length of the hypotenuse
(the BC side) is $\\sqrt21ˆ2 + 9ˆ2 = \\sqrt441 + 81 =
\\sqrt522 = 22.85$. We know the lengths of the AB, AC and
BC sides of the ABC triangle are 23 and 13 and 22.85, so
the semi-perimeter equals $(23 + 13 + 22.85) / 2 = 29.43$.
So the area is $\\sqrt29.43 * (29.43-23) * (29.43-13)
* (29.43-22.85) = \\sqrt29.43 * 6.43 * 16.43 * 6.58 =
\\sqrt20458.07 = 143.03$. Therefore the final answer is
143.03.

Question: If the ABCDE shape is a rectangle where an
equilateral triangle has been removed from one side of
it, the BAFG shape is a rectangle where a semi-circle has
been removed from one side of it, the perimeter of the BAFG
shape is 72, the AFIJ shape is a combination of a rectangle
and a semi-circle and the perimeter of the AFIJ shape is 50,
compute the perimeter of the ABCDE shape. Assume π=3.14.
Round computations to 2 decimal places.
Chain-of-Thought: The perimeter of the AFIJ shape is 50
and the length of the FI side is 8, so $2 * OtherSide + 8 +
\\frac8 * 3.142 = 50$. So $2 * OtherSide = 50 - 8 - \\frac8
* 3.142 = 50 - 8 - \\frac25.122 = 50 - 8 - 12.56 = 29.44$.
Therefore, the length of the AF side is $\\frac29.442 =
14.72$. The diameter of the semi-circle in the BAFG shape
is equal to the side of the rectangle with length 14.72
so the shape has two sides with equal but unknown lengths,
one side with length 14.72, and one semi-circle arc with
diameter 14.72. So the perimeter is $2 * UnknownSide +
14.72 + \\frac14.72 * \\π2$. So $2 * UnknownSide + 14.72
+ \\frac14.72 * 3.142 = 72$. So $2 * UnknownSide = 72 -
14.72 - \\frac14.72 * 3.142 = 72 - 14.72 - \\frac46.222
= 72 - 14.72 - 23.11 = 34.17$. Therefore, the length of
the AB side is $\\frac34.172 = 17.09$. The side of the
equilateral triangle in the ABCDE shape is equal to the
side of the rectangle with width 14 so the shape has two
rectangle sides with length 17.09, one rectangle side with
length 14, and two triangle sides with lengths 14 so its
perimeter becomes $2 * 17.09 + 3 * 14 = 34.18 + 42 = 76.18$.
Therefore the final answer is 76.18

Table 7: Sample Chain-of-Thought from the GeomVerse dataset
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Image Chain-of-Thought

Question: In the provided diagram, if points A, B, and C
all lie on the circle O and angle BAC measures 54°, what
is the measure of angle BOC?
Chain-of-Thought: since angle A = 54°, therefore, angle
BOC = 2 angle A = 108°. Therefore, the answer is 108°

Question: What method did the mathematics interest group
use to measure the height of a tree on the horizontal ground
of the campus as depicted in the figure?
Chain-of-Thought: Explanation: Given that angle AEB=angle
CED, we can conclude that Right Triangle ABE is similar
to Right Triangle CDE (using the property of angles).
Therefore, the ratio of their corresponding sides must
be equal: AB/CD = BE/DE. Substituting the given values, we
have AB/1.6 = 7.8/3.2. Solving for AB, we get AB = 3.9
(meters).

Question: Given the configuration, let the length of the
windshield wiper AC be denoted as ‘L‘. If AO = 65.0, CO
= 15.0, and the wiper AC rotates 90.0 around the point O,
determine the expression for the area swept by the wiper
AC in terms of ‘L‘ and π.
Chain-of-Thought: The area swept by the wiper AC can be
calculated using the concept of congruent triangles and
sectors. Substituting the given values, the area can be
represented as ((65ˆ2 - 15ˆ2)/4) π. By substituting ‘L‘
for 65, the area becomes ((Lˆ2 - 15ˆ2)/4) π, expressed in
terms of ‘L‘. Thus, the area swept by the wiper AC is 1000
π cmˆ2.

Table 8: Sample Chain-of-Thought from the Geo170k-QA-NO and GeoQA-NO datasets.
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Image RAG-GeoCoder Output

Question: If the area of the red semi-circle is 56.52, compute the diagonal
of the ABCD rectangle.
Ground Truth: 25.94
RAG-GeoCoder:

def solution():
area_red_semicircle = 56.52
diameter = diameter_of_semi_circle_given_area(area_red_semicircle)
side_AD = 23
diagonal = diagonal_of_rectangle(side_AD, diameter)
return diagonal

Code Output: 25.94

Question: If the area of the ADEC square is 81, compute the area of the ABC
right triangle.
Ground Truth: 76.5
RAG-GeoCoder:

def solution():
area_ADEC = 81
side_ADEC = side_of_square_given_area(area_ADEC)
side_AB = 17
area_ABC = area_of_triangle_given_base_height(side_ADEC, side_AB)
output = area_ABC
return output

Code Output: 76.5

Question: If the diagonal of the AEFB rectangle is 21 and the diagonal of the
AGHE rectangle is 19, compute the diagonal of the ABCD rectangle.
Ground Truth: 16.97
RAG-GeoCoder:

def solution():
diagonal_AEFB = 21
diagonal_AGHE = 19
side_AG = 12
side_AE = side_of_rectangle_given_diagonal(diagonal_AGHE, side_AG)
side_AB = side_of_rectangle_given_diagonal(diagonal_AEFB, side_AE)
side_AD = 8
output = diagonal_of_rectangle(side_AB, side_AD)
return output

Code Output: 16.97

Question: If the ABEFG shape is a combination of a rectangle and an equilateral
triangle, the perimeter of the ABEFG shape is 66 and the perimeter of the
BHIE square is 48, compute the perimeter of the ABCD parallelogram.
Ground Truth: 64.0
RAG-GeoCoder:

def solution():
perimeter_ABEFG = 66
perimeter_BHIE = 48
side_BE = side_of_square_given_perimeter(perimeter_BHIE)
side_AB = (perimeter_ABEFG - 3 * side_BE) / 2
side_AD = 17
output = perimeter_of_parallelogram(side_AB, side_AD)
return output

Code Output: 64.0

Table 9: Sample code generations by the RAG-GeoCoder model on the GeomVerse test set.
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