
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 7339–7354

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Inference Scaling for Bridging Retrieval and Augmented Generation

Youngwon Lee* Seung-won Hwang* Daniel Campos
Filip Graliński Zhewei Yao Yuxiong He

Snowflake AI Research *Seoul National University

Abstract

Retrieval-augmented generation (RAG) has
emerged as a popular approach to steering the
output of a large language model (LLM) by in-
corporating retrieved contexts as inputs. How-
ever, existing work observed the generator bias,
such that improving the retrieval results may
negatively affect the outcome. In this work, we
show such bias can be mitigated, from infer-
ence scaling, aggregating inference calls from
the permuted order of retrieved contexts. The
proposed Mixture-of-Intervention (MOI) ex-
plicitly models the debiased utility of each pas-
sage with multiple forward passes to construct
a new ranking. We also show that MOI can
leverage the retriever’s prior knowledge to re-
duce the computational cost by minimizing the
number of permutations considered and lower-
ing the cost per LLM call. We showcase the
effectiveness of MOI on diverse RAG tasks, im-
proving ROUGE-L on MS MARCO and EM
on HotpotQA benchmarks by „ 7 points.

1 Introduction

Retrieval-Augmented Generation (RAG) has be-
come a widely adopted strategy to address core
limitations of large language models (LLMs), such
as hallucinations or restricted generalization to top-
ics, concepts, or ideas that were not covered dur-
ing training, by presenting relevant information to
ground generation (Gao et al., 2023).

However, existing work observed the genera-
tor bias, such that improving the retrieval results
may negatively affect the outcome. As a bridge,
Figure 1 demonstrates the use of reranker: How-
ever, RankGPT (Sun et al., 2023), a widely adopted
reranker based on prompting LLMs, improves the
retrieval quality but negatively impacts RAG per-
formance on the MS MARCO benchmark (Bajaj
et al., 2018). Even worse, employing a stronger

*Work done while visiting Snowflake. Correspondence to:
seungwonh@snu.ac.kr.

Figure 1: (Left, RAG) Top-10 passages retrieved by
a complex retrieval system involving the Bing search
engine are fed to the generator LLM. (Center) RankGPT,
a strong reranker based on LLM, hurts the performance,
even more severely with stronger backbone. (Right)
MOI improves the answer quality, outperforming RAG
(without reranking) by a large margin of 6 points in
accuracy.

backbone LLM for reranking worsens the quality
further. These unexpected results suggest that R’s
objective of maximizing relevance may not always
produce optimal outputs. Meanwhile, training a
dedicated bridge module for bridging such gap has
been studied (Ke et al., 2024), which requires costly
heuristic-based annotation to build the train set.

An alternative train-free approach is inference
scaling, by aggregating generation from the per-
mutations of the retrieved results. This strategy,
known as self-consistency (Wang et al., 2023a),
uses the number of permutations with consistent
generation as a proxy for quality. We refer to this as
a Mixture-of-Agents (Wang et al. (2024a); MoA)
baseline: Figure 2A depicts MoA aggregates black-
box outputs from parallel, independent agent calls
to AG, each fed with differently permuted retrieved
results, to choose the output A, which is more con-
sistently supported.

Unlike MoA, which uses multiple calls solely for
consistency voting, we leverage these calls to ob-

7339

mailto:seungwonh@snu.ac.kr

Figure 2: (A, baseline) Self-consistency (Wang et al., 2023a) and MoA (Wang et al., 2024a) treat random permuta-
tions of passages as black-box and count the consistency vote for outcomes. (B, proposed) In MOI, permutations
are treated as white-box intervention of one another, such that, from the obserevations of p in varying positions,
MOI estimates the effect of each passage on generation u along the impact of position bias a. Finally, the ordering
based on debiased utility u is used for generation.

serve the same passage in varying positions. This
allows us to directly capture position bias—the
LLM’s disproportionate weighting of input con-
texts based on their relative position.

Specifically, MOI distinguishes two key factors:
the true utility of each passage (u) and the effect of
position bias (a), enabling debiased re-ranking of
retrieved contexts.

For example, Figure 2B visualizes how we pre-
dicted bias: darker colors in a represent stronger
attention to passages in front positions, indicating
p’s contribution to the outcome is overemphasized
due to its position. This aligns with the “lost-in-
the-middle” bias observed in prior work (Liu et al.,
2024). The final ranking, adjusted by debiased util-
ity, moves p to second position. Empirically, this
reranking leads to the generator producing higher-
quality answers.

Our contributions address the following research
questions through the development of MOI:

• (RQ1) How can the debiased utility and rank-
ing be determined from multiple inference
calls?

• (RQ2) Can MOI match the effectiveness of
black-box MoA scaling, which requires infer-
ence calls for all permutations, while using
fewer observations?

• (RQ3) How can we reduce the inference cost
per call, for example, by using a smaller
model or input?

which can be summarized as follows:

• We demonstrate that enhancing the retriever
or generator alone may not improve RAG,
thereby highlighting the need for the bridge.

• We propose a method to intervene in the or-
dering of retrieved contexts by explicitly mod-
eling LLM position bias and aggregating di-
verse observations.

• We show that the ranking determined by MOI
improves downstream RAG task performance,
leveraging retriever prior for efficient and ef-
fective intervention.

2 Related Work

This section overviews existing work on the bias
mitigation in RAG.

2.1 Mitigating Bias in RAG

Our observation of RAG bias in Figure 1 was con-
sistently made in (Izacard et al., 2023; Lin et al.,
2023; Izacard and Grave, 2021). claiming the im-
proved retrieval may not improve RAG. A widely
adopted explanation is position bias, also known as
“lost-in-the-middle” (Liu et al., 2024) problem, of
the generator considering the passage in the middle
less significantly.

Modifying the generator For dealing with such
bias, a common approach has been modifying the
generator LLM, often jointly trained with the re-
triever as well (Izacard et al., 2023). Alternatively,
positional embeddings and attention matrices have
been manipulated to debias (Wang et al., 2024b;
Ratner et al., 2023), often aiming for complete
order invariance. However, as LLMs were never
exposed to such manipulated embeddings or atten-
tion weights/masks during training, they may suffer
from unexpected degradation in performance, such
as multi-hop reasoning capabilities (Yang et al.,
2023). Recently, Hsieh et al. (2024) also studied
modifying the generator side, using the average at-
tention weights assigned to passages to detect and

7340

account for bias.

Training bridge Among solutions, our work is
most closely related to Ke et al. (2024), training
a ‘bridge’ model between the retriever and gener-
ator, by selecting an ordered subset of retrieved
passages.

Blackbox inference scaling When retraining re-
triever or generator, or jointly both is not feasi-
ble, a widespread approach is to rely on inference-
time scaling, such as self-consistency (Wang et al.,
2023a) or Minimum Bayes-Risk decoding (Kumar
and Byrne, 2004) mechanism. For example, Tang
et al. (2024) have generated several hypothesis
rankings from different permutations of passages
as inputs and then selected the one closest to other
rankings in IR reranking task.

Our distinction Our method is whitebox infer-
ence scaling that can be interpreted as implement-
ing bridge mechanism without training a separate
bridge module, while leaving the retriever and gen-
erator intact. As such, our work is orthogonal to
improving the retriever or generator, which can be
combined with those approaches.

2.2 Mitigation by Mixture of Agents

As Figure 2A illustrates, self-consistency (Wang
et al., 2023a) over permuted orders can mitigate
bias by marginalizing the latent variables. Under a
similar setting to ours, Tang et al. (2024) used self-
consistency mechanism to account for the position
bias for IR reranking task.

We build a MoA baseline (Wang et al., 2024a).
where several LLM agents are called in parallel to
independently generate an output given the same
input, to hide inference latency of multiple calls.
This corresponds to two phases: first propose phase
generating output from permuted orders, and then
aggregate to produce the final single reranked se-
quence of contexts.

Our distinction We view permutations as the
intervention of one another, allowing strategized
proposal phase, followed by efficient aggregation,
where the cost of inference call is further reduced.

3 Method

3.1 Overview

Our proposed method, dubbed Mixture-of-
Intervention (MOI), disentagles the utility u of each
retrieved context, from the effect of position bias a

to the given generator, shown by color gradations
in Figure 2B. To better explain how MOI simul-
taneously computes both and why this is crucial,
we first review how previous works obtain utility
alone.

For instance, the Bayesian saliency score (Merth
et al., 2024; Muennighoff, 2022) defines the fol-
lowing pointwise score:

up :“ P pp | qq 9 P pq | pqP ppq, (1)

derived from probabilities given by the generator
LLM. This score measures the saliency of passage
passage p relative to query q. Note that dropping
the second term P ppq results in a variant used
in question generation (QG; Sachan et al., 2022),
which estimates how likely q would be answered
by p.

However, this approach fails to account for how
multiple passages collaborate in answer generation,
for which, Eq. 1 can be generalized to a listwise
score

up “ P pp | q, p1, ¨ ¨ ¨ , pkq 9
P pq | p1; ¨ ¨ ¨ ; pk; pqP pp | p1; ¨ ¨ ¨ ; pN q. (2)

where p1 through pk denote the k passages that
have been sequentially selected with the passage
with the highest listwise up score.

While this approach enables to model collabora-
tive utility of p to other passages in the list, it has
two shortcomings: The sequential nature of mod-
eling listwise effect, requires OpN2q number of
evaluations of up which incurs OpNq latency even
when provided with enough compute to parallelize.
Another shortcoming is that it cannot observe how
up changes when different passages were selected
before, also due to the sequential dependencies.

MOI breaks dependency by observing p from
diverse context, applying interventions of orders
independently in parallel. These parallel observa-
tions enable to disentangle utility from positional
bias, by aggregating the outcomes from different
permutations of the passages, thus allowing the
model to observe how varying the order of the pas-
sages influences the generation.

Formally, given a set of N retrieved passages
tp1, ¨ ¨ ¨ , pNu deemed relevant to a query q and
M permutations π1, ¨ ¨ ¨ , πM over 1, 2, ¨ ¨ ¨ , N , we
define and observe the outcome of a permutation

7341

Figure 3: Ideally, wherever a passage p is placed, its
contribution to generation, or utility, should be constant
(blue line). However, due to position bias of LLMs,
the observed orange curve varies by the position and
surrounding context. MOI disentangles the effect of
position bias (left figure) from observation, to determine
the debiased utility up through multiple parallel inter-
ventions.

πi,

si “ P
`
q | pπir1s; pπir2s; ¨ ¨ ¨ ; pπirNs

˘

ˆ P
`
pπir1s; pπir2s; ¨ ¨ ¨ ; pπirNs

˘
, (3)

where πirjs denotes the index of the passage placed
at j-th position according to the i-th permutation
πi. We can see from definition that si, depends on
(1) what other passages are in the prompt, and (2)
how they are ordered in πi.

We aim to disentangle listwise scores si into
into two components: utility and position bias. To
model this, we introduce positional bias aj’s to well
predict si as a weighted sum for each permutation
πi: ÿ

1ďjďN

aj ¨ uπirjs. (4)

Figure 3 illustrates this idea, where the position
bias of the LLM makes the contribution of a pas-
sage p in Eq. 4 vary by its relative position in the
prompt. In previous works such as Liu et al. (2024),
this effect was measured by moving a single gold
passage to observe the outcome at different posi-
tions, while ignoring the order of other passages.
MOI generalizes this idea by simultaneously de-
termining the effects of position bias and the debi-
ased utility up of each passage p, based on parallel
observations from multiple passage permutations.
Rather than observing ajup for each j and p, by
moving p’s relative position in the prompt, MOI
aggregates the outcomes to estimate aj’s and up’s
for all j and p in Eq. 4.

In practice, we solve for up by minimizing the
L2 loss between the predicted and observed out-
comes, subject to the constraint that positional coef-
ficients sum to 1, ensuring a valid bias distribution.

Nonlinear programming solvers are used to effi-
ciently find the optimal values for aj and up:

minimize
ÿ

1ďiďM

´ř
1ďjďN aj ¨ uπirjs ´ si

¯2

subject to
ř

j aj “ 1, 0 ď aj ď 1.

After obtaining the scores, we reorder based on
descending true utility uj and feed this sequence
back to the generator LLM, completing the MOI
pipeline.1

3.2 Strategized propose phase

As contrasted in Section 2.2, we improve MoA in
two phases: proposing permutations and aggregat-
ing as black-box by consistency, into strategized
propose phase, of selecting informative orderings,
and efficient aggregate phase, which disentangles
utility and bias from the outcomes. Below, we
elaborate on the implementation and potential opti-
mizations for each phase.

3.2.1 Random samples
One extreme approach is to aggregate the entire
“universe” set U of all N ! possible permutations.
Instead, we propose randomly sampling a subset
S Ă U , with |S| “ 3N . This ensures that we have
enough equations to solve for 2N variables (i.e., N
for the u’s and another N for the a’s). Importantly,
these calls can be executed in parallel, leading to
an overall latency equivalent to a single call.

3.2.2 Comprehensiveness in sampling
We aim to strategize sampling by selecting a
smaller but more “comprehensive” S.

Ideally, if we could map any ordering outside
S to its “counterpart” in S—which better suits
the generator’s preferences—then considering only
S would be comprehensive (Hwang and Chang,
2007), or equally effective to consider the entire
universe set U . We approximate this notion by en-
suring S to represent the broader landscape of U ,
as illustrated in Figure 4. Specifically, the shaded
area indicates that permutations starting with pas-
sage 2 can be mapped to a representative permuta-
tion, ϕp2q. We leave a formal definition of ϕ and
an explanation on why ϕp2q can represent experi-
ments on shaded permutations starting with 2, but
the high-level intuition builds on a prior finding

1Empirical overhead of calling solvers was roughly 3% of
the cost of a single forward pass on GPU, in terms of wall-
clock time.

7342

Figure 4: To approximate a comprehensive subset, we
consider the set of cyclic permutations as S, encom-
passing diverse yet representative permutations to allow
desirable ones to be surfaced.

that the first element has the greatest influence on
generation (Hsieh et al., 2024; Liu et al., 2024).

Formally, we propose to pick S as the set of
cyclic permutations where |S| “ N . Desirably, (1)
each passage should have equal chance of being
placed at each position in S, and (2) each permu-
tation in S should represent distinct set of permu-
tations in U , which would map to itself. Figure 4
illustrates that our choice for S achieves both crite-
ria: (1) it chains passages in a round-robin fashion,
and (2) it ensures even coverage of all the permuta-
tions in U .

3.3 Efficient aggregate phase
Next, we explore ways to reduce the cost of each
call during the aggregate phase by (a) pruning the
input contexts, and (b) utilizing a smaller distilled
model, or SLM, instead of an LLM, addressing our
second research question.

3.3.1 Smaller input to agent
To cut down the cost of each call, we prune the
input contexts by using the retriever’s ranking as
the reference ordering, ϕp1q. This idea follows
from Reddy et al. (2024), which demonstrated that
the probability distribution over the first token ac-
curately reflects the order intended by a reranker
trained to generate passage ID sequences.

Rather than decoding the entire sequence, exam-
ining the model’s prediction for the first passage
ID significantly reduces costs. Similarly, we use
the prefix containing the first L ă N passages of
each permutation in S to approximate the full N .
We denote the pruned permutation shifted by k ´ 1
positions, in which pk is placed at first, as:

ϕpkq
p “ rpk, pk`1, ¨ ¨ ¨ , pk`L´1s, (5)

for k ď N ´ L, or otherwise as

ϕpkq
p “ rpk, ¨ ¨ ¨ .pN , p1, ¨ ¨ ¨ , pk`L´N´1s. (6)

Figure 5: The distribution of si from an LLM is dis-
tilled to a smaller model by minimizing KL between
the normalized probability distributions after softmax.
Values colored orange can be pre-computed.

This pruning strategy replaces the full permutation
ϕpkq while still preserving the essential information
for generation.

3.3.2 Smaller agent

Another way to reduce the cost of each call is to
delegate calls to a smaller model than the genera-
tor LLM. For this purpose, we propose preference
distillation, of turning a smaller agent to align and
replacing LLM, thereby featuring smaller memory
and compute footprint.

First, we compute permutation-wise saliency
score defined in Eq. 3 for K random permutations
of passages for each query using the LLM, to con-
struct an offline dataset. During training, we ran-
domly select K 1 permutations for each query and
compute s̃i’s using the small model. For those K 1
permutations, softmax operation is applied to si’s
and s̃i’s to obtain probability distributions, and then
the KL divergence between the two is minimized,
as described in Figure 5.

Our preference distillation enjoys the following
advantages over training a bridge network Ke et al.
(2024), that learns to directly output the reranked
sequence of subset of passages: First, the train
data preparation is much cheaper and easily paral-
lelizable, than to repeat generating and evaluating
the answer to iteratively build a pseudo-reference
sequence. Second, distillation exposes the model
to dense supervisory signals, as opposed to pre-
senting a single sequence per query as a positive
demonstration, or, sparse supervision. Our goal
of distilling preference is more feasible than train-
ing a small model to directly output the desirable
ranking, which eliminates additional round of rein-
forcement learning training as in Ke et al. (2024).

7343

MS MARCO HotpotQA CRAG
Ranking R-L GPT-4 EM GPT-4 GPT-4
Retriever 37.75 57.28 ´ ´ 52.43
Random 35.92 51.56 48.54 73.88 51.94
RankGPT (Sun et al., 2023) 37.53 51.45 52.22 74.88 50.49
Bayes saliency (Merth et al., 2024) 37.64 54.37 52.22 77.84 48.06
Bayes saliency + (Merth et al., 2024) 34.47 52.43 50.25 75.37 47.58
QG (Sachan et al., 2023) 36.78 55.34 48.28 73.89 53.40
LongLLMLingua (Jiang et al., 2023) 33.21 50.49 49.75 74.39 50.49
Self-consistency 38.45 58.26 51.72 76.85 54.37
MOI (Ours) 44.30 63.11 55.67 79.81 59.23

Table 1: Results on different question answering benchmarks with LLaMa 3 8B as the generator and various
reranking methods applied. For all metrics considered, higher the better.

4 Experimental Results

4.1 Experimental settings

Tasks/benchmarks While we have mainly fo-
cused on question answering (QA) task, we also
report results on other tasks, namely citation gener-
ation and fact verification. For QA benchmarks, we
employed the widely used MS MARCO dataset for
single-hop reasoning scenarios, HotpotQA (Yang
et al., 2018) for 2-hop reasoning, and CRAG (Yang
et al., 2024) for challenging multi-hop reasoning.
For citation generation and fact verification task,
we used TREC-RAGgy (Pradeep et al., 2024) and
FEVER (Thorne et al., 2018), respectively.

For the backbone generator LLM, we used the
publicly available LLaMA-3 and Phi-3 model fam-
ilies. Additionally, following prior work, we used
greedy decoding to generate answers to ensure both
efficiency and deterministic outputs.

Metrics For automatic evaluation of the gener-
ated answers, we adhered to the established evalua-
tion protocols widely adopted for each benchmark.
ROUGE-L (Lin and Och, 2004) was used for MS
MARCO, and exact match (EM) for HotpotQA,
both of which are reference-based metrics that com-
pare the predicted answers to ground-truth answers
based on lexical overlap. We also employed GPT-
4 for automatic evaluation, following Yang et al.
(2024), which allowed us to assess answer quality
more flexibly by accommodating responses with
minor lexical variation while maintaining the core
correctness of the answer.2 To support this deci-
sion, in Appendix C, we provide results from our
user study: our finding is consistent with prior lit-

2While the original scoring from Yang et al. (2024) outputs
scores in the range of r´100, 100s, we rescale the score and
report values in r0, 100s.

erature on LLM-as-a-judge, which showed LLM
evaluation exhibits higher correlation with human
judgment than traditional metrics do. The evalua-
tion prompt can be found in Appendix E.

Baselines We have considered the following
baseline methods to assess the effectiveness of MOI
as a bridge between the retriever and the generator,
most of which aim to rerank the passages using
pointwise or listwise signals from the generator.
Other than RankGPT, we have reimplemented each
baseline’s score computation, of which validity can
be ensured from retrieval results such as in Table 7.
Names are provided in accordance with those in
Table 1.

• ‘Retriever’ uses the initial ranking from the
retriever. For some benchmarks such an order-
ing is unavailable.

• RankGPT (Sun et al., 2023) asks an LLM to
sort the passages in descending order of rele-
vance to the query. GPT-4 (gpt-4o) was used
as the backbone for this ranking purpose. We
directly used their code3 for running experi-
ments.

• Bayes saliency (Merth et al., 2024) uses the
Bayes saliency score defined in Eq. 1 to rank
the passages. Originally, the score was used
to prune irrelevant contexts.

• Bayes saliency + (Merth et al., 2024) uses the
Bayes saliency score computed iteratively as
in Eq. 2 to rank the passages.

• QG (Sachan et al., 2023) uses the probability
the model assigns to the query conditioned on
each passage as the score, i.e., up “ P pq | pq.

3github.com/sunnweiwei/RankGPT

7344

https://github.com/sunnweiwei/RankGPT

TREC-RAGgy
Ranking FP FN
Retriever (BM25) 12.05 28.34
MOI (ours) 11.40 24.76

Table 2: Percentage ratio of sentences with false positive
(FP) and false negative (FN) citation errors on TREC-
RAGgy dev set. Metrics are lower the better.

• LongLLMLingua (Jiang et al., 2023) defines
an importance score per passage as the sum
of the following token-level score over the
tokens in the query condition:

up “
ÿ

l

P pql | p; qălq logP pql | p; qălq.

• Self-consistency (Wang et al., 2023a) consid-
ers 30 random permutations of the retrieved
passages to generate 30 answers, and chooses
the answer most frequently appeared. For
comparison, we also reported the average
score over those permutations, denoted as
‘Random.’

4.2 Effectiveness of MOI

Table 1 presents downstream performance of
several reranking strategies on the question-
answering task, highlighting the superior perfor-
mance achieved by MOI. Rerankers generally ex-
hibit poor performance, regardless of whether
they model absolute relevance (e.g., RankGPT) or
use signals from the generator. In contrast, self-
consistency provides consistent performance im-
provements across benchmarks, though the gains
are smaller compared to those from MOI. We pro-
vide further qualitative analyses of the rankings
determined by MOI and baselines in Appendix D.

The baselines are indeed stronger as retrievers,
as shown by their retrieval accuracy (MRR) pre-
sented and discussed in more detail in Section 5:
This again supports our key finding that stronger
retrieval performance does not necessarily lead to
higher generation quality, when compared to the
standard approach of using retriever-produced rank-
ings. This is consistent with the findings from
Cuconasu et al. (2024) that adding noise to the
retriever, which would make it ‘weaker’ as a re-
triever, may lead to improvements in generation
quality. Our contribution is optimizing interven-
tions towards bridging retriever and generator.

Ranking Acc
Retriever (DPR) 83.11
Random 83.42
RankGPT 83.88
Self-consistency 84.07
MOI 85.03

Table 3: Fact verification performance on FEVER
benchmark. We used the top-5 retrieved passages in
Wang et al. (2023b).

Additionally, we demonstrate that MOI can be
applied beyond its role in question-answering sys-
tems to any RAG task. To this end, we used
LLaMA 3 8B as a citation generator to identify the
passages supporting each sentence in a long-form
response to a query on TREC RAGgy development
set. Table 2 shows that the ordering of retrieved
contexts (and how they are numbered for identifica-
tion) also affects the output in this scenario, while
MOI effectively reduces both types of errors.

We also observed consistent results on another
knowledge-intensive task, fact verification, using
the FEVER benchmark. Given the top-5 passages
retrieved using DPR (Karpukhin et al., 2020) from
Wikipedia, the generator was asked to classify the
given statement as either true or false. The accuracy
reported in Table 3 again validates the effectiveness
of our method across various tasks, outperforming
baselines.

4.3 Cost-effective proposal and aggregation

Model substitution To optimize the cost associ-
ated with intervention in MOI, we presented several
designs in Section 3.2. We start by finding a bal-
ance between cost and performance through the use
of a smaller substitute model as the agent. Table 4
demonstrates that replacing Phi-3 7B with an off-
the-shelf Phi-3 3B retains 80% of the performance
gains over the random baseline, at approximately
half the cost. This can be attributed to that models
from the same family generally being pre-aligned
and sharing similar preferences for passage permu-
tations, as they are often trained on the same or
very similar set of preference data.

Preference distillation If a smaller model is not
readily available for a given LLM, a suitable one
can be created through preference distillation. Ta-
ble 5 shows that the Phi-3 3B model is not effective
as a direct substitute for the LLaMA 3 8B generator.
However, after performing preference distillation,

7345

HotpotQA
Ranking EM GPT-4
MOI 55.67 79.81

+ replace w/ Phi-3 3B 54.18 78.82
Random 48.36 71.64

Table 4: Replacing Phi-3 7B with Phi-3 3B cuts the cost
nearly 50% while 80% of the performance improvement
over the random baseline is maintained.

HotpotQA
Ranking EM GPT-4
MOI 55.67 79.81
+ replace w/ Phi-3 3B 49.26 74.39

+ distillation 53.69 79.81
Random 48.54 73.88

Table 5: Results on HotpotQA with LLaMA3 8B model
as generator. While replacing it with Phi-3 3B is not ef-
fective, after preference distillation 70/100% of the gain
in terms of the two metrics over the random baseline
can be retained at „40% inference cost.

the Phi-3 3B model can achieve the same perfor-
mance score in GPT-4 evaluations at around 40% of
the inference cost. The training details are provided
in Appendix A.

Retriever prior As discussed earlier, we lever-
age prior knowledge from the retriever for effi-
ciency in two ways. First, we consider cyclic per-
mutations based on the retriever’s ranking to reduce
the number of calls. Next, sequences are pruned
to a shorter length, which reduces the cost of each
call. In this process, if the scores from the retriever
are also available, they can further enhance the out-
come, as shown in Table 6. By adopting cyclic per-
mutations and fixed-length pruning, we achieved
90+% cost savings while maintaining 50% of the
relative performance gains compared to the ran-
dom baseline, while variable pruning with retriever
scores provided additional improvements.

5 Analysis

Downranking gold if desirable If there is no
bias, ranking gold higher should optimize RAG
output. In contrast, if there is bias, downranking
a relevant passage, and an effective debiasing al-
gorithm should identify downrankings that may
improve output accuracy. Table 7 shows that, in the
rank determined by MOI, the gold passage does
not necessarily surface higher, yet this still results

CRAG
Ranking GPT-4
MOI 59.23

+ Propose from cyclic 53.40
+ Pruning 54.37
+ Variable Pruning 54.86

Random 49.26

Table 6: Leveraging retriever prior in both reducing the
number of calls and the cost of each call on CRAG with
Phi-3 7B as generator.

MS MARCO
Ranking MRR ROUGE-L
Retriever (Bing) .338 37.75
Bayes Saliency .353 37.64
Question Generation .435 36.78
RankGPT .634 37.53
MOI (ours) .464 44.30
Gold at 2nd .500 40.27
Gold at 3rd .333 39.69
Gold at 4th .250 36.05

Table 7: Retrieval performance measured in MRR and
downstream RAG performance measured in ROUGE-L.
MOI outperforms others with similar or higher mean
reciprocal rank, by strategically ranking the gold lower.

in the generation of more accurate answers. The
performance of MOI and baseline methods is also
compared to scenarios where gold passages are con-
sistently placed in certain positions; notably, MOI
outperforms methods that achieve similar average
gold passage rankings.

Optimality of ranking In line with the spirit of
studying the ‘reversal curse,’ suggesting LLM’s
ability to process reversed inputs would drop sig-
nificantly when the original input order is desir-
able (Berglund et al., 2024), we explored revers-
ing the ranking of contexts. Our findings reveal a
significantly greater performance drop with our
method compared to baseline approaches. As
shown in Table 8, reversing the sequence identi-
fied by MOI results in an 18-point drop in EM,
while for RankGPT, the decrease is less than 5
points. This shows the ranking identified by MOI
through intervention is ideal, such that adversari-
ally perturbing by reversing the rank would harm
the performance greatly.

7346

MS MARCO
Ranking EM GPT-4
Random 35.92 51.56
RankGPT 37.53 51.45
RankGPT (reversed) 32.98 44.67
MOI 44.30 63.11
MOI (reversed) 26.26 39.81

Table 8: Not only the debiased ranking found by MOI
leads to better performance with large margin, it exhibits
higher polarity, incurring notable performance degrada-
tion when the ordering is reversed.

HotpotQA
Ranking EM GPT-4
Random 53.05 78.89
Self-consistency 54.68 80.79
MOI 56.65 82.27

Table 9: Results on HotpotQA with LLaMA-3 70B as
the backbone LLM.

Effect of model scale We provide evidence that
larger models still suffer from position bias and can
benefit from applying MOI as well. As shown in
Table 9, we observe consistent results with LLaMA-
3 70B as the backbone LLM.

Quantified position bias Figure 6 illustrates the
average values of positional coefficients aj across
different models, showing a monotonically decreas-
ing trend as the passage’s position moves from the
beginning to the end of the prompt. This quantifies
a significant position bias, showing earlier passages
contribute more to the final generated output.

Tasks with natural inductive bias For tasks in-
volving reasoning chains, the order the evidence
appears may play an important role in the gener-
ation quality (Chen et al., 2024). While we have
showed that MOI also work well for multi-hop rea-
soning scenarios on HotpotQA, here we provide
more detailed discussion regarding the compatabil-
ity of multi-hop reasoning and MOI.

To this end, we first identified cases with de-
pendency, that is, those define a ‘natural order’
of two subquestions, or corresponding gold pas-
sages in HotpotQA. As a proxy for categorizing
dependent subquestions, we prompted GPT-4 to
decompose each query into two subquestions then
categorize those with dependencies. We found that
approximately 1/4 of HotpotQA queries were non-

Figure 6: The values of computed positional coefficients
aj’s for each position j, averaged across datapoints
for different models on HotpotQA. Dashed violet line
represents the ideal case of zero position bias.

HotpotQA-dep
Ranking EM GPT-4
Random 45.79 71.67
MOI 51.92 77.57

Table 10: QA performance on HotpotQA subset of
queries with inherent sequential dependency between
the decomposed subquestions.

dependent, meaning the two subquestions could be
answered in any order. On the remaining subset
with dependencies, our method still demonstrated
significant improvements over the random baseline,
as shown in Table 10, which suggests a degree of
robustness with respect to dependency. However,
further investigation is needed for datasets with
stronger dependencies, such as questioning tem-
poral dependencies, as well as for more accurate
categorization of such scenarios.

The prompt used for decomposition and catego-
rization can be found in Appendix E.

6 Conclusion

We proposed MOI, a novel inference-time scaling
method for bridging the retriever and generator
in RAG. By modeling the position bias of LLMs
from aggregated observations over multiple inter-
ventions, MOI disentangles the impact of position
from utility, enabling it to determine a debiased
ranking of the contexts. We also demonstrated that
leveraging the retriever’s prior knowledge can re-
duce the search space of permutations, lowering
both the number of LLM calls and the cost of each
call. Finally, we showcased the effectiveness of
MOI across several benchmarks in question an-
swering and other RAG tasks.

7347

Limitations

While we have presented results with LLaMA-3
70B as the generator in Section 5, experiments
with more capable and sophisticated models are
further needed to deepening our understanding of
the sensitivity to input ordering of LLMs in RAG.

In addition, the proposed method increases infer-
ence compute usage as it invokes multiple forward
passes for intervention. However, there are many
scenarios in which improving the performance is
of more critical consideration than saving infer-
ence compute , e.g., healthcare. We also discussed
budget-constrained scenarios, for which we reduce
both the number and latency of invocations in Sec-
tion 3.2.

Meanwhile, in extreme scenarios where only one
invocation is allowed, intervention can be moved to
training time, replacing inference cost with training
compute for similar gains. This can be promising
future directions and we leave it as next work.

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh
Tiwary, and Tong Wang. 2018. Ms marco: A human
generated machine reading comprehension dataset.
Preprint, arXiv:1611.09268.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
Llms trained on "a is b" fail to learn "b is a". In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Xinyun Chen, Ryan A. Chi, Xuezhi Wang, and Denny
Zhou. 2024. Premise order matters in reasoning with
large language models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

Florin Cuconasu, Giovanni Trappolini, Federico Sicil-
iano, Simone Filice, Cesare Campagnano, Yoelle
Maarek, Nicola Tonellotto, and Fabrizio Silvestri.
2024. The power of noise: Redefining retrieval for
RAG systems. CoRR, abs/2401.14887.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2023. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li,
Zifeng Wang, Long Le, Abhishek Kumar, James

Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2024. Found in the middle:
Calibrating positional attention bias improves long
context utilization. In Findings of the Association for
Computational Linguistics ACL 2024, pages 14982–
14995, Bangkok, Thailand and virtual meeting. As-
sociation for Computational Linguistics.

Seung-won Hwang and Kevin Chen-Chuan Chang.
2007. Optimizing top-k queries for middleware ac-
cess: A unified cost-based approach. ACM Trans.
Database Syst., 32(1):5.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2023. Atlas: Few-shot learning
with retrieval augmented language models. J. Mach.
Learn. Res., 24:251:1–251:43.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
CoRR, abs/2310.06839.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang,
Qiaozhu Mei, and Michael Bendersky. 2024. Bridg-
ing the preference gap between retrievers and LLMs.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 10438–10451, Bangkok, Thai-
land. Association for Computational Linguistics.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 605–612, Barcelona, Spain.

7348

https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=4zAHgkiCQg
https://openreview.net/forum?id=4zAHgkiCQg
https://doi.org/10.48550/ARXIV.2401.14887
https://doi.org/10.48550/ARXIV.2401.14887
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://aclanthology.org/2024.findings-acl.890
https://aclanthology.org/2024.findings-acl.890
https://aclanthology.org/2024.findings-acl.890
https://doi.org/10.1145/1206049.1206054
https://doi.org/10.1145/1206049.1206054
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
http://jmlr.org/papers/v24/23-0037.html
http://jmlr.org/papers/v24/23-0037.html
https://doi.org/10.48550/ARXIV.2310.06839
https://doi.org/10.48550/ARXIV.2310.06839
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2024.acl-long.562
https://aclanthology.org/2024.acl-long.562
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032

Xi Victoria Lin, Xilun Chen, Mingda Chen, Wei-
jia Shi, Maria Lomeli, Rich James, Pedro Ro-
driguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis,
Luke Zettlemoyer, and Scott Yih. 2023. RA-DIT:
retrieval-augmented dual instruction tuning. CoRR,
abs/2310.01352.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Thomas Merth, Qichen Fu, Mohammad Rastegari, and
Mahyar Najibi. 2024. Superposition prompting: Im-
proving and accelerating retrieval-augmented genera-
tion. Preprint, arXiv:2404.06910.

Niklas Muennighoff. 2022. SGPT: GPT sen-
tence embeddings for semantic search. CoRR,
abs/2202.08904.

Ronak Pradeep, Nandan Thakur, Sahel Sharifymoghad-
dam, Eric Zhang, Ryan Nguyen, Daniel Campos,
Nick Craswell, and Jimmy Lin. 2024. Ragnarök:
A reusable rag framework and baselines for trec
2024 retrieval-augmented generation track. Preprint,
arXiv:2406.16828.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6383–6402, Toronto,
Canada. Association for Computational Linguistics.

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu,
Md Arafat Sultan, Deevya Swain, Avirup Sil, and
Heng Ji. 2024. First: Faster improved listwise
reranking with single token decoding. Preprint,
arXiv:2406.15657.

Devendra Sachan, Mike Lewis, Mandar Joshi, Armen
Aghajanyan, Wen-tau Yih, Joelle Pineau, and Luke
Zettlemoyer. 2022. Improving passage retrieval with
zero-shot question generation. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3781–3797, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Devendra Singh Sachan, Mike Lewis, Dani Yogatama,
Luke Zettlemoyer, Joelle Pineau, and Manzil Zaheer.
2023. Questions are all you need to train a dense
passage retriever. Transactions of the Association for
Computational Linguistics, 11:600–616.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Raphael Tang, Crystina Zhang, Xueguang Ma, Jimmy
Lin, and Ferhan Ture. 2024. Found in the middle:
Permutation self-consistency improves listwise rank-
ing in large language models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 2327–2340, Mexico City, Mexico. As-
sociation for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024a. Mixture-of-agents en-
hances large language model capabilities. Preprint,
arXiv:2406.04692.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023a. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md. Rizwan
Parvez, and Graham Neubig. 2023b. Learning
to filter context for retrieval-augmented generation.
CoRR, abs/2311.08377.

Ziqi Wang, Hanlin Zhang, Xiner Li, Kuan-Hao Huang,
Chi Han, Shuiwang Ji, Sham M. Kakade, Hao Peng,
and Heng Ji. 2024b. Eliminating position bias of
language models: A mechanistic approach. Preprint,
arXiv:2407.01100.

Kejuan Yang, Xiao Liu, Kaiwen Men, Aohan Zeng,
Yuxiao Dong, and Jie Tang. 2023. Revisiting par-
allel context windows: A frustratingly simple alter-
native and chain-of-thought deterioration. CoRR,
abs/2305.15262.

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla,
Xiangsen Chen, Sajal Choudhary, Rongze Daniel
Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong,
Brian Moran, Jiaqi Wang, Yifan Ethan Xu, An Yan,
Chenyu Yang, Eting Yuan, Hanwen Zha, Nan Tang,
Lei Chen, Nicolas Scheffer, Yue Liu, Nirav Shah,
Rakesh Wanga, Anuj Kumar, Wen tau Yih, and
Xin Luna Dong. 2024. Crag – comprehensive rag
benchmark. Preprint, arXiv:2406.04744.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages

7349

https://doi.org/10.48550/ARXIV.2310.01352
https://doi.org/10.48550/ARXIV.2310.01352
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/2404.06910
https://arxiv.org/abs/2404.06910
https://arxiv.org/abs/2404.06910
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2406.16828
https://arxiv.org/abs/2406.16828
https://arxiv.org/abs/2406.16828
https://doi.org/10.18653/v1/2023.acl-long.352
https://doi.org/10.18653/v1/2023.acl-long.352
https://arxiv.org/abs/2406.15657
https://arxiv.org/abs/2406.15657
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.1162/tacl_a_00564
https://doi.org/10.1162/tacl_a_00564
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2311.08377
https://doi.org/10.48550/ARXIV.2311.08377
https://arxiv.org/abs/2407.01100
https://arxiv.org/abs/2407.01100
https://doi.org/10.48550/ARXIV.2305.15262
https://doi.org/10.48550/ARXIV.2305.15262
https://doi.org/10.48550/ARXIV.2305.15262
https://arxiv.org/abs/2406.04744
https://arxiv.org/abs/2406.04744
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

7350

A Implementation Details

For main experiments we have used LLaMA 3
8B Instruct, Phi-3 mini (3B) and small (7B) mod-
els available on huggingface as backbone models.
As mentioned in Section 4.1, we have employed
greedy decoding for generating the answer.

For preference distillation, we annotated about
20k examples in HotpotQA train set using the
teacher model, scoring K “ 30 random permu-
tations of the passages per query to build an offline
preference dataset. The student model, Phi-3 3B,
was trained with LoRA at bf16 precision. The rele-
vant hyperparameter configuration was as follows:
for LoRA related settings, we used rank of r “ 8,
α “ 32, and dropout 0.1. For general configura-
tion, we used learning rate of 1e-4, effective batch
size of 4; we trained the model for 5 epochs with
weight decay of 0.01 applied. We did not conduct
hyperparameter search to determine these values,
which leaves further rooms for improvement by
performing one to find a better recipe.

Preference distillation did not introduce any de-
generating behavior to the student model, such as a
notable drop in QA performance.

B Comprehensive Sampling

To argue comprehensiveness of S more formally,
we formalize cyclic permutations for N passages
to refer to the following set of permutations

S “
!
ϕpkq

ˇ̌
ˇ 1 ď k ď N

)
(7)

where ϕ refers to some referential ordering

ϕ “ ϕp1q “ rp1, ¨ ¨ ¨ , pN s (8)

and ϕpkq denotes a permutation in which passages
are shifted left by k ´ 1 so that pk is placed at the
beginning, that is,

ϕpkq “ rpk, pk`1, ¨ ¨ ¨ , pN , p1, ¨ ¨ ¨ , pk´1s (9)

for k ą 1. For example, a cyclic permutation by
2 “ 3 ´ 1 position to the left would give

ϕp3q “ rp3, p4, p5, p1, p2s (10)

for N “ 5.
Here, the mapping M : U Ñ S from any per-

mutation ϕ in U to an element in S is given as all
permutations starting with the same passage. This
divides U into N non-empty and disjoint subsets,
each of which maps to ϕp1q, . . . , ϕpNq, respectively.

Metric Score
Kohen’s κ .874
Kendall’s τ .828
Fleiss’ κ .694

Table 11: Agreement between human annotators and
human-LLM judgment.

Figure 7 illustrates these concepts again as in
Figure 4, in which the permutations starting with
passage 2 as the first item are all mapped to ϕp2q to
form the subset S. In order to confirm the common
finding from previous literature that the first pas-
sage exerts the highest influence on generation, we
show that the average distance between (two) per-
mutations is closer in each partition, than between
partitions. The distance between two permutations
π1 and π2 was measured by the L1 distance be-
tween two probability distributions, namely the
generator’s prediction on the first token of the re-
sponse given the permutations:

dpπ1, π2q “
ÿ

y1PV
|P py1 |π1q ´ P py1 |π2q.| (11)

This distance captures how similar the model pre-
diction would be given two different permutations
of the same set of passages, suggesting that a per-
mutation close to another can replace it without
altering the generator’s prediction greatly.

C Soundness of GPT-4 Evaluation

We conducted a small-scale human study on the
soundness of evaluation using GPT-4 and obtained
results showing GPT-4’s evaluation is indeed highly
correlated to human judgment as presented in Ta-
ble 11. For obtaining Table 11, 3 annotators
were tasked with classifying 100 samples from
MS MARCO as correct or incorrect, by compar-
ing model generated responses against the ground
truths. We report the agreement between this hu-
man judgment and GPT-4’s evaluation used in
our paper, alongside the inter-annotator agreement,
where strong agreement is indicated in all cases.
Human-GPT-4 agreement was measured by Co-
hen’s kappa after majority voting and Kendall’s tau
correlation after soft label aggregation, while the
inter-annotator agreement was measured by Fleiss’
kappa.

D Qualitative Analysis

Table 12 shows an example of a winning case for
MOI compared to baseline methods, where it up-

7351

Figure 7: The set of all permutations U can be partitioned into disjoint subsets based on the first item. Distance
between two permutations can be measured by the L1 distance between the generator’s predicted probability
distribution on the first token of the response. Permutations from the same partition exhibit smaller distance in
between in average, compared to permutations from different partitions.

ranks the gold passage to produce the correct an-
swer. Among all the winning cases in pairwise
comparison with Bayes saliency or Retriever base-
line in terms of GPT-4 evaluation, about 79% fall
into this scenario, mainly accounting for the perfor-
mance gain with MOI.

In this example, none of the passages directly
mentioned the entity ‘graduate marketers’ as it ap-
pears on the query, but the proposed method suc-
cessfully resolved it as ‘MBA graduates’ rather
than ‘marketing managers’ or similar ones, thanks
to its approach of producing a passage score that is
aware of the whole context by considering several
permutations to mitigate the position bias. In con-
trast, the pointwise baselines which predicts the rel-
evance of each passage to the query separately fail
to prevent passages about entities like ‘marketing
managers’ ranked higher, leading to undesirable
answers. Also, pointwise baselines are more prone
to noises in presentation of passages such as repe-
tition, as evidenced by p6 in this example, which
consists of a near duplicate of a three-sentence
chunk is ranked the highest by the Bayes saliency
method. After removing the repetition, the rank de-
termined by the Bayes saliency method drastically
changes, while still leading to an incorrect answer.

On the other hand, Table 13 shows another ex-
ample where the proposed method wins while not
necessarily upranks the gold passage. Specifically,
the proposed method again avoids highlighting dis-
tracting passages, that would lead the generator to
producing wrongful answers by effectively consid-
ering the whole passages. Due to its high lexical
similarity, the distracting passage (p10) was paid
undesirable attention by the pointwise baseline.

E LLM Prompt

Here, we provide the prompts used for LLM-as-a-
judge evaluation and question decomposition, in
Figure 8 and 9, respectively. For evaluating ac-
curacy, after obtaining correctness of the answer,
those classified as ‘False’ were assigned different
score based on whether the model response was ‘I
don’t know’ or not.

7352

Question: How much would graduate marketers make?
Answer from Ours: (Correct) According to the passages, the average starting salary for MBA
graduates can be as high as $110,000 to $130,000 per year . . .
Top-3 Passages from Ours:
p3: At present, the average starting salary for MBA graduates can be as high as $110,000 to
$130,000 . . .
p7: A general brand manager will make about $5,000 less than a package design manager, . . .
p5: The BLS reports that the upper 10 percent of marketing managers earned more than $187,200,
as did managers . . .
Answer from Bayes saliency: (Wrong) According to the passages, graphic designers in the top 10
percent made more than $77,370, and marketing managers . . .
Top-3 Passages from Bayes saliency:
p6: . . . Graphic designers in the top 10 percent made more than $77,370, . . .
p2: Marketing managers earned a median annual wage of $123,220 in 2013, . . .
p7: A general brand manager will make about $5,000 less than a package design manager, ...
Answer from R-then-G: (Wrong) According to the passages, marketing managers earned a median
annual wage of $123,220 in 2013, . . .
Top-3 Passages from retriever:
p1: Marketing managers made salaries ranging from about $58,000 to $166,000 per year in 2010,
. . .
p2: Marketing managers earned a median annual wage of $123,220 in 2013, . . .
p3: At present, the average starting salary for MBA graduates can be as high as $110,000 to
$130,000 . . .

Table 12: An example from MS MARCO development set where ours produces the correct answer as it upranks the
gold passage p2. Models were provided with all the 10 passages to generate the answer, while due to space limit the
top-3 of them are presented here. The subscript identifying each passage is the rank of the passage determined by
the retriever, Bing search engine in this case.

Question: How (many) ounces in (a) cup?
Answer from Ours: (Correct) 8 fluid ounces to a cup.
Top-3 Passages from Ours:
p5: ... The mark at 8 fluid ounces indicates 1 cup. For 8 fluid ounces, use a measuring cup. . . .
p6: 8 fluid ounces to a cup. This is liquid measure. However the 16 fluid ounces that make the pint
. . .
p7: In the US, 1 cup = 8 fluid ounces (*not identical to the avoirdupois ounce which is weight) . . .
Answer from Bayes saliency: (Distractor: highly similar lexically, but semantic outlier in the
list) There are 0.12500000001479 cup in a ounce.
Top-3 Passages from Bayes saliency:
p9: This is a very easy to use ounces to cup converter. First of all just type the ounces (fl oz) value in
the text field . . .
p3: If you asked about the ounce that is rougly 28 grams in weight, then you should realize that . . .
p10: There are 0.12500000001479 cup in a ounce. ...

Table 13: Another example from MS MARCO where ours produces the correct answer, while maintaining the rank
of the gold passage which is not included in the top-3 passages.

7353

Evaluation Prompt for Accuracy

Task:
You are given a Question, a model Prediction, and a list of Ground Truth answers, judge whether
the model Prediction matches any answer from the list of Ground Truth answers. Follow the
instructions step by step to make a judgement.
1. If the model prediction matches any provided answers from the Ground Truth Answer list,
“Accuracy” should be “True”; otherwise, “Accuracy” should be “False.”
2. If the model prediction says that it couldn’t answer the question or it doesn’t have enough
information, “Accuracy” should always be “False.”
3. If the Ground Truth is “invalid question,” “Accuracy” is ‘True” only if the model prediction is
exactly “invalid question.”

Output:
Respond with only a single JSON string with an “Accuracy” field which is “True” or “False.”

Input fields are:
Question: {question}
Ground-truth: {list of ground-truth answers}
Prediction: {model generated answer}

Output fields are:
Accuracy: {correctness of response}

Figure 8: Prompt for evaluating generated answer against ground-truths. Instances classified as ‘False’ are further
processed if the model responded with “I don’t know.”

Prompt for Question Decomposition and Categorization of Multi-hop Questions

You are given a complex query that can be decomposed into two subquestions. You should first
decompose the original query into two subquestions, and then identify if there is a sequential
dependency between the two. In other words, you should decide whether or not we must answer
one of the subquestions first to be able to answer the other. Also, you will be given two passages
that can together answer the original query. If there is a sequential dependency between two
subquestions, order the two passages according to that order. Your final answer must be either
‘Passage 1 first’, ‘Passage 2 first’, or ‘No dependency.’

Input fields are:
Question: {multi-hop question}
Passage 1: {first gold passage}
Passage 2: {second gold passage}

Output fields are:
Decomposed Subquestion 1: {subquestion that can be answered by passage 1}
Decomposed Subquestion 2: {subquestion that can be answered by passage 2}
Decision: {dependency between the two}

Figure 9: Prompt for decomposing and identifying dependency in multi-hop questions from HotpotQA.

7354

