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Abstract

Over the last years, state-of-the-art AI models
have grown to a point where their use bears
significant economic and environmental cost.
At the same time, investigation of NLP mod-
els has shown that they are often overparam-
eterized, giving rise to research of compres-
sion approaches. Such approaches often suffer
the trade-off between hardware requirements
and classification performance. In this work,
we propose the hardware-independent compres-
sion strategy Adaptive Parameter Compression
(APC). We extend the Weight Squeezing ap-
proach by introducing compression biases and
weights, as well as investigating multiple ini-
tialization strategies for these weights and the
application of APC to transformer model com-
ponents. Experiments with BERTbase show the
compression’s effectiveness, slightly outper-
forming DistilBERT while being significantly
more efficient.

1 Introduction

Since the introduction of the Transformer archi-
tecture (Vaswani et al., 2017) and its widespread
adoption in the NLP community, significant per-
formance gains were achieved by increasing the
parameter count of models, with OpenAI’s GPT-
2 using about 1.5 billion parameters (Radford
et al., 2019) and growing to 175 billion in the
next iteration GPT-3 (Brown et al., 2020), as well
as Megatron Turing NLG (530 billion parame-
ters) (Smith et al., 2022) and PaLM (540 billion
parameters) (Chowdhery et al., 2023). This race for
the largest language model had recently culminated
in GPT-4 which, while officially not disclosed, is
estimated to comprise a total of 1.8 trillion parame-
ters (Schreiner, 2023). While these models usually
outperform their predecessors in various bench-
mark tests, the efficiency of this exponential growth
is questionable, in particular when considering the
economical and ecological costs of training and us-

ing these models; e.g., the training of GPT-3 is es-
timated to have emitted about 550 tons CO2e (Pat-
terson et al., 2021) and consumed about 700 tons
of water (Li et al., 2022). Further, the increase in
model size sets a high bar for their training and in-
ference, resulting in strong dependencies on a small
number of tech companies (Kak and Myers Wes,
2023), which limits independent research and bears
great ethical risks (Müller, 2020).

However, as the Lottery Ticket Hypothesis by
Frankle and Carbin (2019) suggests, dense neu-
ral networks (as used in the Transformer archi-
tecture) contain small subnetworks which, when
trained solely without the remaining weights, can
match the performance of a fully trained network,
which could indicate that at least for inference a
great amount of the weights are not necessary. In
fact, multiple approaches have shown that param-
eters can be removed or nullified to a great extent
with small performance sacrifices (e.g. Zafrir et al.,
2021; Michel et al., 2019; Elkerdawy et al., 2020).

In our work, we present Adaptive Parame-
ter Compression (hereafter referred to as APC),
an algorithm based on Weight Squeezing (Chu-
machenko et al., 2020), which we show is a gener-
alization of neuron pruning (e.g. Jiang et al., 2018)
and neuron merging (e.g. Yvinec et al., 2023). APC
removes weights by “rewiring” connections with
varying compression ratios across different layers,
allowing us to adapt to the complexity of feature
extraction at each layer. To this end, we introduce
projection matrices which are initialized so that
they locally reconstruct the output optimally and
are then globally optimized by gradient descent
on the pretraining task. With our experiments, we
show that APC is on par with similar compression
techniques in terms of performance, but poses no
constraints with respect to hardware specializations
and finds suitable compressions quickly.
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2 Background & Related Work

2.1 Compression Techniques

Since the training and inference of Deep Neural
Networks (DNNs) was and still is expensive, the
study of methods to reduce model sizes has been
around for decades (e.g., Janowsky, 1989; LeCun
et al., 1989). We briefly describe some common
compression techniques and their relation to APC.

Pruning Pruning is a technique to remove
weights which have the least effect on the model’s
performance. Commonly, the model is fine-tuned
after the removal of weights to “patch” it, mitigat-
ing the negative effect of pruning. We can distin-
guish between unstructured and structured prun-
ing: Unstructured pruning was already discussed
in early works (LeCun et al., 1989; Hassibi et al.,
1993), which measured performance degradation
by pruning parameters by means of the effect on the
loss’s second order derivatives (which are expen-
sive to calculate). An approximation of the second
order derivatives can be calculated via Fisher in-
formation, as used in more recent approaches (Tu
et al., 2016; Molchanov et al., 2019; Theis et al.,
2018). Other popular techniques use a magnitude-
based importance measurement, typically the l1
norm (Han et al., 2015; Frankle and Carbin, 2019),
which minimizes the Frobenius norm of the dif-
ference between the weight matrix before and af-
ter pruning. While unstructured pruning yields
high compression ratios with minimal performance
loss (e.g., Zafrir et al.’s (2021) BERT model with
90% pruning ratio), exploiting these sparse matri-
ces is non-trivial and either requires specialized
hardware (Mishra et al., 2021) or cannot gain sim-
ilar inference acceleration to structured pruning
when optimizing with software only (Wang, 2021).

Structured pruning constrains the pruning mask
to specific structures, e.g. to block structures in
weight matrices (Chandy et al., 2023), filters in con-
volutional neural networks (CNNs) (Li et al., 2016;
Hu et al., 2016) (extendable to single neurons),
attention heads (Michel et al., 2019), and entire lay-
ers (O’Neill et al., 2020). A notable neuron pruning
approach is described by Molchanov et al. (2016)
which defines a mask M := 1 ∈ Rout and changes
the output of a linear layer to M ⊙ (x⊤W + b⊤) so
that M ’s gradient provides insight into the effect
of pruning a neuron. This approach, to which we
will refer to as neuron sensitivity pruning, has also
been used by Prasanna et al. (2020).

A special case of neuron pruning is neuron merg-
ing, which identifies “similar” neurons (e.g. by clus-
tering) which are then collapsed into a single neu-
ron (Srinivas and Babu, 2015; Zhong et al., 2018).

Since models edited with structured pruning are
in most cases indistinguishable from models with
different dimension sizes, their pruning ratio usu-
ally corresponds to an asymptotically identical in-
ference acceleration, but the given constraints on
pruning selection affect performance stronger than
unstructured pruning. Neuron pruning and hence
also neuron merging are special cases of APC, as
described in Subsection 4.2.

Knowledge Distillation Knowledge Distillation,
also known as Teacher-Student-Training, was in-
troduced by Hinton et al. (2015). The core idea
is to imitate a (smoothed) probability distribution
of a teacher model (of large size) using a new stu-
dent model (which can be of smaller size), e.g., by
matching the teacher’s logits. Thus, the student
does not learn directly from the hard gold label
standard of the data, but instead reproduces a softer
distribution which is, according to Hinton et al.
(2015), easier and results in superior performance
compared to training a small model without knowl-
edge distillation. Since then, knowledge distillation
has been adapted to not only match the final out-
put, but also aligning intermediate hidden represen-
tations (Zagoruyko and Komodakis, 2017), often
by introducing alignment weights (which can be
discarded after training) to match sizes between
the student and teacher models’ hidden embed-
dings (Romero et al., 2015; Li et al., 2020; Zhou
et al., 2020).

Knowledge Distillation was extensively applied
to language models, in particular BERT (De-
vlin et al., 2019), e.g., the well-known Distil-
BERT (Sanh et al., 2019) which considered the
masked language modelling (MLM) task and re-
moved half of BERTbase’s layers, Turc et al.’s
(2019) models which also considered the next sen-
tence prediction (NSP) for distillation and further
pre-trained student models, and Weight Squeez-
ing (Chumachenko et al., 2020), the algorithm APC
extends, which uses knowledge distillation on the
final outputs to learn a reparameterization by means
of projections of the original weight matrices in-
stead of learning a freshly initialized student model.

An advantage of knowledge distillation is that
it is independent of other compression techniques
described here, allowing to combine strategies, e.g.,
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with neuron pruning (Mao et al., 2020) or unstruc-
tured pruning (Zafrir et al., 2021).

Quantization A major current research focus of
model compression is quantization, which aims
at reducing the precision of values used in com-
putation to reduce model size, training time and
latency. In general, quantization approaches reduce
the precision of the weights of a model (e.g. Cour-
bariaux et al., 2015; Zafrir et al., 2019; Zadeh et al.,
2020; Razani et al., 2021), which allows to reduce
weights in LLMs to as low as a ternary represen-
tation without performance loss (Ma et al., 2024).
However, to effectively make use of quantization at
inference, sometimes specific hardware is needed
which is suitable for the used precision level.

APC’s design is orthogonal to quantization, thus
quantization can be applied after APC or vice versa.

2.2 Layer Importance

In our proposed method, we can choose the com-
pression ratio for each layer independently. Since
the hyperparameter space is commonly large and
a direct search or other methods are cumber-
some (White et al., 2023), we aim to group layers
with similar importance, which serves as an indica-
tor for compressibility (Zhang et al., 2022; Michel
et al., 2019; Elkerdawy et al., 2020; O’Neill et al.,
2020). To this end, we use three metrics: weight
imprinting, layer dropping, and fisher information.

Weight Imprinting Proposed by Qi et al. (2018)
to extend an existing classifier by an additional
unseen class, the authors argue that in a normalized
output the new class can be well-separated from
the already learnt classes, allowing us to add the
expected embedding of the output as an additional
column to our weight matrix. By adding a classifier
that discriminates the expected hidden embeddings
for all output classes after each layer and measuring
these classifier’s relative performance differences
with that of the previous layer, we can calculate an
importance measurement for each layer (Elkerdawy
et al., 2020, 2021; Liu et al., 2021).

Layer Dropping Layer dropping is a simple im-
portance heuristic which removes an entire layer
and compares the performance of this model with
the full model, motivated by the assumption that
layers which contribute strongly to a classification
transform their input to a significantly different
sub-manifold of the data space (Sajjad et al., 2023).

Note that this approach fails if the input and output
dimensions of a layer do not match.

Chatterji et al. (2019) and Zhang et al. (2022)
propose to instead replace the layer with its state
after initialization for a more accurate score. How-
ever, having access to the original initialized values
of foundation models is rare, which makes this
approach only viable when training from scratch.

Fisher Information As described in Subsec-
tion 2.1, Fisher information has been used in un-
structured pruning to identify weights with low
effect on the performance as it provides an estimate
of the second order derivative for converged mod-
els. By averaging over the fisher information of all
weights in a layer, we get an approximation of the
compressibility of a layer since many “unimpor-
tant” weights and few “important” weights usually
yield a smaller average value, indicating a higher
compression tolerance.

3 Adaptive Parameter Compression

APC is a projection-based compression algorithm
which allows us to learn lower-dimensional approx-
imations of the parameter space of a model.

3.1 General Structure

Figure 1: Adaptive Parameter Compression of a single
intermediate perceptron layer.

Consider an affine-linear layer l defined by Y =
XW + b with Y ∈ Rbatch×out, X ∈ Rbatch×in,
W ∈ Rin×out, and b ∈ Rout. Then for some com-
pressed input dimensionality cmpl−1 < in and
compressed output dimensionality cmpl < out,
we introduce trainable tensors U ∈ Rcmpl−1×in,
D ∈ Rout×cmpl , B ∈ Rcmpl−1×cmpl , bU ∈ Rin,
and bD ∈ Rout to transform the layer l to Y̌ =
X̌UWD+ X̌B +D⊤W⊤bU +D⊤b+ bD where
Y̌ , X̌ denote compressed outputs and inputs, re-
spectively (see also Figure 1). Then with

W̌ := UWD +B (1)

b̌ := D⊤W⊤bU +D⊤b+ bD (2)
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we can compute compressed parameters W̌ ∈
Rcmpl−1×cmpl , b̌ ∈ Rcmpl so that Y̌ = X̌W̌ + b̌.
We refer to a model with computed W̌ and b̌ as fi-
nalized. Thus, during compression training (before
finalization), the model has access to all original
weights W and b. After its finalization, the model
is actually compressed for faster inference.

Now consider an activation function σ with
X l+1 = σ(X lW + b). From a reconstruction per-
spective, APC calculates

X̃ l+1 = σ((X lW+b)D+bD+X lB̃)U+bu (3)

for B = U lB̃ (since X l is not compressed here),
which approximates X l+1 with a bottleneck at the
activation function. This motivates the error term

EXl

∥∥∥X l+1 − X̃ l+1
∥∥∥
F
, (4)

hereafter referred to as reconstruction error, which
indicates that our compressed network locally mod-
els a similar function as the uncompressed one.
Since we introduce the bias terms bD and bU (un-
like Chumachenko et al. (2020)), we map to a
larger set of hyperplanes, theoretically allowing
for a lower reconstruction error.

The introduction of the corrective weight bias
B is motivated by the fact that the function
cW (U,D) = UWD is generally not surjective,
hence an optimal compressed weight matrix W̌ is
not necessarily in the image of cW , which can be
compensated for with B. Further, this serves as a
gateway to pass the information flow directly from
layer l−1 to layer l+1 (or vice versa for gradients).

In experiments, we found that using the biases
bD, bU , and B significantly improves the com-
pressed model’s performance, see Appendix G.

3.2 APC Compression Types for Transformer
Blocks

So far we have only discussed APC for Multi
Layer Perceptrons (MLP), which allows a straight-
forward pairing of D and U : As they are posi-
tioned around the bottleneck, they can be jointly
optimized. In a Transformer, however, we can dis-
tinguish between the size of the hidden embedding
within each block and further the size within the
Feed Forward Network (FFN) and the attention
heads, compressing them separately. Each com-
pression is orthogonal to the others, allowing us to
combine them freely afterward.

For simplicity, we will refer to each compression
only by its matrices U,D, but implicitly also add

the biases and the bias correction matrix to every
pair of following U and D, as seen in Figure 1.

Embedding Compression Embedding Compres-
sion reduces the hidden size inside a Transformer
block without affecting the dimensionality of FFNs
or attention heads (see Figure 2). Since we have
residual connections within the block, we must
ensure the dimension stays the same within it.

To this end, for an embedding compression di-
mension cmpe we introduce the pre- and post-
scaling matrices DPS , UPS , outer attention upscal-
ing UV , UK , UQ (which are shared between all at-
tention heads) and downscaling DO, as well as Uα

and Uβ for the 2-layer FFN in the standard Trans-
former. Consider two adjacent blocks b and b+ 1.
Then Jb := UPS

b DPS
b+1 is the linear transformation

between these two blocks. If the compression di-
mension of both blocks is identical, this becomes
a square matrix, which poses no problem as long
as it has full rank, but can affect the residual flow
through the Transformer. Thus, initializing these
two matrices in a way that Jb is the identity matrix
(or omitting them entirely) stands to reason.

To maximize the residual flow, we initialize
as many Jb as identity matrices as possible and
otherwise pair adjacent D and U matrices (see
Appendix A for exact pairings). For any two
paired matrices, we can then optimize the recon-
struction error (see Equation 4) with X l the in-
put before D, X l+1 the output without compres-
sion, and X̃ l+1 the output after U , e.g., if DPS and
U{V,K,Q} are paired, we minimize the three errors
EX

∥∥X −XDPSU i
∥∥
F

with i ∈ {V,K,Q}.

Attention Compression Attention Compression
reduces the dimensionality of the embeddings of
the keys, queries and values within the multi-head
attention to a dimension cmpa. We introduce the in-
ner attention downscaling matrices DV , DK , DQ

(which are of block diagonal structure, process-
ing the concatenated outputs of the linear layers
simultaneously, i.e., each head has its own block in
the inner downscaling, unlike the outer upscaling,
which is shared), as well as the inner upscaling UO.

Consider the compressed Multi-Head Attention
ˇMHA(X) where ŠAi(X) is the compressed at-
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Figure 2: Left: Feed Forward Compression (blue). Center: Embedding Compression (green). Right: Attention
Compression (orange).

tention head i:

ˇMHA(X) := ŠA(X)UOWO (5)

ŠA(X) :=
(
ŠA1(X) | . . . | ŠAH(X)

)
(6)

ŠAi(X) := softmax(Ži(X))XW V
i DV

i (7)

Ži(X) :=
XWQ

i DQ
i

(
XWK

i DK
i

)⊤
√
dK

(8)

Here, D{V,K,Q}
i are the blocks i of the correspond-

ing D{V,K,Q} matrix. By rearranging we have

ˇMHA(X) = (Y1 | . . . | YH)DV UOWO (9)

with Yi := softmax(Ži(X))XW V
i . Then

in particular we have that DV and UO are
adjacent in our computation, and we can
jointly optimize them by minimizing the error
EX

∥∥SA(X)− SA(X)DV UO
∥∥
F

where SA(X)
denotes the uncompressed self-attention.

This leaves us with the matrices DK , DQ

which we pair, thus aiming to minimize the er-
ror EX

∥∥softmax(Zi(X))− softmax(Ži(X))
∥∥
F

with Zi(X) :=
XWQ

i (WK
i )⊤X⊤

√
dK

, which is non-
trivial due to the softmax function. Instead, we
replace this objective by

EX

∥∥∥(Zi(X)− Ži(X)) ·
√

dK

∥∥∥
F
= (10)

EX

∥∥∥XWQ
i (I −DQ

i (D
K
i )⊤)(XWK

i )⊤
∥∥∥
F

(11)

which is an upper bound for the original error since
softmax is Lipschitz-continuous w.r.t. the Frobe-
nius norm with Lipschitz constant 1 (Gao and Pavel,
2017). With LΣR⊤ the SVD of XWQ

i (XWK
i )⊤

and Ľ, Ř the cmpa first columns of LΣ
1
2 resp.

RΣ
1
2 , DQ

i = (XWQ
i )†Ľ and DK

i = (XWK
i )†Ř

then minimize the objective in Equation 11. The
proof for this can be found in Appendix B.

Feed Forward Compression Feed Forward
Compression is straightforward and follows the
same optimization approach as described in Sub-
section 3.1. We introduce the pre- and postscaling
matrices Dα, Uβ which create a bottleneck with
dimension cmpf and get the compressed network

F̌F (X) := σ((XWα+bα)Dα)UβW β+bβ (12)

in which we pair the newly introduced matrices.

4 Experiments

We now investigate how to apply APC in prac-
tice. To this end, we compress the well-studied
BERTbase model (Devlin et al., 2019). All exper-
iments were run on one Nvidia A40 paired with
an AMD Epyc 7413 and 512 GB RAM. Through-
out our experiments, we use Python 3.10 with the
libraries transformers (4.36.2), torch (2.1.2), and
optuna (3.5.0).

4.1 Compression Sizes
As laid out in the previous section, APC allows
us to choose different compression dimensions at
each bottleneck. To reduce the combinatorial ex-
plosion resulting from 3 different compressions per
layer and 12 layers, we first seek to group layers
which will then share compression dimensions. To
this end, we measure the importance of each layer
using the methods described in Section 2.2 both
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for the MLM and NSP tasks, which can be seen
in Figure 3. While Fisher information is almost
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Figure 3: Layer Importances in BERTbase. Layer Impor-
tances are normalized to sum to 1.

uniformly distributed for NSP, weight imprinting
suggests a strong importance of layers 1 and 4,
and layer dropping for layers 10 and 11. For the
MLM task, importance distributions are signifi-
cantly different: While Fisher information suggests
high relevance of layer 2 and 3, layer dropping indi-
cates a strong influence of the last three layers, and
weight imprinting sees layer 2 and 11 as the most
important. For both tasks, layers 5 to 9 have only
slight influence on the accuracy of the network,
motivating us to compress them with identical ra-
tios. Further, we group layers 10 to 12, given their
strong values for layer dropping for MLM, layer 1
and 2, as well as layer 3 and 4.

Given these groups, we continue with a hyperpa-
rameter search to find optimal dimensions for the
embedding, attention, and feed forward compres-
sions, using the Optuna optimization engine with
a tree-structured Parzen estimator sampler (Akiba
et al., 2019) with 100 trials per search.

We search compression dimensions for a to-
tal compression rate of 90% (APC-90-opt), 50%
(APC-50-opt), and 15% (APC-15-opt). Since the
found architecture for a compression of 50% barely
compressed layers 1 and 2, we ran an additional
search, restricting the compression only to the
remaining layers, which yielded a better perfor-

mance on the pre-training tasks during the param-
eter search, hence we will keep this architecture.
Further, we include a manually chosen architecture
with a 50% compression rate which only uses feed-
forward compression on layers 3 to 12 (APC-50-ff),
limiting them to a dimension of 256.

The found architectures mostly follow the rele-
vance assigned to layers by weight imprinting and
average fisher information, indicated by a low com-
pression ratio on lower layers and stronger com-
pression in higher layers. The exact compression
dimensions can be found in Appendix F in Table 8.

4.2 Initialization Strategies
We look into different initialization strategies to
reduce the reconstruction error and maximize accu-
racy on our pre-training dataset. For all approaches,
we set bU , bD, and B to 0.

Random Initialization For random initialization,
we sample all entries for U and D independently
from a zero-centered Gaussian distribution with a
tiny, fixed variance of 10−6. In our experiments,
this variance has shown to be most effective com-
pared with input-output variance-preserving and
gradient variance-preserving initializations (Glorot
and Bengio, 2010), which showed slow conver-
gence behavior. Thus, we omit the derivations and
definitions of the necessary variance values for the
latter two cases for the sake of brevity.

Reconstructive Random Initialization As for
the random initialization, we sample all entries of
D from the distribution as described above, but cal-
culate the entries of U by means of a multivariate
linear regression, minimizing the reconstruction er-
rors described in Subsection 3.2, using a randomly
sampled batch of training data of size 5000.

Reconstructive SVD Initialization The recon-
structive SVD initialization is inspired by Weight
Factorization as done by Chen et al. (2021), essen-
tially pruning in an orthogonalized column space of
the original matrix W . To this end, we initialize D
with the right singular vectors of W corresponding
to the cmp-highest singular values. U is then calcu-
lated as in the reconstructive random initialization
to minimize the reconstructive error.

Neuron Sensitivity Pruning Initialization We
use Molchanov et al.’s (2016) approach (see Sub-
section 2.1) to determine the cmp most important
columns in our weight matrix W and initialize D
s.t. WD corresponds to exactly these cmp columns.
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Initialization strategy CE KD actKD

Random 0.308 / 0.924 0.295 / 0.916 0.317 / 0.929

Reconstr. Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.484

Sens. Neuron Pruning 0.434 / 0.972 0.425 / 0.972 0.439 / 0.972

Reconstr. SVD 0.047 / 0.516 0.044 / 0.516 0.120 / 0.726

k-Means 0.397 / 0.963 0.388 / 0.958 0.383 / 0.948

Table 1: MLM-/NSP-accuracies after 100 steps of APC-
50-ff training. Blue values indicate best scores per loss,
bold values best scores per initialization strategy.

U is then set to D⊤. The formal algorithm can be
found in Appendix C. This initialization directly
corresponds to neuron pruning, thus APC general-
izes this approach.

k-Means Initialization This approach is based
on Zhong et al.’s (2018) neuron merging: We clus-
ter all columns of W into cmp many sets and ini-
tialize D s.t. each column of WD is the average
of the columns in the corresponding cluster. For
U , we have Ui,j := 1 if Dj,i ̸= 0 and 0 otherwise.
The formal algorithm can be found in Appendix C.

When comparing the reconstruction errors of
these initialization techniques on our APC-50-ff
architecture, both reconstructive approaches scored
best since they actively minimize this error, with
the neuron pruning and merging approaches follow-
ing, most likely due to their preserving nature of the
original weight matrix, and random scoring worst,
which is to be expected. The exact error terms can
be found in Appendix F, Table 9. However, one
must note that while a low reconstruction error in-
dicates a better mimicking of the original network,
it does not necessarily correlate with stronger lan-
guage modelling performance. Hence, we continue
with training our new parameters and evaluating
the resulting models on the pretraining task.

4.3 Training and Loss Functions
While we can use a standard cross entropy (CE)
loss LCE (in BERT the sum of the MLM-loss
LMLM and the NSP-loss LNSP), knowledge dis-
tillation motivates fitting the output distribution
of our compressed network to the original one’s
by means of a student-teacher regularization term.
We define Lstudent−teacher as 5

104
· Ls−t

MLM + 5
2 ·

Ls−t
NSP with Ls−t the soft target loss to balance the

differences in numbers of classes between both
tasks. Our knowledge distillation (KD) loss is
then Ltotal = 0.7LCE + 0.3Lstudent−teacher. Fur-

# Parameters
GFLOPs
per inf.

Inference
time

BERT 110M 3032 744ms

Zafrir et al. 33M 3032 734ms

DistilBERT 67M 1823 441ms

APC-50-ff 67M 1926 572ms

Table 2: Comparing model size and cost, averaged over
50 runs.

ther, as applied by Chumachenko et al. (2020), we
also test aligning the outputs of the activation func-
tions (Zagoruyko and Komodakis, 2017) to further
minimize the reconstruction error (4) by means of
Ltotal = 0.7LCE + 0.3β

∑L
l=1

∥∥∥X l+1 − X̃ l+1
∥∥∥
F

with β = 105, the activation knowledge distillation
(actKD) loss. Whenever applying knowledge dis-
tillation, we use a temperature of 1. To compress
BERTbase we randomly sample 1,000 Wikipedia
articles and 10,000 sentences from the BooksCor-
pus (Zhu et al., 2015) for training with a 90-10 train-
dev split to match the model’s pre-training data dis-
tribution. The training hyperparameters are found
in Table 5, Appendix D. We showcase the results
in Table 1 for APC-50-ff, the best-performing ar-
chitecture, results for the remaining compressions
can be found in Appendix F.

While these results show a quick improvement
of APC-50-ff with neuron pruning (and random
initialization for the other architectures) when com-
bined with the actKD loss, running the training
for 5 epochs with early stopping actually indicates
better performance of the standard CE loss, with
a final accuracy of 0.488 resp. 0.981 versus 0.462
resp. 0.979 for actKD (with 0.468 resp. 0.981 for
KD), with similar observations for the other ar-
chitectures. Given this plus the additional cost of
calculating the regularization terms leads us to the
decision of using the CE loss instead.
We further trained the model until full convergence.
The training hyperparameters are listed in Table 6,
Appendix D.

4.4 Pre-Trained Model’s Compute Resources

On our setup, it took APC-50-ff about 90 min-
utes to train to full convergence (ca. 404 PFLOPs).
In comparison, performing neuron pruning to the
same architecture (see Appendix E for details) took
about 3 hours (ca. 808 PFLOPs), and training Distil-
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SST2
MNLI

(m. / mm.)
RTE

MRPC
(acc. / F1)

Avg.

BERTbase 0.927 0.844 /
– [0.664] 0.867 /

– 0.837

Zafrir et al. 0.909 0.815 /
0.824 – – /

– –

DistilBERT 0.913 0.822 /
– 0.599 0.875 /

– 0.802

Turc et al. 0.911 0.825 /
0.834 0.667 0.849 /

0.894 0.813

Neuron
Pruning

0.905 0.788 /
0.797 0.657 0.853 /

0.896 0.801

Nova et al.
(60%)

0.911 0.772 /
– – 0.842 /

– –

APC-50-ff 0.901 0.799 /
0.806 0.682 0.853 /

0.894 0.809

Table 3: Fine-tuning results of multiple (compressed)
BERTbase-models on various GLUE tasks. Best scores
per task are highlighted in bold. Scores are reported
over dev sets or, when in brackets, over the closed test
sets. Further, we report the average overall task scores,
where we only count matched MNLI, and for MRPC,
only accuracy.

BERT took about 90 hours on 8 V100 GPUs (Sanh
et al., 2019) (ca. 324 EFLOPs). In Table 2, we com-
pare the required compute resources for performing
inferences with a batch size of 64.

4.5 Fine-Tuning Strategies

Finalized
Compr.

only
All

Params
FT +

Compr.

SST-2 0.901 0.899 0.900 0.898

MNLI
(m. / mm.
acc.)

0.792 /
0.799

0.776 /
0.789

0.799 /
0.806

0.765 /
0.772

RTE 0.675 0.664 0.682 0.646

MRPC
(acc. / F1)

0.831 /
0.884

0.821 /
0.877

0.853 /
0.894

0.772 /
0.847

Table 4: Fine-tuning results of APC-50-ff on various
GLUE tasks with different fine-tuning strategies. Scores
of the best fine-tuning strategy per architecture are high-
lighted in bold. Scores are reported over dev sets.

There are multiple strategies to fine-tune pre-
trained APC models: We can either finalize the
model by replacing all W, b with W̌ , b̌ as in Equa-
tions 1,2 and then train those new parameters, fine-
tune only the compression parameters, fine-tune
all parameters after pre-training or simultaneously
fine-tune and compress the model by APC. We test
our architectures on four datasets from the GLUE

benchmark suite (Wang et al., 2018), namely SST-
2 (Socher et al., 2013), RTE (Bentivogli et al.,
2009), MRPC (Dolan and Brockett, 2005), and
MNLI (Williams et al., 2018). Training hyperpa-
rameters can be found in Table 7, Appendix D. The
varying amount of epochs across different tasks aim
to counteract different dataset sizes. The results
for APC-50-ff can be found in Table 4, the results
for the other architectures in Appendix F. The re-
sults suggest a generally higher performance when
training both compression and original weights,
however, this comes with a significant increase of
necessary compute power compared to training the
finalized network (38% and 72% more time for
compression weights only and for all parameters,
respectively, see Table 15, Appendix H for details)
for marginal performance gains, hence we recom-
mend fine-tuning the finalized model instead.

5 Results

Eventually, we would like to relate APC to other
compression approaches. To this end, we com-
pare the best dev set scores of APC-50-ff for the
given downstream tasks with the numbers officially
provided for the models of Zafrir et al. (2021),
Turc et al. (2019) (see Subsection 2.1), DistilBERT,
BERTbase with 50% neuron sensitivity pruning on
layers 3 to 12, and BERTbase as a baseline. The
results can be found in Table 3. It is notable that
our architecture retains about 97% of BERTbase’s
average performance, and performs slightly bet-
ter on average than DistilBERT. This is, however,
only a result of the significantly better score for the
RTE dataset. APC performs slightly worse than
Zafrir et al.’s (2021) model, but provides gains
in computational speed even on regular consumer
hardware. In general, APC-50-ff shows an on-par
performance with other methods of similar com-
pression size, but is not hardware-dependent for
speed gains and can be trained very fast.

6 Conclusion

We have presented Adaptive Parameter Compres-
sion, a flexible technique to compress DNNs,
which learns low-dimensional approximations
through affine projections in the parameter space.
APC extends and modifies the Weight Squeezing
approach to improve its performance, matching the
ones of similarly strongly compressed approaches
at a reduced training time. We provided theoretical
and empirical insights into different optimization
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techniques for APC and guidelines on how to apply
it to a BERT model. Future work will focus on
testing APC on larger LMs, improving its perfor-
mance for lower compression ratios, and extending
the approach to also reduce the number of layers.

7 Limitations

In our work, we present how to apply APC to
BERTbase and investigated how we can optimize it
for this specific model. Due to limited computa-
tional resources, we could not evaluate our method
on more recent, larger language models yet, which
may show a different behavior when applying the
same initialization techniques and loss functions
we chose for BERTbase. While we assume that APC
should work even better on larger, overparameter-
ized models, more extensive testing with a variety
of models is required to show scalability of our
method.

Further, while pruning algorithms follow an it-
erative paradigm of removing parameters and thus
slowly decrease the performance of the original
model, APC starts with a worse initial performance
which is increased by training, similar to distillation
approaches. This makes it rather unsuitable for low
compression ratios as we have to introduce more
parameters, which increase training time and, thus,
provide a worse tradeoff between computational
cost for finding the optimal compressed model and
performance than neuron pruning.

Currently, APC also requires to choose a fixed
compression architecture, making it cumbersome
to find the best tradeoff between the model’s per-
formance and inference cost. We have started to
conceptualize methods to overcome this, however
further research and testing is required, hence we
did not include these in this paper.

While some of our initialization strategies aimed
at minimizing the reconstructive error in each layer,
which theoretically should align the original and
the compressed model, the language modelling per-
formance did not confirm this assumption. We
conjecture that this is caused by the depth of the
network since we only minimize the error locally,
thus potentially propagating errors throughout mul-
tiple up- and downscaling pairs, which cumulates
and affects performance negatively. Thus, extend-
ing the approach to reduce the number of layers
and optimizing the global reconstruction error are
future directions we want to look into.
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A Pairings for Embedding Compression

Consider three Transformer blocks b− 1, b, b+ 1,
then we have the following cases in which we pair
the matrices in embedding compression as follows:

• cmpeb−1 ̸= cmpeb (or b is the first block) and
cmpeb ̸= cmpeb+1 (or b is the last block): We

pair DPS
b with U

{V,K,Q}
b , DO

b with Uα
b , and

Dβ
b with UPS

b .

• cmpeb−1 ̸= cmpeb (or b is the first block)
and cmpeb = cmpeb+1: We pair DPS

b with

U
{V,K,Q}
b , DO

b with Uα
b , Dβ

b with U
{V,K,Q}
b+1 ,

and UPS
b with DPS

b+1.

• cmpeb−1 = cmpeb and cmpeb ̸= cmpeb+1 (or b
is the last block): We pair DPS

b with UPS
b−1,

Dβ
b−1 with U

{V,K,Q}
b , DO

b with Uα
b , and Dβ

b

with UPS
b .

• cmpeb−1 = cmpeb and cmpeb = cmpeb+1: We

pair DPS
b with UPS

b−1, Dβ
b−1 with U

{V,K,Q}
b ,

DO
b with Uα

b , Dβ
b with U

{V,K,Q}
b+1 , and UPS

b

with DPS
b+1.

B Proof for Optimality

Claim: Let A1, A2 ∈ Rn×a be of maximal rank.
Define the optimization problem

min
B1,B2∈Ra×b

∥∥A1(Ia −B1B
T
2 )A

T
2

∥∥
F
, (13)

for some n ≥ a > b. An optimal solution to (13)
is then given by

B1 := A†
1L̂, B2 := A†

2R̂, (14)

for L̂ and R̂ being the submatrices of the b first
columns of L̃ and R̃ respectively, where L̃ :=
LΣ1/2 and R̃ := RΣ1/2 for L,Σ, R denoting
the singular value decomposition of A1A

T
2 , i.e.,

A1A
T
2 = LΣRT .

Proof :
Firstly, we rewrite (13) as

min
B1,B2∈Ra×b

∥∥A1A
T
2 −A1B1B

T
2 A

T
2

∥∥
F
, (15)
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and note that A1B1B
T
2 A

T
2 is of at most rank b be-

cause B1 (and B2) are of at most rank b. Therefore,
because L̂R̂T is by definition the best rank-b ap-
proximation of A1A

T
2 , we get

min
B1,B2∈Ra×b

∥∥A1A
T
2 −A1B1B

T
2 A

T
2

∥∥
F
≥

∥∥∥A1A
T
2 − L̂R̂T

∥∥∥
F
.

(16)

On the other hand, let B1 and B2 be defined as
in (14). Then

∥∥A1(Ia −B1B
T
2 )A

T
2

∥∥
F

(17)

=
∥∥∥A1(Ia −A†

1L̂R̂
T (AT

2 )
†)AT

2

∥∥∥
F

(18)

=
∥∥∥A1A

†
1(A1 − L̂R̂T (AT

2 )
†)AT

2

∥∥∥
F

(19)

=
∥∥∥A1A

†
1(A1A

T
2 − L̂R̂T )(AT

2 )
†AT

2

∥∥∥
F

(20)

=
∥∥∥PA1(A1A

T
2 − L̂R̂T )P T

A2

∥∥∥
F
, (21)

where P∗ denotes the orthogonal projection onto
the range of ∗. Because the range of A1A

T
2 and of

L̂R̂T are a subspace of the range of A1, we further
get

... =
∥∥∥(A1A

T
2 − L̂R̂T )P T

A2

∥∥∥
F
, (22)

and with analogous reasoning for A2 by transpo-
sition,

... =
∥∥∥A1A

T
2 − L̂R̂T

∥∥∥
F
. (23)

Thus, the bound from (16) holds with equality
for the choice of B1 and B2 as defined in (14),
which concludes the proof.

C Algorithms

Algorithm 1 Neuron Pruning Initialization

Require: in, out, cmp,W ∈ Rin×out

1: D ← zero-matrix of size out× cmp
2: U ← zero-matrix of size cmp× out
3: S ← compute index set of cmp-many columns

of W corresponding to most “important” neu-
rons, according to neuron sensitivity pruning
mask M .

4: j ← 0
5: for i ∈ {1, . . . , out} do
6: if i ∈ S then
7: Di,j ← 1
8: j ← j + 1
9: end if

10: end for
11: U ← D⊤

12: bD, bU , B ← initialize with zero entries
13: return U, bU , D, bD, B

Algorithm 2 k-Means Initialization

Require: in, out, cmp,W ∈ Rin×out

1: D ← zero-matrix of size out× cmp
2: U ← zero-matrix of size cmp× out
3: (Si)i ← cmp-many sets of neuron indices be-

longing to cluster i, retrieved by k-means
4: for i ∈ {1, . . . , cmp} do
5: cluster_size← |Si|
6: for j ∈ Si do
7: Dj,i ← 1/cluster_size
8: Ui,j ← 1
9: end for

10: end for
11: bD, bU , B ← initialize with zero entries
12: return U, bU , D, bD, B
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D Hyperparameters

Parameters Value

Batch size 24
Learning rate 10−4 to 0
Learning rate scheduler Linear learning rate decay
Training steps 100

Optimizer
Adam

β1 = 0.9, β2 = 0.999

Trainable weights U,D, bU , bD

Table 5: Hyperparameters used for comparing the dif-
ferent initialization techniques.

Parameters Value

Batch size 24
Learning rate 5 · 10−5 to 0
Warmup-steps 100
Learning rate scheduler Linear learning rate decay
Epochs 5

Optimizer
Adam

β1 = 0.9, β2 = 0.999

APC Initialization Neuron sensitivity pruning
Trainable weights U,W,D, bU , b, bD, B

Table 6: Hyperparameters used for the pre-training of
all our APC architectures.

Parameters Value

Batch size 32
Learning rate 2 · 10−5 to 0
Warmup-steps 100
Learning rate scheduler Linear learning rate decay

Epochs

MNLI: 1
MRPC: 163
RTE: 240
SST-2: 8

Optimizer
Adam

β1 = 0.9, β2 = 0.999

Table 7: Hyperparameters used for fine-tuning our APC
architectures on downstream tasks.

E Neuron Pruning

In our work, we compare APC to neuron pruning.
We prune BERT using as pruning criterion neu-
ron sensitivity pruning, as introduced in 2.1. In
contrast to magnitude based pruning, the former
also considers the derivative of an entire neuron
and can thus arguably be seen as of one error con-
vergence order higher than magnitude based prun-
ing (Molchanov et al., 2016). We iteratively prune
BERT to the same size as APC-50-ff in 10 pruning
steps. Each steps starts by pruning a fixed ratio of
weights, followed by fine-tuning the model until
convergence. Convergence is determined by the
sum of MLM- and NSP-accuracy not increasing
for three evaluation steps, where an evaluation step
is performed on the validation set after every 60
fine-tuning steps. All other hyperparameters equal
those used to compress via APC.
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Layer group
(1, 2)

Layer group
(3, 4)

Layer group
(5, 6, 7, 8, 9)

Layer group
(10, 11, 12)

APC-15-opt (16.9%) compression MLM / NSP Accuracy: 0.124 / 0.729

cmpe 654 753 768 720
cmpa 588 756 708 768

cmpf 2251 1399 2527 3057

Cmp. ratio 36.6% 38.0% 14.4% 6.6%

APC-50-opt (51.7%) compression MLM / NSP Accuracy: 0.257 / 0.911

cmpe - 767 654 669
cmpa - 768 252 732

cmpf - 3072 171 421

Cmp. ratio 0% 4.9% 78.1% 61.1%

APC-90-opt (88.8%) compression MLM / NSP Accuracy: 0.121 / 0.541

cmpe 631 159 113 102
cmpa 720 72 252 46

cmpf 200 2418 1636 468

Cmp. ratio 70.7% 88.4% 93.1% 97.1%

APC-50-ff (50.9%) compression MLM / NSP Accuracy: 0.308 / 0.924

cmpe - - - -
cmpa - - - -

cmpf - 256 256 256

Cmp. ratio 0% 61.1% 61.1% 61.1%

Table 8: APC architectures returned by a hyperparameter search. The original values for embedding, attention and
feed-forward dimensions were 768, 768, and 3072, respectively. Further, we include the compression ratio of each
layer group, excluding pre- and post-scalings. Lastly, we report the MLM- and NSP accuracy after 100 steps of
training as performed by the hyperparameter search.
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Initialization Strategy Average
Reconstruction Error

Random 1.067 · 103
Reconstructive
Random 0.627 · 103

Reconstructive SVD 0.637 · 103
Neuron Sensitivity
Pruning 0.900 · 103

k-Means 0.856 · 103

Table 9: Comparing reconstruction errors of all com-
pressed layers of APC-50-ff. Reconstruction errors have
been averaged over all compressed layers.

Initialization Strategy CE KD actKD

Random 0.045 / 0.479 0.044 / 0.484 0.122 / 0.567

Reconstr. Random 0.044 / 0.484 0.044 / 0.484 0.046 / 0.484

Sens. Neuron Pruning 0.044 / 0.516 0.044 / 0.484 0.000 / 0.516

Reconstr. SVD 0.044 / 0.516 0.044 / 0.484 0.045 / 0.484

k-Means 0.044 / 0.484 0.044 / 0.484 0.000 / 0.516

Table 10: With the same format as in Table 1, we report
the MLM- / NSP-accuracies after 100 steps of APC-15-
opt training.

Initialization Strategy CE KD actKD

Random 0.257 / 0.847 0.254 / 0.875 0.259 / 0.737

Reconstr. Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.490

Sens. Neuron Pruning 0.044 / 0.516 0.044 / 0.516 0.000 / 0.516

Reconstr. SVD 0.136 / 0.906 0.043 / 0.516 0.220 / 0.947

k-Means 0.044 / 0.484 0.044 / 0.516 0.000 / 0.516

Table 11: With the same format as in Table 1, we report
the MLM- / NSP-accuracies after 100 steps of APC-50-
opt training.

Initialization Strategy CE KD actKD

Random 0.119 / 0.484 0.125 / 0.484 0.116 / 0.484

Reconstr. Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.516

Sens. Neuron Pruning 0.044 / 0.516 0.044 / 0.484 0.000 / 0.516

Reconstr. SVD 0.044 / 0.484 0.044 / 0.484 0.045 / 0.516

k-Means 0.047 / 0.484 0.044 / 0.484 0.000 / 0.516

Table 12: With the same format as in Table 1, we report
the MLM- / NSP-accuracies after 100 steps of APC-90-
opt training.

Finalized Compr. only All Params FT + Compr.

SST2

APC-90-opt 0.837 0.839 0.838 0.825

APC-50-opt 0.877 0.876 0.882 0.825

MNLI (m. / mm. acc.)

APC-90-opt 0.616 /
0.612

0.652 /
0.658

0.658 /
0.665

0.443 /
0.468

APC-50-opt 0.727 /
0.733

0.721 /
0.732

0.737 /
0.744

0.354 /
0.352

RTE

APC-90-opt 0.552 0.578 0.592 0.563

APC-50-opt 0.621 0.621 0.610 0.542

MRPC (acc. / F1)

APC-90-opt 0.686 /
0.790

0.689 /
0.797

0.684 /
0.781

0.684 /
0.812

APC-50-opt 0.760 /
0.843

0.767 /
0.850

0.757 /
0.841

0.723 /
0.825

Table 13: Fine-tuning results of multiple APC architec-
tures on various GLUE tasks with different fine-tuning
strategies. The scores of the best fine-tuning strategy
per architecture are highlighted in bold. The scores are
reported over dev sets.
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G Effects of Using Biases

To quantify the effect of compression biases on
overall compressed model performance, we trained
two different APC-architectures once without bi-
ases, once with bD and bU , and lastly with all bi-
ases, including B. Each setting is trained over max.
five epochs of our training data with a learning
rate of 10−4 and linear learning rate decay over
those five epochs. We use early stopping with the
patience of three model evaluations on the valida-
tion set and convergence criterion being the sum of
the model’s MLM and NSP accuracy. The model
is evaluated every 100 steps. As an initialization
strategy, we use random initialization with a tiny
fixed variance. No knowledge distillation and acti-
vation knowledge distillation is used. The results
are presented in Table 14. We found that using bU
and bD performs significantly better than when not
using biases. Introducing B significantly improves
the performance of APC-90-opt while it slightly
decreases the performance in APC-50-ff.

APC-90-opt APC-50-ff

bU , bD , and B 0.142 / 0.896 0.478 / 0.981
bU and bD 0.138 / 0.857 0.488 / 0.981
No biases 0.139 / 0.828 0.439 / 0.976

Table 14: Comparing MLM-/NSP-accuracies for dif-
ferent bias approaches in the APC architecture after full
training.

H Fine-tuning Training Times

Strategy Training Time

Finalized 149 min
Compression only 205 min

All Parameters 256 min
FT + Compression 254 min

Table 15: Comparing fine-tuning training times for dif-
ferent APC fine-tuning strategies. The reported times
are accumulated over fine-tuning on MNLI, MRPC,
RTE, and SST-2.
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