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Abstract

As premodern texts are passed down over
centuries, errors inevitably accrue. These er-
rors can be challenging to identify, as some
have survived undetected for so long precisely
because they are so elusive. While prior
work has evaluated error detection methods on
artificially-generated errors, we introduce the
first dataset of real errors in premodern Greek,
enabling the evaluation of error detection meth-
ods on errors that genuinely accumulated at
some stage in the centuries-long copying pro-
cess. To create this dataset, we use metrics de-
rived from BERT conditionals to sample 1,000
words more likely to contain errors, which are
then annotated and labeled by a domain expert
as errors or not. We then propose and evalu-
ate new error detection methods and find that
our discriminator-based detector outperforms
all other methods, improving the true positive
rate for classifying real errors by 5%. We ad-
ditionally observe that scribal errors are more
difficult to detect than print or digitization er-
rors. Our dataset enables the evaluation of error
detection methods on real errors in premodern
texts for the first time, providing a benchmark
for developing more effective error detection
algorithms to assist scholars in restoring pre-
modern works.

1 Introduction

Ancient texts have been passed down over hun-
dreds of years. The oldest surviving manuscripts
of Sophocles, Plato, and Aristotle date to the ninth
and tenth centuries CE, long after the original
works were composed in the fifth and fourth cen-
turies BCE. Thus, what is left to us today are copies
of copies of copies. Throughout this process of
copying, errors have accumulated in three main
ways:
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Text copied to 
new manuscripts

~400 B.C.E
Text originally written

~1500 C.E.
Text copied into books

~2000 C.E.
Text copied online

Possible error: σοφίαν
Possible error: τούτων 

REAL ERROR

NON-ERROR

Possible error: μέλους REAL ERROR

Copy errors accrue and remain undiscovered 

Error detection and expert verification

Figure 1: Errors in premodern texts accumulate over
centuries of copying. Using machine-learning methods
and expert labeling, we create the first dataset of real
errors in premodern Greek texts.

Scribal errors: Scribes copying manuscripts over
centuries introduce changes—such as adding, omit-
ting, repeating, or simplifying text—that go unno-
ticed by subsequent scribes and are then copied
forward as though they were the original text.

Print errors: Modern scholars occasionally mis-
read manuscripts or introduce typos when creating
editions, leading to mistakes in published versions.

Digitization errors: The conversion of printed
texts to online versions, whether through manual
typing or automated processes, introduces addi-
tional errors.

Errors made at all stages, from the earliest
copies of an ancient text to what we read online
today, threaten the faithful preservation of that text,
change its original wording, and impede our un-
derstanding of it. The most insidious errors are
not simple typos, but alterations that make logical
sense, allowing them to persist undetected.

Only one unsupervised method has been pro-
posed for detecting errors in premodern texts using
machine-learning techniques: Cowen-Breen et al.
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(2023) directly leverage distributions learned by
a BERT model (Devlin et al., 2019) without task-
specific fine-tuning. This method, while successful
in identifying a limited number of errors (Graziosi
et al., 2023), has only been broadly evaluated on
detecting artificial errors generated by random char-
acter replacement.

Until now, there has been no available dataset
of errors that resulted from the natural process of
copying illustrated in Figure 1. In this paper, we
introduce the first expert-labeled dataset of real
errors (scribal, print, and digitization), enabling
the evaluation of error detection methods on real
errors rather than artificial ones. We use a form of
automated over-sampling to select potential errors,
which a domain expert then spends over 100 hours
labeling (see Section 5).

Using this dataset, we evaluate Cowen-Breen
et al.’s (2023) existing error detection method and
propose new unsupervised methods, including one
inspired by protein engineering and another using
an ELECTRA discriminator (Clark et al., 2020).
We also establish a large language model (LLM)
baseline with few-shot prompting using GPT-3.5
and GPT-4 (OpenAI et al., 2023). The ELECTRA
discriminator improves the true positive rate over
the next best method by 5%, while GPT-3.5 and
GPT-4 perform only marginally better than random
chance, with AUROCs of 0.51 and 0.57, respec-
tively. We additionally observe across methods
that scribal errors are more difficult to detect than
print or digitization errors.

2 Related Work

Recent years have seen significant progress in
training language models (LMs) on premodern
languages including Greek (Singh et al., 2021;
Yamshchikov et al., 2022; Riemenschneider and
Frank, 2023). These works make use of various
masked language models (MLMs) for tasks such
as dependency parsing, lemmatization, and gap in-
filling. Assael et al. (2022) focus on filling gaps
in inscriptions, and Jones et al. (2022) use sup-
port vector machines and decision trees to adjudi-
cate between New Testament manuscript variants.
Cullhed (2024) explores the fine-tuning of modern
foundation models for filling gaps in ancient papyri,
and Duan et al. (2024) take a multimodal approach
towards restoring ancient Chinese texts. Notwith-
standing these efforts, the field of machine-learning
assisted textual restoration remains nascent.

Other work has focused on the supervised detec-
tion and correction of errors introduced by Opti-
cal Character Recognition (OCR) and Handwritten
Text Recognition (HTR), as opposed to scribal er-
rors and print errors (Chiron et al., 2017; Amrhein
and Clematide, 2018; Schaefer and Neudecker,
2020; Nguyen et al., 2020; Pavlopoulos et al.,
2023). Although errors introduced by OCR and
HTR can result in garbled text that is challenging
to correct, they are generally easy to detect, since
a simple dictionary check can flag nonsensically
distorted words. Additionally, these studies largely
rely on extensive datasets of OCR/HTR text with
aligned ground truth. Many errors we consider
(scribal and print) have survived because they of-
ten make logical sense and are thus more difficult
to detect.

3 Contributions

Computational textual restoration has previously
involved either (i) domain experts using error-
detection algorithms to discover a limited number
of real errors (Graziosi et al., 2023), or (ii) broadly
evaluating error detection algorithms using datasets
of artificially generated errors (Spencer et al., 2004;
Roos and Heikkilä, 2009; Hoenen, 2015). In con-
trast, we introduce the first error detection dataset
composed of real errors. We then use this dataset
to evaluate the existing error detection method as
well as additional methods which we propose. We
summarize our contributions as follows:

1. We create a dataset of textual errors flagged
by machine-learning methods and annotated
by a domain expert.1

2. We propose two new error detection methods:
one inspired by protein engineering and an-
other using an ELECTRA discriminator.

3. We pre-train a suite of models with vary-
ing architectures to evaluate the existing and
proposed error detection methods using our
expert-labeled dataset.

With real textual problems, labeled and annotated
by a domain expert, error detection methods can
be effectively evaluated at scale for the first time.
In turn, improved error detection capabilities lead
to better identification of errors for future domain

1We make this dataset available, along with the error
detectors we evaluate: https://github.com/brooksca3/
logion_error_dataset.
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expert review, propelling the discovery cycle. Here,
we enable the cycle of accelerated error discovery
seen in Figure 2.

4 Error Detection

Given a word wi and its surrounding context w =
(w1, . . . , wk), the task of error detection is to de-
termine whether the given word is an error. More
precisely, an error detector is a function T such
that T (w, i) produces an error score for the word
wi in the given context w.

Error detectors are useful because the scores
they produce can yield a list of words deemed most
likely to be errors. For example, a word wi may be
shortlisted as a potential error if T (w, i) > 0.99
for a given detector T . Assuming a tolerably suc-
cessful error detector, words with scores above a
certain threshold can be passed on to domain ex-
perts for review.

5 Dataset Creation

5.1 Identifying Real Errors

We create a dataset of real errors that accumu-
lated as texts were copied first from handwritten
manuscripts, then to printed editions, and even-
tually to digital versions. To do so, we choose
the corpus of the 11th-century Byzantine author
Michael Psellos, due to its considerable size (1M
words) and availability in digitized form. Our do-
main expert is a philologist who has worked closely
with the texts in question (Haubold, 2023).

The rarity of real errors within the corpus means
that drawing random words for expert review
would be statistically unlikely to yield any posi-
tive labels. Additionally, the labeling process is
time-consuming, as the domain expert must con-
sult various printed editions, manuscript versions,
and, in the case of suspected scribal errors, a range
of philological resources.

Therefore, we follow the methodology proposed
by Cowen-Breen et al. (2023) to over-sample real
errors, which we subsequently label:

• Using a premodern Greek BERT model, we
assign a Chance-Confidence Ratio (CCR)
score (see subsection 6.1) to every word in
a subset of the corpus.2

2In practice, we randomly divided the text into five parts
and presented the top 500 CCR-scoring words from each to
the domain expert, who labeled 1,000 words from two parts.

Accelerated 
Error 

Discovery

Evaluation 
Datasets

Error 
Detectors

Expert 
Review

Model 
evaluation

Producing
error scores

Data 
labeling

Figure 2: Proposed pipeline for accelerated error
discovery. Expert labeling creates evaluation datasets
(Section 5), leading to better error detectors (Section 6),
providing higher-quality samples for the next round of
expert review.

• We present a list of the 1,000 words with the
highest CCR scores to the domain expert who
determines whether each word is an error or
not. The expert additionally annotates each
example with brief philological comments to
justify the given label.

5.2 Labeling Process

The domain expert decides that a word is an error
and gives the label y = 1 for any of three reasons:

1. Digitization Error (42 instances): The expert
confirms that the word in question is an error
by comparing it with the corresponding text
in the printed edition.

2. Print Edition Error (114 instances): The ex-
pert confirms that the word in question is an
error by comparing it with the corresponding
text in the available manuscripts.

3. Scribal Error (61 instances): The expert as-
sesses the word in question to be a scribal
error by philological reasoning.

Figure 3 presents an abridged example from the
dataset that contains a scribal error. For the
manuscript referenced by the expert in identify-
ing this scribal error, see Appendix A. We note
that digitization and print errors can be identified
with far greater confidence than scribal errors: for
the latter, the assessments in the dataset must be
considered preliminary only.
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τὸ γὰρ ἐπίρρημα τοῦ ‘ ἐκεῖ ’  τοῦτό μοι ἐμφαίνειν δοκεῖ, ὅτι καὶ τὴν κατὰ μῆκος κινούμενος 
κίνησιν, ἣν ἀνωτέρω ὁ λόγος ἐδήλωσεν, οὐδὲ             πρὸς νότον κατιέναι καὶ αὖθις 

ἐκεῖθενπρὸς βορρᾶν ἀνιέναι ἐστέρηται, ἀλλὰ κἀκεῖσε πορεύεται κἀνταῦθα κεκίνηται. 

Psellos construes στερέω with the genitive (active and passive). 
Cf. Ep. 336.6 Papaioannou ὁ μὲν ἤδη καὶ τοῦ βοηθεῖσθαι ἐστέρηται.

τὸ τοῦ

τὸ

→

Figure 3: Abridged dataset example. The word τὸ is labeled as an error (in this case scribal). The expert notes
that Psellos uses the genitive with στερέω, suggesting the text should read τοῦ, and cites a parallel example from
Papaioannou’s edition of Letter 336.6 where Psellos uses τοῦ with the same verb form. Appendix D provides the
complete version of this example, and Appendix A includes an image of the manuscript showing how this scribal
error may have been introduced.

Not all words presented to the domain expert
could be definitively labeled as real errors or not.
In cases of potential scribal errors, where there is
no explicit ground truth to verify an error and only
reasoning based on textual evidence, the expert
identified some words as possible errors, but not
with sufficient confidence to label as y = 1; a total
of 237 such instances were labeled as either “plau-
sible” or “uncertain.” We include these examples
in the dataset but do not use them for evaluation
purposes. Of the 763 words that were definitively
labeled by the domain expert, 28% were assigned
the positive label y = 1 (i.e., an error is present),
while 72% were assigned the negative label y = 0
(i.e., no error is present).

5.3 Impact of Over-Sampling

The result of our sampling method is that all words
presented to the domain expert, regardless of the
label they receive, have a high CCR score (see
subsection 6.1). To mitigate the distribution shift
for non-errors (y = 0) caused by over-sampling,
we include a set of 237 randomly selected words
from the corpus, assume they are non-errors due to
the rarity of real errors, and assign them the label
y = 0.

We note that this approach of over-sampling
true positives is similar to that employed in com-
putational methods for drug discovery, in which
datasets are usually skewed toward drugs already
likely to be effective, due to the similarly high cost
of evaluation (Wishart, 2006; Sliwoski et al., 2014;
Zagidullin et al., 2019). The case of computational
drug discovery is similar in the sense that its goal
is discovery—rather than scientific classification—
and its bottleneck is in real-world evaluation, rather
than computation.

5.4 Summary of the Dataset

In summary, we used Cowen-Breen et al.’s (2023)
CCR metric to score a subset of words from the cor-
pus of Michael Psellos, selecting the top 1,000 for
expert review. The labeling process took over 100
hours and resulted in 763 words being definitively
labeled. The remaining 237 words were labeled
“plausible” or “uncertain.”

The resulting dataset poses a challenging clas-
sification task, as many labels were determined
through careful adjudication, consultation of
source documents, and analysis of textual parallels.
The classification task is made more challenging
by the fact that the error detectors we consider have
access to none of these materials.

6 Deriving Error Detectors from LMs

In this section, we describe the CCR metric and
introduce two new error detection scoring metrics
derived from LMs: (1) the Pseudo Log-Likelihood
Ratio (PLLR), originally developed for classifica-
tion tasks in protein engineering, and (2) discrimi-
nator scoring, using an ELECTRA discriminator
without any additional fine-tuning. We also de-
scribe our methodology for prompting instruction-
tuned LLMs to judge whether words are errors.3

6.1 Chance-Confidence Ratio

CCR is an error detector proposed by Cowen-
Breen et al. (2023) for the purpose of error de-
tection and emendation. Given any MLM with
learned conditionals p(·|·), CCR scoring is defined

3Future work should explore fine-tuning open-source
LLMs on the task of error detection or posing it as a reward
modeling task.
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Model Type Training Objective Tokenization Model Instance(s)

Encoder Masked Language Modeling
Character BERT
Sub-word BERT (15% & 40% mask ratio)
Both BERT

Replaced Token Detection Sub-word ELECTRA

Encoder-decoder Span Corruption Denoising
Character T5
Sub-word T5

Table 1: Suite of pre-trained models evaluated on error detection.

as follows:

TCCR(w, i) =
maxw∈Wk

wi
p(w|w−i)

p(wi|w−i)

where Wk
wi

denotes the set of words within Lev-
enshtein distance k of wi, and w−i denotes the
contextual sequence w with the entry at index i
masked. Intuitively, CCR is large when the chance
of a word occurring in its given context, p(wi|w−i),
is small relative to the confidence of the top model
suggestion when restricted to Levenshtein distance
k, maxw∈Wk

wi
p(w|w−i). For dataset creation and

all error detection experiments, we use k = 1.

6.2 Pseudo Log-Likelihood Ratio
PLLR is a heuristic used by Brandes et al. (2023)
to predict whether a mutated protein sequence is
malignant or benign. They find it to be an ex-
cellent zero-shot indicator of malignancy. PLLR
takes a sequence and a mutated variant of that se-
quence and computes the ratio of the pseudo log-
likelihoods of the sequence and its variant.

We propose applying PLLR to error detection
by considering the hypothesis that each sequence
of words in our text is itself a mutated variant of
some original reference sequence, computing the
score as follows:

TPLLR(w, i) =
maxw∈Wk

wi
p̂(w1, . . . , w, . . . , wn)

p̂(w1, . . . , wi, . . . , wn)

Following Brandes et al. (2023), we compute
pseudo-likelihood p̂(·) with a single forward pass
of a MLM by multiplying the probabilities of the
ground-truth token at each output position, taking
advantage of the fact that MLMs output a probabil-
ity distribution at all positions. While this approach
is highly heuristic, computing p̂(·) is efficient inso-
far as it requires only a single forward pass.

6.3 Discriminator Scoring
We additionally propose using a discriminator
model for binary classification on each token to

predict whether it is the original or a replacement
sampled from a generator. This aligns closely with
the phenomenon that we are attempting to model,
where a scribe, acting as a generator, occasionally
alters words in a text.

6.4 Few-Shot Prompting

Although today’s instruction-tuned LLMs are not
specifically designed for tasks involving premod-
ern Greek, their training on extensive internet
crawls suggests that they could encounter some
relevant data (OpenAI et al., 2023; Touvron et al.,
2023). We provide sequences of premodern
Greek and ask the instruction-tuned LLM to as-
sess whether a specified word is an error, giving
examples with expert annotations. We prompt the
LLM to return a score from 1 to m indicating how
likely a given word is to be an error.4 More prompt-
ing details are made available in our source code.

7 Overview of LM Pre-Trainings

Each error detector we evaluate is unsupervised, us-
ing distributions from language model pre-training
objectives rather than being trained on a labeled er-
ror dataset. Crucially, we pre-train all models from
scratch, avoiding existing premodern Greek mod-
els to prevent contamination between their training
data and our dataset.5 Our goal is to compare error
detection methods, not specific models, which vary
in data, compute, and parameters. To ensure a fair
comparison, we keep these factors as consistent as
possible across the seven models we pre-train.

7.1 Pre-Training Data

We assemble pre-training data from sources made
available by prior work, including Singh et al.
(2021), Cowen-Breen et al. (2023), and Riemen-
schneider and Frank (2023). We divide the train-

4We try m = 2, 3, 5, 10 and find m = 5 to be best.
5Note, however, that we have no such assurances about

the training data used for GPT-3.5 and GPT-4.
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Figure 4: AUROC and TPR at 10% FPR for each error detector. “15” and “40” refer to mask ratios, “Char”
and “WP” refer to character and sub-word tokenization, and “Both” refers to the combined tokenization method.

Model
Type of error

Digitization Print Scribal
ELECTRA 0.75 0.71 0.59
BERT (Best) 0.65 0.67 0.57
T5 (Best) 0.61 0.53 0.52
GPT-4 (Best) 0.53 0.52 0.52

Table 2: AUROC of select detectors when y = 1 ex-
amples are limited to specific error categories. Scribal
errors are universally the most challenging (in bold).
“Best” refers to the highest-AUROC detector of each
model type.

ing, validation, and testing splits so that no exact
50-character overlap in training occurs in valida-
tion or testing. In total, our training set contains
about 120M words of premodern Greek. We do
not remove redundancies within the training split.
We do, however, exclude all texts in the corpus of
Michael Psellos, ensuring that the dataset remains
fully held-out from all model trainings.

7.2 Tokenization
Since error detection requires sensitivity to
character-level changes in text, it is possible that
prevalent sub-word tokenization methods such as
Byte-Pair Encoding (Sennrich et al., 2015) and
WordPiece (Schuster and Nakajima, 2012) are sub-
optimal for the task. To investigate this, we pre-
train models with both a WordPiece tokenizer with
a vocabulary size of 50K and a character-level to-
kenizer. Following Assael et al. (2022), we addi-
tionally train a character-level BERT model with
an auxiliary sub-word embedding table, with the
aim of incorporating different token granularities
for prediction. Although different models utilize
different tokenizers, we standardize training exam-

ples to contain identical text for each. Specifically,
we maximally stack consecutive sentences until the
number of character-level tokens exceeds 1,024.

7.3 Pre-Training Configurations

We train several variations of bidirectional encoder
or encoder-decoder models as listed in Table 1.
These include four BERT models: three models
with 15% and 40% mask ratios using a sub-word
tokenizer, and a 15% mask ratio using a character-
level tokenizer.6 The fourth is a custom character-
level BERT integrated with an auxiliary sub-word
embedding table. Additionally, we pre-train two
T5 models (Raffel et al., 2020), one each with sub-
word and character-level tokenizers. Finally, we
pre-train an ELECTRA discriminator in tandem
with a generator which we later discard. We train
each model on four A100 GPUs for six days or
until validation loss converges. For full model
training parameters, see Appendix B.

8 Evaluation

An error detector T is evaluated by the quality of its
predictions T (w, i) = ŷ on labeled data. For eval-
uation purposes, we treat T as a binary classifier
which declares wi to be an error when T (w, i) ≥ t
for a fixed threshold t ∈ R. We compare error de-
tectors based on their true positive rate (TPR) at a
fixed false positive rate (FPR), as seen in Figure 4.
We also consider AUROC, defined to be the area
under the graph consisting of pairs of FPRs and
TPRs over all t ∈ R.

6Wettig et al. (2023) suggest that a 40% mask ratio is
superior to 15% for uniform masking.
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Figure 5: ROC curves of the best performing error
detectors of each type. BERT-40 WP denotes the sub-
word BERT model trained with 40% mask ratio.

8.1 Computing Error Scores

We use BERT and T5 models for computing CCR
scores, BERT models for PLLR scores, ELECTRA
for discriminator scores, and GPT-3.5 and GPT-4
for few-shot prompting scores.7 We evaluate these
error detectors on 763 labeled examples from our
dataset and 237 randomly sampled words from the
corpus that are presumed to be non-errors.

8.2 Results

The ELECTRA-based error detector achieves the
highest scores in both TPR at 10% FPR and AU-
ROC, marking a new state-of-the-art on the classi-
fication task introduced with our new dataset. The
four BERT-based CCR error detectors are the next
best performing in both metrics. In comparison,
PLLR-based detectors, T5-based CCR detectors,
and few-shot prompted LLMs are noticeably less
effective.

Considering the best-performing detector from
each category, we observe a clear ranking, as illus-
trated by the ROC curves in Figure 5: Discrimina-
tor Scoring is best, followed by CCR, then PLLR,
then Few-Shot LLM Prompting. The results do
not provide a strong signal for which tokenization
method is best. Extended comparisons across mod-
els and methods can be found in Appendix E.

Moreover, we observe across methods that
scribal errors are more challenging to detect than
print and digitization errors. Table 2 shows that the
best-performing detectors of each model type have

7We use gpt-3.5-turbo and gpt-4-1106-preview with
a temperature of 1.0.
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Figure 6: ROC curves of ELECTRA across types of
errors.

the lowest AUROC scores for classifying scribal er-
rors. For ELECTRA and BERT-based CCR, which
are the most effective error detectors, the drop is
especially pronounced. Figure 6 shows this phe-
nomenon for ELECTRA, with ROC curves corre-
sponding to different error types clearly separated.
AUROC scores on scribal errors for all models
hover relatively close to the random baseline of
0.5. The ease of detecting errors correlates with
the recency of the stage in which they were intro-
duced.

9 Discussion

The superior performance of ELECTRA as an er-
ror detector on our newly created dataset has im-
portant implications for machine learning-assisted
error discovery. Until now, unsupervised error
detection in premodern texts has only employed
BERT-based CCR. However, our results indicate
that discriminator-based models, like ELECTRA,
outperform CCR when evaluated on real copy-
ing errors. That said, there are still advantages
to using BERT-based models: for a given index,
argmaxw∈Wk

wi
p(w|w−i) produces a suggested to-

ken within a specified Levenshtein distance, en-
abling error correction in addition to detection.
Future work in error correction could leverage a
generator alongside the discriminator to a similar
effect.

ELECTRA’s success is, in some ways, surpris-
ing: the method of over-sampling words with high
CCR scores to create this dataset creates a bias
for words with a low chance metric (see subsec-
tion 6.1); on the other hand, the ELECTRA dis-
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criminator is primarily trained to detect erroneous
tokens with high chance values, as they are sam-
pled directly from a generator.8 Among other con-
siderations, future work could restrict the generator
to sample only fromWk

wi
to better simulate the dis-

tribution of real errors.
Despite a marked improvement in TPR from

GPT-3.5 to GPT-4, both models struggle to classify
words effectively, with AUROC scores of 0.51 and
0.57, respectively. Both models produce seemingly
well-reasoned yet ultimately misinformed explana-
tions for their classifications. In one telling reply,
GPT-3.5 rationalizes a 5/5 error score as follows:

“The word ‘σαφες’ is indeed an error.
The correct form should be ‘σαφης,’ as
it should agree with the neuter noun ‘το
πραγμα’ in the nominative singular form.
The ending -ες is masculine, while -ης is
the proper form for a neuter adjective in
this context. This is a clear grammatical
error that needs correction.”

The word in question is, in fact, correct and GPT-
3.5’s explanation disregards basic rules of Greek
grammar. We cannot blame this particular lapse
on the contamination of modern data, as σαφές
remains a neuter form in Modern Greek.

We also note the relative under-performance of
the proposed PLLR metric. During experiments,
we observe that the words maximizing a sequence’s
pseudo-likelihood are often nonsensical. It appears
that adding noise in one position of a sequence
can counterintuitively bolster the ground-truth log-
its occurring in other positions in this pseudo-
likelihood setting.

10 Conclusion

We present the first annotated dataset of real errors
in premodern Greek texts with a view to improving
the evaluation of error detection. We propose new
error detection methods and evaluate them on the
new dataset using an array of pre-trained models,
including different configurations of BERT and
T5, ELECTRA, and instruction-tuned LLMs like
GPT-4. We find that our proposed discriminator-
based detector outperforms other methods and es-
tablishes a state-of-the-art for the error detection

8ELECTRA learns to sometimes propose the lectio dif-
ficilior, whereas error detectors guided by chance propose
the lectio facilior, to employ the terminology of philological
scholarship.

task introduced by our new dataset. Additionally,
we observe across methods that scribal errors are
more challenging to detect than print and digitiza-
tion errors.

Our dataset serves as an important new resource
for evaluating the efficacy of machine learning
methods in detecting real errors in premodern texts
and offers a benchmark for the development of
more effective error detection algorithms. Evaluat-
ing error detection methods on real errors paves the
way for accelerated error discovery and machine-
learning assisted restoration of premodern texts.
We hope that by creating this dataset and present-
ing new error detection methods, we can introduce
an iterative cycle of improvement, where better
datasets lead to better detectors, which in turn lead
to even better datasets, and so forth.

Limitations

Models like BERT, ELECTRA, and T5 are tradi-
tionally pre-trained and then fine-tuned for specific
tasks. In our case, we employ these models directly
from pre-training for error detection, which leads
to misalignment with their original training objec-
tives. For instance, while the standard MLM task
masks about 15% of tokens (roughly 75 tokens
in a 500-token example), error detection methods
like CCR and PLLR can involve masking just one
token at a time, thus resulting in an input that is
out of distribution.9 In this study, we aim to better
understand the use of pre-trained language models
in the zero-shot setting of error detection scoring.

The circularity of dataset creation and error-
detector evaluations is a legitimate concern. Due
to the very slow pace (up to many hours per data-
point) of annotation, there is no other known op-
tion than to oversample likely errors in some way.
Moreover, we note that although the labeled words
are oversampled using the BERT CCR metric, the
ELECTRA-based detector outperforms the BERT
CCR detectors. It is our hope that this dataset
will spark the development of better error detec-
tors than those we present here, and that those will
yield datasets of their own, which may be cross-
referenced against ours to measure the legitimacy
of this concern.

Furthermore, our dataset is limited to 1,000
words from a single author. It is restricted in both
size and scope due to the significant demands that

9A training adjustment to alleviate this effect could be a
decaying mask-ratio scheduler.
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generating it places on domain experts. We focus
on the end task of error detection and deliberately
omit examining the relationship between different
manuscript copies.

Ethics Statement

Pre-training language models is computationally
intensive. As we focus on an underrepresented
language, we hope that the models and methods
we produce will serve as valuable resources for
the scholarly community, with utility extending
beyond the scope of this paper.
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Appendix

A Manuscript Section Containing Scribal Error
 

 

 

 

Figure 7: Manuscript section (Cod. Paris. gr. 1182, f. 26v) containing text discussed in Appendix D.

In the figure above, within the red oval, we see τοῦ (on top) and τὸ (below), corresponding to τοῦ in τοῦ
ἐκεῖ and τὸ in τὸ πρὸς νότον from the snippet of text in Figure 3 and Appendix D. The BERT-based CCR
detector flagged τὸ as an error, which the domain expert determined to be a scribal error based on textual
parallels and Psellos’s usage of the verb στερέω. Upon further review of the manuscript, the expert noted
that this error is connected to another mistake in the line just above: τοῦ in the line above (also within the
red oval) should read τὸ. The proximity and similarity of these two words likely caused the confusion.

B Model Training Hyper-Parameters
While the remaining weights are initialized randomly, we initialize the embedding table of the ELECTRA
discriminator using a pre-trained BERT model. We train the ELECTRA generator from scratch in
tandem with the discriminator. Preliminary testing showed that using a pre-trained generator, even with a
temperature schedule (cf. Dong et al. (2023)), hindered the discriminator’s learning. For the character-
level BERT model with an auxiliary sub-word embedding table, we use DeVaul’s (2023) implementation,
which is a fork of HuggingFace’s BertForMaskedLM module.

Hyperparameter BERT ELECTRA T5

Attention Heads 12 12 12
Per Device Batch Size 16 16 16
Hidden Dropout 0.1 0.1 0.1
Hidden Size 768 768 768
Learning Rate (LR) 5 · 10−5 5 · 10−5 1 · 10−4

LR Scheduler linear linear cosine
Nb. of Layers 12 12 2 · 12
Warmup Steps 0 0 10000

Table 3: Hyper-parameter settings for model training. Our experiments involve two types of models: those utilizing
a 50,000-token subword vocabulary and those with character-level input. The remaining hyper-parameters are
unchanged from the corresponding HuggingFace model configurations.
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C CCR Implementation Details

As detailed in Section 6, our evaluation requires that each experiment produces a list of scores t ∈ R,
corresponding directly to the list of ground truth labels y ∈ {0, 1}.
As words can consist of multiple sub-word tokens, in practice we calculate CCR (subsection 6.1) for wi

with tokens t1, ..., tn with the following heuristics for chance and confidence:

chance←
n

min
j=1

p(tj |t−j)

For confidence, we replace masking wi with 1 to n mask tokens and beam search across each masked
sequence to find the top suggestions within Levenshtein distance k of wi. The confidence is determined
as:

confidence← n
max
m=1

(
max

w′∈Wk
wi

p(w′|w−m)

)
,

where w−m indicates the sequence with wi replaced by m mask tokens. We use a beam size of 10, and
if beam search cannot find any w′ within distance k of wi, we return a score of 0. With BERT and T5
models, we compute p(·|t−i) by inserting a masked token at position i and then applying softmax to the
logits at position i.

Computing p(·|w−i) with BERT is straightforward: simply replace the token at position i with
a mask token and perform a forward pass to obtain the desired distribution. With T5, this computation is
more heuristic: instead of directly replacing a single token, a span corruption approach is used where a
token at position i is replaced with the placeholder <extra_id_0>. We then make use of the distribution of
potential spans produced by a forward pass.

D Dataset Example

Transmitted Word in Question: τὸ

Expert Label: GOOD FLAG.

Model-Suggested Alternative: του

Further Expert Notes:
GOOD FLAG. GOOD SUGGESTION. Scribal. Codex unicus. Corrupt.

MS P. Psellos construes στερέω with the genitive (active and passive). The error appears to be
related to a further corruption earlier in the same sentence, which the error detector did not identify:
for transmitted τοῦ ‘ ἐκεῖ ’ read τὸ ‘ ἐκεῖ ’ and note the position of τοῦ < τὸ immediately above τὸ <
τοῦ in the relevant manuscript (Cod. Paris. gr. 1182, f. 26v).

1. Michael PSELLUS Epist., Hagiogr., Phil., Polyhist. et Theol. Theologica 2702.012 Opusculum
107 line 56
ρημα τοῦ ‘ἐκεῖ’ τοῦτό μοι ἐμφαίνειν δοκεῖ, ὅτι καὶ τὴν κατὰ μῆκος κινού- (55)
μενος κίνησιν, ἣν ἀνωτέρω ὁ λόγος ἐδήλωσεν, οὐδὲ τὸ πρὸς νότον κατιέναι
καὶ αὖθις ἐκεῖθεν πρὸς βορρᾶν ἀνιέναι ἐστέρηται, ἀλλὰ κἀκεῖσε πορεύεται

Word Index in Text: 27
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Text:
τὸ γὰρ ἐπίρρημα τοῦ ’ ἐκεῖ ‘ τοῦτό μοι ἐμφαίνειν δοκεῖ , ὅτι καὶ τὴν κατὰ μῆκος κινούμενος
κίνησιν , ἣν ἀνωτέρω ὁ λόγος ἐδήλωσεν , οὐδὲ τὸ πρὸς νότον κατιέναι καὶ αὖθις ἐκεῖθεν
πρὸς βορρᾶν ἀνιέναι ἐστέρηται , ἀλλὰ κἀκεῖσε πορεύεται κἀνταῦθα κεκίνηται . Καὶ ’ ὁ τῆς
δικαιοσύνης ‘ δὲ ’ ἥλιος ‘ οὐδὲν ἧττον ἁπανταχοῦ τῆς ἡμετέρας φύσεως γίνεται , νῦν μὲν εἰς
τὸν καθ΄v ἡμᾶς βορρᾶν ἀνιών , νῦν δὲ πρὸς νότον μετακλινόμενος . ἀλλὰ βόρειον μὲν ἡμῖν μέρος
πρὸς ὕψος ἠρμένον καὶ πολλαῖς μοίραις τῆς γῆς μετεωριζόμενον ὁ κοσμῶν νοῦς τὴν ψυχήν ·
νότιον δὲ ἡ μετέχουσα τοῦ νοῦ ψυχή , ὑποβεβηκυῖα μὲν ἐκεῖνον καὶ κάτω ποι τεταγμένη , οὐδ΄v
αὐτὴ δὲ ἀμοιροῦσα τοῦ θείου φωτός . ἢ βορρᾶς μὲν ἡμῖν τὸ σύμπαν νοητόν , ὅσον τε ἐν νῷ
καὶ ὅσον ἐν τῇ ψυχῇ , νότος δὲ τὸ συμπεριειλημμένον τῇ ὕλῃ σῶμα , μᾶλλον δὲ τὸ ταύτην
συμπεριλαβόν . ἔμελλε γὰρ ἡ καθ΄v ἡμᾶς ὕλη ὅσον ἐπὶ τῇ οἰκείᾳ φύσει ἀμέτοχος εἶναι καλοῦ ,
ἀλλ΄v ὁ πορευόμενος πρὸς νότον καὶ κυκλῶν πρὸς βορρᾶν οὐδὲ ταύτην ἀποστερεῖ τῶν οἰκείων
μαρμαρυγῶν , οὐ μόνον οἷς ἐπιτηδείαν ἐργάζεται πρὸς εἴδους καταδοχήν , οὐδ΄v ὅτι ὁμοῦ τε
ὑπέστησε καὶ πρὸς τὴν κοσμοποιίαν ἐχρήσατο , ἀλλ΄v ὅτι καὶ τὰ πολλὰ τῶν πρακτικῶν ἀρετῶν διὰ
ταύτης κατορθοῦσθαι εἴωθεν , εἴπερ αἱ μὲν δέονται σώματος , τὸ δὲ ὕλης οὐκ ἄτερ . Εἶτα πῶς
οὐκ ἐσκότωνται οἱ μὴ τὸν τοῦ πατρὸς λόγον κυρίως θεὸν ὀνομάζοντες , δι΄v οὗ καὶ τὸ θεοῦσθαι
τοῖς θεουμένοις ἐστίν , ἀλλὰ τὴν μὲν γέννησιν ἀπαρνούμενοι , ἵνα μὴ πάθος εἰσαγάγωσι , τὴν
δὲ κτίσιν αὐτοὶ ἀναπλάττοντες , ἵν΄v ὁμόδουλον ἡμῖν τὸν δημιουργὸν ποιήσωσιν ; εἰσὶ δὲ οἳ
προσίενται μὲν τὴν γέννησιν , ὥσπερ δὴ καὶ τὴν ἀγεννησίαν , οὐσίας δὲ ταύτας ἀντιδιῃρημένας
φασίν , ὥσπερ τὸ σῶμα καὶ τὸ ἀσώματον , καὶ θεὸν μὲν ἑκατέραν τῶν οὐσιῶν λέγουσιν ,
ἀκυρίαν δὲ καὶ ὁμωνυμίαν προσάπτουσι τοῖς μόνοις κυρίοις καὶ ὑπὲρ πᾶσαν λογικὴν μέθοδον .
Πρὸς οὓς ὁ μέγας πατὴρ ἀπαντῶν ’ ὁ μὲν οὖν ἡμέτερος ‘ φησί ’ λόγος ὥσπερ ἵππου καὶ βοὸς
καὶ ἀνθρώπου καὶ ἑκάστου τῶν ὑπὸ τὸ αὐτὸ εἶδος εἷς λόγος ἐστί · καὶ ὃ μὲν ἂν μετέχῃ τοῦ λό-
γου , τοῦτο καὶ κυρίως λέγεσθαι , ὃ δ΄v ἂν μὴ μετέχῃ , τοῦτο μὴ λέγεσθαι ἢ μὴ κυρίως λέγεσθαι .
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E Additional ROC Curves

Figure 8: ROC curves of the best performing error
detectors of each model type excluding the 237 pre-
sumed non-errors sampled from the corpus.

Figure 9: Comparison of ROC curves for BERT
models trained with different mask ratios

Figure 10: Comparison of ROC curves for T5 mod-
els trained with different tokenizers.

Figure 11: Comparison of ROC curves for GPT-3.5
and GPT-4.

7217


