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Abstract

Symbolic music is represented in two dis-
tinct forms: two-dimensional, visually intuitive
score images, and one-dimensional, standard-
ized text annotation sequences. While large
language models have shown extraordinary po-
tential in music, current research has primar-
ily focused on unimodal symbol sequence text.
Existing general-domain visual language mod-
els still lack the ability of music notation un-
derstanding. Recognizing this gap, we pro-
pose NOTA, the first large-scale comprehen-
sive multimodal music notation dataset. It con-
sists of 1,019,237 records, from 3 regions of
the world, and contains 3 tasks. Based on
the dataset, we trained NotaGPT, a music no-
tation visual large language model. Specifi-
cally, we involve a pre-alignment training phase
for cross-modal alignment between the musi-
cal notes depicted in music score images and
their textual representation in ABC notation.
Subsequent training phases focus on founda-
tional music information extraction, followed
by training on music notation analysis. Experi-
mental results demonstrate that our NotaGPT-
7B achieves significant improvement on music
understanding, showcasing the effectiveness of
NOTA and the training pipeline. Our datasets
are open-sourced at https://huggingface.
co/datasets/MYTH-Lab/NOTA-dataset.

1 Introduction

Music is expressed primarily in two forms: au-
ditory music and symbolic music. Symbolic mu-
sic can be represented in two-dimensional space
through scores that display notes, rhythms, and
dynamics, thereby guiding performers on how to
play the music. It can also be expressed through
lines of text sequences, effectively linearizing the
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complexity of music for ease of computer process-
ing and programmatic manipulation. The evolu-
tion of Natural Language Processing (NLP) and
multimodal interactions has provided valuable in-
sights into the understanding and generation of
music. With the advent of universal dialogue Mul-
timodal Large Language Models (MLLMs) such
as GPT-4(OpenAI, 2023), specialized models de-
signed for various professional domains (Dey et al.,
2024; Baez and Saggion, 2023), including music
(e.g., MU-LLaMA (Liu et al., 2024)), have be-
gun to proliferate. However, these works have
only focused on the single modality of text, and
in order to interact with multiple modalities, some
MLLMs have been recently introduced. Never-
theless, these MLLM models mainly focus on the
task of multimodal information extraction in the
general domain, and rarely involve multimodal in-
formation extraction. Most existing datasets fo-
cus on specific symbols or audio (like ABC nota-
tion (Allwright, 2003), MIDI (Ryu et al., 2024),
WAV (Sturm, 2013), and lyrics (Çano and Morisio,
2017)) and do not emphasize the visual modality,
limiting their ability to enable MLLMs to under-
stand music notation. Visual representations serve
as a tangible record of music. These images not
only encapsulate the score’s information but also
visually delineate its intricate structures (Tian et al.,
2024a; Li et al., 2023b).

To address the above limitations, we introduce
NOTA, the first and largest comprehensive dataset
designed to train and evaluate multimodal models
in music notation understanding. Spanning three
distinct global regions, NOTA encompasses over
1 million records of music scores. And it is struc-
tured around 3 pivotal tasks: music information
extraction, cross-modal alignment test, and mu-
sic notation analysis. These tasks cover various
aspects of music, including music theory, compo-
sition, genres, musical ontological elements, and
humanistic connotations. Our dataset is divided
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Train Dataset

Cross-modal Alignment 28,125

Music Information Extraction
T (Tune Title) 161,633

K (Key) 161,633
L (Unit Note Length) 161,633

M (Meter) 161,633
C (Composer) 161,633
ABC notation 161,636

Music Notation Analysis
Score Structure 150
Musical Style 300

Test Dataset

Region Bias Test 9,150

Music Information Extraction
T (Tune Title) 1,851

K (Key) 1,851
L (Unit Note Length) 1,851

M (Meter) 1,851
C (Composer) 1,851
ABC notation 1,851

Music Notation Analysis
Score Structure 300
Musical Style 400

Figure 1: Data distribution of NOTA dataset.

into two main parts: the training dataset and the
test dataset. On the one hand, it provides train-
ing materials for researchers in the community to
train their own multimodal music models. On the
other hand, it enables the evaluation of existing
multimodal models’ ability to understand music.

Based on this dataset, we trained a 7B model,
NotaGPT, capable of understanding music nota-
tion across multiple modalities, including visual
modalities. This training process comprises a pre-
alignment training focused on cross-modal align-
ment between the visual symbols in the music
scores and their textual symbolic counterparts. This
is followed by fine-tuning that aim at foundational
music information extraction, and music notation
analysis.

Utilizing NOTA, we conducted comprehensive
experiments on 17 mainstream multimodal large
language models. Specifically, we input music
score images and background information about
the pieces, asking them to output basic informa-
tion such as note lengths and key signatures or to
perform analyses of the musical style and rhythm.
Even the best-performing model, Gemini, achieved
a music information extraction rate of only 33.34%.
In contrast, our 7B model, trained on our dataset,
achieved 67.84%. The experimental results demon-
strate the limitations in model performance caused
by the lack of multimodal music datasets and high-
light the effectiveness of our NOTA dataset and our
training pipeline.

Our contribution can be summarized as follows:
We introduced NOTA, the first and largest com-
prehensive multimodal music notation understand-
ing dataset. This dataset encompasses 1,019,237
records from 3 distinct global regions and is ded-
icated to 3 tasks, addressing the resource limita-
tion available for multimodal music notation under-

standing.

2 Related Work

2.1 Multimodal Benchmark

In the fields of NLP and multimodal interactions,
traditional evaluation metrics predominantly focus
on assessing specific capabilities of a model within
singular task types(Goyal et al., 2017). For exam-
ple, the GLUE (General Language Understanding
Evaluation) (Sarlin et al., 2020) benchmark is a col-
lection of diverse natural language understanding
tasks designed to evaluate and advance the per-
formance of models on a wide range of language
comprehension challenges. These criteria either
provide more dimensions of assessment (Guha
et al., 2024; Sun et al., 2024)and advanced capa-
bilities or employ sophisticated evaluation mecha-
nisms (Wang et al., 2023b; Valmeekam et al., 2024).
For instance, the C-Eval (Huang et al., 2024b)
benchmark addresses the gap in Chinese language
data.

The evolution of evaluation benchmarks in
NLP and multimodal fields has consequently in-
fluenced the benchmarks used in music evalua-
tion. Presently, music evaluation metrics gener-
ally concentrate on distinct musical capabilities,
such as music generation (Agostinelli et al., 2023;
Melechovsky et al., 2023), music information re-
trieval (Kong et al., 2020; Zhao and Guo, 2021) and
music understanding (Li et al., 2024b). Some ini-
tiatives, such as ChatMusician (Yuan et al., 2024),
attempt to unify tasks in music generation and com-
prehension, yet suffer from limited data volumes.
Despite the rapid development of multimodal gen-
erative models, there is still a lack of data and
benchmarks that can effectively evaluate the mod-
els’ capabilities in understanding visual modality
of music score images.
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Figure 2: The figure shows the three-phase training process for NotaGPT-7B.

2.2 Generative Models for Music
Understanding and Generation

With the advent of generative dialogue LLMs such
as ChatGPT(OpenAI, 2022), alongside a series of
universal dialogue MLLMs, specialized models de-
signed for various professional domains (Li et al.,
2024a; Sun et al., 2022), including music (e.g., MU-
LLaMA (Liu et al., 2024)), have begun to prolif-
erate. As these MLLMs continue to evolve, music
understanding capabilities have also been enhanced.
For instance, current models like MusicAgent (Yu
et al., 2023) and MusicLM (Agostinelli et al., 2023)
have made remarkable progress in music compre-
hension and generation abilities.

Generative models for music understanding and
generation can be broadly categorized into two
modalities: audio music (Huang et al.; Copet et al.,
2024) and symbolic music (Tian et al., 2024b;
Lu et al., 2023). The former predominantly in-
corporates audio modalities into large language
models (Huang et al., 2024a) or employs diffu-
sion models (e.g., JEN-1 (Li et al., 2023a) and
MeLoDy (Lam et al., 2024)) to process the audio
components of music; the latter typically converts
symbolic music information into sequences for in-
tegration into large language models (Yuan et al.,
2024; Geerlings and Merono-Penuela, 2020).

The efficacy of these models hinges on pre-
cise instruction fine-tuning and cross-modal align-
ment (Geerlings and Merono-Penuela, 2020), utiliz-
ing specific musical datasets. Nevertheless, current
generative music LLMs lack the ability to under-
stand images of music scores in the visual modality.

2.3 Multimodal information extraction

Multimodal information extraction first searches
for alignment in the two modalities connects them
together, and then performs information extraction.

It can be divided into two main categories: visual
entity extraction and visual event extraction. In
MORE (He et al., 2023), the objective is to pre-
dict relations between objects and entities based on
both textual and image inputs. Visual event extrac-
tion can be further divided into situation recogni-
tion (Yatskar et al., 2016) and grounded situation
recognition (Pratt et al., 2020). With the develop-
ment of MLLMs, information extraction datasets
for different tasks have also evolved (Wan et al.,
2021; Yuan et al., 2023). However, there is still a
lack of multimodal information extraction models
and datasets specifically for the music domain.

3 NOTA Dataset

Our dataset is collected around three tasks: cross-
modal alignment, music information extraction,
and music notation analysis. We choose to use
ABC notation to represent music scores. ABC no-
tation encodes music into two parts: header and
body. The first header is the reference number and
the other headers are title T, time signature M, de-
fault note length L, key K, etc. The body mainly
includes notes, bar lines, and so on.

Music Information Extraction In this task, we
collect a total of 1,185,761 data entries. Music
information extraction is divided into 6 subtasks:
extracting ABC notation from corresponding im-
ages, and extracting specific information from the
ABC notation, including T (tune title), K (key), L
(unit note length), M (meter), and C (composer).
We obtained 193,484 data entries from the ABC
notation website, the vast majority of which are di-
rectly downloaded, and a small portion are scraped.
After data cleaning, we only keep the ABC files
that could generate the correct music score (we re-
move the original ABC file’s comments, lyrics, and
sequence numbers (X:)). We then transform ABC
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<ImageHere>The image represents a piecemusic score. 
The song is partially described below: The theme is the 
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Figure 3: The left side of the figure shows an example of the information extraction task on the training dataset. The
right side on the figure shows an example of music analysis for the test dataset.

files into MusicXML files and use MuseScore4 to
generate music score images from the MusicXML
files. Afterward, we divide each data entry into 6
data entries corresponding to 6 subtasks, resulting
in 1,160,904 data entries.

In order to test whether MLLMs have a special
tendency towards certain regions, we additionally
collect nearly 4000.krn files from the internet, sub-
sequently use the humdrum toolkit to convert them
into ABC files, then filter and convert them into
MusicXML files, generate music score from Mu-
sicXML files, and finally divide them into 6 ex-
traction subtasks, obtaining a total of 24857 data
entries with three regional labels: <China>, <Eu-
rope>, and <America>.

Each data sample includes the ABC notation
information to extract, the corresponding music
score images, the prompt used for extracting, and
the gold answer. Data examples are in Figure 3.

Cross-modal Alignment In this task, we obtain
29,116 data entries. We highlight portions of the
music score images, expecting that MLLMs can
understand and extract the corresponding ABC no-
tation content. Each music score image has 2 to 4
highlighted sections. For a music score image Xv

and its associated content Xc, we sample a question
Xq, which asks to extract the specific content of the
image. With (Xv, Xc, Xq), we create a single-turn
instruction-following example:

Human : < ImageHere > Xq Xv < STOP >

Assistant : Xc < STOP > (1)

Music Notation Analysis This task includes
analysis of score structure and musical styles. In

terms of score structure analysis, it involves sys-
tematic analysis of various musical elements such
as structure, melody, harmony, tonality, rhythm,
tempo, dynamics, texture, etc. We integrate author-
itative works on domestic and international music
notation analysis. We obtain 250 questions on score
structure analysis and 600 questions on musical
style notation analysis. These questions cover the
analysis of classic works from different countries
(Germany, France, Italy, the UK, the United States,
and so on) and different historical periods (from the
Baroque period to the 20th century), involving var-
ious musical genres such as sonatas, symphonies,
waltzes, and operas. Each data entry contains title,
composer, the corresponding image, a description,
and an analysis or structural breakdown.

Our dataset is divided into a train dataset and a
test dataset. The train dataset has 998,976 samples,
and the test dataset has 20,961 samples. More
details are provided in Figure 1.

4 NotaGPT Training

We apply Mistral-7B (Jiang et al., 2023) as the base
large language model and CLIP (Radford et al.,
2021) as the vision encoder. Using the same net-
work architecture as LLaVA (Liu et al., 2023a,b),
the text model and the visual coder are connected
through a linear projection layer. The model is first
pre-trained with generalized domain multimodal
datasets, which enables the model to understand im-
ages. Our music understanding training is mainly
in three stages: cross-modal alignment, music in-
formation extraction, and music notation analysis,
as shown in Figure 2.
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Model Author Title K L M Avg
CogAgent-Chat-hf (Hong et al., 2023) 15.98 75.43 9.94 2.36 21.11 24.97
Cogvlm-Chat-hf (Wang et al., 2023a) 10.31 65.77 7.02 0.22 20.63 20.79

VisualGLM-6B (Du et al., 2022) 0.05 5.32 32.78 0.00 29.27 11.24
DeepSeek-VL-1.3B-Chat (Lu et al., 2024) 15.98 0.11 4.75 0.00 22.84 8.74
DeepSeek-VL-7B-Chat (Lu et al., 2024) 30.89 0.11 10.04 11.72 28.46 16.24
InstructBLIP-Vicuna-7B (Li et al., 2022) 0.43 5.67 7.67 0.00 1.84 3.12

Yi-VL-6B (Young et al., 2024) 46.27 17.82 10.37 9.13 5.02 17.72
Yi-VL-34B (Young et al., 2024) 60.85 0.22 13.55 14.36 11.18 20.03

LLaVA-v1.5-7B (Liu et al., 2023a) 54.81 25.16 11.56 11.50 28.54 26.31
LLaVA-v1.5-13B (Liu et al., 2023a) 6.86 34.23 4.7 0.59 28.22 14.92

LLaVA-v1.6-Vicuna-7B (Liu et al., 2023a) 38.88 59.56 6.97 1.94 23.95 26.26
LLaVA-v1.6-Vicuna-13B (Liu et al., 2023a) 11.99 60.69 7.99 0.92 7.84 17.89

LLaVA-v1.6-34B (Liu et al., 2023a) 15.66 62.31 11.18 1.46 28.22 23.76
MiniCPM-Llama3-V2_5 (Yao et al., 2024) 27.59 77.70 11.56 9.72 23.65 25.04

Qwen-VL (Bai et al., 2023) 78.24 11.72 17.82 14.74 17.12 27.93
Qwen-VL-Chat (Bai et al., 2023) 72.08 0.38 13.44 14.36 16.25 23.30

Gemini-pro-vision (Team et al., 2023) 51.83 69.03 15.08 13.02 21.87 33.34
GPT-4V (OpenAI, 2023) 82.24 77.95 11.02 1.35 27.54 33.33

NotaGPT-7B 75.00 15.44 80.45 85.26 83.08 67.84

Table 1: Evaluation results of music information extraction task from the training dataset. ’T’ representing Title, ’K’
for Key, ’L’ for Unit Note Length, ’M’ for Meter, and ’C’ for Composer.3

Cross-modal Alignment At this stage, the pri-
mary goal is to achieve feature alignment between
the musical notes depicted in music scores im-
ages and their textual representation in ABC nota-
tion. Existing large vision models inherently lack
this capability, as their pre-training does not include
content specifically aligned with this requirement.
Therefore, we have undertaken training modifica-
tions to enhance our model’s performance. Specifi-
cally, we utilized the dataset introduced in section 3
to train the model. We have frozen the visual en-
coder and the language model components, focus-
ing solely on training the two-layer MLP vision-
language connector. This approach has enabled
pre-alignment and endowed the model with the
capability to recognize musical notes accurately.

Music Information Extraction Next, train the
model to recognize the basic structure of music
compositions and to extract relevant musical knowl-
edge from images. Utilizing the training dataset
described in section 3, we conducted fine-tuning of
the entire model parameters while freezing the vi-
sual encoder component and training the remaining
parts. Through this phase of training, the model’s
capability to extract musical information has sig-
nificantly improved. It is now able to recognize
fundamental elements of music scores such as beat
types, note lengths, and key signatures from music
score images.

Music Notation Analysis In the final phase, we
fine-tuned the model using supervised fine-tuning,
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Gemini NotaGPT

Figure 4: Extraction capabilities comparing between
Gemini and NotaGPT-7B.

thereby enhancing its capability to understand and
generate music. This phase involved using the sec-
tion 3 data to train the pre-trained projectors and the
language model with full parameter adjustments.
Post-training, the model has developed the ability
to critically analyze music scores provided by users
and perform complex tasks such as continuing a
musical melody based on the preceding tune.

5 Experiments

5.1 Experiment Setup

Baselines We comprehensively assess 17
MLLMs, including API-based models and open-
source models. The API-based models contain
GPT-4V (OpenAI, 2023), and Gemini (Team
et al., 2023). The open-source models contain
LLaVA (Liu et al., 2023a,b) series, VisualGLM (Du
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Model Levenshtein Distance

# Generative MLLM
VisualGLM-6B 643.72
CogAgent-Chat 730.65
DeepSeek-VL-1.3B-Chat 316.85
DeepSeek-VL-7B-Chat 308.27
InstructBLIP-Vicuna-7B 355.60
Yi-VL-6B 561.47
Yi-VL-34B 522.07
LLaVA-v1.5-7B 667.08
LLaVA-v1.5-13B 147.47
LLaVA-v1.6-Vicuna-7B 807.75
LLaVA-v1.6-Vicuna-13B 918.94
LLaVA-v1.6-34B 770.58
Qwen-VL 439.82
Qwen-VL-Chat 625.16

#Generative MLLM with api-token
Gemini-pro-vision 354.30
GPT-4V 655.45

# Our Models
NotaGPT-7B 59.47

Table 2: Cross-modal alignment evaluation.

et al., 2022), Qwen-VL (Bai et al., 2023) series, and
Yi-VL (Young et al., 2024) series.

Training Details For pre-training, we utilized
the alignment section 3 data conducting training 10
epoch with a learning rate of 2e-4. For supervised
fine-tune training, we employed the train data in
section 3, training 3 epochs with a learning rate
of 2e-5 and a batch size of 32. All experiments
are conducted on 8×80GB NVIDIA A100 SXM
GPUs.

Evaluation Details The temperature parameter
was set to 0 to ensure deterministic output. For
each model, we performed 3 separate evaluations
using the GPT-4 API. The final score is determined
by averaging the results from these 3 assessments.

5.2 Evaluation Metrics
Closed-set tasks. (1) For tasks such as music
information extraction, performance is assessed
using the weighted extraction rate. They are ques-
tions with definitive answers such as music titles
and note lengths. Given a response sequence R
and an answer sequence A across a dataset of n
queries, the overall success of the extractions can
be defined as:

Extraction Rate =
n∑

i=1

δ ([Ai ⊆ Ri], 1) (2)

where δ(x, y) is the Kronecker delta function,
which equals 1 if x = y and 0 otherwise. The
condition [Ai ⊆ Ri] evaluates to 1 if the answer

sequence Ai is contained within the response se-
quence Ri, and 0 otherwise.

(2) Regarding the task of converting images to
ABC notation text, we utilize the Levenshtein Dis-
tance (Yujian and Bo, 2007) as evaluation metric. It
refers to the minimum number of single-character
operations required to transform model responses
into answer sequence. Let D be a matrix of size
(|R| + 1) × (|A| + 1), where D[i][j] denotes the
minimum edit distance between the first i char-
acters of R and the first j characters of A. The
subsequent values of D are computed using the
recurrence relation:

D[i][j] = min





D[i− 1][j] + 1 (delet)
D[i][j − 1] + 1 (insert)
D[i− 1][j − 1] + cost (substitute)

(3)

where cost is 0 if the characters R[i − 1] and
A[j − 1] are the same, and 1 otherwise.

Open-set tasks. For notation analysis tasks with
open-ended answers, we used 2 type assessment:

(1)Calculating using metrics. Our metrics are
divided into two categories: semantic similar-
ity and word matching. For semantic similar-
ity, we use LSA, which measures the seman-
tic similarity of text by computing the cosine
similarity between vectors. For word matching,
we use ROUGE-1, ROUGE-L, and METEOR,
which respectively calculate the number of unigram
matches, longest common subsequence matches,
and synonym matches.

(2)Scoring using LLM as an evaluator. As ex-
isting studies (Zheng et al., 2023) demonstrated,
strong LLMs can be good evaluators. We com-
pare the analysis generated by NotaGPT-7B with
the analysis generated by other models, and have
GPT-4 (text model) evaluate the analysis from both
models. The evaluation considers both the music
itself and the music’s background. The evalua-
tion of the music itself includes aspects such as
musical language (melody, tonality, rhythm, musi-
cal terminology, etc.), technique application, and
composition style. The evaluation of the music’s
background includes considerations of the social,
historical, and cultural context, including the com-
poser’s milieu, the background of the composition,
and the ideology of the creation.

6 Results

Our experiment revolves around proving the effec-
tiveness of NOTA in promoting music understand-
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Model LSA ROUGE-1 ROUGE-L METEOR Avg

InternVL-Chat-v1.5 14.96 19.71 13.32 19.68 16.92
InternVL-14B-224px 3.28 5.30 4.63 4.18 4.35

VisualGLM-6B 10.36 21.61 13.21 18.19 15.84
DeepSeek-VL-7B-base 9.92 16.43 11.60 13.81 12.94

InstructBLIP-Flan-T5-xl 9.38 20.91 15.28 14.57 15.04
InstructBLIP-Flan-T5-xxl 7.64 17.55 12.32 14.96 13.12
InstructBLIP-Vicuna-7B 8.28 22.23 14.93 16.74 15.55
InstructBLIP-Vicuna-13B 8.37 20.29 14.18 14.17 14.25
MiniCPM-Llama3-V2_5 16.26 20.72 13.36 20.83 17.79

Yi-VL-6B 11.77 18.66 13.04 15.84 14.83
Yi-VL-34B 12.47 19.44 13.20 17.18 15.57
Qwen-VL 9.58 15.21 10.37 12.56 11.93

Qwen-VL-Chat 9.66 16.80 11.37 14.42 13.06

Gemini-pro-vision 15.88 22.21 15.09 20.31 18.37
GPT-4V 14.03 18.49 11.36 19.94 15.96
GPT4o 15.92 18.27 11.35 20.26 16.45

NotaGPT-7B 12.46 22.63 15.53 18.34 17.24

Table 3: Comparisons of analysis and form Evaluation (%). Part 1: Open-source models; Part 2: API-based models.

ing. In order to enable the model to ultimately
achieve music understanding, we have broken
down the experiment into three sub-experiments:
music information extraction, cross-modal align-
ment and music notation analysis. Music infor-
mation extraction only extracts the basic elements
from the score image, such as author information,
title, T, K, L, M and C. Score image recognition
builds upon the basic element extraction, further
extracting the music score in ABC notation form.
Music analysis then, based on the extracted mu-
sic score, conducts understanding and analysis, in-
cluding score structure analysis and musical style
analysis.

6.1 Music Information Extraction Evaluation

General comparison The evaluation results are
presented in Table 1. We report the average extrac-
tion rate, with 23.53% of the models showing an
effective precision lower than 10%. Additionally,
58.82% of the models have an accuracy approxi-
mately between 10% to 30% , and only 17.64%
of the models achieve an accuracy exceeding 30%.
Overall, NotaGPT-7B demonstrated the best perfor-
mance among all the models evaluated, achieving
an extracte rate of 67.84. These findings highlight
the challenges of the NOTA test dataset.

Comparative analysis Figure 4 illustrates the
comparative performance of NotaGPT-7B and
Gemini in several subcategories of an information
extraction task. NotaGPT-7B significantly outper-
forms Gemini in the tasks of Author, K, L, and
M, demonstrating the effectiveness of the training

data. NotaGPT-7B does not perform very well on
the title extraction task, and after analyzing it, we
found that it is because it mistakenly extracts author
information as title information.

After training with the NOTA dataset, models of
size 7B achieved substantial improvements in the
categories K, L, and M, where performance was
originally poor. These enhancements allowed them
to surpass models of the same size and even those
of larger sizes.

6.2 Cross-modal Alignment Evaluation

Table 2 presents the evaluation results. Overall,
while high precision in music information extrac-
tion benefits cross-modal tasks, the relationship
isn’t simply linear. NotaGPT-7B consistently per-
forms well, showcasing its strength in both extract-
ing and aligning musical information. In contrast,
while GPT-4V and Gemini-pro-vision score simi-
larly in extraction tasks (around 33.34), they differ
greatly in alignment accuracy, with Levenshtein
distances of 655.45 and 354.30, respectively, sug-
gesting that factors like model structure and opti-
mization strategies also influence performance.

6.3 Music Score Analysis Evaluation

Metric evaluation Since the model’s analysis
and the standard answer cannot be completely iden-
tical, we evaluate the strength of the model’s analy-
sis capability of the recognized music score from
semantic similarity and word matching.

From the results in Table 3, in terms of the LSA
metric, the performance of NotaGPT-7B is stronger
than most models, including some models with
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Model A Type Musical styles Score Structures C-RateA win Tie B win A win Tie B win

InstructBLIP-Flan-T5-xxl w/ Info. 5.00 33.50 61.50 1.34 33.56 65.10 96.56
w/o Info. 5.50 39.00 55.50 1.34 26.84 71.81 96.27

InstructBLIP-Vicuna-7B w/ Info. 1.00 25.00 74.00 2.68 32.89 64.43 98.28
w/o Info. 1.50 36.00 62.50 2.01 28.86 69.12 98.28

InstructBLIP-Vicuna-13B w/ Info. 1.00 26.50 72.50 1.34 30.87 67.79 98.85
w/o Info. 2.00 35.00 63.00 0.13 23.48 75.17 98.28

InternVL-Chat-v1.5 w/ Info. 57.00 33.50 9.50 48.32 44.29 7.38 46.70
w/o Info. 35.00 49.00 16.00 26.84 55.70 17.44 68.48

Qwen-VL w/ Info. 24.50 45.00 30.50 16.11 39.60 44.30 79.08
w/o Info. 0.50 33.50 66.00 0.67 19.46 79.87 99.43

VisualGLM-6B w/ Info. 36.50 46.50 17.00 32.21 56.38 11.41 65.33
w/o Info. 14.00 46.50 39.50 11.40 40.93 47.65 34.67

Yi-VL-6B w/ Info. 36.00 40.50 23.50 30.20 49.66 20.14 66.47
w/o Info. 94.00 3.50 2.50 13.42 38.92 47.65 40.40

GPT-4V w/ Info. 69.50 25.00 5.50 55.70 33.56 10.74 36.39
w/o Info. 52.00 34.00 14.00 32.88 49.66 17.44 56.16

Table 4: Results of models generating music analysis, evaluated by GPT-4 (text model). Info. means music
background information, A win means in GPT-4’s view, model A’s response is better than model B’s as evaluated by
GPT-4; tie means the responses are equal; B win means model B’s response is better. C-Rate means comparable rate
between model B and model A.

0 10 20 30 40 50 60 70 80 90 100
Percentage
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Figure 5: Visualization of evaluation results (w/o Info.)
of all other models compared with our proposed No-
taGPT model under GPT-4V.

larger parameter sizes than 7B, only second to a few
open-source models with larger parameter sizes,
as well as API-based models. In word matching,
NotaGPT-7B achieves SOTA performance on 2/3
of the metrics.

NotaGPT-7B does not achieve the best perfor-
mance on the LSA metric, on the one hand be-
cause the parameter size of NotaGPT-7B is only 7B,
much smaller than the 25.5B of InternVL and the
34B of Yi-VL, which limits its capability; on the
other hand, the base model of NotaGPT-7B does
not use an instruction-tuned model like the Mistral-
7B-Instruct series. MiniCPM has similar size to
NotaGPT-7B, based on the instruction-tuned model
Llama3-8B-Instruct, whose capability is stronger
than the base model Mistral-7B used by NotaGPT.

The results demonstrate the effectiveness of the
NOTA test dataset, allowing the parameter-limited
model NotaGPT-7B, after training, to outperform
other models.

Analysis comparison Table 4 contains the com-
parison between analysis of different models, and
all the model B are NotaGPT-7B. Based on the
results, NotaGPT-7B is better or on par with 75%
of the models. In comparison with most models,
NotaGPT-7B’s win rate is higher in the absence
of music background information than with music
background information. This performance can be
attributed to NotaGPT-7B’s training on a small set
of music analysis data samples, which has endowed
it with the capability to generally analyze musical
scores and styles. It performs commendably even
in prompts that lack background knowledge of the
music piece.

7 Conclusion

In this study, we introduce NOTA, a large-scale
music understanding dataset encompassing 3 tasks
with over 1.1 million data entries. Based on
the NOTA train dataset, we trained NotaGPT-7B,
which demonstrates robust music notation under-
standing capability. We further assess 17 multi-
modal models’ capabilities in music understanding.
The results show the constraints that are caused by
the lack of multimodal music datasets, emphasizing
the significance of the NOTA dataset.
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Limitations

Although NOTA makes substantial advancement in
developing effective music understanding datasets,
we are aware of typical limitations in MLLMs, in-
cluding hallucinations and shallow reasoning. Our
future efforts will focus on improving the fidelity
and dependability of these models.
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A Appendix

A.1 Social Impact

The Nota-Eval dataset contains music from multi-
ple regions and diverse cultural backgrounds. Not
understanding the cultural context of the music
may lead to misinterpretation of the music data,
such as misreading the meaning and emotional ex-
pression of the music, as well as misjudging the
characteristics and styles of the music.

A.2 Region-Level Evaluation

Table 5 presents the overall information extrac-
tion results for five information extraction tasks
across 3 different regions using various models on
our NOTA dataset. The experimental results indi-
cate that the GPT-4V model significantly outper-
forms other models in music information extraction
across different regions. For the five information
extraction tasks in the regions of China and Europe,
different models showed better performance com-
pared to the America region. Additionally, there
are noticeable differences in the information ex-
traction capabilities of different models across the
three regions. This suggests that different models
have distinct preferences for understanding music
from different regions, which may be related to the
distribution of training data in these multimodal
models.

A.3 Detailed Evaluation Metrics for Open-Set
Tasks

Latent Semantic Analysis (LSA) is a technique
in natural language processing and information re-
trieval that analyzes relationships between a set of
documents and the terms they contain by produc-
ing a set of concepts related to the documents and
terms. LSA assumes that words that are close in
meaning will appear in similar pieces of text. The
core idea involves constructing a term-document
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Figure 6: Comparing between GPT-4V and
NotaGPT-7B.

matrix, which is then decomposed using singular
value decomposition (SVD). The semantic similar-
ity between texts is often measured using the cosine
similarity between their vector representations. Let
A be the term-document matrix, then LSA involves
the following computation:

A ≈ UkΣkV
T
k

where:

• Uk represents the first k columns of U ,

• Σk is the top k × k submatrix of Σ,

• V T
k is the first k rows of V T .

ROUGE-1 is a metric used to evaluate automatic
summarization and machine translation software,
focusing specifically on the overlap of unigrams
(single words) between the system-generated sum-
mary or translation and a set of reference sum-
maries. The ROUGE-1 score is calculated by count-
ing the number of unigrams in the generated text
that match the unigrams in the reference text and
then normalizing this number by the total num-
ber of unigrams in the reference text, providing a
measure of recall. ROUGE-N is a metric for evalu-
ating text summarization and machine translation
quality by measuring the overlap of N-grams be-
tween system-generated summaries and reference
summaries. Specifically, ROUGE-1 is a variant
of ROUGE-N where N equals 1, meaning it calcu-
lates the overlap using unigrams (individual words).
ROUGE-1 focuses on assessing the recall of sin-
gle words, providing a basic measure of content
overlap and is widely used due to its simplicity and
effectiveness in capturing essential content accu-
racy. ROUGE-N can be represented as:

Rouge-N =

∑
S∈ReferenceSummaries

∑
gramn∈S Countmatch(gramn)∑

S∈ReferenceSummaries
∑

gramn∈S Count(gramn)

ROUGE-L measures the longest common sub-
sequence (LCS) between a system-generated sum-
mary or translation and a set of reference texts. It
is particularly useful for evaluating the fluency and
the order of the text in summaries and translations.
The LCS does not require consecutive matches but
is a sequence where each word is in the same order
in both texts. The score is computed by dividing
the length of the LCS by the total length of the ref-
erence sequence, providing insights into the overall
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Model China America Europe Avg
InternVL-14B-224px 0.00 0.00 0.15 0.05
InternVL-Chat-V1.5 0.48 5.56 1.81 2.61

VisualGLM-6B 8.66 2.53 10.36 6.64
DeepSeek-VL-1.3B-base 7.51 0.64 8.09 5.03
DeepSeek-VL-7B-base 4.08 0.32 1.94 2.31

InstructBLIP-Flan-T5-xl 0.46 0.17 2.46 0.69
InstructBLIP-Flan-T5-xxl 1.03 0.00 5.24 1.36
InstructBLIP-Vicuna-7B 3.57 0.47 5.89 2.80
InstructBLIP-Vicuna-13B 1.08 0.12 2.65 0.98

Yi-VL-6B 0.14 0.03 0.19 0.11
Yi-VL-34B 0.14 0.12 0.32 0.16

MiniCPM-Llama3-V2_5 6.79 5.97 11.39 7.26
Qwen-VL 2.35 1.31 1.88 1.88

Qwen-VL-Chat 0.26 0.47 0.13 0.32
GPT-4V 16.19 12.31 11.27 13.90

Table 5: Region Bias Evaluation
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Figure 7: Music analysis figure.

text structure retention.It can be represented as:

Rlcs =
LCS(X,Y )

m

Plcs =
LCS(X,Y )

n

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

METEOR, or the Metric for Evaluation of
Translation with Explicit ORdering, is a metric
for evaluating machine translation output by align-
ing it to one or more reference translations. Unlike
other metrics, METEOR accounts for exact word
matches, synonymy, and stemming. It calculates
scores based on the harmonic mean of precision
and recall, weighted towards recall. The inclusion
of synonyms and stemming allows METEOR to
perform a more nuanced assessment of language
use than simple exact matching. The METEOR
score is calculated as follows:

METEOR = Fmean × (1− Penalty)

A.4 Author’s statement and data license

We undertake to assume all legal liability that may
arise from the use of the dataset, in particular in
relation to data infringement. This includes, but
is not limited to, copyright infringement, privacy
breaches or any other legal issues of any kind. With
respect to the licensing of the data, we confirm
that the dataset will be shared in compliance with
applicable data protection regulations. The dataset
will be licensed under a CC BY 4.0 license.

A.5 The Role of Humans in Data Collection

In the first two tasks, data was collected from elec-
tronic websites. The cleaning primarily involved
dealing with some improperly formatted images
and texts, as well as music pieces that had lost
both author and title information, retaining only
the melody.

In the final task, individuals were responsible
for manually typing texts from over a dozen book
publications. This included integrating authorita-
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tive works from both domestic and international
sources in the fields of music appreciation, musical
works analysis, and form analysis. Notable works
included Yang Minwang’s "New Compilation of
World Famous Music Appreciation," Wu Zuqiang’s
"Form and Works Analysis," the "Norton Introduc-
tion to Music History" series, and Roger Kamien’s
"Music: An Appreciation," among dozens of semi-
nal studies on Western musical works.
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