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Abstract

This paper delves into sequence-level knowl-
edge distillation (KD) of multilingual pre-
trained translation models. We posit that,
beyond the approximated mode obtained via
beam search, the whole output distribution of
the teacher contains valuable insights for stu-
dents. We explore the potential of n-best lists
from beam search to guide student’s learning
and then investigate alternative decoding meth-
ods to address observed issues like low vari-
ability and under-representation of infrequent
tokens. Our research in data-limited scenar-
ios reveals that although sampling methods can
slightly compromise the translation quality of
the teacher output compared to beam search
based methods, they enrich the generated cor-
pora with increased variability and lexical rich-
ness, ultimately enhancing student model per-
formance and reducing the gender bias amplifi-
cation commonly associated with KD.

1 Introduction

Neural machine translation (NMT) is an essen-
tial tool for communication and understanding
between people who speak different languages.
While there are NMT models that offer high perfor-
mance for translation of high-resource languages,
low-resource languages, with limited available
training data, still pose a significant challenge for
NMT (Goyal et al., 2020).

Multilingual NMT models can help address this
issue by leveraging information from high-resource
languages (Tran et al., 2021). While large language
models (LLMs) also benefit from high-resource
languages and deliver high-quality translations
for them, studies have shown that they underper-
form compared to traditional encoder-decoder mod-
els when translating low-resource languages (Zhu
et al., 2024).

In recent years, several multilingual pre-trained
models —such as NLLB-200 (NLLB Team et al.,

2022), DeltaLM (Ma et al., 2021), and MADLAD-
400 (Kudugunta et al., 2023)— have been released,
often outperforming bilingual models trained from
scratch for low-resource languages. However, de-
spite their performance, the high hardware require-
ments of multilingual NMT models make them
impractical for general use. Knowledge distillation
(KD) (Hinton et al., 2015) addresses this challenge
by transferring knowledge from a large teacher
model to a smaller, more efficient student model.

KD techniques can be classified into word-
level (Hinton et al., 2015) and sequence-level (Kim
and Rush, 2016). Word-level KD mimics the
teacher’s probability distribution for each token,
while sequence-level KD trains the student us-
ing a synthetic corpus generated by the teacher.
In both cases, the same corpus used to train the
teacher is used for the distillation. Although both
approaches have been widely studied in bilingual
contexts (Wang et al., 2021; Zhang et al., 2018),
they rely on the availability of the training parallel
data, an issue for pre-trained multilingual models
developed by private companies, where such data
is often inaccessible. It is also possible that the
desired translation direction benefits from transfer
learning, but there is no parallel corpus available
for the target language pair.

Without access to the parallel corpus used to
train the teacher, sequence-level KD can be ap-
plied by translating a monolingual corpus to cre-
ate a synthetic parallel corpus for training the stu-
dent model (Lai et al., 2021; Yu et al., 2021).
Sequence-level KD has typically been conducted
using beam search (Graves, 2012; Kim and Rush,
2016), but this is detrimental to lexical richness.
Beam search prioritizes maximizing the probabil-
ity of the generated sequence, leading to repeti-
tions, low variability (Kulikov et al., 2019) and
under-representation of infrequent tokens (Müller
and Sennrich, 2021). Consequently, a corpus gen-
erated via beam search is less lexically rich com-
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pared to a native corpus (Holtzman et al., 2020).
The over-representation of the most likely tokens
by beam search limits the student model’s expo-
sure to a smaller range of plausible translations,
as beam search translations are biased towards the
most common patterns. This reduces the model’s
robustness, flexibility and ability to generalize. As
demonstrated by Ahn et al. (2022), training with
biased data amplifies the social and gender biases
present in the teacher model. Beam search’s em-
phasis on high probability results may increase the
frequency of stereotypical or biased translations,
explaining why distilled models show more bias
than the teacher (Vamvas and Sennrich, 2021).

In this paper, we explore whether beam search is
the best way to extract knowledge from a large mul-
tilingual NMT model for sequence-level KD, and
whether sampling methods (Fan et al., 2018a), that
generate more human-like text (Holtzman et al.,
2020), are a feasible or complementary alternative.
We posit that the teacher’s full output distribution
holds valuable insights for the student, thus sup-
plementing the limited information captured by the
approximated mode of the target language distribu-
tion obtained via beam search (Eikema and Aziz,
2020). In order to extract a broader range of knowl-
edge from the teacher, we propose to generate sev-
eral translations from the same source sentence, us-
ing the n-best list of beam search1 or diverse beam
search (Vijayakumar et al., 2018), or multiple it-
erations with sampling methods. We hypothesize
that these multiple translations will reduce the over-
representation of the most likely tokens, helping
the student model to generalize better and reduce
model gender bias.

This leads us to formulate the following research
questions in sequence-level KD:

• RQ1: Is it effective to generate multiple trans-
lations from the same source sentence?

• RQ2: Is it possible to reduce gender bias am-
plification with multiple translations?

• RQ3: Can other decoding methods overcome
the limitations of beam search?

• RQ4: What is the influence of factors such as
the size of the corpus translated by the teacher
and the sampling hyperparameters that control
deviation from the mode?

1Kim and Rush (2016) suggested using n-best lists from
beam search but concluded that the 1-best “worked well”.

To the best of our knowledge, this is the first paper
to compare the properties of decoding methods
focused on extracting knowledge from a pre-trained
multilingual model using only monolingual corpus.

This paper is structured as follows: next sec-
tion describes related work. Sec. 3 presents the
experimental settings. Sec. 4 shows the experi-
ments carried out2 to analyse the key variables in
the distillation process and the results of each ex-
periment, followed by the concluding remarks and
future work in Sec. 5.

2 Related work

The role of decoding methods. Neural models
generate output tokens by producing a probabil-
ity distribution over the target vocabulary at each
decoding step. There are two ways for selecting
these output tokens: deterministic methods, which
prioritize high-probability tokens but offer low vari-
ability (Kulikov et al., 2019), and stochastic meth-
ods, which sample from the distribution but can
lead to incoherent text (Basu et al., 2021). For di-
rected generation tasks, such as NMT, beam search
is commonly used because the output is closely
tied to the input, and variability is less critical. In
contrast, open-ended tasks, like story generation,
require more diverse and human-like output (Holtz-
man et al., 2020). While several studies analyse
decoding methods (Su et al., 2022; DeLucia et al.,
2021; Wiher et al., 2022) and evaluate the quality
of the resulting corpus (Pillutla et al., 2021), their
focus on LLM and open-ended tasks, which limits
their applicability to NMT.

Concerning NMT, despite some proposed meth-
ods to increase translation variability (Kool et al.,
2019; Leblond et al., 2021; Hewitt et al., 2022),
beam search remains the most widely used, espe-
cially for sequence-level KD (Kim and Rush, 2016).
The reason for the extensive use of beam search
is due to its balance between computational effi-
ciency and output quality. Though approaches like
Minimum Bayes’ Risk (MBR) decoding (Kumar
and Byrne, 2004) yield better translation quality,
they are too slow for practical use, even with recent
optimisations (Freitag et al., 2023; Vamvas and
Sennrich, 2024). While the relationship between
corpus quality and variability has been explored in
open-ended tasks (Zhang et al., 2021), it is under-
studied for KD in NMT.

2The code is available at https://github.com/
transducens/sampling-distillation
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KD techniques. Regarding KD of multilingual
translation models, some studies employ multiple
teacher models, multilingual (Do and Lee, 2023)
or bilingual (Tan et al., 2019), to distil knowledge
into a single multilingual student. In contrast, our
approach distills knowledge from a single teacher
into a bilingual student, differing from Gumma et al.
(2023), who compress a single multilingual teacher
into a multilingual student. Similarly, De Gibert
et al. (2023) distil a high-resource pair from NLLB
and then fine-tune the student model on the low-
resource languages.

Concerning bilingual student models, some
methods use high-resource languages related to
low-resource ones for distillation, training the stu-
dent with both languages as sources and English
as the target (Song et al., 2023). In contrast, our
study is not limited to English as the target lan-
guage. Galiano-Jiménez et al. (2023) fine-tune the
teacher for specific language pairs and train the
student model with a mix of parallel and forward
and back-translated synthetic data.

Recently, MBR has been used to generate se-
quences with an LLM for fine-tuning an encoder-
decoder translation model (Finkelstein and Fre-
itag, 2024). The study concluded that a student
model fine-tuned with MBR-generated outputs out-
performs one fine-tuned using beam search trans-
lations. Wang et al. (2024) extended this approach
by incorporating multiple references, similar to
our proposed method. They concur that extract-
ing multiple sentences from the teacher model bet-
ter captures its probability distribution, leading to
improved student models. However, our work ex-
plores a broader range of scenarios and concludes
that the choice of decoding method should depend
on both the teacher model’s translation quality and
the size of the available corpus.

3 Experimental settings

This section details the experiments carried out,
covering decoding methods, language pairs, the
model and corpora used, and the evaluation criteria.

3.1 Decoding methods

This study examines a selected set of decoding
methods, including beam search and diverse beam
search as deterministic approaches, and nucleus
sampling and top-k as stochastic approaches.3

3We exclude ancestral sampling from our analysis because
the NLLB model was trained using label smoothing, which

Beam search: At each decoding step
beam search keeps the n highest probability
paths (Graves, 2012). This has the advantage of
identifying high probability sequences that start
with less likely initial tokens and would have
been ignored by greedy decoding, which always
chooses the most probable token.

Diverse beam search: It is a variant of beam
search that tries to produce more diverse results.
Instead of maintaining a single list of the most
likely paths, it divides the n paths into G groups
and applies a penalty to prevent them from being
similar to each other (Vijayakumar et al., 2018).
As recommended by the authors, we used n=G, i.e.
as many groups as n, with only one sequence per
group, and λ=0.5.

Top-k: The k most likely next tokens are filtered
and the probability mass is redistributed among
them (Fan et al., 2018b). A small k means less vari-
ability and progressively more similarity to greedy
decoding. For our experiments, we kept the orig-
inal proposal of k=10 (Fan et al., 2018b), which
has proven to work well for generating synthetic
corpora for back-translation (Zhang et al., 2020).

Top-p (nucleus sampling): It chooses from the
smallest possible set of tokens whose cumulative
probability exceeds the probability p (Holtzman
et al., 2020). The probability mass is then redis-
tributed among this set of tokens. This way, the size
of the set of tokens can dynamically increase and
decrease according to the next token’s probability
distribution. Following Eikema and Aziz (2022),
we set p to 0.7 in our experiments.

3.2 Models, language pairs and data

Models. We used NLLB-200 1.3B and NLLB
3.3B (NLLB Team et al., 2022) as teacher mod-
els to assess the generalization of our approach to
different model sizes.

Our students are encoder-decoder Transformer
models in the base configuration, as defined by
Vaswani et al. (2017, Tbl. 3). With 65M parame-
ters, our student models are notably compact, rep-
resenting just 5% of the size of the NLLB 1.3B
model. For more details on the architecture and
training, see Appendix B.

elevates the likelihood of rare events, leading to translations
of significantly lower quality.
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Langs BS DBS top-p top-k
eng-swh 33.1 32.2 25.1 21.5

eng-ibo 16.1 13.7 12.4 10.9

eng-bam 6.8 6.1 4.9 4.6

swh-eng 42.9 42.4 34.8 28.8

ibo-eng 30.3 30.3 24.3 20.9

bam-eng 17.8 16.2 14.4 12.6

bam-swh 11.6 8.3 8.9 8.3

Table 1: BLEU scores of NLLB 1.3B on the FLORES+
devtest dataset when decoding with beam search (BS),
diverse beam search (DBS), top-p (average of 3 runs)
and top-k (average of 3 runs). The NLLB-3.3B scores
can be found in Appendix C.

Language pairs. For this study, we selected lan-
guages based on the quality of the translations per-
formed by the teacher (Table 1) and the size of
the available corpora. Our objective is to have
multiple scenarios that allow us to analyse the im-
pact of different variables at both generation and
training time. The languages we have chosen are
English (eng), Swahili (swh), Igbo (ibo) and Bam-
bara (bam). Translation directions to be distilled
are as follows:

• eng-swh, eng-ibo, eng-bam. Scenario in
which we have almost unlimited monolingual
source corpora and different qualities of trans-
lation.

• swh-eng, ibo-eng, bam-eng. Scenario where
we have small amount of monolingual data to
translate, but enough to try out various sizes
in some cases. As the teacher has learned
a lot of English and beam search limits the
vocabulary we can extract, we theorise that
sampling methods allow us to extract more
knowledge.

• bam-swh. Small amount of monolingual data
and low quality translation. The teacher’s
knowledge is based on transfer learning, gen-
eralised from the other translation directions
and monolingual knowledge of the source and
target languages.

Data. English and Swahili have the most exten-
sive corpora, from which we selected a subset of
1 million sentences. For Igbo, we used a corpus
comprising 451,789 sentences, while for Bambara
we employed a corpus containing 108,187 sen-
tences. All corpora used are freely available. Spe-

cific details on the corpora can be found in Ap-
pendix A.

As development and test sets we use the FLO-
RES+4 (NLLB Team et al., 2022) dev and devtest,
respectively.

3.3 Evaluation metrics
We evaluate two main elements: the synthetic cor-
pora and the models trained on them.

Corpora. We focus on their vocabulary, the fi-
delity of translations, and the sentence variability.
We assess lexical richness by measuring vocabu-
lary diversity using Zipf’s Law and counting unique
words and sentences to compare corpora. Variabil-
ity is measured by analysing the diversity of trans-
lations generated from the same source sentence
using self-BLEU (Zhu et al., 2018), with lower
values indicating greater variability.

For translation quality, we rely on BLEU (Pap-
ineni et al., 2002) and chrF (Popović, 2015) to eval-
uate teacher output on FLORES+ dataset, given the
lack of neural learned metrics for these languages.
Additionally, we report COMET (Rei et al., 2020)
for the supported languages.

All corpora were generated by translating the
respective monolingual corpus with the teacher,
using the transformers library (Wolf et al., 2020)
and the desired decoding method.

Models. We use two main metrics to evaluate the
students’ performance: first, their translation qual-
ity, evaluated in the same way as the teacher’s, with
the test set translated using beam search (n=5); and
second, gender biases. Due to the lack of annotated
datasets for these languages, we measure gender
bias using contrastive conditioning (Vamvas and
Sennrich, 2021), as outlined in Sec. 4.4.

4 Experiments and results

Our approach is to apply sequence-level KD using
different decoding methods and generating mul-
tiple translations. The aim is to experiment with
different sizes of monolingual corpora and to anal-
yse the features of the generated corpora in order
to test how these features affect the quality of the
student models.

4.1 Effect on distillation
Sampling methods typically yield lower perfor-
mance for machine translation compared to beam

4https://github.com/openlanguagedata/flores
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search and diverse beam search as shown in Table 1.
However, in this section, we assess whether, despite
this drop in performance, sampling methods offer
superior data for training student models.

We translated 100k sentences using beam search
(n=10), diverse beam search (n=10=G, λ=0.5),
top-p (p=0.7) and top-k (k=10), generating 10
translations per sentence. While top-p and top-
k rely on sampling, beam search and diverse beam
search select the 10 highest-probability candidates.
This process yielded a training corpus of 1 million
parallel sentences, with each source sentence trans-
lated 10 times into the target language. We then
divided each corpus into four blocks based on the
number of target sentences per source, with the
complete corpus containing 10 samples, and the
other blocks containing 5, 3, and 1 sample(s). The
version with a single sentence from beam search
corresponds to standard sequence-level KD. Subse-
quently, we trained student models on these gener-
ated training samples.

Results. Fig. 1 shows the performance of student
models, with scores reflecting the average BLEU or
chrF on three training runs.5 See Appendix C.3 for
the results of both metrics for all models. Results
from NLLB 3.3B, which exhibit a similar pattern,
are provided in Appendix C.2.

The results of paired approximate randomiza-
tion (Riezler and Maxwell, 2005) statistical signifi-
cance tests are shown in Appendix C.3. We com-
pared all student models with the model trained
with one translation from beam search as the first
baseline and the model trained with 10 translations
from beam search as the second baseline. Except
for the eng-ibo models, all translation directions
showed statistically significant differences com-
pared to standard sequence-level KD. When com-
pared to the second baseline, models trained with
diverse beam search translations for ibo-eng, bam-
eng, and eng-swh did not show differences.

As expected, student models trained on beam
search (or diverse beam search) outputs generally
performed best than sampling methods when only
one translation per sentence was generated. How-
ever, as the number of translations per sentence
increased, models trained on sampled data outper-
formed those trained with beam search and diverse
beam search. The gap between beam search and
sampling methods is especially notable for bam-

5Note that, for the sampling methods, translations were
generated again by the teacher in each training run.

swh. When distilling NLLB 1.3B, students trained
with 5 or 10 beam search translations performed
worse than those trained with only 3 or 1 transla-
tions. In this case, traditional KD with beam search
failed due to the poor quality of translations and
lack of data, but sampling methods enabled student
models to approach the teacher’s performance. In
general, the difference between beam search and
top-p student models is greater when the target is
English. This is in line with our hypothesis that, as
the teacher has been trained with so much English
and we are working with such small corpora, the
sampling methods allow us to extract more infor-
mation than beam search.

To ensure that the improvements seen with sam-
pling methods were not simply due to a particularly
good translation among the multiple outputs, we
conducted an additional experiment. For the eng-
swh corpus generated by top-p and 10 translations,
we selected the best translation for each sentence
based on COMET without reference. We used only
these selected translations to train a student model.
The resulting performance was similar to that of
a model trained with just one translation, confirm-
ing that the improvements observed with sampling
methods were driven by the diversity of multiple
translations.

Finally, we distilled eng-swh and eng-bam us-
ing MBR to evaluate its effectiveness despite its
slower performance. Following Finkelstein and
Freitag (2024), we used epsilon sampling (Hewitt
et al., 2022) to generate 256 candidates with ϵ =
0.02, selecting the top 10 translations based on
fastChrF (Vamvas and Sennrich, 2024) as the utility
function. For eng-swh, we observed that MBR pro-
duces less variability compared to top-p, resulting
in worse student models. In contrast, for Bambara,
an extremely low-resource language, the teacher’s
probability distribution is highly distributed, so
the teacher benefits from translation with MBR.
In this scenario, the results obtained with MBR
were slightly better than those obtained with top-
p. However, as top-p offers similar performance
while being significantly faster, we consider it the
preferable option.

Generated data analysis. To explain these re-
sults, we measured the variability between the
translations using self-BLEU (Zhu et al., 2018).
As expected, deterministic methods produce sen-
tences with low variability (even diverse beam
search), whereas sampling methods, particularly
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Figure 1: Average BLEU (first row) and chrF (second row) scores obtained by student models trained on samples
generated with different decoding methods and varying number of translations per source sentence (x-axis).

top-k, yield more diverse ones (see Appendix C.1).
However, top-k and top-p, despite generating more
diverse translations, produce repeated translations,
specially in the case of top-p, due to a narrow
choice window when the model is confident. This,
while potentially limiting diversity, can prevent hal-
lucinations that could harm student training.

An analysis of the probabilities normalised by
length (Figure 2) of the sentences produced shows
a decrease in the probabilities of the determinis-
tic methods. The sampling methods, on the other
hand, produce sentences with a lower probability,
but this probability remains stable. This, together
with Eikema and Aziz (2020)’s observations on the
inadequacy of the mode, may explain the decrease
in quality observed in students trained with multi-
ple beam search translations when working with
languages for which the teacher is poorly fitted.

Note that it is not possible to increase the number
of beam search translations without compromising
their quality. In our experiments, we set n=k=10,
resulting in only 10 beam search translations, each
with progressively decreasing quality. In contrast,
top-k sampling allows the generation of an arbi-
trary number of samples while maintaining their
probabilities and showing a higher variability.

Regarding lexical diversity, the Zipf’s distribu-
tion (Holtzman et al., 2020) analysis reported in
Appendix C.1 shows that corpora amplified with
sampling from smaller texts are more similar to
native corpora than those produced by beam search
with a single translation from larger texts. Intu-
itively, the generation of multiple translations by
beam search might result in either very similar sen-
tences, adding little value, or hallucinations when

Figure 2: Probabilities of 10 swh-eng translations for
each source sentence from FLORES+ devtest by NLLB
1.3B. The shaded areas around each line represent the
standard deviation.

the model is forced into less probable paths. This
depends on the model’s knowledge of the language.

4.2 Impact of source corpus size
The size of the source corpus plays a crucial role,
as a larger corpus allows for more knowledge to
be extracted from the teacher. To analyse how this
affects KD with sampling methods, we translated
100k, 500k and 1 million sentences, generating 10
translations per sentence. We compare each size
with the result of translating the same corpus using
beam search by generating a single translation.

Results. Figure 3 shows the performance of stu-
dent models trained on samples generated from
corpora of different sizes. The results for all trans-
lation directions can be found in Appendix C.3. As
observed, the discrepancy between different decod-
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ing methods decreases as the corpus size increases.
For corpora of 500k sentences, sampling methods
still outperform beam search, while for corpora
of 1 million sentences, sampling methods do not
consistently yield superior results. Nonetheless,
generating multiple translations remains advanta-
geous. COMET results for the supported languages
are shown in Figure 4.

Figure 3: BLEU scores for different corpus sizes. BS
corresponds to the standard sequence-level KD, and
BS∗10 correspond to the use of beam search to generate
10 translations per source sentence.

Figure 4: COMET scores for eng-swh and swh-eng.
The results of top-p and top-k overlap in the eng-swh
graph, as well as BS and DBS.

Generated data analysis. To explore the impor-
tance of lexical richness in the translated corpus,
we compared the number of unique words in both
the source corpus and the generated corpus. Figure
5 illustrates the relationship between the size of
the source vocabulary, the vocabulary produced by
each decoding method, and the BLEU scores ob-

Figure 5: Relationship between the vocabulary (1×106)
of the training corpus and the BLEU of the student
models. The x-axis markers indicate sentences from
the source corpus (first row) and sentences from the
generated corpus (second row).

Figure 6: Effect of vocabulary coverage and teacher
translation quality. The x-axis shows decoding methods
ranked by variability. Columns show the percentage of
test vocabulary (y-axis on the left) present in the training
corpus. Lines show the BLEU (y-axis on the right) of
the models trained with each corpus and the BLEU of
the teacher with each decoding method.

tained by training student models on these corpora.
The results show that sampling methods act as vo-
cabulary amplifiers by generating multiple trans-
lations. However, it is important to know which
part of this vocabulary is useful to the model. Fig-
ure 6 shows the percentage of the devtest target
vocabulary present in the training corpus. It can be
seen that until a certain coverage is reached (about
87% for eng-swh and 95% for swh-eng), increas-
ing the coverage produces better student models,
even if the teacher translations are worse. On the
other hand, once this point is reached, it is more
beneficial to prioritize translation quality.

In addition to quality, beam search can offer
another benefit for KD. During training, models
typically use teacher forcing, where the correct pre-
vious token is used as input, leading to a mismatch
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Figure 7: Relationship between the teacher translation
quality and variability and the student models score for
eng-swh. Initial corpus: 100k sentences

between training and inference. This exposure bias
(Ranzato et al., 2015) can be mitigated by using
beam search outputs, which are closer to the tokens
generated during inference. If the source corpus is
sufficiently large, beam search can extract enough
vocabulary, and its similarity to the inference pro-
cess benefits the student model. This also explains
the performance of the swh-eng model with a 1M
source corpus using diverse beam search, which
keeps the inference similarity of beam search while
providing greater diversity.

4.3 Divergence from the mode vs. translation
quality

The adjustment of the sampling parameters affects
both output variability and translation quality. To
gauge the sensitivity of our approach to the values
of p and k, we conducted experiments on eng-swh,
translating 100k English sentences. Fig. 7 illus-
trates the impact of p and k values on both the
translation performance of the student and teacher
models (measured with BLEU), and the similarity
of the translations (measured with self-BLEU). As
observed, higher values of p and k result in more
diverse translations, albeit with poorer teacher per-
formance, while maintaining similar performance
for the student models. Finally, we repeated the
experiment with 1 million sentences and found that
the results were consistent with previous findings,
confirming that the trade-off between quality and
variability is independent of corpus size.

4.4 Analysis of gender bias
Sequence-level KD typically carries a bias ampli-
fication respect to the teacher model due to the
over-representation of frequent tokens. To measure

eng-swh eng-ibo eng-bam
NLLB 1.3B 52.9 52.7 58.3
BS 49.2 49.4 50.8
BS * 10 51.0 50.2 50.3
DBS * 10 50.4 50.4 51.5
top-p * 10 51.7 50.5 52.3
top-k * 10 51.7 50.5 51.3

Table 2: Contrastive conditioning accuracy over
WinoMT dataset. Higher scores are better and the blue
scores mark the best student models.

if this issue can be mitigated by generating multiple
translations we used contrastive conditioning (Vam-
vas and Sennrich, 2021) to evaluate gender bias,
using NLLB 1.3B as an evaluator model and the
WinoMT dataset (Stanovsky et al., 2019). This
method checks the probability of the translation
generated by the evaluated model from the original
source sentence using a disambiguated variation as
the source of the evaluator model. For each decod-
ing method, we evaluated the model trained with
only one translation per source sentence and with
10 translations.

The results in Table 2 show how, for all meth-
ods, generating multiple translations for training
reduces gender bias compared to training with only
one translation.

5 Concluding remarks

This study investigates the effectiveness of gener-
ating multiple translations from the same source
sentence in sequence-level KD with multilingual
NMT encoder-decoder models and the effect of
different decoding methods.

The results show that increasing the number of
translations has a positive effect on the student
model performance, especially when monolingual
data is limited. Using this method, we achieve
similar results to standard sequence-level KD with
a much smaller monolingual corpus and improve
the results with the same corpus size. Our method
matches or slightly outperforms the teacher from
English to low-resource languages but leaves a gap
when translating into English. In multilingual mod-
els, it may not be possible to extract all the bilin-
gual knowledge from the teacher model with only
the synthetic parallel corpus of one language pair,
since thanks to transfer learning, part of the transla-
tion ability comes from other translation directions.
In NLLB, which is trained on different parallel
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corpora with English as the target, a small monolin-
gual Swahili corpus translated into English by the
teacher cannot capture all the English knowledge
of the model (RQ1).

This approach also helps to reduce gender bias
by increasing translation variability. This find-
ing holds for all decoding methods, demonstrat-
ing the generalizability of the approach. Despite
the overall good results, sampling methods achieve
greater mitigation of bias by avoiding the over-
representation of the most likely tokens inherent in
beam search (RQ2).

Sampling methods allow for a more diverse cor-
pus for learning when generating multiple trans-
lations, which is particularly beneficial for low-
resource scenarios (ibo-eng, bam-eng, bam-swh).
Nevertheless, with high-resource source languages,
the quality of the translations and the mitigation of
exposure bias obtained by beam search based meth-
ods, can compensate the low variability of these de-
coding methods, as occurs with eng-ibo, eng-bam
and eng-swh. Especially, when the teacher model
has a lot of knowledge about the source and target
languages, it is able to produce multiple transla-
tions with a high probability. This explains why
diverse beam search gives the best result for swh-
eng when translating 1 million sentences (RQ3).

Regarding the deviation from the mode with sam-
pling methods, the stability of the student models
in the face of changing parameters p and k seems
to indicate that the relationship between quality
and variability remains balanced, allowing the stu-
dent models to learn on the basis of one or the
other (RQ4).

Future work. A promising avenue for future
work is to test whether this approach remains ef-
fective with LLMs, where sampling methods are
commonly used for text generation.

Regarding decoding methods, one possible ap-
proach is to combine different techniques to exploit
the advantages of each, while another option is to
focus on mitigating the weaknesses of certain meth-
ods. For example, stopping the generation of trans-
lations with beam search or diverse beam search
when the generated translations present very low
probabilities.

In terms of explainability and interpretability, we
plan to explore the precise reasons for the decrease
in student translation quality observed in certain
language pairs when the number of beam search
translations was increased.

Limitations

In spite of showing stronger correlations with hu-
man judgments than BLEU or chrF, we do not
use neural-based machine translation evaluation
metrics such as COMET for all languages, as the
associated models do not cover the languages in-
volved in our research. Furthermore, our research
has specifically focused on a single model at dif-
ferent sizes (NLLB 1.3B and NLLB 3.3B). Our
conclusions, therefore, might not be fully applica-
ble to different models. The decision to limit our
investigation to this specific model was primarily
due to constraints in computational resources and
time.

As regards, other approaches to KD, our ap-
proach has not been compared to word-level KD
due to the requirement for parallel corpora, which
was not completely feasible within some of our
constraints. Regarding the decoding methods, our
experiments testing the influence of different val-
ues of p and k for training student models were
limited to the English-Swahili language pair. Con-
sequently, the findings related to particular values
of these parameters may not generalise across other
language pairs. It is important to note, however,
that the approaches we tested are designed to be
applicable to any language pair within the multilin-
gual model, offering broad relevance despite this
limitation. Moreover, the selection of the values
for p and k in our study was guided by established
precedents within the literature.

We did not explore combining the synthetic sen-
tences provided by different decoding methods, as
our focus was on understanding individual contri-
butions.

Lastly, due to the fact that NLLB was trained
with label smoothing (NLLB Team et al., 2022),
we were unable to explore ancestral sampling in
our experiments. Label smoothing increases the
probability of low-frequency events, which could
result in lower-quality translations in scenarios that
rely on ancestral sampling.

Ethics Statement

Knowledge distillation endeavors to produce
smaller, more resource-efficient NMT systems,
thereby diminishing energy requirements com-
pared to the original systems and consequently aid-
ing in the reduction of CO2 emissions. Moreover,
it lowers the entry barrier for deploying NMT mod-
els, as the resulting models work on lower-power
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hardware. Our student models are remarkably com-
pact, operating at a mere 5% of the teacher model
size. However, delving into knowledge distilla-
tion necessitates a substantial number of training
iterations, each accompanied by its own energy
consumption. For the experiments detailed in this
paper, we trained 482 Transformer models employ-
ing NVIDIA GeForce RTX 2080 Ti GPUs. Further-
more, all corpora and tools utilized in this study are
available under open source licenses, ensuring the
complete reproducibility of the presented results.
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A Corpora

The largest corpora correspond to English and
Swahili. The English corpus is a fragment of
OSCAR-3301 dataset6 and for Swahili we used
Monolingual African Languages from ParaCrawls,
a collection of corpora available for the joint task
Large-Scale Machine Translation Evaluation for
African Languages at WMT22 (Adelani et al.,
2022). The Igbo corpus was obtained from the
same collection.

To clean these three corpora, we used
monocleaner (Sánchez-Cartagena et al., 2018).
We used the available ready-to-use language pack-
ages for English and Swahili and trained a model
for Igbo using the Igbo part of the wmt22_african

6https://huggingface.co/datasets/oscar-corpus/
OSCAR-2301

dataset.7 We removed all sentences with a
monocleaner score lower than 0.5 and, for English
and Swahili, we then randomly picked one million
sentences. For Igbo, our final corpus comprises
451,789 sentences.

For Bambara we collected all available cor-
pora in Hugging Face.8 For the MADLAD-
400 (Kudugunta et al., 2023) corpus we used only
the clean part. After concatenating these corpora,
we removed duplicated sentences and the result
was 108,187 sentences.

B Student models

Each student model consist of a transformer
(Vaswani et al., 2017) with 6 layers for both the
encoder and the decoder, embedding dimension of
512, feed-forward inner-layer dimension of 2048,
and 8 attention heads. All our models were trained
using the Fairseq toolkit9 and a different joint
bilingual SentencePiece (Kudo and Richardson,
2018) model for each language pair, trained on the
training samples generated from the teacher with a
vocabulary of 10,000 tokens. For training we used
a learning rate of 0.0007 with the Adam (Kingma
and Ba, 2015) optimizer (β1=0.9, β2=0.98), 8,000
warm-up updates and 8,000 max tokens. We used
parameters dropout of 0.1 and updated the model
after 2 training steps. The cross-entropy loss with
label smoothing was computed on the development
set after every epoch and the best checkpoint was
selected after 6 validation steps with no improve-
ment.

C Additional results

This sections reports additional results to measure
the effect of decoding methods in sequence-level
KD. In addition, the performance of NLLB-3.3B
with the different decoding methods is shown in
Table 3.

7https://huggingface.co/datasets/allenai/
wmt22_african

8https://huggingface.co/datasets/RobotsMaliAI/
bayelemabaga, https://github.com/masakhane-io/
lafand-mt, https://wortschatz.uni-leipzig.
de/en/download/Bambara, https://github.com/
facebookresearch/flores/tree/main/nllb_seed,
https://huggingface.co/datasets/bigscience/xP3,
https://huggingface.co/datasets/allenai/
MADLAD-400

9https://github.com/facebookresearch/fairseq
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Langs BS DBS top-p top-k
eng-swh 33.9 32.7 28.9 22.1

eng-ibo 16.2 15.9 14.0 10.8

eng-bam 7.0 6.0 5.9 4.7

swh-eng 44.8 44.2 39.7 30.9

ibo-eng 32.0 31.1 28.1 21.9

bam-eng 17.5 17.1 15.1 12.1

bam-swh 10.8 10.7 9.3 7.0

Table 3: BLEU scores of NLLB 3.3B on the FLORES+
devtest dataset when decoding with beam search (BS),
diverse beam search (DBS), top-p (average of 3 runs)
and top-k (average of 3 runs).

Figure 8: Similarity among the generated translations
as evaluated by self-BLEU.

C.1 Lexical diversity

This section contains the experiments on lexical
variability and diversity discussed in Section 4.1.
Figure 8 shows the self-BLEU score obtained by
each decoding method when generating 10 transla-
tions per source sentence.

Figures 9 compares the Zipf distribution of
each generated corpus, translated from English to
Swahili, together with the distribution of the native
Swahili corpus of 1M sentences (mono_1M in the
plot). The figure also includes the distribution of a
corpus generated by translating the English corpus
of 1M sentences with beam search, but with only
one translation for each source sentence (BS_1M).
It can be seen that sampling methods produced cor-
pora closer to native language corpora than beam
search, even in those cases in which a small corpus
is amplified via sampling.

C.2 Experiments with 100k sentences

The results obtained using NLLB 3.3B are shown
in Figure 10.

C.3 Experiments with 500k and 1 million
sentences

Tables 4 and 5 show the BLEU and chrF scores
of the trained student models together with the
teacher scores. The results in Table 4 correspond to
those in Figure 3, together with the language pairs

Figure 9: Zipf’s distribution over Swahili corpora. Sim-
ilar patterns were observed for the other languages.

for which the available corpus does not reach one
million sentences.
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Figure 10: Average BLEU and chrF scores (y-axis) obtained by student models trained on samples generated by
NLLB 3.3B with different decoding methods and varying number of translations per source sentence (x-axis).

eng-swh eng-ibo eng-bam swh-eng ibo-eng bam-eng bam-swh
NLLB 1.3B 33.1 16.1 6.8 42.9 30.7 17.8 11.6
100k BS 26.2 14.1 4.7 22.9 10.0 5.8 2.1
100k BS * 10 30.4 15.6 0.3 27.9 12.1 8.7 1.2
100k DBS * 10 30.2 15.9 6.3 28.4 12.4 8.3 6.1
100k top-p * 10 31.1 16.0 6.6 29.4 13.4 9.9 7.7
100k top-k * 10 30.9 15.8 6.3 29.1 13.4 9.7 7.5
500k BS 31.5 15.4 6.3 31.3 14.2 – –
500k BS * 10 33.5 15.1 6.4 32.7 15.5 – –
500k DBS * 10 33.2 16.9 6.6 34.0 16.9 – –
500k top-p * 10 33.9 16.9 6.9 33.3 16.2 – –
500k top-k * 10 33.4 16.0 6.7 33.6 17.1 – –
1M BS 33.5 16.5 6.5 34.0 – – –
1M BS * 10 34.1 17.0 6.8 34.5 – – –
1M DBS * 10 34.0 15.7 6.6 35.6 – – –
1M top-p * 10 33.8 16.6 7.1 34.1 – – –
1M top-k * 10 33.7 16.7 7.1 34.4 – – –

Table 4: BLEU scores on the FLORES+ devtest for several student models and the teacher. Underlined results are
those that show no statistically significant difference compared to beam search with a single translation. Bolded
results are those that show no statistically significant difference compared to beam search with 10 translations.
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eng-swh eng-ibo eng-bam swh-eng ibo-eng bam-eng bam-swh
NLLB 1.3B 61.8 43.2 33.3 64.8 54.0 40.2 38.3
100k BS 54.8 39.5 29.8 49.0 34.3 27.1 9.6
100k BS * 10 59.3 41.6 13.8 52.9 37.1 30.6 22.7
100k DBS * 10 59.0 41.9 30.8 53.6 37.6 31.0 31.4
100k top-p * 10 59.9 41.9 32.3 54.1 38.3 32.0 33.5
100k top-k * 10 59.4 41.8 31.7 54.1 38.2 32.1 33.6
500k BS 60.2 42.1 32.8 56.0 38.8 – –
500k BS * 10 61.7 42.3 33.0 57.1 40.8 – –
500k DBS * 10 61.7 43.1 31.8 57.8 42.2 – –
500k top-p * 10 61.9 43.3 33.1 57.6 41.3 – –
500k top-k * 10 61.7 42.5 33.1 58.1 41.7 – –
1M BS 61.4 42.9 32.7 57.9 – – –
1M BS * 10 62.2 43.7 33.3 58.3 – – –
1M DBS * 10 62.0 42.6 32.3 59.6 – – –
1M top-p * 10 61.7 43.1 33.2 58.2 – – –
1M top-k * 10 61.8 43.2 33.2 58.5 – – –

Table 5: chrF scores on the FLORES+ devtest for several student models and the teacher model.
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