
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 6661–6675

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing
Efficiency Through Vocabulary Adaptation

Luca Moroni1*, Giovanni Puccetti2∗, Pere-Lluis Huguet Cabot1, Andrei Stefan Bejgu4

Edoardo Barba1, Alessio Miaschi3

Felice Dell’Orletta3, Andrea Esuli2, Roberto Navigli1

1Sapienza University of Rome {surname}@diag.uniroma1.it
2ISTI-CNR {name.surname}@isti.cnr.it

3ILC-CNR {name.surname}@ilc.cnr.it
4Babelscape {surname}@babelscape.com

Abstract
The number of pretrained Large Language
Models (LLMs) is increasing steadily, though
the majority are designed predominantly for the
English language. While state-of-the-art LLMs
can handle other languages, due to language
contamination or some degree of multilingual
pretraining data, they are not optimized for non-
English languages, leading to inefficient encod-
ing (high token "fertility") and slower inference
speed. In this work, we thoroughly compare
a variety of vocabulary adaptation techniques
for optimizing English LLMs for the Italian
language, and put forward Semantic Align-
ment Vocabulary Adaptation (SAVA), a novel
method that leverages neural mapping for vo-
cabulary substitution. SAVA achieves competi-
tive performance across multiple downstream
tasks, enhancing grounded alignment strategies.
We adapt two LLMs: Mistral-7B-v0.1, reduc-
ing token fertility by 25%, and Llama-3.1-8B,
optimizing the vocabulary and reducing the
number of parameters by 1 billion. We show
that, following the adaptation of the vocabulary,
these models can recover their performance
with a relatively limited stage of continual train-
ing on the target language. Finally, we test the
capabilities of the adapted models on various
multi-choice and generative tasks.1

1 Introduction

Large Language Models (LLMs) have gained im-
mense popularity and are increasingly being uti-
lized across a wide range of applications (Radford
et al., 2019; Kojima et al., 2022). Despite their
impressive performance, these models are mainly
English-centric, that is, most state-of-the-art mod-
els are designed and pre-trained on datasets with a
primary focus on English (Jiang et al., 2023; Dubey
et al., 2024; Mesnard et al., 2024). Although na-
tive multilingual models – i.e. fully pre-trained

* Those authors contributed equally.
1We release our code and models at https://github.

com/SapienzaNLP/sava

Figure 1: Fertility for two different tokenizers, Mistral-
7B-v0.1 (left) and Minerva (right), over Italian texts
from CulturaX (blue) and Wikipedia (red).

in multiple target languages – have been released
over the years (Le Scao et al., 2023), they still fall
short of achieving performance levels comparable
to models pre-trained in English. The primary chal-
lenge is addressing underrepresented languages,
where large, clean, open-access text corpora are
often scarce (Weber et al., 2024; Nguyen et al.,
2024). This scarcity is problematic because models
require vast amounts of high-quality data to achieve
satisfactory performance (Hoffmann et al., 2022).
Moreover, multilingual models generally reach sub-
optimal performance due to the well-known curse
of multilinguality (Conneau et al., 2020).

A promising solution to these challenges is the
adaptation of pretrained English LLMs to other
languages (Chau et al., 2020). Recent studies high-
light that fine-tuning English-centric models to sup-
port other languages yields substantial benefits, al-
lowing for efficient adaptation while minimizing
computational resources and training time. This
method reduces both the training budget and the
number of tokens required, demonstrating compet-
itive performance even in low-resource scenarios
(Koto et al., 2021; Minixhofer et al., 2022; Gee
et al., 2022; Ostendorff and Rehm, 2023).
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Another important aspect, alongside the down-
stream performance of language models, is the to-
kenizer’s fertility in target languages. LLMs rely
on a tokenizer, which is trained on a mix of text
(either LLM’s training data or not), transforming
raw text into word-piece tokens; fertility is the av-
erage number of tokens in which a word is split
(Brown et al., 1993). The fertility of a tokenizer
is highly sensitive to the language and the type of
text it was trained on, as well as the text on which
the fertility itself is measured. Figure 1 shows an
example of this phenomenon comparing the fer-
tility of Minerva-LLMs, a family of Italian-first
LLMs (Orlando et al., 2024), and Mistral-7B-v0.1,
an English-first LLM (Jiang et al., 2023), on two
corpora in Italian.

In this work, we explore the adaptation of two
state-of-the-art English LLMs to the Italian lan-
guage using both vocabulary adaptation and con-
tinual learning. Additionally, we introduce a novel
vocabulary adaptation technique called Semantic
Alignment Vocabulary Adaptation (SAVA) and con-
duct a comprehensive comparison with recent ap-
proaches (Gee et al., 2022; Ostendorff and Rehm,
2023), examining the impact of vocabulary substi-
tution on model performance throughout the adap-
tation process. After the adaptation of the vocab-
ulary, when tokenizing Italian texts, we are able
to reduce the fertility of Mistral-7B-v0.1 by 25%
and of Llama-3.1-8B by 16%. As regards Mistral-
7B-v0.1, we do not increase its vocabulary size or
model parameters, while for Llama-3.1-8B, we ef-
fectively reduce its vocabulary size by 75% thereby
reducing the final model size by 10%. Overall,
we reduce memory and compute footprint of the
models. To summarize, the main contributions are:

• Introducing an effective approach for adapt-
ing tokenizers and vocabularies of generative
models, leading to competitive performance
over existing methods across several down-
stream benchmarks;

• Providing a detailed comparative analysis of
various tokenizer adaptation techniques, with
a focus on continual training in low- to mid-
resource scenarios.

• Analyzing the embedding representations
learned through different adaptation tech-
niques, offering a deeper understanding of
how vocabulary modifications impact model
performance and generalization.

2 Related Work

Language-Adaptive Pretraining Designing
LLMs in a target language and thus training
them from scratch is the best approach to obtain
an adequate token fertility from the outset and
minimize interference from pretrained data on
different languages. However, this approach
is often impractical, especially in low-resource
settings and on a low computational budget. For
this reason, several recent studies (de Vries and
Nissim, 2021; Gee et al., 2022; Csaki et al., 2024)
have focused on the adaptation of pretrained LLMs
to new languages. Pretrained LLMs can be adapted
to a specific language using a small quantity data
compared to what is needed in the pretraining
stage. A straightforward approach to achieving
this is Language-Adaptive Pre-Training (LAPT),
utilized by Chau et al. (2020) in a multilingual
setting where they tested continual training of mul-
tilingual LLMs on target languages. Interestingly,
LAPT was previously proposed on encoder-only
architectures by Gururangan et al. (2020), where
they successfully adapted RoBERTa (Zhuang
et al., 2021) models in a biomedical domain. In
LAPT, models do not undergo any structural
change to their architecture. This usually results
in performance improvements, however it does
not address the limitations of using a sub-optimal
tokenizer that is less suited to the encoding of
different languages. Regarding LAPT research in
English-to-Italian models, there have been several
attempts, most notably LLaMAntino-2-LLMs,
which is a fine-tuning of LLama 2 on Italian
translated conversations (Basile et al., 2023), and
LLaMAntino-3-ANITA-8B-Inst-DPO-ITA, a more
recent effort that is built upon Llama-3-8B using a
similar approach (Polignano et al., 2024).

Vocabulary Adaptation Techniques To tackle
the fertility issue, recent research has focused on
improving language adaptation by modifying the
tokenizer and vocabulary of pretrained LLMs to
better fit the target language. Several efforts in this
area have shown the effectiveness of vocabulary
adaptation techniques. Minixhofer et al. (2022) and
Liu et al. (2024) propose to replace the tokenizer
of a pretrained LLM, along with its corresponding
embedding layer, relying on a bilingual dictionary-
based, or graph-based, token mapping. Generally,
the main difference between various vocabulary
adaptation techniques lies in how the embedding
space of the respective model is initialized during
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adaptation. More effort was made by Ostendorff
and Rehm (2023); Dobler and de Melo (2023) who
use the embeddings from a helper model trained
alongside the desired tokenizer. They utilize geo-
metrical similarities in the helper model’s embed-
ding structure to initialize the tokens’ representa-
tions of the target model effectively. In parallel,
Gee et al. (2022) proposed a simple heuristic, ini-
tializing target vocabulary tokens as the average
of their corresponding sub-tokens in the source
vocabulary. Another study by Koto et al. (2021)
put forward an adaptation technique, they rely on
FastText2 embedding space to learn a linear map-
ping, to perform vocabulary adaptation of BERT-
based models.

Unlike previous studies, we thoroughly analyze
existing adaptation heuristics, focusing on decoder-
only generative models adapted to Italian. We
present a novel heuristic that utilizes a helper em-
bedding space, optimized for the target language,
to map and initialize target vocabulary tokens.

3 Methodology

In this section, we formalize the methodologies
used to adapt pretrained LLMs to a target language.
The following subsections outline the techniques
employed to modify the vocabulary of pretrained
LLMs and describe the process of adapting them
to a target language. Finally, we describe the last
step of the adaptation, that is, the continual training
step.

3.1 Vocabulary Adaptation

All the vocabulary adaptation methodologies share
a similar objective: substituting the tokenizer
and its vocabulary, and replacing the model em-
beddings (both embedding module and language
model head) with one more suited for the target
language.

In our setting, we have a source pretrained LLM,
Ms, with its embedding matrix Es

3, tokenizer Ts,
and vocabulary Vs. To adapt our model to a tar-
get language, we have a target tokenizer Tt and
vocabulary Vt suited to encoding texts in the target
language, which we want to make Ms compatible
with. In some cases, we also have access to a helper
model, Mh, which is an LLM, usually smaller than

2https://fasttext.cc/
3Here, we assume tied-weights, i.e., shared embedding

module and language model head. When this is not the case,
the approach is symmetric, as if there were two embedding
matrices.

Ms, whose embeddings are noted with Eh. The
helper model is trained using Tt and Vt. We use
the superscript notation Eti to indicate the repre-
sentation of the token ti on the matrix embedding
E.

The objective is to adapt the source model em-
beddings Es, which all these methods operate on,
so as to obtain Et based on the target tokenizer Tt

and the target vocabulary Vt.
First, the target embeddings are initialized by

keeping the same representation from Es for the to-
kens in the intersection of both vocabularies, while
a function g is applied to the remaining ones:

Eti
t =

{
g(ti, ·), ti ∈ Vt \ Vs

Eti
s , ti ∈ Vs ∩ Vt

The difference between these methods lies in g,
used to initialize the tokens that are in Vt and not
in Vs. This function has access to the source em-
beddings Es, vocabulary Vs and tokenizer Ts and
possibly the embeddings, vocabulary, and tokenizer
of a helper model Eh, Vh and Th, respectively.

Therefore, each method is defined by its respec-
tive g function, as detailed below.

Random As a baseline approach, we initialize
the tokens outside the intersection with a random
representation, given by a normal distribution, with
the mean and the variance defined by the source
embedding space:

grandom(ti, Es) = N (µ(Es), σ
2(Es))

FVT Gee et al. (2022) introduced Fast Vocab-
ulary Transfer (FVT) for vocabulary adaptation,
which consists of an efficient way to initialize the
intersection tokens in the target embedding space.
Here, each target token is computed with the aver-
age of the embedding source tokens given by the
source tokenizer, i.e. the resulting tokens when we
tokenize the target token ti with Ts:

gfvt(ti, Es, Ts) =
1

|Ts(ti)|
·

∑

tj∈Ts(ti)

E
tj
s .

CLP Ostendorff and Rehm (2023) and in parallel
Dobler and de Melo (2023) introduced a heuris-
tic to initialize out-of-inventory tokens relying on
the space structure of the helper embedding space.
Both approaches compute similarity scores be-
tween the tokens in Vt \ Vs against the ones in
Vt ∩ Vs, on the embedding space of the helper
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model Eh. Such similarities are used to construct a
representation of the out-of-inventory tokens in the
target embedding matrix Et, relying on the source
embedding Es representations:

gclp(ti, Es, Vs, Eh, Vh) =
∑

tj∈Vt∩Vs

E
tj
s ·α(Eti

h , E
tj
h )

where α(·, ·) indicates a similarity score between
two tokens in Eh. Here, we rely on the similar-
ity function used by Ostendorff and Rehm (2023)
computed as normalized cosine similarity.

SAVA Mapping embedding representations be-
tween the embedding spaces of two different mod-
els using a linear model comes with theoretical
justification. Moschella et al. (2023) and Maiorca
et al. (2024) have shown that the embeddings of
different models are related by a conformal trans-
lation, or more generally, by a linear mapping be-
tween such spaces. Inspired by the findings of
Maiorca et al. (2024) and by the intriguing effort of
Koto et al. (2021), we propose a technique to per-
form vocabulary adaptation for generative models
called Semantic Alignment Vocabulary Adaptation
(SAVA). In our approach, we rely on a helper model
embedding Eh from an LLM and learn a linear
mapping ϕ between Eh ⊆ Rm and Es ⊆ Rn. We
train a single-layer Feed Forward Network (FFN)
to map the helper embedding space onto the source
embedding one:

ϕ : x 7→ y | x ∈ Rm, y ∈ Rn,

gsava(ti, Eh) = ϕ(Eti
h ) (1)

The goal in training ϕ is to obtain a mapping
between the representations of the tokens of the
helper model and those of the source one. To train
it, we use the tokens in the intersection Vs ∩ Vt

since they have a representation according to both
the source and the helper model, and we can train
a linear map between the representations in Es and
those in Eh. Then, as outlined from equation 1 we
use ϕ to map the tokens not present in the source
vocabulary (Vt \ Vs) into the source embedding
space. Therefore, our objective is to find:

ϕ(x) = Wx+ b,

such that,

min
W, b

∑

ti∈Vs∩Vt

∥∥WEti
h + b− Eti

s

∥∥2 .

where W ∈ Rn×m and b ∈ Rn are the parameters
of our linear mapping. More technical details about
the training of the linear mapping are provided in
Appendix A.

3.2 Continual Training
While re-initializing embeddings through vocabu-
lary adaptation techniques enables zero-shot lan-
guage modeling, the resulting language model of-
ten lacks proficiency in the new language. We
address this by performing continual training on a
mixture of source and target languages, which al-
lows the model to retain performance in the source
language while improving in the target language.

To achieve a robust comparison, we adapt pre-
trained LLMs to the target language using all the
vocabulary adaptation heuristics discussed above.
We also present results from continual training of
the base model on the target language (LAPT).
While less disruptive, this approach does not alter
the vocabulary or tokenizer, preserving its fertility.

4 Experimental Setup

This section describes the setup of our experiments
where we adapt two popular LLMs, specifically
Mistral-7B-v0.1 (Jiang et al., 2023) and Llama-3.1-
8B (Dubey et al., 2024). In the following subsec-
tions we report the settings used to do vocabulary
adaptation, continual training and evaluation.

4.1 Vocabulary Adaptation
To adapt English models to the Italian language we
rely on the Minerva-LLMs model family and its
tokenizer (Orlando et al., 2024). The models of the
Minerva-LLMs family are trained from scratch on
an Italian-English dataset, i.e. CulturaX (Nguyen
et al., 2024). At the time of writing, three dif-
ferent models have been released, Minerva-350M,
Minerva-1B, and Minerva-3B, with the same tok-
enizer.

The Minerva-LLMs tokenizer shares 16,438 to-
kens with Mistral-7B-v0.1 and 20,358 tokens with
Llama-3.1-8B. For both CLP and SAVA, we use
Minerva-3B as the helper model.4 Notably, as
shown in Table 1, adapting a large model like
Llama-3.1-8B with Minerva-LLMs tokenizer sig-
nificantly reduces the vocabulary size (by 75%)
and thus results in fewer parameters. The adapted

4We conduct ablation studies for the SAVA method, chang-
ing the number of tokens used to train ϕ and the size of the
helper model. Some considerations are reported in Appendix
B.
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Model Num. Tokens Num. Parameters
Mistral-7B-v0.1 32000 7.24B
Mistral-7B-v0.1 a.w. Minerva 32768 7.25B
LLaMa-3-8B 128256 8.03B
LLaMa-3-8B a.w. Minerva 32768 7.25B

Table 1: Comparisons of model parameter counts and
vocabulary size with and without adaptation (a.w. stands
for adapted with).

Llama-3.1-8B has 7.25B parameters compared to
the original 8B, resulting in a 10% reduction in
model size.

As a further improvement, substituting the
Mistral-7B-v0.1 and Llama-3.1-8B tokenizers with
Minerva-LLMs one has a significant impact on the
fertility in the Italian language. As shown in Ta-
ble 2, the Minerva-LLMs tokenizer has on average
25% of fertility gain compared to the Mistral-7B-
v0.1 tokenizer on two Italian text sources, CulturaX
(CX) and Wikipedia (Wp). In the same setting,
Llama-3.1-8B improves its fertility up to 16% on
Italian text relying on the Minerva-LLMs tokenizer.

4.2 Continual Training

To perform continual training we use CulturaX, a
large-scale multilingual dataset that has been suc-
cessfully used in large-scale continual training ex-
periments on languages spoken within the Euro-
pean Union, including Italian.5 We aim to compare
all methods on a fixed amount of compute budget,
i.e. number of tokens. Due to a constrained com-
putational budget, we decide to stop training after
a threshold of 12B training tokens.

We subsample training data from the Italian and
English splits of CulturaX to create a dataset com-
posed of 75% Italian tokens and 25% English to-
kens, as proposed by Csaki et al. (2024).

We use packing to fit all the tokens into se-
quences of a fixed length. The learning rate is
fixed for all runs at 10−5.

For Mistral-7B-v0.1, training is done on 16
nodes on the Leonardo Supercomputer (each node
uses 4 x 64 GB A100) maintaining a global batch
size of 3072, and a sequence length of 2048. For
Llama-3.1-8B we change the sequence length of
the training data to 8192, and set the global batch
size to 512. When training both models we do not
freeze any parameter and let them all update. We
perform continual training, allowing the models to
process approximately 12 billion tokens. Specif-

5https://huggingface.co/occiglot/
occiglot-7b-it-en-instruct

Fertility ↓
Model CX IT CX EN Wp IT Wp EN
Mistral-7B-v0.1 1.88 1.32 2.05 1.57
Minerva 1.39 1.32 1.66 1.59
LLaMa-3-8B 1.67 1.15 1.80 1.31

Table 2: Fertility of different tokenizers on CulturaX
(CX) and Wikipedia (Wp).

ically, we train Mistral-7B-v0.1 for 2000 batches
and Llama-3.1-8B for 3000 batches. We use llm-
foundry for training6 and for the remaining hyper-
parameters we use the default settings provided by
the library. See Appendix C for an estimation of
the CO2 cost of the experiments carried out in this
work.

4.3 Evaluation
To evaluate our models we rely on the LM-
Evaluation-Harness library (Gao et al., 2024), for
multiple-choice (MC) benchmarks, using the per-
plexity evaluation method. As MC benchmarks, we
use the translated section of ITA-Bench (Moroni
et al., 2024), a suite of benchmarks automatically
translated from English to Italian.

During continual training we evaluate our mod-
els every 200 batches for Mistral-7B-v0.1 and 300
batches for Llama-3.1-8B in a 0-shot scenario; in
this way, each subsequent checkpoint is evaluated
consistently on the same number of tokens. To
assess the reasoning capabilities of the adapted
models, we use a variety of benchmarks: MMLU
(Hendrycks et al., 2021), BOOLQ (Clark et al.,
2019), ARC-easy (Clark et al., 2018), PIQA (Bisk
et al., 2020), SciQ (Welbl et al., 2017), and Hel-
laswag (Zellers et al., 2019).

We also measure the model performance on gen-
erative tasks, focusing on two tasks: automatic
translation, FLoRes benchmark (Costa-jussà et al.,
2022), and question answering, SQuAD-it (Croce
et al., 2018), a version of SQuAD (Rajpurkar et al.,
2016) automatically translated into Italian. We
used vLLM (Kwon et al., 2023) as our generation
pipeline. More details related to the generation
techniques can be found in Appendix D.

5 Results

In this section, we discuss the results obtained from
evaluating the adapted models. We begin by ex-
amining the scores on multiple-choice benchmarks,
followed by a separate analysis of performance on

6https://github.com/mosaicml/llm-foundry
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Model Hellaswag MMLU Arc Easy PIQA SCIQ BOOLQ AVG
Mistral-7B-v0.1 56.50±0.49 47.42±0.42 61.67±1.01 67.24±1.14 84.75±1.16 75.01±0.75 65.43

200 Training Steps
Random 55.60±0.49 42.48±0.42 57.92±1.02 68.05±1.16 75.46±1.39 72.29±0.78 61.96
FVT 56.34±0.49 44.28±0.42 60.42±1.01 69.90±1.14 80.48±1.28 74.52±0.76 64.32
CLP 54.74±0.49 42.50±0.42 57.62±1.02 67.74±1.16 76.82±1.36 68.07±0.81 61.24
SAVA 56.73±0.49 44.23±0.42 60.90±1.01 69.72±1.14 79.22±1.31 73.30±0.77 64.01
LAPT 58.29±0.49 49.31±0.42 63.00±1.00 69.84±1.14 84.13±1.18 75.07±0.75 66.60

2000 Training Steps
Random 58.43±0.49 46.95±0.42 62.87±1.00 71.39±1.12 81.62±1.25 72.47±0.78 65.62
FVT 59.00±0.49 47.35±0.42 63.52±0.99 71.51±1.12 84.55±1.16 75.74±0.74 66.94
CLP 59.21±0.49 47.10±0.42 63.47±0.99 70.77±1.13 84.44±1.17 76.75±0.73 66.95
SAVA 59.41±0.49 47.57±0.42 63.39±0.99 71.02±1.12 84.55±1.16 76.02±0.74 66.99
LAPT 60.51±0.48 46.63±0.42 64.99±0.99 71.21±1.12 85.90±1.12 76.17±0.74 67.56

Table 3: 0-shot results over Italian translated benchmarks for Mistral-7B-v0.1 adapted models.

Figure 2: Average performance of Mistral-7B-v0.1
based models during training on Italian translated
benchmarks. The average was calculated over six
datasets.

generative benchmarks, specifically FLoRes and
SQuAD-it. In this and subsequent sections we indi-
cate the continual training of the base model with-
out vocabulary adaptation by the LAPT acronym.

5.1 Multi-choice Setting

5.1.1 Italian Results
We report results on Italian benchmarks for Mistral-
7B-v0.1 after 200 and 2000 batches in Table 3.
From the table we can see that the adapted mod-
els reach over random-chance performance at the
beginning of training (200-step setting), with FVT
and SAVA achieving higher performance compared
to other methods (CLP and Random). All the vo-
cabulary adaptation heuristics perform worse com-
pared to the LAPT technique, which is expected
since LAPT does not apply any disruptive architec-
tural change to the model. Looking at the results at
2000 batches, we can see that all the adapted mod-
els surpass the scores of the base model, and the
performance gap with LAPT becomes low. Even

in this setting, SAVA and FVT perform well, while
Random lags behind.

In Figure 2, we present the average scores across
the six Italian tasks. SAVA and FVT consistently
achieve higher overall scores throughout the train-
ing process, with a more pronounced advantage
in the early stages. This highlights the influence
of the chosen heuristic, particularly immediately
after the vocabulary substitution. SAVA and FVT
achieve results at 400 batches that are compara-
ble to those of the Random approach at the end
of training, thereby reducing total training time by
approximately 80%.

In the case of Llama-3.1-8B, Table 4 reports
the scores of the adapted models, after 300 and
3000 batches. We show that FVT and SAVA main-
tain comparable performance, except for BOOLQ
where SAVA showcases better scores, +4%, even
in comparison to the LAPT setting. Compared to
the adapted models, the Llama-3.1-8B model re-
mains a strong baseline on Italian tasks. Still in
that setting, we further narrow the performance
gap with the LAPT model using both vocabulary
adaptation heuristics. In Figure 3, we report the av-
erage scores on Italian tasks and observe a constant
improvement through the training steps.

5.1.2 English Results
Including English in the evaluation allows us to as-
sess whether performance on the source language
is preserved during continual training, for both
Mistral-7B-v0.1 and Llama-3.1-8B. As mentioned
in Section 4, we train on mainly Italian data and a
smaller portion of English (25% of the total).

Figure 4 reports the average scores during train-
ing on English texts for Mistral-7B-v0.1. We can
see that all trained models reach a comparable av-
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Model Hellaswag MMLU Arc Easy PIQA SCIQ BOOLQ AVG
LLaMa-3.1-8B 57.97±0.49 54.28±0.42 60.46±1.01 68.54±1.15 82.77±1.22 74.52±0.76 66.42

300 Training Steps
FVT 55.61±0.49 50.24±0.42 59.38±1.01 66.99±1.17 80.68±1.27 70.00±0.80 63.81
SAVA 55.48±0.49 49.26±0.42 59.77±1.01 66.62±1.17 81.31±1.26 74.43±0.76 64.48
LAPT 57.92±0.49 53.10±0.42 61.32±1.01 68.97±1.15 82.56±1.22 72.20±0.78 66.01

3000 Training Steps
FVT 58.44±0.49 51.47±0.42 62.70±1.00 69.53±1.14 83.29±1.20 69.35±0.80 65.79
SAVA 57.82±0.49 51.08±0.42 63.17±1.00 69.78±1.14 81.73±1.24 74.15±0.76 66.29
LAPT 59.35±0.49 52.94±0.42 62.96±1.00 69.72±1.14 82.98±1.21 71.77±0.78 66.62

Table 4: 0-shot results over Italian translated benchmarks for Llama-3.1-8B adapted models.

Figure 3: Average performance of Llama-3.1-8B based
models during training on Italian translated bench-
marks. The average was calculated over six datasets.

Figure 4: Average performance of Mistral-7B-v0.1
based models during training on English benchmarks.
The average was calculated over six datasets.

erage score at the end of the adaptation process.
All the adapted models diminish in performance
compared to the base one in the English language.

Figure 5 reports the average scores of Llama-3.1-
8B models on English benchmarks during training.
In this setting, LAPT maintains higher performance
on average; intuitively, this could be attributed to
the larger vocabulary of Llama-3.1-8B (75% big-
ger), which enables better performance during lan-
guage adaptation, avoiding catastrophic forgetting
of the source language.

Figure 5: Average performance of Llama-3.1-8B based
models during training on English benchmarks. The
average was calculated over six datasets.

For both models the SAVA approach leads the
model to achieve slightly higher performance in the
source language. Appendix E reports more detailed
results of evaluation over English benchmarks.

5.2 Generative Setting

Multi-choice benchmarking based on perplexity
scoring has its own limitations (Wang et al., 2024).
To further test our models, we evaluate them on
two generative tasks: Machine Translation (MT),
IT-EN and EN-IT, and Italian Question Answering.

We report COMET-22 (Rei et al., 2022) for the
MT benchmark and RougeL (Lin, 2004) for the
Question Answering task.

Looking at the MT results, in Table 5, we
observe that the adapted Mistral-7B-v0.1 mod-
els achieve excellent performance, outperforming
those of the base model. The vocabulary adapted
models reach very good results in the English-to-
Italian direction, where generation of Italian text is
involved. Our findings indicate that SAVA and FVT
emerge as the most effective vocabulary adaptation
heuristics in this context. As shown in Table 6, a
similar trend is observed with Llama-3.1-8B, where
adapted models perform competitively with the
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FLoRes SQuAD-it
Model EN-IT IT-EN RL
Mistral-7B-v0.1 86.57 87.75 68.92

200 Training Steps
Random 86.67 87.37 62.1
FVT 87.08 87.55 65.47
CLP 86.58 87.31 64.25
SAVA 87.30 87.59 65.66
LAPT 87.41 87.92 67.35

2000 Training Steps
Random 88.01 87.92 64.83
FVT 88.29 87.90 66.18
CLP 88.21 87.79 65.99
SAVA 88.31 87.87 67.20
LAPT 88.13 88.02 66.92

Table 5: 5-shot results for Mistral-7B-v0.1 of FLoRes
where COMET-22 is reported and 2-shot results for
SQuAD-it where RougeL is reported.

FLoRes SQuAD-it
Model EN-IT IT-EN RL
Llama-3.1-8B 87.59 88.08 69.21

300 Training Steps
FVT 87.32 87.65 68.54
SAVA 87.39 87.58 68.70
LAPT 87.82 87.95 67.91

3000 Training Steps
FVT 88.05 88.02 68.84
SAVA 88.12 88.04 69.05
LAPT 88.11 88.05 66.69

Table 6: 5-shot results for Llama-3.1-8B of FLoRes
where COMET-22 is reported and 2-shot results for
SQuAD-it where RougeL is reported.

base model, while SAVA and FVT reach the same
performance as those of LAPT.

Regarding the results in the SQuAD-it task, Ta-
bles 5 and 6 show that SAVA attains very good per-
formance, beating other heuristics and the LAPT
approach for both model types, reaching inline per-
formance equal to that of the base model for Llama-
3.1-8B.

5.3 Training Loss

Important observations can be made concerning the
loss trajectories. Figure 6 reports the Mistral-7B-
v0.1 plots, and we can notice significant differences
between the various heuristics in the early stages
of the training. The SAVA-model emerges as the
better-adapted one, right from the start, particularly

Figure 6: Loss during continual training of Mistral-7B-
v0.1 models.

Figure 7: Loss during continual training of Llama-3.1-
8B models.

when compared to the CLP and Random models.
Notably, CLP appears to lag behind Random ini-
tially. Looking at Llama-3.1-8B losses, in Figure 7
we can see that the two heuristics exhibit similar
trajectories, although SAVA still achieves a lower
loss from the outset.

6 Differences in the Embedding Structure

To better understand the impact of different vocabu-
lary adaptation techniques, we analyze similarities
in intra-model and inter-model embedding spaces.
Specifically, we examine how different adaptations
influence the structural alignment of embeddings in
comparison to a reference model (intra-model sim-
ilarity) and how the embedding spaces of different
adapted models compare to each other (inter-model
similarity).

To measure the similarity between two embed-
ding spaces, we rely on the technique introduced by
Moschella et al. (2023). Specifically, we randomly
select 128 non-prefix tokens and 128 prefix tokens
from Vt to compute relative embedding represen-
tations, resulting in a total of 256 anchor tokens.7

7Non-prefix tokens refer to complete words or sub-words
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Mistral-7B-v0.1 Llama-3.1-8B
Model @0ba @2000ba @0ba @3000ba
Random 29.68 31.67 - -
FVT 33.65 35.30 33.23 33.49
CLP 41.10 42.84 - -
SAVA 44.81 45.33 41.84 42.02

Table 7: Similarity scores between Mistral-7B-v0.1
adapted models and Minerva-3B (left) and between
Llama-3.1-8B and Minerva-3B (right) at the beginning
and at the end of the training.

For each model, we then adjust the representation
of each token relative to these anchors, calculating
each dimension as the projection onto the selected
anchors. Subsequently, we compute the cosine sim-
ilarity based on this relative representation across
the models and average the results to obtain an
overall similarity score between the two distinct
models.

Intra-model similarity Intuitively, a well-
adapted model should align with Minerva-3B, as it
serves as a strong reference for the target language.
Similarly to our setting, Minerva-3B is pretrained
on balanced Italian-English data from CulturaX. In
Table 7, we present the similarity scores between
adapted models and Minerva-3B. Notably, CLP and
SAVA achieve higher similarity scores than other
approaches. This outcome is to be expected, as
both CLP and SAVA leverage Minerva-3B’s embed-
ding space. Interestingly, SAVA not only attains a
structure that is more similar to that of Minerva-
3B (+3.7), but also demonstrates superior perfor-
mance, as was also the case in previous sections.

Inter-model similarity To gain deeper insights
into the differences in learned embedding struc-
tures, Figure 8 presents the similarity scores be-
tween Mistral-7B-v0.1 variants adapted using the
specified techniques. We compare the models at the
end of the continual training. The analysis shows
a high similarity between models, but differences
of up to 10% in the relative representations reveal
structural variations in the encoded information.
This analysis suggests that, even after intensive
training, the adapted models do not converge to the
same representation.

that do not start a sequence (e.g., “cat” in “concatenate”),
while prefix tokens initiate a word or sub-word.

Figure 8: Similarity across models after continual train-
ing on 12B tokens.

7 Conclusions

In this work, we extensively explored various tech-
niques to adapt English-focused LLMs, i.e. Mistral-
7B-v0.1 and Llama-3.1-8B, to the Italian language.
We introduced a novel heuristic called SAVA which
leverages the embedding structure of a smaller, na-
tive Italian Language Model, Minerva-3B. We dis-
covered that adapting the vocabulary of English
LLMs leads to significant improvements in lan-
guage encoding, reducing the number of generated
tokens by 25% for Mistral-7B-v0.1 and 16% for
Llama-3.1-8B. Regarding Llama-3.1-8B we pruned
nearly 1 billion parameters by optimizing its vocab-
ulary, removing approximately 75% of the original
tokens. Our evaluation revealed performance differ-
ences across the vocabulary adaptation heuristics,
by means of a thorough analysis during the contin-
ual training phase. We show that linguistic capa-
bilities can be restored with relatively few training
steps—Mistral-7B-v0.1 reached base model perfor-
mance after processing 2 billion tokens. Addition-
ally, the SAVA heuristic demonstrated strong perfor-
mance on downstream tasks, with SAVA-adapted
models reaching faster convergence during contin-
ual training. Furthermore, the embedding structure
of SAVA exhibited closer alignment with the helper
model compared to other analyzed heuristics.

This work opens several research directions.
One key area of interest will be to evaluate how
the SAVA approach scales across languages, partic-
ularly in mid- and low-resource settings. Under-
standing how different heuristics perform with a
small number of continual training steps in such
scenarios is crucial. Additionally, since Minerva-
7B was not available at the time of writing, a logical
next step would be to utilize it as a helper model.
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8 Limitations

We investigated the adaptation of English-first
LLMs to the Italian language with a focus on adapt-
ing the vocabulary and the tokenizer to match the
performance of continually trained models while
achieving lower fertility and thus higher efficiency
in the target language.

We limited our training data to the CulturaX
dataset, which consists of cleaned web-crawled
data. Incorporating higher-quality datasets could
improve the models’ performance in the target lan-
guage.

We limited our analysis to two distinct decoder-
only Large Language Models: Mistral-7B-v0.1 and
Llama-3.1-8B. For a more comprehensive study, ad-
ditional English-first models could be tested. How-
ever, the aforementioned two models are among
the best performing ones in their parameter count.
Furthermore, we chose to focus on just two mod-
els due to the extensive continual training we had
to perform, as such training requires considerable
computational resources.

We evaluated the adapted models on automati-
cally translated datasets for multiple-choice tasks
and open-ended question answering. Specifically,
Hellaswag, MMLU, Arc Easy, PIQA, SCIQ, and
BOOLQ were translated using Tower-Instruct-v0.2,
an open-source solution for automatic translation
that, at the time of writing, represents the state of
the art in open Machine Translation models. For
generative tasks, SQuAD-it was translated using a
semi-automatic approach.

We acknowledge that relying on automatically
translated benchmarks may have introduced some
noise, potentially obscuring certain abilities or is-
sues in the models’ comprehension of Italian texts.
This limitation was beyond our capabilities to re-
solve since no well-structured Italian native bench-
marks exist. Another limitation was using only
two generative benchmarks, where we observed
slightly different results for the adapted models.
In the generative setting, SAVA generally outper-
formed other methods, while LAPT models did not
consistently deliver the best average performance
on downstream tasks.

Future work should aim to explore the capa-
bilities of vocabulary-adapted models in genera-
tive tasks and investigate how a model’s fertility
over target language influences downstream perfor-
mance.

9 Ethics Statement

We primarily conduct experiments in the Italian
language. This approach is aimed at addressing
the practical challenges of working with Italian, a
language that is underrepresented in the NLP field.
Our continual training is performed on data col-
lected from open web sources, specifically through
the CulturaX dataset. Since large-scale datasets
used for pretraining can include personal and sen-
sitive information, it is crucial to carefully assess
such content before deploying models in real-world
applications. Another key consideration is the use
of existing monolingual or multilingual models as
starting points, rather than training new models
from scratch. This can introduce biases from the
original pretraining data, potentially causing the
model to reflect behaviors and cultural influences
from other languages rather than those of the target
language community.
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A SAVA Training of the mapping function

To implement the SAVA methods, we first need
to train the linear mapping function, ϕ. For this,
we use the SGDAffineAligner method provided
in the latentis library8.

8https://github.com/Flegyas/latentis

Figure 9: Loss during continual training of Mistral mod-
els.

After collecting the token representation pairs
from the intersection, we train the linear mapping
using the ADAM optimizer with MSE Loss, setting
the learning rate to 10−3 and running the optimiza-
tion for 1000 steps.

To enhance training stability, we first apply stan-
dard scaling and L2 normalization to the token
representations before learning ϕ. After training,
we apply the inverse scaling to restore the original
distribution before incorporating the results into
the adapted model.

B Ablation experiments on the SAVA
method

In this section we analyze some ablation studies
over the SAVA method. We analyzed the impact
on the helper model’s size, using the two smaller
models of Minerva’s family, Minerva-350M and
Minerva-1B, which have, respectively, 350M and
1B parameters. In Figure 9 the training loss of
Mistral-7B-v0.1 adapted using SAVA with different
helper models is reported. From the plot we can
see that the dimension of the helper model does
not have a huge impact on the loss trajectory. An
orthogonal experiment was conducted to ablate the
number of tokens used to learn the mapping ϕ,
in Figure 10 the loss for Mistral-7B-v0.1 adapted
with SAVA relying on different number of tokens in
Vt ∩ Vs, over Minerva-3B is reported. We observe
that using more tokens leads to a faster convergence
of the training loss. From the plots we can see that
reducing the number of tokens has a greater impact
than reducing the model size, especially for the
setting with two thousand tokens.
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Figure 10: Loss during continual training of Mistral
models.

C Training Resources and Environmental
Impact

Experiments were conducted using the
LEONARDO Italian Supercomputer, which
has a carbon efficiency of 0.432 kgCO2eq/kWh.
A cumulative of 50000 hours of computation was
performed on hardware of type A100 SXM4 80
GB (TDP of 400W).

Total emissions are estimated to have been 8640
kgCO2eq of which 0 percent were directly offset.
These emissions were split roughly into 95% for
continual training and 5% for evaluation.

This is an approximate estimate since the compu-
tation was done on LEONARDO custom hardware
which is not available in the tool used for the esti-
mation .

D Generation setting

We tested our adapted models on two downstream
tasks in a generative setting, machine translation
and question answering. We tested the models in
few-shot setting relying on the in-context capabili-
ties of evaluated models, without any fine-tuning
step to the specific task. We relied on the vLLM
library (Kwon et al., 2023) to afford prompting gen-
eration, specifically we changed the default param-
eters with temperature=0 and max_tokens=512.

After a comprehensive number of trials we no-
ticed that the prompting strategy had a huge impact,
while the order between the models remained un-
changed. We report the prompts used for FLoRes
and SQuAD-it tasks in Tables 8 and 9, respectively.

E English Results on Multi-choice
benchmarks

In this section, we present a detailed analysis of
the evaluation results on English benchmarks. Ta-

Prompt EN-IT Prompt IT-EN

Traduci dall’Inglese all’Italiano
Text: I love you so much.

Translation: Ti amo così tanto.

Translate from Italian to English
Text: Ti amo così tanto.

Translation: I love you so much.

Table 8: Prompts used for machine translation task

Italian Prompt

Contesto: Il terremoto del Sichuan del 2008 o il terremoto
del Gran Sichuan, misurato a 8.0 Ms e 7.9 Mw,

e si è verificato alle 02:28:01 PM China ...
Domanda: In quale anno si è verificato il terremoto nel Sichuan?

Risposta: 2008

Table 9: Used prompts for question answering task

ble 10 reports the performance of Mistral-7B-v0.1
on six multiple-choice benchmarks. From this ta-
ble, we observe that SAVA and FVT achieve higher
task-wise scores early in the adaptation process.
A similar trend is evident for the Llama-3.1-8B
adapted models, as shown in Table 11, where the
SAVA technique yields higher average scores than
FVT, at the beginning and at the end of training. For
both models, per-task scores remain below the base
model’s performance. However, incorporating a
portion of English data during adaptation prevents
catastrophic forgetting when transitioning towards
the Italian language.
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Model Hellaswag MMLU Arc Easy PIQA SCIQ BOOLQ AVG
Mistral-7B-v0.1 75.98±0.44 57.19±0.42 78.55±0.94 83.84±0.94 95.82±0.80 77.64±0.78 78.17

200 Training Steps
Random 72.29±0.44 51.59±0.42 69.55±0.95 81.73±0.96 89.97±0.97 74.03±0.76 73.19
FVT 72.35±0.44 53.04±0.42 73.08±0.92 82.60±0.94 92.48±0.85 72.20±0.78 74.29
CLP 72.59±0.44 52.02±0.42 70.16±0.94 81.55±0.96 89.66±0.98 72.81±0.77 73.13
SAVA 72.81±0.44 53.21±0.42 74.28±0.94 82.47±0.96 92.79±0.83 71.59±0.78 74.52
LAPT 74.13±0.43 55.05±0.42 75.23±0.89 84.02±0.91 94.46±0.73 71.98±0.78 75.81

2000 Training Steps
Random 72.18±0.44 52.11±0.42 73.6±0.91 82.72±0.94 93.21±0.81 75.77±0.74 74.93
FVT 73.28±0.44 52.96±0.42 74.76±0.90 81.91±0.95 94.05±0.76 74.46±0.76 75.23
CLP 73.37±0.44 52.48±0.42 74.07±0.90 82.47±0.94 94.05±0.76 74.83±0.75 75.21
SAVA 73.02±0.44 52.91±0.42 74.67±0.90 82.29±0.94 94.46±0.73 74.58±0.76 75.32
LAPT 74.26±0.43 51.18±0.42 73.9±0.91 83.65±0.92 94.67±0.72 74.22±0.76 75.31

Table 10: 0-shot results over English benchmarks for Mistral-7B-v0.1 adapted models.

Model Hellaswag MMLU Arc Easy PIQA SCIQ BOOLQ AVG
LLaMa-3.1-8B 74.21±0.43 62.19±0.42 77.60±0.47 83.03±0.93 93.94±0.77 80.42±0.69 78.56

300 Training Steps
FVT 72.35±0.44 58.22±0.42 69.55±0.95 81.30±0.97 92.27±0.86 71.34±0.79 74.17
SAVA 72.72±0.44 58.19±0.42 70.75±0.94 81.79±0.96 92.90±0.83 71.28±0.79 74.60
LAPT 74.35±0.43 61.74±0.41 76.14±0.88 83.21±0.93 94.05±0.76 76.69±0.73 77.69

3000 Training Steps
FVT 73.02±0.44 57.85±0.42 72.13±0.93 82.04±1.15 92.90±0.83 72.53±0.78 75.07
SAVA 72.86±0.44 57.94±0.42 72.78±0.92 81.79±0.96 93.31±0.80 73.30±0.77 75.33
LAPT 74.40±0.43 60.50±0.42 75.32±0.89 82.47±0.94 93.63±0.78 77.43±0.73 77.29

Table 11: 0-shot results over English benchmarks for Llama-3.1-8B adapted models.

6675


