
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 6602–6613

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

MMLF: Multi-query Multi-passage Late Fusion Retrieval

Yuan-Ching Kuo1, Yi Yu1,2, Chih-Ming Chen1, Chuan-Ju Wang1

1Academia Sinica, 2The Ohio State University
{yckuo,cmchen,cjwang}@citi.sinica.edu.tw, yu.4063@osu.edu

Abstract

Leveraging large language models (LLMs) for
query expansion has proven highly effective
across diverse tasks and languages. Yet, chal-
lenges remain in optimizing query formatting
and prompting, often with less focus on han-
dling retrieval results. In this paper, we intro-
duce Multi-query Multi-passage Late Fusion
(MMLF), a straightforward yet potent pipeline
that generates sub-queries, expands them into
pseudo-documents, retrieves them individually,
and aggregates results using reciprocal rank fu-
sion. Our experiments demonstrate that MMLF
exhibits superior performance across five BEIR
benchmark datasets, achieving an average im-
provement of 4% and a maximum gain of up
to 8% in both Recall@1k and nDCG@10 com-
pared to state of the art across BEIR informa-
tion retrieval datasets.1

1 Introduction

Information retrieval (IR) aims to identify relevant
documents from large corpora in response to user
queries. Despite extensive research, ad hoc re-
trieval continues to pose challenges, particularly
with brief or ambiguous queries that complicate
accurate inference of user intent.

Traditional IR systems, such as BM25, rely on
exact term matching, which often struggles with
limited lexical overlap between queries and docu-
ments. To address this, query expansion techniques
use lexical knowledge bases, leveraging resources
like ontologies or semantic networks to add seman-
tically related terms, including synonyms (Bhogal
et al., 2007; Qiu and Frei, 1993; Voorhees, 1994).
With the advent of dense retrieval models, query
reformulation has shifted from lexical matching to
semantic similarity. These models embed queries
and documents into shared vector spaces, facilitat-

1Codes and generated artifacts are available at:
https://anonymous.4open.science/r/MMLF/

ing semantic matching even when lexical overlap is
minimal (Lee et al., 2019; Karpukhin et al., 2020).

Recently, large language models (LLMs) have
shown remarkable capabilities in natural language
understanding and generation (Brown et al., 2020;
Chen et al., 2021). Serving as external knowl-
edge bases, LLMs apply their learned knowledge
to improve sparse and dense retrieval systems
through query reformulation. For instance, while
Query2Doc expands a query into a passage to
better align with document content (Wang et al.,
2023), Chain-of-Thought (CoT) enriches the query
with a step-by-step rationale to better meet com-
plex information needs (Jagerman et al., 2023).
Later, MILL introduces the query-query-document
(QQD) pipeline, which segments the query into
sub-queries and generates corresponding passages
in a single step, using a single prompt for the LLM.
This approach produces diverse, contextual infor-
mation that reflects the underlying search intent,
particularly in dense retrieval contexts (Jia et al.,
2024). However, the QQD pipeline concatenates
these generated passages into a single text for re-
trieval, potentially blending multiple perspectives
and diluting their distinct contributions.

To address these challenges, we propose MMLF,
a two-stage pipeline that separates sub-query gen-
eration from passage expansion. Subsequently,
we perform independent retrieval for each gen-
erated passage and the original query, aggregat-
ing the results using reciprocal rank fusion (RRF).
Unlike RAG-Fusion (Rackauckas, 2024), which
is tailored for chatbot applications and retrieves
documents directly without passage expansion,
MMLF focuses on enhancing broader information
retrieval tasks through a two-step pipeline that gen-
erates diverse and contextually enriched passages
for retrieval. The effectiveness of the proposed
pipeline is demonstrated across five BEIR bench-
mark datasets (Thakur et al., 2021), achieving an
average improvement of 4% and a maximum gain

6602

https://anonymous.4open.science/r/MMLF/


Multi-query Generation Query-to-passage Expansion Ranked List Fusion

Original

Query q

Result

q1

q2

qn

p1

p2

pn

CQE Prompt

LLM

CQE Prompt

LLM

CQE Prompt

LLM

MQR Prompt

LLM

Retriever

Retrieved Candidates

Retrieved Candidates

Retrieved Candidates

Retrieved Candidates

RRF

. . 
.

. . 
.

. . 
.

. . 
.

Figure 1: The MMLF pipeline

of up to 8% in both Recall@1k and nDCG@10
compared to the state-of-the-art approach, MILL.
In addition, we conduct comprehensive ablation
studies to evaluate different variants of MMLF, in-
cluding various fusion methods, the role of the
original query, and alternative query reformation
approaches. These studies provide valuable insight
into the rationale behind our design and further
confirm the robustness of the proposed MMLF.

2 The Proposed Pipeline: MMLF

In this section, we introduce the MMLF pipeline,
which enhances retrieval through three steps: gen-
erating diverse sub-queries, expanding them into
contextual passages, and fusing rankings via recip-
rocal rank fusion (RRF).

The first two stages of MMLF are central to the
query reformulation process. They leverage the
advantages of multi-query generation, capturing
various interpretations of user intent and query-to-
passage expansion, enriching these interpretations
with detailed context. Unlike the concatenation
method used by our main competitor, MILL, late-
fusion techniques like RRF maximize the utility
of every individual sub-query and passage by in-
dependently retrieving relevant documents. This
approach ensures comprehensive consideration of
all perspectives in the final retrieval. The MMLF
pipeline is illustrated in Figure 1.

2.1 Multi-query Generation

In the first stage, we generate multiple sub-queries
from the original query q to capture various as-
pects of user intent. Using a large language model
(LLM) with the MQR prompt (detailed in Appendix
B.3), we provide sub-queries q1, q2, . . . , qn. This
method expands the interpretations of the user’s in-
tent, broadening the retrieval scope and increasing
the likelihood of discovering relevant information.

2.2 Query-to-passage Expansion

In the second stage, each generated sub-query is
expanded into a detailed passage, also referred to
as a pseudo-document, enriching the context avail-
able for retrieval. We employ an LLM with the CQE
prompt (detailed in Appendix B.5) to transform
each sub-query qi into corresponding passages pi.
This expansion builds on the first stage by pro-
viding a more thorough comprehension of various
interpretations identified during the multi-query
generation phase.

This two-step process—generating multiple sub-
queries and then expanding each into a passage,
referred to hereafter as MQ2MP—uniquely sepa-
rates query decomposition and passage generation.
This enables finer-grained control over the retrieval
process, achieving results beyond the additive con-
tributions of prior methods (e.g., Query2Doc and
LC-MQR).

2.3 Ranked List Fusion

After generating the passages, we treat each one
as a separate query for independent document re-
trieval. These results are then combined with the
list from the original query, creating n+ 1 ranked
lists. RRF is then used to fuse them into a final
ranked list. Unlike concatenation, which can di-
lute focus, RRF aggregates results based on their
individual rankings. This method prioritizes con-
sistently relevant documents, thereby enhancing
overall retrieval effectiveness and mitigating the
influence of less relevant content (Cormack et al.,
2009). For the complete formula and details on the
RRF algorithm, please refer to Appendix A.2.

3 Experiments

This section accesses the performance of our
MMLF pipeline, explicitly examining its capabili-
ties in query reformulation and fusion methods. To

6603



DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020

Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10
Raw Query 73.76 36.06 86.74 35.50 60.72 31.81 40.49 52.61 70.16 13.23
Query2Doc 73.36 39.93 90.05 36.20 65.42 32.47 45.89 73.92 79.47 28.24
CoT 71.78 37.57 88.08 35.25 64.65 30.53 43.19 74.17 78.71 28.19
LC-MQR w/ RRF 74.52 34.16 89.49 34.34 65.11 31.03 42.17 61.24 73.30 18.91
MILL (w/o PRF & MV) 73.48 40.21 88.56 35.05 64.86 31.57 45.16 75.86 80.84 27.73
MMLF 79.17 42.96 91.02 37.86 67.03 34.09 48.82 77.27 81.44 28.60

Table 1: Main results

ensure a fair comparison, we omit advanced tech-
niques such as pseudo-relevance feedback, mutual
verification (Jia et al., 2024), and few-shot prompt-
ing during the evaluation.

3.1 Datasets and Metrics

We evaluate our approach using five low-resource
datasets from the BEIR benchmark2 (Thakur et al.,
2021): DB-Pedia, FIQA-2018, NF-Corpus, TREC-
COVID, and Touche-2020. These publicly avail-
able datasets cover various domains and query com-
plexities, making them well-suited for evaluating
retrieval systems, especially in zero-shot scenar-
ios. Additionally, we test larger BEIR datasets,
including MS MARCO, NQ, FEVER, and HOT-
POTQA, to evaluate scalability (see Appendix E).
Our primary evaluation metric is Recall@1k, es-
sential for dense retrieval tasks to identify a wide
array of relevant documents for subsequent rerank-
ing. We also report nDCG@10, a top-heavy metric
that prioritizes higher-ranked relevant documents.

3.2 Experimental Setup

We conduct our experiments using the Llama-3-
70B-Instruct model3. The model parameters in-
clude a temperature setting of 1 and a top_p of
1. For encoding, we employ the e5-small-v2
model4 (Wang et al., 2022), producing a 384-
dimensional embedding for each query and doc-
ument. We compute the cosine similarity between
the embeddings of the queries and the documents
for document retrieval, ranking them based on their
relevance. While our method supports a flexible
number of sub-queries, we fix it at 3 for consis-
tency. Additional experiments using a smaller
LLM, Llama-3-8B-Instruct, and an alternative en-
coder, Contriever5(Izacard et al., 2021), are de-
tailed in Appendix F and Appendix G, respectively.

2Licensed under Apache-2.0.
3Available at https://huggingface.co/meta-llama/Meta-

Llama-3-70B-Instruct and licensed under LLaMA3.
4Licensed under MIT.
5Licensed under CC BY-NC 4.0.

3.3 Baselines and Competitiors

We compare our approach with five baseline meth-
ods: 1) Raw Query, which uses the original query
without reformulation; 2) Query2Doc (Wang et al.,
2023), which expands the original query into a
passage for retrieval alongside the query; 3) Chain-
of-Thought (CoT) (Jagerman et al., 2023), which
transforms the query into an answer and a rationale
for retrieval alongside the query; 4) LangChain
MultiQueryRetriever (LC-MQR),6 generating
multiple sub-queries and using reciprocal rank fu-
sion (RRF) for reranking; 5) MILL (Jia et al.,
2024), which creates sub-queries and passages but
skips advanced techniques like pseudo-relevance
feedback and mutual verification for direct com-
parison. Detailed descriptions of each pipeline are
provided in Appendix A.1.

3.4 Main Results

In this section, we compare our MMLF’s perfor-
mance to the five baselines. As shown in Table 1,
MMLF consistently outperforms all baselines in
Recall@1k and nDCG@10 across five datasets.
Specifically, our approach achieves an average
improvement of 4% in Recall@1k over the clos-
est competitor, MILL, demonstrating a substantial
gain, particularly given the high performance of
existing methods.

3.5 Ablation Study

For each of the ablation experiments, we present
results for both Recall@1k and nDCG@10. Due to
the page constraints, the nDCG@10 results are de-
tailed in Appendix D. Additional prompt variation
analysis is provided in Appendix C.

3.5.1 Fusion Method Comparison

This experiment evaluates the effectiveness of
RRF, a rank-based late-fusion technique (Cormack

6LC-MQR originally combines retrieval results with a
unique union, but this produces an unordered set. We replace
it with RRF for comparability.

6604

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct


DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.
concat w/ q 73.67 87.63 64.72 44.12 78.68 69.76
CombSUM w/ q included 77.53 90.07 66.76 48.71 80.97 72.81
RRF w/ q included 79.17 91.02 67.03 48.82 81.44 73.50

Table 2: Fusion methods comparison (Recall@1k)

DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.
RRF w/o q 74.54 89.47 66.77 47.34 79.43 71.51
RRF w/ q concatenated 75.44 90.08 66.93 47.12 80.01 71.92
RRF w/ q included 79.17 91.02 67.03 48.82 81.44 73.50
RRF w/ q included and concatenated 79.32 90.84 66.98 48.41 80.67 73.24

Table 3: Impact of including the original query (Recall@1k)

DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.
MQ 74.52 89.49 65.11 42.17 73.30 68.92
MP 76.26 89.54 65.38 45.78 79.40 71.27
MQ2MP 79.17 91.02 67.03 48.82 81.44 73.50

Table 4: Impact of generating passages in two stages (Recall@1k)

et al., 2009), compared to CombSUM, a score-
based late-fusion method (Fox and Shaw, 1994),
and concatenation, a basic early-fusion approach.
Detailed formulations for each fusion method are
provided in Appendix A.2.

As illustrated in Table 2, RRF consistently out-
performs both Concatenation and CombSUM in
terms of Recall@1k across all datasets. This in-
dicates that rank-based late-fusion strategies like
RRF are more effective in aggregating diverse re-
trieval outputs. However, for nDCG@10, Comb-
SUM achieves the best results, showcasing its abil-
ity to rank the most relevant documents at the top.

3.5.2 Role of the Original Query
This experiment examines the impact of including
the original query in the RRF process of the MMLF
pipeline. We aim to see if this improves retrieval
performance or if other setups are more effective.
Detailed formulations for each configuration are
available in Appendix A.3. The configurations as-
sessed are as follows:
• RRF w/o q: Utilize only the passages for re-

trieval, excluding the original query.
• RRF w/ q concatenated : Concatenate the origi-

nal query with each passage prior to retrieval.
• RRF w/ q include: Use the original query and

the passages separately for retrieval.
• RRF w/ q included and concatenated: Include

the original query both separately and concate-
nated with each passage before retrieval.

For all four configurations described above, RRF
is applied to the resulting retrieval outcomes.

The results in Table 3 show that including
the original query alongside passages consistently
yields better performance in Recall@1k across

most datasets, as seen in the last three configu-
rations compared to the first. Among the last three,
the “RRF w/ q included” configuration attains the
highest average Recall@1k of 73.50, surpassing
the configurations where the query is excluded or
concatenated with passages.

3.5.3 Query Reformulation Pipeline
This experiment evaluates the effectiveness of our
proposed two-stage query-reformulation pipeline,
MQ2MP, against other query-passage generation
strategies. Detailed descriptions of each pipeline
are provided in Appendix A.4. The configurations
tested include:
• MQ: Uses sub-queries directly for retrieval with-

out transforming them into passages.
• MP: Generate passages directly with the original

query q using the prompt MCQE (see Appendix
B.6).

• MQ2MP: Generate sub-queries using the prompt
MQR (see Appendix B.3), then individually ex-
pand them into passages using the propmt CQE
(see Appendix B.5).
Results in Table 4 demonstrate that MQ2MP

consistently outperforms both MP and MQ in
terms of Recall@1k, achieving the highest aver-
age score of 73.50, particularly excelling in the
DBPEDIA and TREC-COVID datasets. This high-
lights a non-trivial result where combining query
decomposition and context enrichment preserves
the improvements of both approaches on average
without diminishing their contributions. While the
MP approach, which generates passages in a sin-
gle step, performs moderately well, it still lags be-
hind the more nuanced two-stage MQ2MP method.
Additionally, while the MP method scores reason-

6605



ably on nDCG@10, as detailed in Appendix D
(Table 14), it does not surpass the two-stage ap-
proach. The two-stage MQ2MP method generates
diverse contextual passages, akin to the one-stage
MP approach. However, as demonstrated by the
Recall@1k and nDCG@10 results, MQ2MP con-
sistently outperforms MP, suggesting that the addi-
tional step of expanding sub-queries into passages
enhances effective retrieval.

4 Conclusion

We introduced MMLF, an effective and robust
information retrieval (IR) pipeline that leverages
large language models (LLMs) to generate di-
verse sub-queries and expand them into contex-
tual pseudo-documents. Our experiments demon-
strate marked improvements in retrieval perfor-
mance, particularly in Recall@1k, across multi-
ple datasets without requiring model fine-tuning.
MMLF presents a scalable and adaptable solution
for improving search performance across various
domains, uniquely combining query decomposition
and passage generation to advance query reformu-
lation for dense retrieval.

5 Limitations

Despite its effectiveness, MMLF presents several
computational challenges. On the generation side,
the method requires running inference with LLMs,
which can be considerably slow due to token-by-
token autoregressive decoding. The need to gen-
erate multiple sub-queries and expand each into
detailed passages substantially increases the com-
putational load. Although parallel processing of
passages can mitigate some of this overhead, it still
represents a bottleneck, especially in real-time or
large-scale systems.

On the retrieval side, MMLF independently pro-
cesses and retrieves documents for each expanded
passage, increasing the overall retrieval workload.
Applying reciprocal rank fusion (RRF) to combine
these results adds complexity, particularly when
scaling to larger corpora or high query volumes.

Furthermore, although we fixed the number of
sub-queries generated to three in our experiments,
we did not perform an ablation study to assess how
varying the number of sub-queries affects retrieval
performance and computational costs. This is an
area for future investigation that could explore the
trade-offs between query diversity, retrieval effec-
tiveness, and computational demands.

These computational challenges may limit
MMLF’s applicability in environments constrained
by resources or time. Future research could focus
on optimizing the LLM inference stage and im-
proving the efficiency of the retrieval and fusion
techniques to reduce computational overhead with-
out compromising retrieval effectiveness.

References
J. Bhogal, A. Macfarlane, and P. Smith. 2007. A review

of ontology based query expansion. Information
Processing & Management, 43(4):866–886.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Gordon V. Cormack, Charles L A Clarke, and Stefan
Buettcher. 2009. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In
Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 758–759.

Edward Fox and Joseph Shaw. 1994. Combination of
multiple searches. NIST Special Publication, pages
243–243.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,

6606



and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui
Wang, and Michael Bendersky. 2023. Query expan-
sion by prompting large language models. arXiv
preprint arXiv:2305.03653.

Pengyue Jia, Yiding Liu, Xiangyu Zhao, Xiaopeng Li,
Changying Hao, Shuaiqiang Wang, and Dawei Yin.
2024. MILL: Mutual verification with large lan-
guage models for zero-shot query expansion. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2498–2518.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, pages 6769–6781.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6086–6096.

Yonggang Qiu and Hans-Peter Frei. 1993. Concept
based query expansion. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 160–169.

Zackary Rackauckas. 2024. Rag-fusion: A new take on
retrieval augmented generation. International Jour-
nal on Natural Language Computing, 13(1):37–47.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Proceedings of
the 35th Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round
2).

Ellen M. Voorhees. 1994. Query expansion using
lexical-semantic relations. In Proceedings of the 17th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 61–69.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9414–9423.

6607



Appendix

A Pipeline Formulations

This appendix provides the formulations of the re-
trieval pipelines used in our experiments, with a
consistent generation of 3 sub-queries or passages
across all configurations.

A.1 Baseline Methods
This section details the formulations for the base-
line retrieval methods listed in Section 3.3 along
with our MMLF. In the description below, R(·)
represents the retriever.
1) Raw Query: The original query q is used di-

rectly for retrieval:

R(q).

2) Query2Doc (Q2D): The original query q is
expanded into a passage pQ2D using the Q2D
prompt (see Appendix B.1) and concatenated
with q, separated by a [SEP] token, for retrieval:

R
(
concat

(
q, [SEP] , pQ2D)) .

3) Chain-of-Thought (CoT): The original query
q is expanded into a rationale and answer pair
pCoT using the CoT prompt (see Appendix B.2)
and concatenated with q, separated by a [SEP]
token, before retrieval:

R
(
concat

(
q, [SEP] , pCoT)) .

4) LangChian MultiQueryRetriever (LC-
MQR): Three sub-queries qMQR

1 , qMQR
2 , qMQR

3

are generated from the original query using the
MQR prompt (see Appendix B.3), and RRF is
applied to their retrieval results along with the
original query:

RRF
(
R(q),R

(
qMQR
1

)
,R

(
qMQR
2

)
,R

(
qMQR
3

))
.

5) MILL: The original query q is reformulated into
three passages pQQD

1 , pQQD
2 , pQQD

3 using the QQD
prompt (see Appendix B.4), and all passages are
concatenated with q, separated by [SEP] tokens,
before retrieval:7

R
(

concat
(
q, [SEP] , pQQD

1 ,

[SEP] , pQQD
2 ,

[SEP] , pQQD
3

))
.

7Note that we adopt the approach used in MILL (Jia et al.,
2024), where the generated sub-quries are not used in the
retrieval process.

Note that in our experiments, we skip advanced
techniques like pseudo-relevance feedback and
mutual verification for direct comparison.

6) MMLF (ours): Sub-queries qMQR
1 , qMQR

2 , qMQR
3

are first generated using the MQR prompt (see Ap-
pendix B.3), then each is expanded into pas-
sages pMQR-CQE

1 , pMQR-CQE
2 , pMQR-CQE

3 using the
CQE prompt (see Appendix B.5). RRF is applied
to the retrieval results of the original query and
the expanded passages:

RRF
(
R(q),R

(
pMQR-CQE
1

)
,

R
(
pMQR-CQE
2

)
,

R
(
pMQR-CQE
3

))
.

A.2 Fusion Method Comparison
This section details the formulations of the fusion
methods listed in Section 3.5.1. The formulations
provided below use the original query q and pas-
sages p1, p2, p3 as examples, but these fusion meth-
ods are also applicable in other contexts, such as
with sub-queries or various combinations of queries
and passages.
• Concatenation: In this early-fusion approach,

the original query and passages are concatenated
into a single sequence, with [SEP] tokens sep-
arating each part. The retrieval function, R, is
then applied to this concatenated sequence. The
formulation is as follows:

R
(
concat(q, [SEP] , p1,

[SEP] , p2,

[SEP] , p3)
)
.

• CombSUM: This score-based late-fusion
method aggregates the similarity scores from the
retrieval results of both the original query and
the individual passages. The retrieval function
R(·) returns a ranked list of documents, each
with a corresponding similarity score. The final
score for each document d is given by:

scoreCombSUM(d) =
3∑

i=0

scorei(d),

where scorei(d) is the similarity score of docu-
ment d from the retrieval result R(pi) for i =
1, 2, 3 and for i = 0, the score comes from the
retreival results R(q) of the original query q. The
formulation is as follows:

CombSUM (R(q),R(p1),R(p2),R(p3)) ,

6608



aggregating the retrieval results of the original
query and the passages by summing their scores.

• Reciprocal Rank Fusion (RRF): This rank-
based late-fusion method aggregates retrieval re-
sults based on the ranks of documents instead
of their similarity scores. The retrieval function
R(pi) provides a ranked list of documents for
each query or passage. The combined score for
each document d is calculated as follows:

scoreRRF(d) =
3∑

i=0

1

k + ranki(d)
,

where ranki(d) is the position of document d in
the resulting ranked list R(pi), and k = 60 is a
constant typically used in RRF implementations.
The formulation is as follows:

RRF (R(q),R(p1),R(p2),R(p3)) ,

which aggregates the ranks of the original query
and passages to produce a final ranked list.

A.3 Role of the Original Query
This section details the formulations of the configu-
rations in Section 3.5.2, which evaluates the impact
of including or excluding the original query in the
retrieval process.
• RRF w/o q: In this configuration, only the pas-

sages are used for retrieval, excluding the original
query:

RRF (R(p1),R(p2),R(p3)) .

• RRF w/ q concatenated: The original query is
concatenated with each passage before retrieval:

RRF
(
R(concat(q, [SEP] , p1)),

R(concat(q, [SEP] , p2)),

R(concat(q, [SEP] , p3))
)
.

• RRF w/ q include: The original query is in-
cluded alongside the passages, with RRF applied
to the retrieval results:

RRF (R(q),R(p1),R(p2),R(p3)) .

• RRF w/ q included and concatenated: The orig-
inal query is both included separately and con-
catenated with each passage:

RRF
(
R(q),

R(concat(q, [SEP] , p1)),

R(concat(q, [SEP] , p2)),

R(concat(q, [SEP] , p3))
)
.

A.4 Query Reformulation Pipeline
This section details the configurations in Sec-
tion 3.5.3, where we compare the performance of
different approaches for generating and expanding
sub-queries. The approaches include:
• MQ: In this approach, sub-queries are generated

from the original query q using the MQR prompt
(see Appendix B.3). The resulting sub-queries
qMQR
1 , qMQR

2 , qMQR
3 are used for retrieval without

any passage expansion. The retrieval process is
conducted as follows:

RRF
(
R(q),R

(
qMQR
1

)
,

R
(
qMQR
2

)
,

R
(
qMQR
3

))
.

• MP: This approach directly generates pas-
sages from the original query q using the MCQE
prompt (see Appendix B.6), bypassesing sub-
query generation. It produces three passages
pMCQE
1 , pMCQE

2 , pMCQE
3 . The retrieval process is

conducted as follows:

RRF
(
R(q),R

(
pMCQE
1

)
,

R
(
pMCQE
2

)
,

R
(
pMCQE
3

))
.

• MQ2MP: This two-stage pipeline first gener-
ates sub-queries qMQR

1 , qMQR
2 , qMQR

3 using the
MQR prompt (see Appendix B.3). Each sub-
query is then expanded into a corresponding pas-
sage pMQR-CQE

1 , pMQR-CQE
2 , pMQR-CQE

3 using the
CQE prompt (see Appendix B.5). The retrieval is
then performed as follows:

RRF
(
R(q),R

(
pMQR-CQE
1

)
,

R
(
pMQR-CQE
2

)
,

R
(
pMQR-CQE
3

))
.

B Prompt Formulations

This section describes the prompts used in the
query reformulation process. We incorporate spe-
cific instructions in our prompt to guide the LLMs
in formatting their outputs, which aids in easier
parsing and minimizes the generation of irrelevant
text. In each prompt, we denote the query to be
reformulated as {query}.

6609



B.1 Query2doc Prompt (Q2D)

The Q2D prompt, originating from (Wang et al.,
2023), is designed to expand a user query into a
passage that directly addresses the query. This
method effectively bridges the gap between short
queries and the detailed information required for ef-
fective document retrieval, as illustrated in Table 5.

Q2D prompt
Please write a passage to answer the query.

Query: {query}

Format your response in plain text as:

Passage:
Table 5: The Q2D prompt

B.2 Chain-of-Thought Prompt (CoT)

The original CoT prompt instructs the LLM to pro-
vide a rationale before answering the query. To
prevent introductory text from being parsed, we
modify the original prompt to explicitly structure
the response with labelled sections for the rationale
and answer, as shown in Table 6. These sections
are then concatenated with “\n\” to ensure clarity
during retrieval.

CoT prompt
Answer the following query:

Query: {query}

Provide the rationale before answering, and
format your response in plain text as:

Rationale:
Answer:

Table 6: The CoT prompt

B.3 LangChain MultiQueryRetriever Prompt
(MQR)

The MQR prompt generates sub-queries by offering
explicit task instructions and context to provide
multiple perspectives on a user question, enhancing
retrieval effectivness.8 We adapt this prompt to

8https://api.python.langchain.com/en/latest/
retrievers/langchain.retrievers.multi_query.
MultiQueryRetriever.html

generate three sub-queries, using a more structured
format than the original one used in LangChain
MultiQueryRetriever, as shown in Table 7.

MQR prompt
You are an AI language model assistant. Your task
is to generate exactly three different versions of the
given user question to retrieve relevant documents
from a vector database. By generating multiple
perspectives on the user question, your goal is to
help the user overcome some of the limitations of
the distance-based similarity search.

Original question: {query}

Format your response in plain text as:

Sub-query 1:

Sub-query 2:

Sub-query 3:
Table 7: The MQR prompt

B.4 Query-Query-Document Prompt (QQD)

The QQD prompt implements the query-query-
document approach from MILL (Jia et al., 2024),
with adaptations to generate both sub-queries and
corresponding passages, as detailed in Table 8,

QQD prompt
Generate exactly three different versions of the
given user question to retrieve relevant documents
from a vector database. For each sub-query, also
write a passage that answers it. The goal is to
provide varied perspectives to enhance the effec-
tiveness of similarity search.

Original question: {query}

Format your response in plain text as:

Sub-query 1:
Passage 1:

Sub-query 2:
Passage 2:

Sub-query 3:
Passage 3:

Table 8: The QQD prompt

6610

https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html


B.5 Combined Query Expansion Prompt
(CQE)

We design the CQE prompt, as shown in Table 9,
specifically for our pipeline. It generates a pas-
sage that simultaneously addresses both the origi-
nal query and a sub-query, maintaining the diver-
sity introduced by the sub-queries while ensuring
alignment with the original query.

CQE prompt
Please write a passage to answer the following
user questions simultaneously.

Question 1: {original_query}
Question 2: {sub_query}

Format your response in plain text as:

Passage:
Table 9: The CQE prompt

B.6 Multiple Combined Query Expansion
prompt (MCQE)

The MCQE prompt, as detailed in Table 10, inte-
grates multi-query generation and query-to-passage
expansion into a single step. It generates three sub-
queries with the original query and crafts a passage
for each sub-query, addressing both the original
query and its respective sub-query. This approach
is designed to capture diverse perspectives while
ensuring relevance to the original query.

C Impact of Prompts

This experiment evaluates the impact of various
prompt variations on the performance of our two-
stage query reformulation pipeline. We evaluate the
original two-stage setup against alternatives using
different prompts for generating sub-queries and
expanding passages. The variations tested include:

• MQR with CQE: Sub-queries are first gen-
erated with multiQ and then expanded into
passages using CQE.

• MQR with Q2D: Instead of CQE, sub-queries
are expanded using Q2D.

• MQR with CoT: Sub-queries are expanded
using the CoT prompt instead of CQE.

As illustrated in Table 11, the one with CQE mostly
outperforms the others, indicating that addressing
both the original query and sub-query simultane-
ously can enhance retrieval outcomes. This finding

MCQE prompt
You are an AI language model assistant. Your
task is to generate exactly three different versions
of the given user question (sub-queries) and then
write a passage for each sub-query to retrieve rele-
vant documents from a vector database. Each pas-
sage should address both the original query and its
corresponding sub-query. By generating multiple
passages from different perspectives, your goal is
to help the user overcome some of the limitations
of distance-based similarity search.

Original question: {query}

Format your response in plain text as:

Sub-query 1:
Passage 1:

Sub-query 2:
Passage 2:

Sub-query 3:
Passage 3:

Table 10: The MCQE prompt

highlights the importance of prompt design in opti-
mizing retrieval performance. Note that the prompt
formulations can be found in Appendix B.

D Results in nDCG@10

This section presents detailed nDCG@10 results
for the various experimental settings discussed in
the paper. These experiments assess different fu-
sion methods, the significance of including the orig-
inal query, the effectiveness of the query reformula-
tion pipeline, and the influence of different prompt
variations, and their results in nDCG@10 are tabu-
lated in Tables 12, 13, 14, and 15, respectively.

E Results on Larger BEIR Datasets

Expanding the evaluation of MMLF, we test its per-
formance on larger datasets from the BEIR bench-
mark (Thakur et al., 2021), including MS MARCO,
NQ, FEVER, and HOTPOTQA. MS MARCO and
NQ serve as general-purpose datasets with broad
retrieval contexts, while all four datasets feature
substantial query-document scales, making them
valuable additions to the evaluation. Note that
MS MARCO and NQ have been used to fine-tune
the e5-small-v2 (Wang et al., 2022) model, which
serves as our main retriever, potentially influencing

6611



Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.
MQR & Q2D 78.25 90.39 67.60 48.94 80.39 73.11
MQR & CoT 72.93 89.09 65.78 47.01 80.45 71.05
MQR & CQE 79.17 91.02 67.03 48.82 81.44 73.50

Table 11: Impact of different prompt variations (Recall@1k)

Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.

concat w/ q 40.48 34.32 34.14 74.07 28.55 42.31
CombSUM w/ q included 43.65 38.61 34.97 79.25 29.77 45.25
RRF w/ q included 42.96 37.86 34.09 77.27 28.60 44.16

Table 12: Fusion methods comparison (nDCG@10)

performance on these datasets. The results, shown
in Table 16, indicate that MMLF performs consis-
tently well across these settings, demonstrating its
scalability and effectiveness in handling large-scale
retrieval tasks.

F Results with Llama-3-8B-Instruct

To examine the impact of LLM size on the perfor-
mance of query reformulation methods, we conduct
experiments using Llama-3-8B-Instruct9, a scaled-
down variant of Llama-3-70B-Instruct. This evalu-
ation helps assess whether smaller LLMs can serve
as viable alternatives in scenarios with limited com-
putational resources. As shown in Table 17, query
reformulation methods, including MMLF, continue
to outperform raw queries in most cases, although
performance decreases compared to larger models
such as Llama-3-70B-Instruct. Notably, MMLF is
the only method to improve Recall@1k over the
raw query baseline on DBPEDIA and consistently
achieves the highest or near-highest scores across
all datasets. Furthermore, MMLF narrows the per-
formance gap between smaller and larger LLMs,
outperforming Q2D with Llama-3-70B-Instruct on
average across both Recall@1k and nDCG@10.
These findings suggest that smaller LLMs, despite
their limitations, remain effective for retrieval tasks,
particularly when computational efficiency is a pri-
ority.

G Results with Contriever

Building on the positive outcomes obtained with
the e5-small-v2 (Wang et al., 2022) encoder, we
further investigate the performance enhancement
of using the Contriever (Izacard et al., 2021) as
the underlying model. As shown in Table 18, the
MMLF method demonstrates notable performance

9Available at https://huggingface.co/meta-llama/Meta-
Llama-3-8B-Instruct and licensed under LLaMA3.

gains across almost all datasets, mirroring the ad-
vancements seen with e5-small-v2. These consis-
tent gains validate the effectiveness of MMLF in
enhancing retrieval through query augmentation,
significantly boosting metrics such as nDCG@10
and Recall@1k. This improvement suggests that
MMLF effectively leverages in-domain knowledge
to refine queries, ensuring better alignment be-
tween user queries and relevant documents across
different retrieval architectures.

6612

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct


Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.

RRF w/o q 41.15 34.09 33.85 73.32 27.72 42.03
RRF w/ q included 42.96 37.86 34.09 77.27 28.60 44.16
RRF w/ q concatenated 41.81 37.83 33.63 76.04 31.12 44.09
RRF w/ q included and concatenated 43.02 39.64 33.91 78.01 29.31 44.78

Table 13: Impact of including the original query (nDCG@10)

Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.

MQ 34.16 34.34 31.03 61.24 18.91 35.94
MP 39.15 34.67 32.96 76.91 24.62 41.66
MQ2MP 42.96 37.86 34.09 77.27 28.60 44.16

Table 14: Impact of generating passages in two stages (nDCG@10)

Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020 Avg.
MQR & Q2D 40.46 34.78 31.91 76.63 27.22 42.20
MQR & CoT 32.50 32.71 31.09 75.95 25.85 39.62
MQR & CQE 42.96 37.86 34.09 77.27 28.60 44.16

Table 15: Impact of different prompt variations (nDCG@10)

Method MS MARCO NQ FEVER HOTPOTQA

Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10
Raw Query 77.48 68.72 98.14 52.15 97.30 69.98 90.82 64.99
Query2Doc 83.02 73.06 98.55 59.99 98.00 76.60 93.54 70.81
CoT 81.48 71.05 97.88 56.32 97.12 69.41 93.33 72.07
LC-MQR w/ RRF 80.02 69.15 98.73 53.15 97.75 68.16 91.65 64.75
MILL (w/o PRF & MV) 79.95 65.12 98.01 55.31 97.24 74.74 93.47 71.52
MMLF 86.17 73.72 99.47 64.01 98.45 78.62 95.11 73.21

Table 16: Results on larger BEIR datasets

Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020

Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10
Raw Query 73.76 36.06 86.74 35.50 60.72 31.81 40.49 52.61 70.16 13.23
Query2Doc 72.16 37.99 88.22 36.91 64.26 31.60 44.31 75.75 77.48 28.26
CoT 70.12 35.22 87.88 34.35 63.28 30.29 43.46 72.33 80.95 23.79
LC-MQR w/ RRF 72.49 30.48 87.84 32.66 63.19 28.80 41.13 65.29 76.01 19.49
MILL (w/o PRF & MV) 69.73 36.16 85.78 32.17 64.67 29.03 41.33 71.28 75.36 26.07
MMLF 78.36 42.13 89.93 36.66 65.56 32.81 48.43 78.00 79.58 30.74

Table 17: Results with llama-3-8b-instruct

Method DBPEDIA FIQA-2018 NFCORPUS TREC-COVID TOUCHE-2020

Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10 Recall@1k nDCG@10
Raw Query 71.42 29.16 82.15 24.50 62.34 31.73 16.75 27.45 71.44 16.68
Query2Doc 69.48 32.30 85.31 26.03 64.60 28.63 32.86 56.22 74.53 20.87
CoT 66.82 29.67 83.83 25.05 63.68 29.15 34.12 54.01 73.46 23.11

LC-MQR w/ RRF 73.10 27.86 84.20 21.98 65.83 29.58 19.78 29.12 70.81 12.76
MILL (w/o PRF & MV) 69.19 32.24 85.39 25.40 64.78 27.61 34.15 58.15 74.65 22.94
MMLF 74.54 35.69 88.09 29.47 66.16 31.30 31.89 56.17 76.87 24.25

Table 18: Results with Contriever

6613


