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Abstract

Language Model (LM) pruning compresses the
model by removing weights, nodes, or other
parts of its architecture. Typically, pruning fo-
cuses on the resulting efficiency gains at the
cost of effectiveness. However, when looking
at how individual data points are affected by
pruning, it turns out that a particular subset
of data points always bears most of the brunt
(in terms of reduced accuracy) when pruning,
but this effect goes unnoticed when reporting
the mean accuracy of all data points. These
data points are called PIEs and have been stud-
ied in image processing, but not in NLP. In a
study of various NLP datasets, pruning meth-
ods, and levels of compression, we find that
PIEs impact inference quality considerably, re-
gardless of class frequency, and that BERT
is more prone to this than BiLSTM. We also
find that PIEs contain a high amount of data
points that have the largest influence on how
well the model generalises to unseen data. This
means that when pruning, with seemingly mod-
erate loss to accuracy across all data points,
we in fact hurt tremendously those data points
that matter the most. We trace what makes
PIEs both hard and impactful to inference to
their overall longer and more semantically com-
plex text. These findings are novel and con-
tribute to understanding how LMs are affected
by pruning. The code is available at: https:
//github.com/pietrotrope/AsEasyAsPIE

1 Introduction

Neural networks (NNs) are becoming increasingly
larger, with remarkable improvements to their in-
ference capabilities, but also very high computa-
tional demands. The latter has motivated research
in the area of NN pruning, whose goal is to re-

Class: neutral
Premise:
A group of seven individuals wearing rafting gear,
white water raft down a river.
Hypothesis:
Seven men and women are in a yellow boat.
Unpruned model prediction: entailment
Pruned model prediction: neutral

Class: entailment
Premise:
A woman is painting a mural of a woman’s face.
Hypothesis:
There is a woman painting.
Unpruned model prediction: entailment
Pruned model prediction: contradiction

Table 1: Examples where pruned and unpruned models
disagree (from the SNLI dataset).

duce a model (in terms of its parameters, nodes,
layers, or any other aspect of its architecture) to
a smaller version, without significant loss of in-
ference quality. Pruning has been shown to pro-
duce smaller, hence more efficient NNs, with small
loss to their effectiveness (Li et al., 2020a; Hooker
et al., 2019). Similar findings are also reported
when pruning Language Models (LMs) (Gupta and
Agrawal, 2022; Wang et al., 2020; Sun et al., 2023;
Sanh et al., 2020a; Michel et al., 2019) in NLP.

When pruning NNs, typically the focus is on the
high efficiency gains achieved at the cost of effec-
tiveness, commonly measured in terms of test set
accuracy. However, when zooming in on precisely
how individual data points are affected by pruning,
it turns out that models of similar accuracy scores
can have notably different weights and therefore
make wildly different inferences on a subset of data
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points. In other words, the similar accuracy scores
between pruned and unpruned models do not mean
that pruning affects all data points in a uniform
way, but rather that some parts of the data distribu-
tion are much more sensitive to pruning than others.
This effect can go unnoticed when one measures
pruning effectiveness in terms of mean accuracy,
because taking the mean can hide such important
score variations in the data. However, this does not
change the fact that certain types of data are dispro-
portionately impacted by pruning, which begs the
question: what are the characteristics of these data
points and how important is their detection?

In response to this, Pruned Identified Exemplars
(PIEs) are defined as the subset of data points where
pruned and unpruned models disagree (Hooker
et al., 2019) (see example in Table 1). Studies
in image processing reveal that PIEs are harder to
classify, not only for NNs, but also for humans,
because they a) tend to be mislabeled (ground truth
noise), b) may have overall lower quality (inher-
ently noisy signal), or c) may depict multiple ob-
jects (more challenging task) (Hooker et al., 2019).
Hence, this subset of data points where pruned and
unpruned models tend to disagree are also some of
the most difficult data points for the model to han-
dle. PIEs are those critical data points on which we
would suffer the most damage, if the model were
to be deployed out in the wild. Despite this, to our
knowledge, PIEs have not been studied in NLP.

Motivated by this gap in understanding how LMs
are actually affected by pruning, we study whether
PIEs exist in text, what are their textual charac-
teristics, and what this practically means for infer-
ence. Using eight pruning methods on two different
LM architectures (BiLSTM and BERT) and four
common NLP datasets for sentiment classification,
document categorisation and natural language in-
ference, we contribute the first study of PIEs in
LM pruning for NLP. Our empirical analysis shows
that there is always a subset of data points where
pruned and unpruned models disagree, and that this
subset is larger for BERT than BiLSTM. We also
find that these data points, namely PIEs, are over-
all semantically more complex, contain on average
more difficult words, and have generally longer text
than the rest of the data. Furthermore, we find that
PIEs contain a high amount of influential examples,
i.e., data points that have the largest influence on
how well the model generalises to unseen data (Jin
et al., 2022). These novel findings mean that when
pruning LMs for efficiency, with seemingly small

drops in overall accuracy, we are impacting notably
the accuracy on subsets of data that are critical for
model generalisation. More simply put, we impact
how well the model learns. This effect is more
pronounced for BERT than for BiLSTM.

2 Pruned Identified Exemplars (PIEs)

Formal definition of PIEs. Pruned Identified
Exemplars (PIEs) are data points where the pre-
dictions of pruned and unpruned models dif-
fer (Hooker et al., 2019). Assume a single-label
classification task, where each data point x belongs
to a single class. Let P = {p1, ..., pN} be the set
of N different initializations of the pruned model,
and U = {u1, ..., uN} the set of N different ini-
tializations of the unpruned model.1 Let m(P, x)
be the majority class assigned to x over all the
initializations of the pruned model after training.
This is computed as the most frequently predicted
class for the data point x across all N initializations
in P , i.e., the mode of the N predicted classes.2

Similarly, m(U, x) is the most frequent class pre-
dicted by the unpruned model initializations. Then,
x is a PIE if m(P, x) ̸= m(U, x), i.e., the majority
class assigned to x by the pruned and unpruned
model is different.
PIEs in multi-label classification. We extend the
above definition of PIEs to multi-label classifica-
tion, where a data point x can belong to more than
one class. We treat multi-label classification as mul-
tiple single-label classifications: a data point x is a
PIE, if there exists a class such that the pruned and
unpruned models disagree. Let m̃(P, x) be the set
of majority classes assigned to x over all the initial-
izations of the pruned models. A class is assigned
to the set of majority classes if > N/2 initializa-
tions of the pruned model predict that x belongs to
that class. Similarly, m̃(U, x) is the set of major-
ity classes assigned by the unpruned model. Then,
x is a PIE if m̃(P, x) ̸= m̃(U, x), i.e., the sets of
majority classes predicted for x by the pruned and
unpruned models differ. The inequality between
m̃(P, x) ⊈ m̃(U, x) and m̃(P, x) ⊉ m̃(U, x)
means that x is a PIE even if the pruned and un-
pruned model disagree only on a single class.

Unlike PIEs, which consider qualitative data as-
pects, Dutta et al. (2024) introduce flips, a distance
metric that counts the number of predictions that

1N must be the same for pruned and unpruned models.
2In case of ties, classes are sorted ascendingly by their

associated number, and the first class is assigned.
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Dataset # train # test # val # classes Classification
IMDB 20000 25000 5000 2 single-label
SNLI 549367 9824 9842 3 single-label
Reuters 6737 1429 1440 23 multi-label
AAPD 53840 1000 1000 54 multi-label

Table 2: Dataset statistics after preprocessing.

switch from correct to incorrect (and vice-versa)
after compression. Holste et al. (2023) propose
the following alternative way of selecting PIEs in
a multi-label setting. For each data point, they
compute the average prediction over all initializa-
tions. Then, the data points are ranked by the aver-
age prediction, and agreement is measured as the
Spearman rank correlation between the rankings
for the pruned and unpruned models. The 5th per-
centile of data points with highest disagreement
(lowest Spearman rank correlation) are considered
PIEs. This approach does not quantify the amount
of PIEs for the pruned and unpruned models. In
addition, in Holste et al. (2023), a data point can be
considered as non PIE even if there is disagreement
between the pruned and unpruned models, simply
because that data point is outside the 5th percentile.
Our definition of PIEs is stricter than Holste et al.’s
(2023), since disagreement even on a single class
determines the data point to be a PIE.

3 Study design

Our aim is to study whether PIEs exist in text data,
what are their textual characteristics, and what this
practically means for inference. We present the
datasets, LMs, and pruning methods of our study.
Datasets. We use two single-label datasets: IMDB
(Maas et al., 2011) for sentiment analysis, and
SNLI (Bowman et al., 2015) for natural language
inference. We also use two multi-label datasets
for document categorisation: Reuters-215783, and
AAPD (Yang et al., 2018). Statistics are in Table 2
(see Appendix A.2 for preprocessing details).
Language Model Architectures. We select two
common types of LMs to represent both trans-
formers and Recurrent Neural Networks (RNNs):
BERT (Devlin et al., 2019), and bidirectional
LSTM (BiLSTM) (Hochreiter and Schmidhuber,
1997). We train BiLSTM from scratch, but we
finetune a pretrained version of BERTBASE. See
Table 5 in Appendix A.1 for details on the LMs,
and Appendix A.1 for our tuning methodology.
Pruning methods. We use eight common pruning

3https://www.daviddlewis.com/resources/.

Scoring →
Scheduling ↓ Impact Magnitude Random

Iterative + Weight
Rewinding IIBP-WR IMP-WR -

Iterative + Fine
tuning IIBP-FT IMP-FT IRP-FT

At Initialization IBP-AI MP-AI RP-AI

Table 3: Our 8 pruning methods. Random cannot be
combined with Weight Rewinding because weights that
are rewinded to their initial values are not random.

methods, shown in Table 3. Each of them is a
combination of scheduling and scoring.

Scheduling controls the moment and frequency
of the pruning iterations during training. We use
two scheduling variations: (i) pruning the model
before training (at initialization), and (ii) pruning in
multiple iterations during training (iterative). Only
for iterative pruning, we use two tuning strategies:
finetuning and weight rewinding. In finetuning,
we retrain the model after pruning and update its
weights. In weight rewinding, we rewind weights
to their initial state (Frankle and Carbin, 2019).

Scoring refers to selecting which weights to
prune. A score is given to each LM weight, and the
weights with the lowest score according to a thresh-
old are pruned. We use three scoring variations: (i)
Magnitude, where the score is the absolute value of
a weight (Frankle and Carbin, 2019); (ii) Impact,
where the score is the weight multiplied by its ac-
cumulated gradient on 100 randomly sampled data
points of the training set (Lee et al., 2019); (iii)
Random, where the score is randomly assigned a
value between 0 and 1.

We chose the above pruning methods as they are
architecture-agnostic (i.e., applicable to any NN
architecture). Recent methods build on these, are
architecture-specific, or optimized for one architec-
ture (Sun et al., 2023; Yu et al., 2020a; Michel et al.,
2019; Frantar and Alistarh, 2023).We prune 20%,
50%, 70%, 90%, and 99% of the parameters of
each LM (see Table 5 in Appendix A.1 for details).
For each configuration, we train 30 initializations.
This results in 9840 runs (= 2 LMs x 4 datasets
x 8 pruning methods x 5 pruning thresholds x 30
initializations + 2 LMs x 4 datasets x 30 unpruned
model initializations), that require ca. 28000 AMD
MI250X GPU hours. Our tuning methodology for
pruning is detailed in Appendix A.4.
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4 Experimental findings

We show how pruning impacts inference, the role
of PIEs, and the textual characteristics of PIEs.

4.1 Pruning and occurrence of PIEs

Figure 1 shows the accuracy/F1 of pruned versus
unpruned models (see Table 6 in Appendix A.1 for
details on the number of parameters pruned). We
see that pruning BERT/BiLSTM up to 50% gives
overall tolerable drops to accuracy/F1 for most
pruning methods. IIBP-FT is the pruning method
with the overall smallest drop in accuracy/F1 com-
pared to the unpruned model, and even outperforms
the unpruned BiLSTM at times. We also see that,
while unpruned BERT outperforms unpruned BiL-
STM, pruning BERT hurts accuracy/F1 more than
pruning BiLSTM, especially for pruning at 70%-
99%. Hence BERT is more sensitive to pruning
than BiLSTM, indicating that parameters in BERT
are not as easily disposable as in BiLSTM. Other-
wise put, BERT seems to make better use of its
parameters than BiLSTM, because their removal
has a bigger impact on it than on BiLSTM.

Table 4 shows the % of all data points4 that are
PIEs per model, dataset, pruning method and prun-
ing threshold. We see that, as the pruning threshold
increases, so does the proportion of PIEs, with very
few marginal exceptions. This means that the par-
ticular subset of data points where unpruned and
pruned models disagree becomes larger, the more
we prune. In Table 4 we shade the PIEs of the best
and worst pruned model (according to their accu-
racy/F1 in Figure 1) as green and gray respectively.
We see that the best pruned model (green) has al-
most always a smaller percentage of PIEs than the
worst pruned model (gray), per pruning threshold.
In other words, as the amount of PIEs increases,
overall accuracy/F1 lowers, meaning that PIEs
clearly impact inference quality.

For the multi-label datasets, it is important to
know, not only the proportion of data points that
are PIEs, but also their distribution across classes.
So, Figure 2 plots the distribution of all data points
versus PIEs, across classes, for IIBP-FT, which is
the pruner with the best overall F1 in Figure 1. The
plots of the other configurations are in Appendix
B.1. We show PIEs when pruning 20% and 99%
of the parameters which captures the lowest and
highest % of PIEs according to Table 4. Figure 2

4From now on, whenever we refer to all data points, we
mean all data points in the test set, unless otherwise specified.

Single-label
Pruner 20% 50% 70% 90% 99%

IM
D

B
B

E
R

T

IIBP-WR 7 10 10 10 11
IIBP-FT 4 10 13 13 11
IBP-AI 8 10 10 10 50
IMP-WR 4 9 11 12 50
IMP-FT 3 10 14 13 50
MP-AI 6 10 10 12 50
IRP-FT 8 13 12 50 50
RP-AI 10 10 10 50 50

B
iL

ST
M

IIBP-WR 2 3 4 7 10
IIBP-FT 5 5 5 5 3
IBP-AI 2 5 7 10 16
IMP-WR 2 3 4 3 11
IMP-FT 5 5 5 5 5
MP-AI 2 5 6 9 16
IRP-FT 5 5 5 3 29
RP-AI 2 4 6 9 18

SN
L

I
B

E
R

T

IIBP-WR 7 13 16 27 35
IIBP-FT 3 5 8 13 28
IBP-AI 6 12 18 34 47
IMP-WR 5 11 16 30 66
IMP-FT 3 6 12 16 66
MP-AI 5 12 27 35 66
IRP-FT 4 11 17 66 66
RP-AI 8 26 32 66 66

B
iL

ST
M

IIBP-WR 4 5 7 16 29
IIBP-FT 6 5 5 6 23
IBP-AI 4 7 11 23 39
IMP-WR 5 5 5 14 62
IMP-FT 6 6 5 8 32
MP-AI 4 7 12 20 62
IRP-FT 6 5 5 16 46
RP-AI 4 8 13 23 62

Multi-label
Pruner 20% 50% 70% 90% 99%

R
eu

te
rs

B
E

R
T

IIBP-WR 5 8 16 31 100
IIBP-FT 5 6 7 10 32
IBP-AI 6 18 35 84 100
IMP-WR 4 6 14 100 100
IMP-FT 5 6 8 23 100
MP-AI 5 12 32 100 100
IRP-FT 5 10 24 100 100
RP-AI 7 34 41 100 100

B
iL

ST
M

IIBP-WR 4 5 7 14 37
IIBP-FT 4 5 5 5 9
IBP-AI 4 7 14 34 44
IMP-WR 5 5 6 7 29
IMP-FT 5 4 4 6 13
MP-AI 5 6 9 19 33
IRP-FT 5 5 6 7 31
RP-AI 4 7 10 22 35

A
A

PD
B

E
R

T

IIBP-WR 31 40 48 59 81
IIBP-FT 29 37 45 51 63
IBP-AI 34 48 59 78 100
IMP-WR 31 38 49 79 100
IMP-FT 28 40 45 56 100
MP-AI 34 47 57 94 100
IRP-FT 33 63 62 100 100
RP-AI 38 59 76 100 100

B
iL

ST
M

IIBP-WR 26 34 39 64 88
IIBP-FT 41 40 37 28 59
IBP-AI 22 33 53 82 100
IMP-WR 26 32 38 56 83
IMP-FT 39 41 37 34 69
MP-AI 21 30 41 62 86
IRP-FT 41 36 30 44 88
RP-AI 24 35 49 67 87

Table 4: Percentage of datapoints that are PIEs per
configuration. Green and gray mark the percentages of
datapoints that are PIEs for the best (green) and worst
(gray) pruner per dataset and pruning threshold.
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Figure 1: Accuracy/F1 (y axis) of unpruned and pruned LMs per pruning threshold (x axis), over 30 initializations.
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Figure 2: Distribution of all data points and of PIEs at 20% and 99% pruning, across classes sorted by frequency (x
axis), for the multi-label datasets (test set) and IIBP-FT pruner.

shows that PIEs are found across all classes of the
dataset, from the least frequent to the most frequent
class, and roughly follow the distribution of all data
points across classes, except for the most frequent
ones. This observation, combined with the findings
of Table 4, means that besides the most frequent
class, pruned and unpruned models disagree on
all classes, regardless of their frequency.

To probe further into the extent of this impact,
Figure 3 shows accuracy only on PIEs versus accu-
racy on all data points, for BERT and SNLI. The
plots of the other configurations are in Appendix
B.1 and have overall similar trends. We see that
accuracy is overall lower on PIEs (orange) than
on all data points (blue), for both pruned and un-
pruned models, with few marginal exceptions for
99% pruning and BILSTM, where the scores are
almost the same. The fact that accuracy is lower for
PIEs than for all data points confirms the findings
reported above. However, interestingly, Figure 3
also shows that the impact of pruning upon accu-
racy is much larger on the subset of PIEs than on all
data points: the gap between the two orange lines
(PIEs) in Figure 3 is notably larger than the gap
between the two blue lines (all data points). Even
when pruning 20%-50%, which according to Fig-

ure 1 has overall small drops to the mean accuracy
of all data points for most pruning methods, still,
the drop in accuracy to the data points of the dataset
that are PIEs is much larger. When pruning highly
accurate models, accuracy decreases, and PIEs are
more likely to be misclassified. Thus, PIEs bear
most of the brunt and more focus is needed on
them. This effect goes unnoticed when reporting
the mean accuracy over all data points.

4.2 Influential examples in PIEs

The above findings suggest that PIEs are hard for
inference. Next, we try to quantify this hardness, by
studying how many of the PIEs are in fact influen-
tial examples, i.e., data points that have the largest
influence on how well the model generalises to un-
seen data, irrespective of whether this influence is
positive or negative. We do this using the EL2N
score (Paul et al., 2021) as per Jin et al. (2022).

Given a model with weights wt during training
iteration t, and given an example (x, y) where x
is the input and y is its label, EL2N(x, y) is the
L2 distance between the predicted probabilities
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Figure 3: Accuracy (y axis) of unpruned (solid line) & pruned (dotted line) BERT on SNLI, for all data points (blue)
or only for PIEs (orange), per pruning threshold (x axis), over 30 initializations. Each plot is a different pruner.

p(wt, x) during t5 and the one-hot label:

EL2N(x, y) = E [||p(wt, x)− y||2] (1)

Examples are grouped into 20 bins based on their
EL2N score percentiles. Higher EL2N scores mean
that the model undergoes larger weight updates
when the example is presented early in training.
So, the bigger the weight changes, the higher the
EL2N score, and the higher the influence of an
example. Note that the above takes place during
training, so we obtain PIEs on the training set.

Figure 4 shows the distribution of PIEs across
the degree of influence of all data points in the
training set for IIBP-FT (the rest of the plots are in
Appendix B.2). We see that PIEs are concentrated
among the most influential data points (right hand
side of the plots). This is even more so for BERT,
where up to 80% - 100% of its most influential
data points are in fact PIEs, compared to up to 70%
for BiLSTM. This explains the finding of Section
4.1 that BERT is more affected by pruning than
BiLSTM, because (a) more influential examples
are PIEs in BERT than in BiLSTM, and (b) accu-
racy/F1 is lower among PIEs than among all data
points, as we saw in Figure 3. We conclude that a
considerable amount of those data points that
have the largest influence on how well the model
generalises to unseen data are PIEs.

5As the EL2N score is not reliable until at least one epoch
of fine-tuning has been computed (Fayyaz et al., 2022), we
only monitor the scores after the model has undergone training
for at least one epoch (the first epoch that exceeds 30% of the
total training epochs).

4.3 Textual characteristics of PIEs
The above findings motivate the need to understand
what the text of PIEs actually looks like. We do
this using the following eight scores of text read-
ability and length: (1) Automated readability index
(Senter and Smith, 1967); (2) Coleman–Liau in-
dex (Coleman and Liau, 1975); (3) Flesch–Kincaid
grade level (Kincaid Jr et al., 1975); (4) Linsear
Write (O’hayre, 1966); (5) Gunning Fog index
(Gunning, 1969); (6) Dale–Chall readability (Dale
and Chall, 1948); (7) Number of difficult words;
and (8) Text length, counted as the number of to-
kens per text. (1)-(6) are different approximators
of text readability in terms of what formal educa-
tion level would be needed in order to understand
the text. (6) approximates comprehension difficulty
based on a list of 3000 easily understandable words.
(7) is a count of the number of words that are not
in the Dale-Chall list of understandable words.

We compute the above scores first on all data
points and then only on PIEs. Figure 5 shows the
resulting plots for SNLI and BERT (the plots of
the other configurations are in Appendix B.3). The
black horizontal line represents all data points and
PIEs having the same scores. Any divergence from
this line reflects how much the scores of PIEs differ
from those of all data points. E.g., the point 1.05
on the y axis of the Gunning Fog index plot means
that the text of PIEs is approximately 1.05 times
harder to understand than the text of all data points.

In Figure 5 we see that the formal education
level needed for text understanding is overall higher
for PIEs than for all data points (plots (a)-(e) and
(g)). We also see that the text of PIEs has overall
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Figure 4: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IIBP-FT across pruning thresholds (different colours).

a larger amount of difficult words (plot (f)), and is
on average longer than the text of all data points
(plot (h)). Overall, according to the average scores
of all pruning methods (turquoise line), PIE text is
up to 1.03 times harder to understand than the text
of all data points (plots (a)-(e) and (g)), with words
that are up to 1.06 times more difficult (plot (f)),
and text length that is up to 1.02 times longer (plot
(h)). This means that PIEs tend to be semantically
more complex than the average text. Note that
the scores presented in plots (a)-(g) are designed to
approximate human (as opposed to computational)
difficulty in understanding text. This implies that
PIEs are more difficult than the average text,
not only for LMs (as shown in Figure 3), but also
for humans (as shown in Figure 5).

5 Related work

Pruning LMs. LM pruning has typically been
successful when models are first trained and then
pruned (Li et al., 2020b). Pruning works either
by removing structures simultaneously (entire neu-
rons, layers, or even larger sections of NNs) or
parameters (Zhu et al., 2024; Sun et al., 2023; Fran-
tar and Alistarh, 2023). Examples include prun-
ing entire attention heads in transformer models
like BERT without severe inference degradation
(Michel et al., 2019) and pruning entire blocks of
layers with substantial efficiency gains and minimal
effectiveness loss (Lagunas et al., 2021; Ma et al.,
2024). Such pruning methods can lead to more in-
terpretable and manageable models but have the dis-
advantage that they tend to be architecture-specific.
Unlike these approaches, in unstructured pruning,

LM parameters/weights are pruned individually.
This makes unstructured pruning agnostic to par-
ticular model architectures (LeCun et al., 1989),
making it possible to compare the effect of pruning
on different types of LMs. As a result, unstructured
pruning has been successfully applied in NLP (Zhu
et al., 2024; Sun et al., 2023; Frantar and Alistarh,
2023; Yu et al., 2020b). Moreover, pruning can
operate on the entire network at once (Janowsky,
1989), i.e., global pruning, or on a fraction of the
network (Han et al., 2015). The latter is called
local pruning and can result in models that are
more effective than global pruning (Mishra and
Chakraborty, 2021). In our study, we use only lo-
cal unstructured pruning methods, allowing us to
study PIEs in both transformers and RNNs.

For BERT in particular, it has been shown that
a substantial amount of pruning can be applied
during pre-training without significant loss in infer-
ence (Sanh et al., 2020b). It has also been shown
that specific parameters that are redundant to such
transformer architectures can be accurately identi-
fied by dedicated second-order pruning methods,
such as Optimal BERT Surgeon (Frantar and Al-
istarh, 2022). However, another body of recent
work also shows that complex LM pruning meth-
ods do not always work better than simpler, more
straightforward pruning (Sun et al., 2023; Frantar
and Alistarh, 2023).

Finally, researchers have also assessed, not only
the accuracy, but also the loyalty (preservation of
individual predictions) and robustness (resilience
to adversarial attacks) of pruned BERT models (Xu
et al., 2021). The findings reveal that traditional
pruning methods that seem to maintain overall ac-
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curacy, may in fact affect the loyalty and robustness
of the model. This line of work, similarly to ours,
suggests that more nuanced analyses and evaluation
approaches are needed to understand how pruning
affects LMs beyond simple average accuracy.
Impact of pruning on subsets of data. While
conventional pruned model evaluation has focused
on inference time, number of pruned parameters,
and effectiveness of the pruned models (Blalock
et al., 2020; Gupta and Agrawal, 2022; Paganini
and Forde, 2020; Renda et al., 2020), an under-
studied aspect has been the impact of model prun-
ing on subsets of data. As language data is often
power distributed, pruning can have a more severe
effect on the performance of the least frequent, tail
classes (Holste et al., 2023). This can make models
less robust and more prone to overfit shortcuts (Du
et al., 2023), result in disparate accuracy across
subgroups of data (Tran et al., 2022; Hooker et al.,
2020), and affect prediction quality based on sam-
ple frequency (Ogueji et al., 2022). Kuzmin et al.
(2024) show that in most cases quantization out-
performs pruning. Close to ours is the study of
Hooker et al. (2019), who defined PIEs, and found
them harder for both NNs and humans to classify.
This study was limited to image processing. To our
knowledge, our study is the first in-depth exami-
nation of PIEs for NLP, with novel findings about
where and how often PIEs occur in text data, how
they impact inference, and why.

6 Conclusions & Discussion

We empirically studied how LMs are affected by
pruning in the text domain. Unlike most work in
this area which looks at overall gains in efficiency
and costs to inference effectiveness, we zoomed in
on precisely how pruning affects a particular subset
of data points where pruned and unpruned models
systematically disagree (Pruning Identified Exem-
plars (PIEs)). Using two LM architectures, four
datasets, eight pruning methods, and five pruning
thresholds, we found that PIEs impact inference
quality considerably, but this effect goes undetected
when reporting the mean accuracy across all data
points. This effect is invariable to class frequency
and increases the more we prune. BERT is overall
more susceptible to this effect than BiLSTM. We
also found that PIEs tend to contain a high amount
of influential examples (data points that have the
largest influence on how well the model generalises
to unseen data). Probing into what it is about PIEs

that makes them both hard and impactful to infer-
ence, we found that their text is overall longer and
more semantically complex, and harder to process
not only for LMs but also for humans, based on
human text readability approximations.

Overall, our findings suggest that, the more in-
fluential and complex a data point is, the higher
the chance that pruned and unpruned models will
disagree on its prediction, impacting disproportion-
ately a subset of the dataset, yet going generally
unnoticed when reporting mean accuracy on the
whole test set. This can pose significant risks to
LMs, such as focusing on easier examples and sacri-
ficing inference quality on more difficult examples
that are however linked to better generalisation.

Given the increased call for compressing LMs,
pruning them without considering the effect on
PIEs can make models vulnerable in high-stakes
applications, where relying solely on good top-line
performance is inadequate to guarantee the model’s
reliability and trustworthiness across data points
and independently of class distribution. For in-
stance, in fact-checking a pruned LM may misclas-
sify long and complex documents more frequently,
potentially labelling them as factually correct or in-
correct based on their length and complexity rather
than their content. In medicine, domain expertise
can lead to higher text complexity and lower read-
ability. This underscores the need for accurate mod-
els on complex and longer documents, as pruned
models may significantly affect prediction quality.
Similar considerations apply to the legal domain,
where documents often contain terminology and
complex sentences that are challenging even for
humans.

PIEs are not only complex for the model but also
include complex language according to different
readability scores used to assess human readabil-
ity. This makes the models more vulnerable to
texts that are less readable for humans, limiting
the usefulness of pruned models even in applica-
tions with a human in the loop. Identifying PIEs in
these fields can help determine if the pruned model
can be trusted, while also making the model’s be-
haviour more interpretable, enabling the study of
the shared textual characteristics of the data points
that the pruned model processes differently from
the unpruned one. More broadly, PIEs focus on
cases whose impact goes unnoticed with averaged
scores, becoming a valuable tool for understand-
ing pruned models’ generalization beyond top-line
scores, which is relevant across all areas. Lastly,
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Figure 5: How the text of PIEs differs from the text of all data points, according to 7 readability scores (plots (a)-(g))
and text length (plot (h)). Ratio between the scores of PIEs and the scores of all data points (y axis), across pruning
thresholds (x axis), for BERT and SNLI. The solid black horizontal line represents equal scores in PIEs and all data
points. The solid turquoise line is the mean score of all pruners. Any line above the solid black line means that PIEs
are harder to understand (plots (a)-(g)) or have longer text (plot (h)), on average, than all data points.

identifying PIEs in the previously mentioned sce-
narios is crucial for understanding the extent to
which the model is affected by pruning. Lever-
aging PIEs to produce new, more reliable pruned
models can help reduce the impact on longer and
more complex documents, making the pruned mod-
els more trustworthy.

Future work includes studying PIEs when prun-
ing LLMs, extending PIEs to tasks such as text gen-
eration, and researching how to balance the impact
of pruning across PIEs and all data points. More-
over, PIEs can be used to study in isolation the data
points where pruning aids or hinders inference.

Limitations

We evaluated the effects of pruning across eight
pruning methods, two LM architectures, and four
datasets. While these are representative, we cannot
rule out the possibility that other pruning methods
or model architectures might yield different results.
Moreover, while we train BiLSTM from scratch,
BERT utilizes an existing backbone model. This
may affect some specific findings. Nonetheless,
our findings across all tested experimental condi-
tions, datasets, and models consistently point in
the same direction and unanimously support our
conclusions.

More work is needed to understand the effect
of pruning through PIEs on different architectures
(e.g., decoder-only models) and models, varying
unpruned model sizes, and pruning methods. While
we utilized extensive resources from the LUMI

supercomputing infrastructure (over 28000 AMD
MI250X GPU hours), it was not practically feasible
to experiment with the latest large language mod-
els or include decoder-only models in our setting
where we aimed at varying many pruning thresh-
olds, methods, and datasets, while experimenting
on both attention based and RNN based models. To
make investigations of PIEs computationally more
accessible, future studies could investigate individ-
ual architectures and pruning methods in isolation
and benchmark their results against our findings.

We also did not explore the design of new prun-
ing algorithms that take into account properties
of the data, such as the link between the influ-
ence of the examples and pruned and unpruned
models’ disagreement. These could help to mit-
igate both general effectiveness drops as well as
improved handling of examples that are important
for training and downstream usage of the models,
which we leave for future work. We show that
PIEs are useful for understanding how pruning af-
fects model predictions on harder-to-read, longer
texts that are more influential for model general-
isation. Future work should use these insights to
guide pruning and mitigate its impact on models’
ability to process harder and longer texts, as well
as other text properties. For instance, Williams and
Aletras (2024) observed how calibration data di-
rectly affects pruned models. Based on this, one
mitigation strategy could enhance gradient-based
pruning algorithms by selecting calibration data
that reflect complex textual characteristics or by
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sampling calibration samples according to the most
influential training examples. This approach could
lead to a text-complexity-aware pruning strategy.

Alternative mitigation strategies might involve
selecting a subset of data to fine-tune the model
after pruning, ensuring that examples with com-
plex or long text are presented more frequently to
the model. This would improve the model’s han-
dling of such data points. Additionally, future work
could develop new pruning methods that consider
the importance of PIEs and explore rebalancing
techniques to mitigate pruning’s adverse effects.
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A Implementation Details

A.1 Language Model Architectures

We use the pretrained uncased version of BERT-
base from HuggingFace as is, which has 12 en-
coders with 12 self-attention heads (Wolf et al.,
2020). BERT takes as input the tokenized text.
We set the output layer size to match the number
of classes of the dataset the model is trained on.
During training, we tune all of BERT’s parameters

Our BiLSTM models receive as input a vector
representation of the words in the text. To build
such a vector we use Glove embeddings of size 300
(Pennington et al., 2014). We input the embeddings
to a multilayer BiLSTM. We set the output layer
size of the BiLSTM models to match the number
of classes of the data set the model is trained on.
On BiLSTM, we always use rectified linear units
(ReLu) as activation functions.

We present the “percentage of pruned parame-
ters” based on the total number of parameters that
can be pruned in the model, instead of all of the pa-
rameters of the model (Chen et al., 2020). In Table
5 and Table 6 we report information about the num-
ber of remaining parameters in the architectures at
different pruning amounts.

LM Dataset # parameters 20% 50% 70% 90% 99%

BERT

IMDB 109,483,778

15% 39% 55% 70% 77%
SNLI 109,484,547

Reuters 109,499,927
AAPD 109,523,766

BiLSTM

IMDB 647,810

20% 50% 69% 89% 98%
SNLI 647,939

Reuters 650,519
AAPD 654,518

Table 5: Number of LM parameters and % of parameters
that are removed when pruning at 20%–99%. Numbers
differ per dataset because the different size of the classi-
fication layer leads LMs to a different final amount of
parameters.

Architecture Unpruned 20 50 70 90 99
BERT 1.1x108 9.2x107 6.7x107 5.0x107 3.2x107 2.5x107

BiLSTM 6.5x105 5.2x105 3.3x105 2.0x105 6.8x104 1.0x104

Table 6: Number of parameters for the unpruned models,
and remaining parameters when pruning at 20%-99%.

A.2 Datasets and Preprocessing

In table 7 we report dataset statistics after pre-
processing. IMDB (Maas et al., 2011) is a single-
label sentiment analysis dataset, made of reviews of
movies. Each review is either positive or negative.
IMDB has the longest sentences and the fewest
classes across all our datasets on average. SNLI
is a single-label natural language inference dataset.
Each sample contains two sentences, and the task
is to determine if the relationship between them is
entailment, contradiction, or neutral. The dataset is
available under a CC BY-SA license. SNLI has the
most training samples and the shortest sentences
among all our datasets on average. Reuters-21578
is a multi-label document categorization dataset,
made of Reuters news belonging to 120 topics.
Each news item is categorized and can belong to
multiple topics. After preprocessing, the dataset
has 23 classes. The dataset is available under CC
BY license. Reuters has the fewest training sam-
ples among our datasets. AAPD is a multi-label
document categorization dataset of article abstracts
in computer science. Each arrticle can belong to
multiple subjects, and the task is to identify the
subjects given the abstract. The dataset is available
under CC BY license. AAPD has the most classes
across our datasets.
Dataset preprocessing. IMDB has 25000 training
examples and 25000 test examples. To perform hy-
perparameter tuning of our models, we apply strati-
fied sampling from the original training set to cre-
ate a validation set of 5000 samples. On SNLI we
use the original data set splits. On Reuters-21578
we remove all of the topics that do not appear in
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Dataset # train # test # val Mean/median Min/max len Std
len

Tokens
85%

Max
tokens

#
classes Task Classification

IMDB 20000 25000 5000 268/201 8/2753 197 430 512 2
Sentiment
analysis

single-label

SNLI 549367 9824 9842 23/22 5/124 7 30 128 3
Natural language

inference
single-label

Reuters 6737 1429 1440 126/79 5/1305 137 232 256 23
Document

categorization
multi-label

AAPD 53840 1000 1000 167/161 1/599 70 242 256 54
Document

categorization
multi-label

Table 7: Datasets’ statistics after preprocessing. # train, # test, and # val are respectively the number of instances
in train, test, and validation sets. Mean/median, and Min/max are respectively the mean, median, minimum, and
maximum number of tokens in the dataset’s instances. Tokens 85% represent a value such that 85% of the datasets’
texts have fewer or equal tokens than such value. Max tokens are the number of tokens, starting from the beginning
of the text, after which we truncate texts. # classes is the number of classes. Task is the task solved using the dataset.

at least 100 documents and all of the documents
that do not belong to at least one of the remaining
topics. We perform stratified sampling and create
three partitions by allocating 30% of the samples
to the training set, 15% to the validation set, and
15% to the test set. For computational efficiency,
before computing the statistics shown in Table 7,
we convert texts in the Reuters dataset to lowercase
and remove punctuation and numbers. Lastly, we
use the original splits for the AAPD data set.

We further pad and truncate texts to submit train-
ing examples in batches, and we select a strategy to
handle terms that are not present in the model’s vo-
cabulary (OOV). We explain these two steps next.

To fully take advantage of the available hard-
ware, we submit training examples to the models
in batches. When multiple texts with a different
amount of tokens are present in a batch, our models
require padding on the shorter texts in such a way
that each input has the same amount of tokens. To
have batches where each text is of equal size, we
truncate long texts and pad short ones. Note that
we do not remove documents based on a minimum
amount of tokens in the text. To truncate the texts,
we find a threshold after which we perform trunca-
tion. We define this threshold as the first power of
two after which, by selecting the value as a thresh-
old, at least 85% of the texts in the dataset do not
need to be truncated. The resulting thresholds are
reported as “Max tokens” in Table 7. An exception
is made for SNLI. The SNLI dataset is made of
short texts, and even the longest text is under 128
tokens. Hence we consider 128 tokens, represent-
ing the whole text for each sample in the data set.
We then proceed to pad short texts in each batch to
always exactly match the number of tokens speci-
fied in Table 7. For BERT we use the huggingface’s
tokenizer padding and pad all of the texts in each

dataset to the respective “Max tokens” value in Ta-
ble 7. BERT will mask and ignore the padding.
For the BiLSTM model, we represent padding as
a randomly generated embedding according to the
mean and std distribution in Glove.

On BERT, OOV terms are assigned the default
UNK token. On BiLSTM, we represent OOV terms
with a vector defined as the average over all of the
present word embeddings. The result of our pre-
processing will be texts with exactly “Max tokens”
tokens in which OOV terms are represented by the
UNK token on BERT and as the average embed-
ding vector on BiLSTM.

A.3 Pruning Methods

Model parameters are pruned one layer at a time.
We prune uniformly across layers, i.e., we remove
the same percentage of parameters in each layer.
Following Chen et al. (2020) and Yu et al. (2020b);
Prasanna et al. (2020), we do not prune embedding
layers and biases of the LMs (Gupta and Agrawal,
2022). We also do not prune the final classification
layer, because its weights are likely disproportion-
ately important to reach high effectiveness (Frankle
et al., 2021).

With iterative pruning, we select a pruning per-
centage and keep it fixed for each pruning iteration
to reach our pruning goal in exactly three iterations
across all datasets, LMs, and pruning percentages.
We train the model (BERT or BiLSTM) fully for N
epochs, prune according to the selected percentage,
and then retrain for N epochs. This process repeats
until we achieve our pruning target as per (Jin et al.,
2022). In total, this procedure requires four times
the training iterations when compared to pruning
at initialization.
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Dataset Architecture Batch size Epochs Best epoch lr Best lrMin Max Min Max
IMDB BERT 32 2 6 3 2e-5 2e-4 0.00003

BiLSTM 1024 10 30 26 2e-4 2e-3 0.00148

SNLI BERT 256 2 6 2 2e-5 2e-4 0.00004
BiLSTM 4096 30 50 39 2e-4 2e-3 0.00070

Reuters BERT 128 5 15 14 2e-5 2e-4 0.00005
BiLSTM 512 30 100 72 2e-4 2e-3 0.00186

AAPD BERT 256 5 15 13 2e-5 2e-4 0.00008
BiLSTM 2048 30 60 50 2e-4 2e-3 0.00200

Table 8: Search space and best configuration for the
hyperparameter tuning of the models. Min and Max
epochs represent the range of epochs used to perform
hyperparameter tuning. Best epoch is the best epoch
found with hyperparameter tuning. Min and Max lr are
the range learning rate is tuned on. Best lr is the best
learning rate found during hyperparameter optimization.
The batch size is set to maximize the GPU usage.

A.4 Hyperparameter Tuning
We tune the unpruned model’s hyperparameters for
each combination of architecture and dataset. The
resulting hyperparameters are then used to train
both unpruned and pruned models. We do not tune
hyperparameters of the pruning algorithms. The
only tunable aspect when pruning at initialization
is the percentage of parameters to prune. However,
in our experiments, we fix five different values for
this hyperparameter and we test such values on
all pruning algorithms, hence, we do not optimize
the percentage of pruned parameters. When prun-
ing iteratively (with or without weight rewinding)
we also need to select the number of pruning it-
erations and the amount of parameters to prune
at each pruning iteration. To allow for compari-
son between pruning algorithms, we select a fixed
percentage of parameters to remove during each it-
eration, such that in exactly 3 iterations the desired
amount of parameters will be pruned. Hence those
hyperparameters are inferred and fixed in each set-
ting, leaving no hyperparameters to be optimized
when pruning iteratively.

The hyperparameter tuning is performed sepa-
rately on architectures and separately for each data
set. We tune the hyperparameters using the random
optimization from the weights and biases (WandB)
platform with a budget of 100 objective function
evaluations (Biewald, 2020). Hyperparameter tun-
ing is set to maximize accuracy and macro F1 in
the validation set for the single-label and multi-
label tasks respectively. The search spaces optimal
hyperparameter values are summarized in Table 8.

B Results

In Table 3 we report accuracy and F1 score with
their standard deviation, obtained by unpruned

models and pruned models at different amounts
of pruned parameters.

In Table 10 we report accuracy and F1 score
on PIEs obtained by unpruned models and pruned
models at different amounts of pruned parameters.
We highlight in blue the cases where the pruned
models are on average more effective than the un-
pruned models on PIEs.

B.1 Pruning and occurrence of PIEs

We report here the additional results of Section 4.1.
In Figure 6 we show the distribution of all data

points and of PIEs at 20% to 99% pruning, across
classes sorted by frequency for the multi-label
datasets. We observe the same overall trend in all
settings. Regardless of the language model archi-
tecture, the percentage of PIEs in the most frequent
class for Reuters is much lower than the percentage
of examples belonging to the same class in all data
points. This means that the disagreement between
pruned and unpruned models is not focused on the
most frequent class of Reuters. The disagreement
is skewed instead towards the less frequent classes.
On AAPD we observe a similar behaviour, how-
ever, the percentage of PIEs belonging to the most
frequent class is higher, hence the disagreement is
slightly more balanced across all classes.

In Figures 7, 8, 9, 10, 11, 12, and 13 we report
the accuracy of unpruned and pruned models on
PIEs and all samples in the dataset per pruning
method, across pruning thresholds. The accuracy
on PIEs is lower than the accuracy on all data points
for both pruned and unpruned models. The accu-
racy of the unpruned model on PIEs increases when
increasing the amount of pruned parameters, while
the accuracy of the pruned model decreases in the
same setting. This is because the pruned model
misclassifies more samples that are correctly classi-
fied by the unpruned model, increasing the amount
of disagreement, hence the number of PIEs too.

B.2 Influential examples in PIEs

We report here the additional results of Section
4.2. Figures 14, 15, 16, 17, 18, 19, and 20 report
the percentage of data points that are PIEs versus
the degree of influence of all data points in the
training set, for each pruning algorithm. PIEs are
concentrated on the most influential examples. The
higher the amount of pruned parameters, the more
PIEs are distributed across examples with different
influence on model generalization.
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Single-label: Accuracy
% pruned parameters 0% 20% 50% 70% 90% 99%

dataset model pruning algo

IM
D

B

B
E

R
T

IIBP-WR .932 ± .005 .892 ± .009 .870 ± .016 .864 ± .026 .863 ± .011 .742 ± .136
IIBP-FT .932 ± .005 .919 ± .004 .869 ± .008 .848 ± .007 .843 ± .010 .828 ± .064
IBP-AI .932 ± .005 .882 ± .010 .864 ± .021 .865 ± .016 .841 ± .069 .526 ± .079
IMP-WR .932 ± .005 .911 ± .009 .880 ± .006 .870 ± .009 .857 ± .007 .500 ± .000
IMP-FT .932 ± .005 .924 ± .004 .873 ± .007 .845 ± .004 .850 ± .007 .500 ± .000
MP-AI .932 ± .005 .904 ± .008 .871 ± .009 .867 ± .010 .852 ± .011 .500 ± .000
IRP-FT .932 ± .005 .877 ± .011 .846 ± .009 .778 ± .141 .500 ± .000 .500 ± .000
RP-AI .932 ± .005 .874 ± .004 .866 ± .012 .828 ± .114 .500 ± .000 .500 ± .000

B
iL

ST
M

IIBP-WR .879 ± .016 .868 ± .021 .861 ± .026 .856 ± .027 .837 ± .025 .806 ± .026
IIBP-FT .879 ± .016 .883 ± .011 .880 ± .013 .878 ± .010 .872 ± .011 .872 ± .013
IBP-AI .879 ± .016 .874 ± .017 .848 ± .019 .820 ± .032 .805 ± .029 .755 ± .022
IMP-WR .879 ± .016 .875 ± .020 .881 ± .012 .876 ± .011 .873 ± .025 .804 ± .018
IMP-FT .879 ± .016 .886 ± .010 .887 ± .010 .882 ± .009 .878 ± .007 .862 ± .013
MP-AI .879 ± .016 .872 ± .019 .855 ± .018 .843 ± .023 .834 ± .015 .755 ± .021
IRP-FT .879 ± .016 .885 ± .010 .875 ± .011 .875 ± .012 .873 ± .017 .548 ± .073
RP-AI .879 ± .016 .872 ± .037 .848 ± .027 .845 ± .026 .840 ± .016 .721 ± .024

SN
L

I

B
E

R
T

IIBP-WR .901 ± .002 .849 ± .098 .822 ± .004 .794 ± .007 .683 ± .044 .578 ± .053
IIBP-FT .901 ± .002 .892 ± .002 .876 ± .003 .857 ± .003 .806 ± .090 .654 ± .071
IBP-AI .901 ± .002 .872 ± .002 .824 ± .005 .768 ± .028 .625 ± .016 .395 ± .086
IMP-WR .901 ± .002 .883 ± .003 .847 ± .004 .799 ± .004 .646 ± .033 .336 ± .008
IMP-FT .901 ± .002 .895 ± .002 .875 ± .002 .835 ± .004 .799 ± .005 .336 ± .008
MP-AI .901 ± .002 .882 ± .002 .833 ± .003 .691 ± .016 .616 ± .011 .335 ± .007
IRP-FT .901 ± .002 .885 ± .003 .836 ± .004 .785 ± .008 .342 ± .034 .336 ± .008
RP-AI .901 ± .002 .854 ± .004 .695 ± .007 .647 ± .005 .366 ± .069 .335 ± .007

B
iL

ST
M

IIBP-WR .778 ± .004 .780 ± .004 .774 ± .005 .763 ± .005 .715 ± .007 .614 ± .007
IIBP-FT .778 ± .004 .742 ± .004 .750 ± .004 .762 ± .003 .771 ± .004 .657 ± .011
IBP-AI .778 ± .004 .776 ± .004 .766 ± .004 .743 ± .007 .669 ± .009 .431 ± .104
IMP-WR .778 ± .004 .779 ± .004 .782 ± .004 .782 ± .004 .726 ± .009 .336 ± .007
IMP-FT .778 ± .004 .741 ± .004 .746 ± .004 .766 ± .003 .765 ± .004 .574 ± .019
MP-AI .778 ± .004 .776 ± .004 .764 ± .006 .743 ± .005 .687 ± .007 .336 ± .007
IRP-FT .778 ± .004 .746 ± .004 .769 ± .004 .779 ± .004 .712 ± .007 .389 ± .070
RP-AI .778 ± .004 .776 ± .003 .762 ± .005 .739 ± .006 .667 ± .017 .336 ± .007

Multi-label: F1 Macro
% pruned parameters 0% 20% 50% 70% 90% 99%

dataset model pruning algo

R
eu

te
rs

B
E

R
T

IIBP-WR .836 ± .004 .822 ± .011 .792 ± .018 .674 ± .064 .382 ± .046 .167 ± .041
IIBP-FT .836 ± .004 .835 ± .005 .830 ± .005 .822 ± .008 .786 ± .029 .355 ± .061
IBP-AI .836 ± .004 .810 ± .008 .645 ± .048 .328 ± .048 .189 ± .027 .096 ± .018
IMP-WR .836 ± .004 .827 ± .006 .829 ± .005 .736 ± .015 .147 ± .025 .082 ± .008
IMP-FT .836 ± .004 .838 ± .005 .834 ± .005 .824 ± .006 .490 ± .086 .085 ± .005
MP-AI .836 ± .004 .822 ± .006 .745 ± .021 .417 ± .057 .127 ± .031 .086 ± .004
IRP-FT .836 ± .004 .832 ± .005 .769 ± .013 .524 ± .075 .087 ± .001 .087 ± .002
RP-AI .836 ± .004 .803 ± .007 .479 ± .052 .242 ± .021 .089 ± .012 .086 ± .003

B
iL

ST
M

IIBP-WR .731 ± .017 .728 ± .018 .727 ± .016 .716 ± .014 .631 ± .036 .396 ± .040
IIBP-FT .731 ± .017 .753 ± .018 .751 ± .013 .751 ± .015 .742 ± .014 .693 ± .019
IBP-AI .731 ± .017 .729 ± .020 .706 ± .019 .616 ± .029 .456 ± .036 .224 ± .028
IMP-WR .731 ± .017 .726 ± .017 .738 ± .015 .745 ± .012 .734 ± .011 .481 ± .032
IMP-FT .731 ± .017 .751 ± .013 .747 ± .014 .745 ± .017 .746 ± .012 .657 ± .028
MP-AI .731 ± .017 .740 ± .012 .730 ± .014 .705 ± .022 .606 ± .026 .393 ± .034
IRP-FT .731 ± .017 .753 ± .015 .757 ± .015 .760 ± .014 .743 ± .012 .417 ± .042
RP-AI .731 ± .017 .731 ± .019 .724 ± .015 .661 ± .028 .570 ± .030 .377 ± .042

A
A

PD

B
E

R
T

IIBP-WR .578 ± .007 .547 ± .008 .518 ± .009 .482 ± .010 .403 ± .018 .179 ± .032
IIBP-FT .578 ± .007 .573 ± .009 .548 ± .009 .462 ± .153 .476 ± .018 .316 ± .033
IBP-AI .578 ± .007 .539 ± .009 .480 ± .015 .398 ± .023 .234 ± .042 .091 ± .016
IMP-WR .578 ± .007 .567 ± .009 .541 ± .007 .483 ± .008 .230 ± .029 .080 ± .001
IMP-FT .578 ± .007 .579 ± .009 .546 ± .008 .521 ± .008 .400 ± .019 .080 ± .000
MP-AI .578 ± .007 .551 ± .008 .508 ± .010 .423 ± .014 .145 ± .007 .080 ± .000
IRP-FT .578 ± .007 .554 ± .009 .312 ± .197 .338 ± .133 .082 ± .014 .080 ± .000
RP-AI .578 ± .007 .524 ± .009 .397 ± .015 .261 ± .029 .082 ± .007 .080 ± .000

B
iL

ST
M

IIBP-WR .468 ± .015 .449 ± .022 .441 ± .022 .444 ± .020 .346 ± .022 .163 ± .028
IIBP-FT .468 ± .015 .429 ± .013 .425 ± .015 .436 ± .009 .486 ± .010 .396 ± .012
IBP-AI .468 ± .015 .473 ± .014 .459 ± .011 .398 ± .029 .190 ± .027 .082 ± .004
IMP-WR .468 ± .015 .446 ± .018 .454 ± .016 .454 ± .013 .406 ± .014 .185 ± .019
IMP-FT .468 ± .015 .428 ± .014 .421 ± .013 .432 ± .015 .486 ± .009 .330 ± .020
MP-AI .468 ± .015 .473 ± .015 .473 ± .010 .454 ± .011 .385 ± .020 .165 ± .025
IRP-FT .468 ± .015 .432 ± .012 .451 ± .013 .486 ± .012 .475 ± .010 .167 ± .025
RP-AI .468 ± .015 .464 ± .014 .453 ± .018 .421 ± .023 .356 ± .021 .163 ± .025

Table 9: Average macro accuracy/F1 score and std over 30 model initializations. Pruning algo is the used pruning
algorithm according to Table 3. The best results for each percentage of pruned parameters and combination of
dataset and architecture are in bold.
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Single-label
Pruner 20% 50% 70% 90% 99%

IIBP-WR 0.245 0.755 0.200 0.800 0.191 0.809 0.188 0.812 0.182 0.818
IIBP-FT 0.356 0.644 0.195 0.805 0.161 0.839 0.163 0.837 0.188 0.812
IBP-AI 0.227 0.773 0.195 0.805 0.198 0.802 0.205 0.795 0.056 0.944
IMP-WR 0.290 0.710 0.206 0.794 0.194 0.806 0.179 0.821 0.056 0.944
IMP-FT 0.385 0.615 0.200 0.800 0.156 0.844 0.167 0.833 0.056 0.944
MP-AI 0.262 0.738 0.197 0.803 0.192 0.808 0.180 0.820 0.056 0.944
IRP-FT 0.220 0.780 0.161 0.839 0.172 0.828 0.056 0.944 0.056 0.944

B
E

R
T

RP-AI 0.198 0.802 0.199 0.801 0.198 0.802 0.056 0.944 0.056 0.944
IIBP-WR 0.371 0.629 0.322 0.678 0.283 0.717 0.232 0.768 0.207 0.793
IIBP-FT 0.604 0.396 0.616 0.384 0.598 0.402 0.555 0.445 0.471 0.529
IBP-AI 0.382 0.618 0.253 0.747 0.209 0.791 0.206 0.794 0.168 0.832
IMP-WR 0.471 0.529 0.542 0.458 0.480 0.520 0.470 0.530 0.218 0.782
IMP-FT 0.644 0.356 0.658 0.342 0.584 0.416 0.613 0.387 0.395 0.605
MP-AI 0.404 0.596 0.281 0.719 0.241 0.759 0.225 0.775 0.178 0.822
IRP-FT 0.633 0.367 0.577 0.423 0.576 0.424 0.404 0.596 0.126 0.874

IM
D

B
B

iL
ST

M

RP-AI 0.403 0.597 0.269 0.731 0.250 0.750 0.230 0.770 0.161 0.839
IIBP-WR 0.250 0.688 0.177 0.753 0.155 0.782 0.091 0.855 0.074 0.878
IIBP-FT 0.438 0.468 0.301 0.635 0.235 0.692 0.173 0.752 0.090 0.859
IBP-AI 0.265 0.676 0.177 0.756 0.139 0.805 0.075 0.872 0.049 0.882
IMP-WR 0.284 0.658 0.212 0.721 0.149 0.792 0.084 0.867 0.044 0.909
IMP-FT 0.397 0.525 0.287 0.648 0.194 0.746 0.149 0.788 0.044 0.909
MP-AI 0.275 0.656 0.175 0.748 0.083 0.853 0.069 0.873 0.044 0.909
IRP-FT 0.347 0.582 0.192 0.738 0.136 0.803 0.044 0.909 0.044 0.909

B
E

R
T

RP-AI 0.224 0.709 0.087 0.855 0.074 0.873 0.044 0.909 0.044 0.909
IIBP-WR 0.445 0.464 0.356 0.549 0.278 0.618 0.208 0.682 0.153 0.750
IIBP-FT 0.467 0.413 0.529 0.366 0.517 0.368 0.391 0.493 0.184 0.719
IBP-AI 0.382 0.518 0.298 0.582 0.258 0.626 0.177 0.722 0.124 0.760
IMP-WR 0.434 0.454 0.461 0.429 0.447 0.451 0.225 0.670 0.068 0.824
IMP-FT 0.495 0.381 0.496 0.379 0.522 0.361 0.375 0.522 0.141 0.758
MP-AI 0.397 0.490 0.296 0.596 0.247 0.640 0.196 0.705 0.068 0.824
IRP-FT 0.512 0.389 0.535 0.340 0.498 0.393 0.215 0.677 0.101 0.796

SN
L

I
B

iL
ST

M

RP-AI 0.371 0.524 0.281 0.620 0.243 0.649 0.175 0.728 0.068 0.824
Multi-label

Pruner 20% 50% 70% 90% 99%
IIBP-WR 0.575 0.620 0.561 0.664 0.545 0.777 0.319 0.807 0.167 0.837
IIBP-FT 0.608 0.591 0.572 0.567 0.589 0.621 0.530 0.659 0.302 0.820
IBP-AI 0.572 0.656 0.506 0.780 0.276 0.825 0.182 0.838 0.096 0.836
IMP-WR 0.563 0.602 0.529 0.570 0.545 0.726 0.147 0.837 0.082 0.836
IMP-FT 0.619 0.602 0.555 0.596 0.590 0.627 0.393 0.794 0.085 0.836
MP-AI 0.555 0.610 0.555 0.743 0.359 0.819 0.127 0.836 0.086 0.836
IRP-FT 0.604 0.621 0.530 0.714 0.422 0.806 0.087 0.836 0.087 0.836

B
E

R
T

RP-AI 0.560 0.666 0.428 0.815 0.196 0.825 0.089 0.836 0.086 0.836
IIBP-WR 0.466 0.462 0.498 0.500 0.483 0.509 0.509 0.620 0.362 0.701
IIBP-FT 0.476 0.423 0.490 0.440 0.511 0.442 0.508 0.432 0.496 0.509
IBP-AI 0.452 0.459 0.489 0.529 0.501 0.620 0.422 0.708 0.193 0.720
IMP-WR 0.464 0.470 0.445 0.448 0.483 0.451 0.521 0.485 0.435 0.696
IMP-FT 0.519 0.462 0.521 0.452 0.504 0.443 0.526 0.447 0.496 0.577
MP-AI 0.495 0.470 0.472 0.478 0.514 0.557 0.504 0.638 0.356 0.711
IRP-FT 0.500 0.423 0.480 0.399 0.488 0.416 0.512 0.440 0.375 0.704

R
eu

te
rs

B
iL

ST
M

RP-AI 0.453 0.446 0.510 0.517 0.510 0.593 0.507 0.676 0.346 0.710
IIBP-WR 0.471 0.511 0.453 0.529 0.432 0.553 0.367 0.563 0.175 0.580
IIBP-FT 0.498 0.506 0.476 0.515 0.417 0.542 0.418 0.556 0.292 0.576
IBP-AI 0.463 0.515 0.430 0.548 0.366 0.566 0.229 0.582 0.091 0.578
IMP-WR 0.492 0.507 0.475 0.525 0.428 0.552 0.225 0.582 0.080 0.578
IMP-FT 0.502 0.506 0.484 0.532 0.462 0.537 0.366 0.569 0.080 0.578
MP-AI 0.475 0.517 0.452 0.544 0.390 0.568 0.143 0.579 0.080 0.578
IRP-FT 0.483 0.519 0.295 0.560 0.311 0.565 0.082 0.578 0.080 0.578

B
E

R
T

RP-AI 0.448 0.516 0.364 0.568 0.255 0.583 0.082 0.578 0.080 0.578
IIBP-WR 0.391 0.416 0.405 0.443 0.413 0.445 0.333 0.461 0.160 0.469
IIBP-FT 0.393 0.439 0.380 0.430 0.388 0.424 0.432 0.413 0.380 0.459
IBP-AI 0.402 0.392 0.410 0.422 0.378 0.454 0.184 0.468 0.082 0.468
IMP-WR 0.399 0.427 0.397 0.417 0.421 0.441 0.383 0.453 0.180 0.469
IMP-FT 0.389 0.435 0.375 0.432 0.386 0.432 0.442 0.425 0.318 0.462
MP-AI 0.393 0.385 0.434 0.430 0.421 0.439 0.365 0.457 0.162 0.469
IRP-FT 0.386 0.431 0.413 0.429 0.436 0.411 0.448 0.439 0.164 0.468

A
A

PD
B

iL
ST

M

RP-AI 0.411 0.417 0.409 0.432 0.397 0.451 0.344 0.462 0.160 0.470

Table 10: Average pruned and unpruned models’ effectiveness on PIEs when pruning 20, 50, 70, 90, and 99%
of the parameters. For each pruning percentage column, the first value refers to the effectiveness of the pruned
models on PIEs, the second value represents the effectiveness of the unpruned models on the same set of PIEs. We
represent models’ effectiveness through accuracy in Single-label and F1 macro in Multi-label settings. The blue
colour identifies cases where the pruned models have higher effectiveness on PIEs than the unpruned ones. We
represent in bold the cases where the effectiveness of the models on PIEs is higher than the effectiveness of the
same models on the whole dataset instead.
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Figure 6: Distribution of all data points and of PIEs at 20% to 99% pruning, across classes sorted by frequency (x
axis), for the multi-label datasets (test set).
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Figure 7: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 8: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 9: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 10: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 11: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 12: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 13: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 14: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IBP-AI.
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Figure 15: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IIBP-WR at 20% and 99% pruning.
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Figure 16: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-FT.
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Figure 17: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-AI.
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Figure 18: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-WR.
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Figure 19: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IRP-FT.
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Figure 20: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for RP-AI.
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B.3 Textual characteristics of PIEs
We report here the additional results of Section 4.3.
In most cases, PIEs require a higher formal educa-
tion level to be understood than all data points, with
the exception of AAPD. AAPD leads to significant
disagreement between pruned and unpruned mod-
els, even with 20% parameter pruning (See Table
4)). This is due to our extension of PIEs for multi-
label settings, which considers a sample as a PIE if
there is prediction disagreement on any class. The
more classes in the dataset, the higher the chance
of samples being labelled as PIEs. AAPD has 53
classes, the highest class count of all our datasets.
As shown in the remaining settings, the more the
disagreement between pruned and unpruned model
predictions, the harder it is to observe a difference
between the formal education level needed to un-
derstand PIEs and the dataset. Hence, on AAPD,
we do not observe the same behaviour obtained in
the three remaining datasets.

PIEs are overall longer than the average text
lenght of all data points. PIEs can have up to
1.13 and 1.9 more tokens than the average num-
ber of tokens for a sample in the dataset for IMDB,
and Reuters respectively. The behaviour can be
observed with both BERT and BiLSTM models.
About the ratio between the average number of
tokens for the PIEs and in all the samples of the
dataset on SNLI and AAPD datasets: we do not
see the same behaviour as in IMDB and Reuters.
SNLI is mostly made of short samples, hence it is
harder to observe the behaviour on such a dataset,
even if the trend is the same. On AAPD, the same
observation on the needed education level holds
when discussing text length.

20 50 70 90 99

1.00

1.02

1.04

1.06

1.08

1.10

AUTOMATED READABILITY INDEX (a)

20 50 70 90 99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

COLEMAN LIAU INDEX (b)

20 50 70 90 99
1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

FLESCH KINCAID GRADE (c)

20 50 70 90 99

1.00

1.02

1.04

1.06

1.08

LINSEAR WRITE FORMULA (d)

20 50 70 90 99
1.0000

1.0025

1.0050

1.0075

1.0100

1.0125

1.0150

1.0175

DALE CHALL READABILITY SCORE (e)

20 50 70 90 99

1.00

1.02

1.04

1.06

1.08

DIFFICULT WORDS (f)

20 50 70 90 99
% pruned parameters

1.00

1.01

1.02

1.03

1.04

1.05

1.06

GUNNING FOG (g)

20 50 70 90 99
% pruned parameters

1.00

1.01

1.02

1.03

1.04

TOKENS RATIO (h)

IIBP-WR
IIBP-FT

IBP-AI
IMP-WR

IMP-FT
MP-AI

IRP-FT
RP-AI

All pruners (mean)
Unpruned

Figure 21: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
SNLI. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 22: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BERT and IMDB.
The solid black horizontal line represents equal scores
in PIEs and all data points. The solid turquoise line is
the mean score of all pruners. Any line above the solid
black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 23: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
IMDB. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 24: How the text of PIEs differs from the text
of all data points, according to 7 readability scores
(plots (a)-(g)) and text length (plot (h)). Ratio between
the scores of PIEs and the scores of all data points (y
axis), across pruning thresholds (x axis), for BERT and
Reuters. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above
the solid black line means that PIEs are harder to un-
derstand (plots (a)-(g)) or have longer text (plot (h)), on
average, than all data points.
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Figure 25: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
Reuters. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 26: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BERT and AAPD.
The solid black horizontal line represents equal scores
in PIEs and all data points. The solid turquoise line is
the mean score of all pruners. Any line above the solid
black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 27: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
AAPD. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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