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Abstract

Recent advancements in generative AI have
suggested that by taking visual prompts, GPT-
4V can demonstrate significant proficiency in
visual recognition tasks. Despite its impres-
sive capabilities, the financial cost associated
with GPT-4V’s inference presents a substantial
barrier to its wide use. To address this chal-
lenge, we propose a budget-friendly collage
prompting task that collages multiple images
into a single visual prompt and makes GPT-4V
perform visual recognition on several images
simultaneously, thereby reducing the cost. We
collect a dataset of various collage prompts
to assess its performance in GPT-4V’s visual
recognition. Our evaluations reveal several key
findings: 1) Recognition accuracy varies with
different positions in the collage. 2) Group-
ing images of the same category together leads
to better visual recognition results. 3) Incor-
rect labels often come from adjacent images.
These findings highlight the importance of im-
age arrangement within collage prompt. To
this end, we construct a benchmark called Col-
lagePrompt, which offers a platform for de-
signing collage prompt to achieve more cost-
effective visual recognition with GPT-4V. A
baseline method derived from genetic algo-
rithms to optimize collage layouts is proposed
and two metrics are introduced to measure the
efficiency of the optimized collage prompt. Our
benchmark enables researchers to better opti-
mize collage prompts, thus making GPT-4V
more cost-effective in visual recognition. The
code and data are available at this project page
https://collageprompting.github.io/.

1 Introduction

With the rapid development of generative AI, vari-
ous large language models (LLMs) (Chang et al.,
2023; Zhao et al., 2023; Thirunavukarasu et al.,
2023) have emerged as generative tools. Beyond
text, these models have expanded their capabilities

*Corresponding authors.

to include text-to-image generation such as Stable
Diffusion (Rombach et al., 2022), and text-to-video
generation, as seen in Sora (Brooks et al., 2024).
ChatGPT (Brown et al., 2020), as the most well-
known LLMs, has shown it can have natural and
coherent conversations, making it a powerful tool
in daily life and different industry fields. As the lat-
est version of ChatGPT, GPT-4V is a multi-modal
LLM capable of processing both text and images.
This capability allows it to be applied to a wider
range of applications and tasks. There are many
technical reports and user studies (Li et al., 2023;
Lin et al., 2023; Shi et al., 2023; Wen et al., 2023;
Yang et al., 2023a; Zhou et al., 2023) about GPT-
4V, which conducted thorough evaluations of its
capabilities from various aspects.

In (Wu et al., 2023c), the visual capabilities of
GPT-4V are investigated within the framework of
zero-shot visual recognition tasks, such as image
and video recognition. The evaluation of visual ca-
pabilities is quite straightforward: images and can-
didate categories are directly fed into GPT-4V for
relevance ranking, yielding Top-1 and Top-5 pre-
diction results. Video and point cloud data are uni-
formly sampled to generate a set of images, which
are then processed by GPT-4V for visual recog-
nition. GPT-4V has achieved remarkable perfor-
mance across various visual recognition tasks, sur-
passing previous customized solutions(Wang et al.,
2018b; Dosovitskiy et al., 2020). However, its fi-
nancial cost associated with its inference can be
significant. Specifically, performing image recog-
nition on the ImageNet-1K dataset (Russakovsky
et al., 2015) requires approximately $1 for every
20 images, leading to a total evaluation cost of over
$2,500 for the entire dataset. If we consider the rate
limits of maximum API requests per minute, the
costs will be even higher. Thus, employing GPT-
4V for visual recognition tasks is expensive, and it
is meaningful to adopt a more budget-friendly way
for GPT-4V’s visual recognition.
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Here is the prediction: [‘vase’]

Act as an image classifier by providing 
prediction for this image with assigned 
categories from a given list (categories).

Standard Prompting

+

Here is the prediction: [‘feather boa’]

…

Here is the prediction: [‘pot pie’]

Here is the prediction: [‘joystick’]

+
+

+

Budget Cost:

Here is the prediction:
[0: ‘vase’, 1: ‘pot pie’, 2: ‘feather boa’, 3: 
‘joystick’]

Act as an image classifier by providing 
predictions for each 2x2 grid collage with 
assigned categories from a given list 
(categories), following left-to-right, top-
to-bottom order.

Collage Prompting

+

Budget Cost:

…

…

Arrangement Optimization

[ ‘vase’ , ‘feather boa’, 
‘cookie’ , ‘joystick’ ]

[ ‘handle’ , ‘vase’ , 
‘feather’ , ‘cookie’ ]

[ ‘pot pie’ , ‘joystick’
‘vase’ , ‘feather boa’ ]

[ ‘feather boa’, ‘handle’ 
‘pot pie’ , ‘vast’ ]

GPT-4V

Arrangements Matters

Figure 1: Visual recognition of GPT-4V with different prompting ways. (a): Standard Prompt takes one image as
visual prompt for each GPT-4V’s run. (b): Collage Prompt concatenates multiple images into one visual prompt
and predicts class for all images in each inference. (c): The arrangement of images within collage prompting leads
to significantly different results. Green indicates an accurate prediction while red indicates an wrong prediction.

In GPT-4V’s visual recognition, only an image is
used as the visual prompt. This standard prompting
way fails to fully release the potential capacity of
GPT-4V, which is able to process multiple inquiries
within one prompt simultaneously. Motivated by
this idea, we propose Collage Prompting, a new
task of prompting for GPT-4’s visual recognition
for budget-friendly inference. In collage prompt,
multiple images are collaged into one visual prompt
with equal size. GPT-4V is then requested to recog-
nize the class for all images within this prompt. The
overall process is shown in Figure 1. Since collage
prompting allows for the recognition of multiple
images in one run of GPT-4V, it significantly re-
duces the average cost of visual recognition.
Benchmark. Based on the observation that differ-
ent arrangements in the collage prompt could lead
to rather large variance of accuracy in GPT-4V’s
recognition, we further construct a benchmark for
arrangement optimization. The benchmark collects
a comprehensive dataset that contains various col-
lage prompts, which is then used to either assess
the performance of collage prompts or provide a
platform to develop algorithms that can optimize
collage prompts for more cost-effective recognition.
Based on the idea of genetic algorithm, we develop
a baseline Learn to Collage (LCP) to optimize the
arrangement. In our baseline, the collage prompt is
represented as a graph, and a collage predictor is
used to estimate the expected accuracy of this col-
lage prompt. LCP is then used to search for the best
arrangement in several iterations. Two new metrics
are proposed to measure the cost-effectiveness of
the developed algorithm.
Contributions. We make three contributions in

this paper. First, we propose a budget-friendly
prompting approach for GPT-4V. By involving mul-
tiple images into a single visual prompt, GPT-4V
can process multiple images in one inference run,
thus reducing the overall expense greatly. Second,
we collect the benchmark dataset of collage prompt.
The datasets contain various collage prompts from
the ImageNet-1K training set and their accuracy in
GPT-4V’s image recognition. This dataset is mean-
ingful for studying the effectiveness of collage
prompting. Third, we propose a genetic algorithm-
based optimization method for collage arrange-
ment. This approach aims to optimize the arrange-
ment for collage prompts and improve image recog-
nition accuracy within GPT-4V.

2 Related Works

Exploration of GPT-4V. The state-of-the-art large
multi-modal model GPT-4V was firstly launched at
September 2023 and has demonstrated its strong vi-
sual capability in different fields. Early works (Wu
et al., 2023d; Yang et al., 2023a) conducted a user
study of GPT-4V, where operations were completed
by entering prompts on a web interface for GPT-4V.
Furthermore, the release of GPT-4V API in Novem-
ber 2023 opened up new opportunities for both aca-
demic community and industry to thoroughly eval-
uate GPT-4V’s performance across various visual
benchmarks and provide quantitative data beyond
what user studies can offer. GPT-4V’s capacities in
multimodal medical diagnosis has been explored
in (Wu et al., 2023a; Yang et al., 2023b; Deng et al.,
2024), where GPT-4V can process different imag-
ing modalities like CT and MRI in medical scene.
GPT-4V can also be utilized to operate robots from
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providing instructions by taking multimodal input
in autonomous driving (Cui et al., 2024; Han et al.,
2024; Wen et al., 2023) and task planning (Wake
et al., 2023; Wang et al., 2024; Hu et al., 2023). Ad-
ditionally, GPT-4V has been widely used in advanc-
ing video understanding (Lin et al., 2023), conduct-
ing OCR recognition (Shi et al., 2023), acting as an
intelligent web agent (Zheng et al., 2024), and deal-
ing with each observation data (Zhang and Wang,
2024). (Wu et al., 2023c) is the first work that con-
siders to adopt extensive quantitative analysis uti-
lizing the established visual benchmarks. However,
the evaluation of GPT-4V on visual benchmarks
could lead to large expense and it is important to
adopt a budget-friendly inference scheme for the
evaluation of GPT-4V.
Prompt Engineering in LLMs. Prompt engineer-
ing has emerged as a crucial technique for unlock-
ing the potential of pre-trained large language mod-
els (LLMs) and vision-language models (VLMs).
The concept of prompt engineering was initially
explored and popularized in the LLMs (Liu et al.,
2023; Tonmoy et al., 2024; Chen et al., 2023) and
VLMs (Wu et al., 2023b; Bahng et al., 2022). The
most common prompting way is zero-shot prompt-
ing (Radford et al., 2019; Cheng et al., 2023),
which offers a paradigm shift in leveraging large
LLMs. This method significantly reduces the de-
pendency on vast amounts of training data by em-
ploying strategically formulated prompts to steer
the model towards executing new tasks. While
the primary focus in the field has been on creating
prompts that can release the potential capacities
of LLMs, we focus on developing a prompting
approach that prioritizes cost-efficiency.

3 Collage Prompting

GPT-4V has enabled us to perform comprehensive
visual recognition. However, each inference per-
formed by GPT-4V incurs a financial cost, which
is determined by the number and type of input and
generated tokens*. Specifically, for image recog-
nition tasks involving images of 512× 512 resolu-
tion, approximately 5000 tokens are consumed per
image. Standard prompting of GPT-4V involves
presenting a single image as a visual prompt and
processing each image in the dataset individually.
With this standard prompting, the expense of eval-
uating a dataset with 10,000 images could exceed

*https://openai.com/pricing, based on pricing as of March
1, 2024.

$500. This method is costly, and a more budget-
friendly approach is to process multiple images
simultaneously in a single inference run.

Motivated by this idea, we propose Collage
Prompting, an efficient alternative to standard vi-
sual prompting. Collage Prompting involves con-
catenating multiple images into a single visual
prompt, allowing for simultaneous processing in
a single inference run. For example, employing a
nine-grid collage prompt can decrease expenses to
just 1/9 of what standard individual image prompt-
ing incurs. Moreover, collage prompt not only
significantly reduces costs but also processes mul-
tiple images with a single API request, thereby
reducing server load and inference time. This
approach is particularly beneficial for large-scale,
high-frequency applications of multimodal foun-
dational models, such as using GPT-4V for image
captioning or employing GPT-4o for reading video
streams.
Preliminary of collage prompt. By assembling K
images into one visual prompt, the collage prompt
M is designed to be a

√
K ×

√
K grid and each

grid contains one image. For example, a collage
of four images might be presented in a quadrant
grid, while nine images could be arranged in a
nine-grid format. Supposing we have a set of K
images X = [x1, x2, ..., xK ] and its related posi-
tion indexes I = [i1, i2, ..., iK ], where ij indicates
the position number of image xj in the collage
prompt, starting from 0 in the top left corner to
K − 1 in the bottom right corner. Hence, the row
position r and column position c of image xj can
be specified as r = ⌊(ij−1)/

√
K⌋ and c = (ij−1)

mod
√
K respectively. While collage prompt M

has the same size as the standard prompt, GPT-4V
can thus take this collage prompt as input and gen-
erate the predicted class for all images within the
collage prompt. Regarding the collage prompt M
as graph M = (A,F) with K nodes, each node
fi ∈ Rl denotes the feature of xi. The adjacency
matrix A ∈ RK×K suggests the relative positions
of X, where two adjacent images are considered to
have an undirected edge. For two images xp and xq
that satisfies either |cp − cq| = 1 when rp = rq or
|rp− rq| = 1 when cp = cq, we consider these two
images have an edge and set A[p, q] = A[q, p] = 1.
The workflow of representing the collage prompt
as a graph is illustrated in Figure 2a.
Arrangements matter. To fill multiple images
into the collage prompt, the arrangement of these
images could be various. As shown in Figure 2a,
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Figure 2: (a): The workflow of forming the collage prompt from a set of images and related indexes. For a set of
images X with two different position indexes I, we can obtain two collage prompts M1 and M2. Regarding X as the
node of a graph, the adjacency matrix of M1 and M2 can be represented as A1 and A2. (b): The average accuracy
of collage prompts within evaluation datasets using the ‘Worst,’ ‘Average’, and ‘Best’ arrangement.

by setting different I, the arrangement of images
within the collage prompt is different. Technically,
a quadrant-grid collage has 24(4!) potential im-
age arrangements, whereas a nine-grid format can
exceed 360, 000(9!) possibilities. Our findings in
Figure 2b indicate that different arrangements can
yield varying levels of accuracy, underscoring the
importance of image arrangement. Therefore, we
hope to find better arrangement within the collage
to minimize the accuracy loss of GPT-4V.

4 A Benchmark of Collage Prompting

The arrangement of images within a collage prompt
significantly impacts the overall recognition ac-
curacy of GPT-4V. For any given set of images
forming a collage, there should exist one or more
optimal arrangements that maximize overall recog-
nition accuracy. Thus, we conduct a benchmark
study of collage prompting with two primary ob-
jectives: 1) to study the effect of different arrange-
ments on GPT-4V’s recognition accuracy and 2)
to provide a benchmark for developing algorithms
to optimize collage arrangements. In this section,
we first present a comprehensive collage prompt
dataset to assess the performance of various col-
lage prompts. Three key observations suggest that
there is a need to conduct arrangement optimiza-
tion. Then, we propose a baseline method to learn
the layout of the collage and two metrics that reflect

the cost-effective trait of GPT-4V’s visual recogni-
tion are proposed.

4.1 Dataset
To construct a collage prompting dataset with vari-
ous arrangements, we generate different collages
(i.e., A) for the same set of images (i.e., X). We
first uniformly sample a sub-dataset that contains
100,000 images from the training set of ImageNet-
1K. This subset is then divided into L groups, and
each group contains K images. By executing p
random shuffles of the images within each group,
we generated a collection of L × p unique col-
lage prompts. We collect two collage prompting
datasets with a quadrant-grid collage prompt and
a nine-grid collage prompt. For the quadrant-grid
collage prompt, L is set to be 25,000 and p is set
to be 5. For the nine-grid collage prompt, L is set
to be 11,111 and p is set to be 10. These collage
prompts are then sent into GPT-4V’s API for im-
age recognition and the accuracy y of each prompt
can be obtained. The final dataset D thus includes
pairs {Mi, yi} for each of the L× p prompts, pro-
viding a comprehensive basis for analyzing the
effectiveness of different collage configurations in
GPT-4V’s visual recognition. We conducted an in-
depth analysis of the collected collage prompting
datasets and observed the following patterns.

Observation 1 (Position Accuracy Variance)
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(a) "0: ‘great white shark’,
1: ‘stingray’, 2: ‘great white
shark’, 3: ‘great white shark’"

(b) "0: ‘great white shark’,
1: ‘stingray’, 2: ‘great white
shark’, 3: ‘stingray’"

(c) "0: ‘tractor’, 1: ‘auto-
mated teller machine’, 2: ‘red-
breasted merganser’, 3: ‘dive’"

(d) "0: ‘automated teller ma-
chine’, 1: ‘tractor’, 2: ‘dock’,
3: ‘red-breasted merganser’"

Figure 3: (a) and (b) demonstrate the effect of category clustering, where placing images of the same category
together increases overall recognition accuracy. (c) and (d) illustrate localization errors, where GPT-4V predicts
the correct labels but outputs them to incorrect positions in the collage.
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Figure 4: Average Prediction Accuracy by Position.

Different positions within the collage grid have
varying accuracy in GPT-4V’s visual recognition.

As shown in Figure 4, the top-left position in both
2 × 2 and 3 × 3 grids tends to have the highest
accuracy, with accuracy decreasing towards the
center and bottom-left positions, which have the
lowest accuracy. Accuracy then improves slightly
for the last row. This pattern suggests potential
model fatigue when processing central images in
the collage, leading to lower accuracy that recovers
as the model approaches the final row. Based on
this observation, a natural idea to optimize the ar-
rangement is to place ‘hard’ images into positions
with higher accuracy while leaving ‘easy’ images
to remaining positions.

Observation 2 (Category Clustering) Placing
images of the same class together in a collage
improves accuracy, while pushing images of the
same class away from each other degrades the
accuracy.

We observed that in both 2× 2 and 3× 3 collages,
placing images of the same class together signifi-
cantly improves GPT-4V’s overall recognition ac-
curacy. Conversely, when the order is shuffled and
images of the same class are not adjacent, the accu-
racy decreases. As illustrated in Figure 3a and 3b,
GPT-4V predicts one of the stingrays incorrectly
when the great white shark and stingray are on sep-
arate diagonals in the collage, and correctly if the

same class is adjacent. This improvement can be
due to clustering images of the same class reduces
the complexity of batch recognition for GPT-4V.

Observation 3 (Localization Errors) GPT-4V
often makes localization errors, predicting labels
for adjacent images incorrectly.

We analyzed the prediction errors in 2 × 2 and
3 × 3 collages and found that the incorrectly pre-
dicted labels often correspond to images in adjacent
positions. This indicates that the model correctly
identifies the images but outputs the predictions to
the wrong locations due to localization inaccura-
cies. For instance, in Figure 3c and 3d, GPT-4V
predicts the ‘automated teller’ machine and ‘red-
breasted merganser’, but outputs to the wrong posi-
tions in the collage. When the arrangement order is
changed, the model outputs the correctly predicted
labels to the correct positions.

Visual Bias Analysis Our analysis of collage
prompting reveals that GPT-4V exhibits biases
in visual recognition based on image placement.
Specifically, (1) Position Accuracy Variance ac-
curacy varies across collage positions, with top-
left performing best and central positions showing
lower accuracy, likely due to model fatigue. (2)
Category Clustering grouping similar images en-
hances accuracy, while separating them reduces
it. (3) Localization Errors labels are often misas-
signed to adjacent images, indicating spatial mis-
alignment challenges. These insights highlight the
need for optimized arrangements to mitigate bi-
ases. Our baseline algorithm leverages these biases
to enhance collage layouts, improving recognition
accuracy while maintaining cost efficiency. For fur-
ther details and visual examples, see Appendix D.

6415



Act as an image classifier 
by providing predictions 
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Figure 5: An overview of baseline method LCP. Starting with a set of images, index sets are randomly initialized,
which forms multiple collage graphs. After predicting the accuracy of each collage graph via Gθ∗ , collage graphs
that achieve top-T accuracy are selected for crossover and mutation operations. This iterative process continues
until reaching the maximum specified iteration and we can obtain the optimized arrangements.

4.2 Baseline: Learning to Collage
The above observations from the collage prompt-
ing dataset further highlights the importance of ar-
rangement optimization within the collage prompt.
To solve this task, we propose a baseline method
Learning to Collage (LCP) in the benchmark. This
baseline method involves two processes: training a
collage predictor for accuracy prediction and refin-
ing collage’s arrangement via genetic algorithm.
Training of Collage Predictor. As stated in the
previous subsection, collage prompt M is repre-
sented as a graph. To predict the performance of
these collage prompts, we employ GCN (Zhang
et al., 2019), denoted as Gθ(A,F), to process the
graph data and predicts the expected accuracy of
the collage prompt.

Given the evaluation dataset D = {Mi, yi}L·pi=1,
the update of the Gθ(A,F) at k-th iteration can be
expressed as,

θk+1 = θk − η

b

b∑

i=0

∇θL(Gθ(Ai,Fi), yi), (1)

where b is the batch size of training, η is the learn-
ing rate and L denotes the MSE loss. At the con-
vergence step, θ∗ will be obtained and Gθ∗ can
be used to indicate the expected accuracy of the
collage prompt M.
Arrangement optimization. With the trained
predictor Gθ∗ , we can estimate the accuracy for
various arrangements in the collage prompt, which
enables the selection of the most effective arrange-
ment to enhance recognition performance with

GPT-4V. Due to the vast number of potential ar-
rangements, it is impractical to evaluate each one
to identify the optimal arrangement. To efficiently
search for the best arrangement within a maxi-
mum number of iterations, we use genetic algo-
rithm (GA) that has been widely used for non-
differentiable optimization problems (Wang et al.,
2018a, 2019) to achieve effectively searching. Fol-
lowing the idea of GA, LCP alternately evaluates
the quality of arrangements in the current pop-
ulation and searches for the optimal collage ar-
rangement through operations such as selection,
crossover, and mutation. As shown in Figure 5,
LCP consists of several key stages:

• Initialization. In the initialization phase, for
a given set of image features F, we randomly
generate a set of position index set I =
{I1, I2, ..., IP } with the related adjacency matri-
ces A = {A1,A2, . . . ,AP }. These matrices
represent different possible arrangements of the
collage prompt.

• Evaluation. Subsequently, for each adjacency
matrix Ai in A, we predict its expected accu-
racy using ŷi = Gθ∗(Ai,F), resulting in a set of
predicted accuracy Y = {ŷ0, ŷ1, . . . , ŷP }.

• Selection. During the selection phase, we choose
a subset Ĩ of arrangements from I that corre-
spond to the top-T accuracy in Y , indicating the
most promising arrangements, which are then
preserved in the next iteration.
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Table 1: Benchmark results of collage prompting with different sizes.

Datasets Cost($/1k) Top-1 Accuracy CER PCE

Random Baseline Random Baseline Random Baseline

2×
2

ImageNet-1K $12.83 39.4% 45.7% 4.99 5.38 5.49 10.60
Caltech101 $1.81 88.4% 90.8% 13.37 13.52 2.15 3.18
OxfordPets $1.25 70.1% 71.8% 13.20 13.34 1.18 1.20
StanfordCars $5.28 29.8% 32.0% 5.65 5.88 1.74 1.83
Flowers102 $2.15 49.8% 51.1% 9.75 9.88 1.36 1.39
Food101 $2.02 62.2% 64.2% 11.05 11.21 1.40 1.46
Aircraft $2.15 18.5% 17.7% 5.57 5.42 1.45 1.42
SUN397 $5.39 46.5% 48.7% 7.12 7.29 4.23 6.02
DTD $1.27 48.6% 52.0% 11.02 11.40 1.44 1.71
EuroSAT $0.86 42.9% 53.4% 11.21 12.52 1.47 1.16
UCF101 $2.06 55.2% 58.1% 10.39 10.65 1.26 1.30

3×
3

ImageNet-1K $5.70 28.1% 33.7% 5.33 5.90 3.84 5.01
Caltech101 $0.80 79.1% 85.4% 15.26 15.79 1.48 1.89
OxfordPets $0.55 53.2% 59.5% 13.45 14.20 1.12 1.14
StanfordCars $2.34 11.6% 14.7% 3.96 4.68 1.49 1.54
Flowers102 $0.95 38.4% 43.8% 10.38 11.12 1.27 1.33
Food101 $0.90 39.9% 46.8% 10.71 11.63 1.20 1.24
Aircraft $0.96 7.0% 10.3% 3.32 4.52 1.30 1.35
SUN397 $2.39 27.6% 36.3% 6.89 8.03 1.89 2.45
DTD $0.56 37.5% 44.1% 11.22 12.21 1.23 1.35
EuroSAT $0.38 30.4% 39.7% 10.50 12.14 1.70 2.40
UCF101 $0.91 37.9% 44.0% 10.39 11.24 1.18 1.21

Table 2: Results of GPT-4V’s zero-shot visual recog-
nition in 11 various datasets(Wu et al., 2023c).

Dataset Cost($/1k) Top-1 Acc. CER

ImageNet-1K $51.30 62.0% 4.30
Caltech101 $7.24 95.5% 9.08
OxfordPets $4.99 92.6% 10.09
StanfordCars $21.10 58.3% 5.26
Flowers102 $8.58 70.6% 7.52
Food101 $8.09 80.1% 8.12
Aircraft $8.61 36.0% 5.37
SUN397 $21.55 57.7% 5.20
DTD $5.07 59.1% 8.17
EuroSAT $3.45 36.2% 7.19
UCF101 $8.22 81.6% 8.14

• Crossover & Mutation. To generate the next
generation of arrangements, crossover and muta-
tion operations are applied to the selected subset
Ĩ. We randomly select two arrangements from
Ĩ for crossover and mutation, generating new ar-
rangements for the next iteration. Specifically,
in the crossover process, we divide two position
indexes I ∈ Ĩ into segments and cross a segment
between them to generate two new position in-
dexes. We retain the new position index with
higher expected accuracy. To promote diversity,
we randomly select a position index from Ĩ and
mutate a randomly chosen segment of the po-
sition index. This iterative process continues,
refining the search for an arrangement that maxi-

mizes the accuracy of collage prompt recognition
by GPT-4V.

By iteratively employing these steps, the initial
arrangements are updated efficiently until the max-
imum iterations are achieved. After obtaining the
arrangement with the best-expected accuracy, we
can apply this arrangement configuration to en-
hance the performance of collage prompts. Algo-
rithm 1 outlines the steps of the LCP algorithm,
while Appendix C provides more details of the
baseline method. To support reproducibility, we
have released the dataset, baseline code, and model
weights on our project page.

4.3 Metrics
To effectively assess the performance of our collage
prompting approach, we utilize cost (i.e., Cn×n)
and accuracy (i.e., An×n) as primary evaluation
metrics, where n × n denotes the size of collage
prompt. Collage prompt can significantly reduce
costs but often at the expense of recognition perfor-
mance loss. Besides evaluating cost and accuracy
separately, we introduce two new metrics for a
more comprehensive analysis as follow:
Cost-Effective Ratio (CER): CER applies loga-
rithmic transformations on both primary metrics to
improve the distinction and manageability of the
values. It is formulated as,

CER =
(log(An×n + 1))γ

log(Cn×n + e)
, (2)
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Table 3: Evaluation Cost of different methods in ImageNet-1K.

Epochs Accuracy Training Cost Test Cost Total Cost CER

ViT-B/16 300 84.53% $3,876.69 $32.77 $3,909.46 0.022
ResNet-50 200 79.04% $3,063.99 $27.64 $2,091.63 0.038

1× 1 Grid - 62.0% - $641.25 $641.25 0.097
2× 2 Grid - 45.7% $9.9 $160.37 $170.27 0.268
3× 3 Grid - 33.7% $16.5 $ 71.25 $87.75 0.384

Precision-Cost Efficiency (PCE): PCE signifies
the cost saved per accuracy loss, which is formu-
lated as,

PCE = e

(
|Cn×n−C1×1|
|An×n−A1×1|

)

. (3)

These two metrics balance the trade-offs be-
tween accuracy and cost, providing deeper insights
into the efficiency of various collage configurations.
We also use these metrics to evaluate the perfor-
mance of our baseline algorithm.

5 Experiment

In this section, we benchmarked GPT-4V’s zero-
shot collage prompt recognition performance on
ImageNet-1K (Russakovsky et al., 2015) and 10
other datasets (e.g., Caltech101 (Fei-Fei et al.,
2004), OxfordPets (Parkhi et al., 2012), Stanford-
Cars (Krause et al., 2013), Flowers102 (Nilsback
and Zisserman, 2008), Food101 (Bossard et al.,
2014), Aircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2010), DTD (Cimpoi et al., 2014), Eu-
roSAT (Helber et al., 2019), UCF101 (Soomro
et al., 2012)). For the 1 × 1 collage prompt, we
referenced the zero-shot experiment results from
GPT4Vis (Wu et al., 2023c). Using the API service
provided by OpenAI, we evaluated the recognition
performance for 2× 2 and 3× 3 collage prompts.
The specific model version used was “gpt-4-1106-
vision-preview”. We used low-resolution to input
images and set a random seed to ensure determinis-
tic results.

5.1 Benchmark Results of Collage Prompting

Our analysis reveals that utilizing Collage Prompt-
ing with GPT-4V for image recognition signif-
icantly reduces inference costs without substan-
tially compromising accuracy as shown in Table
1. While the ImageNet-1K dataset presents greater
challenges due to long text labels, leading to a
more drop in accuracy, accuracy on other medium-
sized datasets remains substantial. By employ-
ing different configurations of collage prompting,

including larger grid sizes (2 × 2 and 3 × 3),
we demonstrated a significant decrease in usage
costs—approximately to 1/4 and 1/9 of the cost for
single images, respectively. Despite a decrease in
Top-1 accuracy as grid size increases, our baseline
methods for optimizing these collage arrangements
significantly reduce accuracy loss, achieving over
5% higher accuracy than random arrangements.
The baseline approach highlights the balance be-
tween cost efficiency and performance preserva-
tion, making it a practical solution for leveraging
large multi-modal models like GPT-4V in resource-
constrained scenarios.

Our analysis demonstrates the effectiveness of
collage prompting in enhancing cost-efficiency
across various datasets, with n × n grid collages
significantly outperforming single 1× 1 images in
terms of the Cost-Effective Ratio (CER) as shown
in Table 1. The 3× 3 grids, optimized through our
collage graph optimization method, show the most
notable improvements in cost efficiency, especially
in datasets with simpler labels and less challeng-
ing images. Additionally, our Precision-Cost Ef-
ficiency (PCE) analysis underscores the trade-off
between cost savings and accuracy loss, highlight-
ing that our optimized 2 × 2 and 3 × 3 grid ar-
rangements achieve substantial cost savings while
minimizing accuracy loss as demonstrated in Table
1, thereby offering a balanced approach to cost-
efficient image recognition with GPT-4V. Overall,
these results underscore the practicality and effi-
ciency of collage prompting in leveraging large
multi-modal models for image recognition tasks
under budget constraints.

5.2 Cost Analysis

We analyzed the costs associated with using AWS
cloud servers for training and inference of tradi-
tional CNN and ViT models on the ImageNet-1k
dataset, comparing the expenses with those of col-
lage prompting using GPT-4V. Training ResNet-
50 and ViT-B/16 from scratch incurred significant
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costs ($2,091.63 and $3,909.46, respectively). In
contrast, leveraging GPT-4V for single 1×1 image
prediction reduced the cost to $641.25. Addition-
ally, collage prompting with 2 × 2 or 3 × 3 grid
configurations further decreased costs to $170.27
and $87.75, respectively. The Cost-Effective Ratio
(CER) highlights the stark contrast between collage
prompting and traditional models. For example,
the 3 × 3 grid configuration has a CER 17 times
higher than that of ViT-B/16, showcasing the cost
efficiency of collage prompting.

Notably, while models like ViT and CLIP offer
impressive capabilities, they entail certain barriers
such as data, training, and computational resources.
In contrast, GPT-4V enables zero-shot recogni-
tion with minimal setup, offering a significant ad-
vantage, especially when using collage prompting.
This advantage extends to various visual recogni-
tion tasks, further emphasizing the practicality and
efficiency of GPT-4V in real-world applications.

6 Limitation and Future work

Limitations. 1) Accuracy Drop: While collage
prompting significantly reduces costs, it does trade
off some recognition performance. Despite chal-
lenges with datasets like ImageNet-1K, accuracy
on medium-sized datasets remains reasonable. Col-
lage prompt is still applicable for tasks with lower
accuracy requirements, such as image or video cap-
tioning. Our platform will help researchers enhance
collage recognition performance, moving closer to
the accuracy of standard prompting. 2) Collage
Prompt in Other LLMs: We also tested collage
prompting on other open-source and closed-source
multimodal vision-language models (e.g., LLAVA-
1.5, Gemini 1.5 Pro) and found that these models
performed poorly in visual recognition tasks. These
models generated non-existent or incorrect labels,
produced repetitive outputs, and failed to recognize
images within the collage prompt. Appendix F
provides examples of these failures.
Future Work. In this paper, we propose a budget-
friendly task of collage prompting for GPT-4V’s
visual recognition and construct a benchmark for
learning to optimize the collage prompt. Future
work could explore text prompt optimization, vi-
sual prompting techniques to learn adversarial
noise perturbations, LCP optimization for multiple
arrangement candidates, and few-shot/many-shot
methods to improve accuracy. Additionally, we
will actively maintain and update CollagePrompt,

expanding the baseline library, applying it to other
multi-modal foundation models, and extending it
to broader visual recognition tasks.
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A Impact Statement

While collage prompting offers significant cost sav-
ings, especially for large-scale image recognition, it
also introduces potential societal implications. The
accuracy drop associated with collage prompting
could have adverse effects in fields where precise
recognition is paramount, such as medical imaging.
These implications underscore the necessity for
continued exploration into the reliability and safety
of leveraging collage prompting for visual recogni-
tion tasks, particularly in fields where accuracy is
critical.

A.1 Datasheet for CollagePrompt
Here, we provide a datasheet (Gebru et al., 2021)
for documenting and ensuring responsible usage of
the CollagePrompt Benchmark.
1. Motivation

• For what purpose was the dataset created?
This dataset was created as a benchmark for
studying the use of collage prompting to re-
duce the cost of GPT-4V while maintaining
reasonable accuracy. It is intended for training
and evaluating learning-based collage prompt-
ing optimization algorithms.

• Who created the dataset (e.g., which team,
research group) and on behalf of which en-
tity (e.g., company, institution, organization)?
The dataset was created by the authors of this
paper.

• Who funded the creation of the dataset? The
creation of the dataset was funded by the
Australian Research Council under Projects
DP210101859 and FT230100549.

Composition

• What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? The dataset comprises the
original information from CollagePrompt’s
training and validation sets, as well as
GPT-4V’s prediction results for the collage
prompts.

• How many instances are there in total (of each
type, if appropriate)? This dataset includes
over 110,000 2x2 and 100, 000 3x3 collage
prompts with various arrangements of GPT-
4V prediction results.

• Does the dataset contain all possible in-
stances or is it a sample (not necessarily ran-
dom) of instances from a larger set? We ran-
domly sampled 100,000 images from Ima-
geNet to construct the 2x2 and 3x3 collage
prompts.

• What data does each instance consist of?
Each instance consists of a collage and the
corresponding GPT-4V prediction results.

• Are relationships between individual in-
stances made explicit? Different arrange-
ments of collage prompts and their predic-
tion results from the same set of images are
grouped together.

• Are there recommended data splits? Yes, the
data splits for the training and validation sets
are detailed in the JSON files.

• Are there any errors, sources of noise, or re-
dundancies in the dataset? The number of
collage images may exceed the number of
collage prompts prediction results. We have
pre-cleaned the dataset to remove erroneous
and unusable predictions of collage prompts.

• Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The dataset
requires downloading the original ImageNet-
1K dataset and the downstream evaluation
datasets. Using the JSON files that record
the original collage information, the code can
construct the collage image dataset, which is
then used along with our collage prompts pre-
diction results.

• Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient
confidentiality, data that includes the content
of individuals’ non-public communications)?
No.

• Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? No.

Collection Process

• How was the data associated with each in-
stance acquired? Each collage is constructed
from the image datasets according to the order
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provided in the JSON file. The constructed
collage, along with text prompts and dataset
category labels, is then input into GPT-4V
to obtain the prediction results for each sub-
image in the collage.

• What mechanisms or procedures were used
to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, soft-
ware programs, software APIs)? Each collage
prompt is formatted and input into the GPT-
4V API provided by OpenAI to obtain the cor-
responding prediction results. These results
are then post-processed into a standardized,
readable format.

• Who was involved in the data collection pro-
cess (e.g., students, crowd workers, contrac-
tors), and how were they compensated (e.g.,
how much were crowd workers paid)? The
data collection process did not involve any
manual labor; only API usage fees were in-
curred.

• Over what timeframe was the data collected?
The final version of the CollagePrompt dataset
was collected in March 2024.

Uses

• Has the dataset been used for any tasks already?
Yes, we have used this dataset to train and eval-
uate our baseline algorithms for optimizing col-
lage prompts.

• Is there a repository that links to any or all papers
or systems that use the dataset? Yes, https:
//collageprompting.github.io/.

Distribution

• Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset
was created? Yes, the dataset is publicly avail-
able online for anyone to access.

• How will the dataset be distributed (e.g., tar-
ball on website, API, GitHub)? The dataset
can be downloaded on GitHub.

• Will the dataset be distributed under a copy-
right or other intellectual property (IP) li-
cense, and/or under applicable terms of use
(ToU)? Our dataset is distributed under CC
BY 4.0. All codes on the GitHub repository
are distributed under the MIT license.

• Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? No.

• Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances? No.

Maintenance

• Who will be supporting/hosting/maintaining
the dataset? The authors of this paper are
supporting/maintaining the dataset.

• Is there an erratum? No.

• Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)? Please check the dataset web page
or GitHub repository for any updates.

• If others want to extend/augment/build on/con-
tribute to the dataset, is there a mechanism
for them to do so? Yes, they can use the code
provided on our GitHub repository to generate
data.

A.2 Data Hosting, Licensing, and
Maintenance

The CollagePrompt Benchmark is licensed un-
der the CC BY 4.4, and the data is hosted on
Google Drive. All code used for data collection
and developing baseline algorithms is distributed
under the MIT license. The documentation and
model checkpoints are also available on the GitHub
repository. The Collage Prompt website (https:
//collageprompting.github.io/) is the central
hub for all related information, including any future
updates and maintenance.

B CollagePrompt Benchmark

B.1 Prompt Details
Our text prompts must include the collage file-
names and category labels. After extensive experi-
mentation, we have developed a stable version that
ensures GPT-4V outputs the correct JSON format
without any unrelated content. We also tested vari-
ous prompting engineering techniques, but they did
not significantly affect prediction accuracy. Our
prompts can input single or multiple collages for
prediction. When using the API, we set the batch
size to 4, which does not significantly differ from
predicting individual collages.
Text prompts used for 2× 2 collage
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2x2_prompt = "I want you to act as an
Image Classifier. I will provide
you with few 2x2 grid collages and
a list of optional categories. Your
task is to choose the most relevant
category for each of the nine
images in the grid. Start with the
top -left image of each grid and
proceed left to right , then down
each row. Assign a number index
started with 0 for each image in
the grid. Provide the prediction in
a dict format for each grid
collage , key is the number index ,
and value is the most relevant
category for each image in the
grid. The final output is also a
dictionary. The key is image name
of each grid collage , and the value
is the prediction for each grid
collage in a dict format. Do not
provide explanations for your
choices or any additional
information just the dictionary of
predictions in a JSON format. Only
output the predictions in one JSON
dictionary. Here is the image ([])
and its optional categories ([]).
You have to choose strictly among
the given categories and do not
give any predictions that are not
in the given category ."

Text prompts used for 3× 3 collage

3x3_prompt = "I want you to act as an
Image Classifier. I will provide
you with few 3x3 grid collages and
a list of optional categories. Your
task is to choose the most relevant
category for each of the nine
images in the grid. Start with the
top -left image of each grid and
proceed left to right , then down
each row. Assign a number index
started with 0 for each image in
the grid. Provide the prediction in
a dict format for each grid
collage , key is the number index ,
and value is the most relevant
category for each image in the
grid. The final output is also a
dictionary. The key is image name
of each grid collage , and the value
is the prediction for each grid
collage in a dict format. Do not
provide explanations for your
choices or any additional
information just the dictionary of
predictions in a JSON format. Only
output the predictions in one JSON
dictionary. Here is the image ([])
and its optional categories ([]).
You have to choose strictly among
the given categories and do not
give any predictions that are not
in the given category ."

Table 4: Statistics of datasets used for evaluating collage
prompting.

Datasets Classes Samples Label Tokens

ImageNet-1K 1,000 50,000 4,834
Caltech101 100 2,465 428
OxfordPets 37 3,669 203
StanfordCars 106 8,041 1,814
Flowers102 102 2,463 562
Food101 101 30,300 513
FGVCAircraft 100 3,333 565
SUN397 397 19,850 1,859
DTD 47 1,692 211
EuroSAT 10 8,100 49
UCF101 101 3,783 526

B.2 Evaluation Datasets

We evaluate the performance of collage prompt on
ImageNet-1K and 10 other common downstream
image recognition datasets. Table 4 presents statis-
tics regarding the number of test samples and label
tokens for each dataset. Label tokens represent
the number of tokens encoded by the GPT-4 tok-
enizer†, providing a measure of the textual labels’
complexity for each dataset.

B.3 Dataset Format

Our dataset is structured as shown below. The train-
ing set begins with a random uniform sampling of
images from the ImageNet-1k training dataset, fol-
lowed by the construction of 2x2 and 3x3 collages
according to the JSON files containing collage info
in the metainfo directory. The evaluation datasets
for all downstream datasets are formatted similarly
to ImageNet-1k validation, constructing collages
based on the standard data segmentation methods.
All evaluation datasets consist of complete valida-
tion sets derived from ImageNet-1K.

The directory structure of CollagePrompt dataset
is as follow:

/

train/

collage/Collage sets of different size

2x2

3x3

metainfo/

imagenet_train_2x2_collage_info.json 25,000

collages

imagenet_train_2x2_collage_pred_info.pkl

110,250 collage prompts

†https://platform.openai.com/tokenizer
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imagenet_train_3x3_collage_info.json 11,111

collages

imagenet_train_3x3_collage_pred_info.pkl

102,646 collage prompts

subset/

img Sampled 100,000 images from ImageNet-1K

val/

aircraft

caltech101

dtd

eurosat

food101

imagenet/

collage/ Collage sets of different size

2x2

3x3

metainfo/

imagenet_val_2x2_collage_info.json 12,500

collages

imagenet_val_3x3_collage_info.json 5,555

collages

set/

img Validation set (50,000 images) of

ImageNet-1K

oxflowers

oxpets

stcars

sun397

ucf101

README.md

Collage Information JSON
The format of all ‘collage_info.json’ files is con-

sistent. Each file contains the original image name,
category label, and position index within the col-
lage for each sub-image. Using this JSON file and
our provided code on GitHub, users can construct
collage images and evaluate the prediction results
of collage prompts from GPT-4V. The contents of
a collage information JSON file are shown below:

{
'a72bca2a3e.jpeg ': {

'0': {'image ': 'ILSVRC2012_val_00024101.JPEG ',
'synset_id ': 866,
'label ': 'tractor ',
'index ': 0},

'1': {'image ': 'ILSVRC2012_val_00011876.JPEG ',
'synset_id ': 480,
'label ': 'automated teller machine ',
'index ': 1},

'2': {'image ': 'ILSVRC2012_val_00042300.JPEG ',
'synset_id ': 842,
'label ': 'swim trunks / shorts ',
'index ': 2},

'3': {'image ': 'ILSVRC2012_val_00034749.JPEG ',
'synset_id ': 98,
'label ': 'red -breasted merganser ',
'index ': 3}},

'd150b4fd58.jpeg ': {
'0': {'image ': 'ILSVRC2012_val_00008159.JPEG ',

'synset_id ': 776,
'label ': 'saxophone ',
'index ': 0},

'1': {'image ': 'ILSVRC2012_val_00042315.JPEG ',
'synset_id ': 123,
'label ': 'spiny lobster ',
'index ': 1},

'2': {'image ': 'ILSVRC2012_val_00017726.JPEG ',
...

'3': {'image ': 'ILSVRC2012_val_00016843.JPEG ',
'synset_id ': 507,
'label ': 'combination lock ',
'index ': 3}},

...
}

Collage Prediction JSON. The prediction results
of GPT-4V for collage prompts are preprocessed
and stored in JSON format for ease of use, and
then saved as Pickle files to conserve storage space.
Files with the suffix ‘collage_pred_info.pkl’ con-
tain the prediction results for each collage prompt,
including the original image names and their posi-
tions within the collage. Below is an example of
the contents of such a file:
{'0 b73a3623d.jpeg ': {'ord ': [1, 2, 0, 3],

'pred ': [0, 0, 1, 1],
'ori ': ['n07697313_12937.JPEG ',
'n03871628_38116.JPEG ',
'n04493381_61391.JPEG ',
'n02086910_6135.JPEG ']},

'eb46c53c56.jpeg ': {'ord ': [3, 2, 1, 0],
'pred ': [1, 1, 0, 1],
'ori ': ['n07697313_12937.JPEG ',
'n03871628_38116.JPEG ',
'n04493381_61391.JPEG ',
'n02086910_6135.JPEG ']},

'789 e579a78.jpeg ': {'ord ': [3, 0, 2, 1],
'pred ': [1, 1, 0, 0],
'ori ': ['n07697313_12937.JPEG ',
'n03871628_38116.JPEG ',
'n04493381_61391.JPEG ',
'n02086910_6135.JPEG ']},

'f6810cfeb6.jpeg ': {'ord ': [0, 2, 3, 1],
'pred ': [1, 0, 1, 0],
'ori ': ['n07697313_12937.JPEG ',
'n03871628_38116.JPEG ',
'n04493381_61391.JPEG ',
'n02086910_6135.JPEG ']},

'2ed874ee56.jpeg ': {'ord ': [3, 0, 1, 2],
...

'ori ': ['n04335435_13775.JPEG ',
'n04023962_6300.JPEG ',
'n04507155_1825.JPEG ',
'n04447861_2306.JPEG ']},

...
}

These files can be used to construct the collage
image sets and to train and evaluate baseline meth-
ods for optimizing collage prompts. We also pro-
vide a complete download link for the collage im-
age sets on GitHub, which can be used to reproduce
the experimental results.

C Experimental Details

Network Details. The overall architecture of the
collage predictor is depicted in Figure 6. It com-
prises multiple graph convolutional and pooling
layers. The graph convolutional layers aggregate in-
formation from neighboring nodes, while the graph
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Figure 6: Network architecture of collage predictor.

pooling layers retain the sub-graph information for
each node. This structure preserves the basic graph
structural information and facilitates message pass-
ing. By learning graph representations hierarchi-
cally and summarizing the node representations in
each layer using readout functions, the graph repre-
sentations are then input into a multi-layer percep-
tion (MLP) to perform graph regression prediction
tasks, specifically predicting the overall accuracy
of the collage graph.

Details of Predictor Training. For training the
collage predictor, both evaluation datasets for 2×2
and 3× 3 collage prompt are split into training and
validation sets at a 9:1 ratio, where 90% of the data
is allocated for training and the remaining 10% for
validation. The collage predictor is trained with a
batch size of 512 and a learning rate of 0.001 for
500 epochs. We utilize the Mean Squared Error
(MSE) loss function during training. The node in-
put feature dimension of the collage graph network
is set to 512. The network architecture consists
of three convolutional layers and pooling layers,
with a pooling ratio of 0.5. We employ the Adam
optimizer to optimize the model. The dimensions
of the three MLP layers are set to [256, 128, 64].
During training, we utilize an early stopping strat-
egy to prevent overfitting. We trained the model for
approximately 8 hours using an Nvidia GPU RTX
2080TI.

Details of LCP. The pseudocode for our LCP al-
gorithm is provided in Algorithm 1. When pre-
dicting arrangements using LCP, we employ uni-
form crossover without allowing duplicate genes
and random mutation to introduce variation in the
predicted arrangements for both 2 × 2 and 3 × 3
collage prompts. For the 3 × 3 collage prompt,
we initialize the population with 100 arrangements.
In each generation, we select the top 20 arrange-
ments with the highest accuracy to serve as parents
for crossover and mutation. The evolution process

Table 5: Top-1 accuracy, inference time and cost of
collage prompts with different number of images K in
GPT-4V’s image recognition.

K Top-1 Acc Time Cost

1×1 62.0% 8.15s $51.30
2×2 39.4% 2.75s $12.83
3×3 28.1% 1.34s $5.70
4×4 21.5% 1.05s $3.21
5×5 11.9% 0.95s $2.05

continues for 10 generations, and we terminate it
when the saturation threshold reaches 3. Similarly,
for the 2 × 2 collage prompt, we begin with an
initial population of 5 arrangements. We retain the
top 3 arrangements in each generation based on
accuracy for further reproduction. The evolution
process runs for 5 generations, and we stop it when
the saturation threshold also reaches 3. Finally, we
evaluate the predicted best arrangements by feed-
ing them in batches of 4 to the GPT-4V API to
obtain the actual prediction accuracy.
Details of Crossover and Mutation. During the
iterative process of optimizing arrangements using
LCP, crossover and mutation of arrangements are
involved. The specific processes of crossover and
mutation are illustrated in Figure 7. At the initial
stage of each iteration, our LCP algorithm predicts
the accuracy of each initial arrangement using the
collage predictor and retains the top-k collage ar-
rangements. Then, any two arrangements from
the top-k are randomly selected for node crossover
to obtain n partial initial node arrangements for
the collages. Finally, the remaining nodes are ran-
domly allocated (mutated) to the blank positions in
the collages.
Alternative Optimization Methods. Collage opti-
mization is a discrete problem, and our initial ex-
ploration of various methods revealed that gradient-
based approaches required costly gradient estima-
tion, making training difficult. We opted for the ge-
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Figure 7: The process of Crossover and Mutation in the proposed LCP.

(a) "0: ‘flamingo’, 1:
‘flamingo’, 2: ‘eft’, 3: ‘eft’"

(b) "0: ‘flamingo’, 1: ‘eft’, 2:
‘flamingo’, 3: ‘flamingo’"

(c) "0: ‘eft’, 1: ‘flamingo’,
2: ‘eft’, 3: ‘flamingo’"

(d) "0: ‘eft’, 1: ‘eft’, 2:
‘flamingo’, 3: ‘flamingo’"

(e) "0: ‘stingray’, 1: ‘tench’,
2: ‘tench’, 3: ‘electric ray’"

(f) "0: ‘tench’, 1: ‘stingray’,
2: ‘tench’, 3: ‘tench’"

(g) "0: ‘stingray’, 1: ‘tench’,
2: ‘stingray’, 3: ‘tench’"

(h) "0: ‘stingray’, 1: ‘tench’,
2: ‘stingray’, 3: ‘tench’"

(i) "0: ‘great white shark’, 1:
‘great white shark’, 2: ‘ham-
merhead shark’, 3: ‘great
white shark’"

(j) "0: ‘great white shark’, 1:
‘great white shark’, 2: ‘ham-
merhead shark’, 3: ‘ham-
merhead shark’"

(k) "0: ‘great white shark’, 1:
‘great white shark’, 2: ‘great
white shark’, 3: ‘great white
shark’"

(l) "0: ‘hammerhead shark’,
1: ‘hammerhead shark’, 2:
‘great white shark’, 3: ‘great
white shark’"

Figure 8: Examples of Category Clustering, showing GPT-4V’s predictions for images of the same category placed
adjacently or non-adjacently.

netic algorithm due to its simplicity and efficiency
in searching for optimal collage arrangements. To
support further research, we provide a publicly
available benchmark platform to encourage the de-
velopment of advanced algorithms that enhance
cost-efficiency for GPT-4V and similar models, fos-

tering improvements in both performance and cost
reduction for large-scale multimodal AI systems.
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…

GPT-4V

Here is the prediction:
[0: ‘Siberian Husky’, 1: ‘yellow 
garden spider’, 2: ‘snail’, 3: 
‘ring-necked snake’]

…

GPT-4V

Here is the prediction:
[0: ‘ring-necked snake’, 1: 
‘Siberian Husky’, 2: ‘American 
alligator’, 3: ‘yellow garden 
spider’]

…

GPT-4V

…

GPT-4V

Here is the prediction:
[0: ‘American bullfrog’, 1: 
‘ring-necked snake’, 2: ‘yellow 
garden spider’, 3: ‘Siberian 
Husky’]

Here is the prediction:
[0: ‘yellow garden spider’, 1: 
‘ring-necked snake’, 2: 
‘Eskimo dog’, 3: ‘tiger beetle’]

…

GPT-4V

Here is the prediction:
[0: ‘coffee mug’, 1: ‘ring-
necked snake’, 2: ‘desktop
computer’, 3: ‘lighthouse’]

…

GPT-4V

Here is the prediction:
[0: ‘lighthouse’, 1: ‘desktop 
computer’, 2: ‘tea cup’, 3: 
‘eastern diamondback 
rattlesnake’]

…

GPT-4V

Here is the prediction:
[0: ‘desktop computer’, 1: 
‘taxicab’, 2: ‘kingsnake’, 3: 
‘lighthouse’]

…

GPT-4V

Here is the prediction:
[0: ‘kingsnake’, 1: ‘lighthouse’,
2: ‘tea cup’, 3: ‘desktop 
computer’]

Eskimo dog

"1d7dd7031b.jpeg": {
"0": {

"image": "n02110185_1702.JPEG",
"synset_id": 250,
"label": "Siberian Husky",
"index": 0

},
"1": {

"image": "n01773157_689.JPEG",
"synset_id": 72,
"label": "yellow garden spider",
"index": 1

},
"2": {

"image": "n02172182_5142.JPEG",
"synset_id": 305,
"label": "dung beetle",
"index": 2

},
"3": {

"image": "n01728920_2418.JPEG",
"synset_id": 53,
"label": "ring-necked snake",
"index": 3

}
},

"5dff2f6137.jpeg": {
"0": {

"image": "n03063599_3757.JPEG",
"synset_id": 504,
"label": "coffee mug",
"index": 0

},
"1": {

"image": "n01734418_13256.JPEG",
"synset_id": 56,
"label": "kingsnake",
"index": 1

},
"2": {

"image": "n04152593_37508.JPEG",
"synset_id": 782,
"label": "CRT monitor",
"index": 2

},
"3": {

"image": "n02814860_20438.JPEG",
"synset_id": 437,
"label": "lighthouse",
"index": 3

}
},

Figure 9: Examples of Localization Errors: Two cases that demonstrate different arrangements within the collage
prompt lead to different accuracy of classification. Blue indicates an accurate prediction while red indicates a wrong
prediction.

D Visualized Results and Analysis

D.1 More cases about Category Clustering

As shown in Figure 8, we provide three examples
of category clustering, illustrating how GPT-4V’s
predictions are influenced by the adjacency of im-
ages within the same category.

In the first row, we observe the behavior of GPT-
4V when identifying flamingo and eft. In subfigure
(a), where flamingos are grouped together and efts
are grouped together, the predictions are accurate
with both images correctly identified as flamingo
and eft. However, in subfigure (b), when an eft
is placed diagonally and not grouped with other
efts, GPT-4V incorrectly predicts eft as flamingo in
one instance. When flamingos and efts are grouped
together again in subfigures (c) and (d), the predic-
tions return to being correct.

The second row demonstrates the prediction ten-

dencies for tench and stingray. In subfigure (a),
when tenches and stingrays are grouped together,
GPT-4V accurately predicts their respective cate-
gories. However, in subfigure (b), with tenches and
stingrays positioned diagonally and not grouped
together, GPT-4V incorrectly predicts ‘stingray’ as
‘tench’. This misclassification persists in subfig-
ures (c) and (d) when the tenches and stingrays are
diagonally positioned, highlighting the impact of
image arrangement on GPT-4V’s predictions.

In the third row, we observe the interactions be-
tween great white shark and hammerhead shark. In
subfigures (a), (b), and (c), where the sharks are
positioned diagonally and not grouped together,
GPT-4V consistently misclassifies hammerhead
shark as ‘great white shark’. However, in subfigure
(d), when the sharks are grouped together, GPT-
4V accurately distinguishes between the two shark
species. These examples underscore the impor-
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…

GPT-4V

Here is the prediction:
[0: ‘duck’, 1: ‘apron’, 2: 
‘baseball player’, 3: ‘ATM 
keypad’]

…

GPT-4V

Here is the prediction:
[0: ‘tractor’, 1: ‘automated 
teller machine’, 2: ‘red-
breasted merganser’, 3: ‘dive’]

…

GPT-4V

…

GPT-4V

Here is the prediction:
[0: ‘automated teller 
machine’, 1: ‘tractor’, 2: ‘dock’, 
3: ‘red-breasted merganser’]

Here is the prediction:
[0: ‘automated teller 
machine’, 1: ‘tractor’, 2: ‘dock’, 
3: ‘red-breasted merganser’]

…

GPT-4V

Here is the prediction:
[0: ‘academic gown’, 1: 
‘military uniform’, 2: ‘crane 
bird’, 3: ‘carved pumpkin’]

…

GPT-4V

Here is the prediction:
[0: ‘construction crane’, 1: 
‘academic gown’, 2: ‘military 
uniform’, 3: ‘carved pumpkin’]

…

GPT-4V

Here is the prediction:
[0: ‘construction crane’, 1: 
‘carved pumpkin’, 2: ‘crane 
bird’, 3: ‘military uniform’]

…

GPT-4V

Here is the prediction:
[0: ‘construction crane’, 1: 
‘academic gown’, 2: ‘carved 
pumpkin’, 3: ‘military 
uniform’]

Generation 1 Generation 2 Generation 3 Generation 4

…

GPT-4V

Here is the prediction:
[0: ‘broccoli’, 1: ‘hot dog’, 2: 
‘soda bottle’, 3: ‘magnifying 
glass’]

…

GPT-4V

Here is the prediction:
[0: ‘magnifying glass’, 1: ‘hot 
pot’, 2: ‘soda bottle’, 3: 
‘broccoli’]

…

GPT-4V

Here is the prediction:
[0: ‘loupe magnifying glass’, 1: 
‘chicken’, 2: ‘printed media’, 3: 
‘broccoli’]

…

GPT-4V

Here is the prediction:
[0: ‘loupe magnifying glass’, 1: 
‘meatloaf’, 2: ‘broccoli’, 3: 
‘soda bottle’]

Figure 10: Illustration of optimized collage arrangements and corresponding GPT-4V predictions across different
generations, generated using the LCP algorithm.

tance of grouping images of the same category to-
gether in collage prompting to improve GPT-4V’s
accuracy.

These observations highlight the significance of

image arrangement in collage prompting. When im-
ages of similar categories are positioned adjacently,
GPT-4V’s accuracy improves. Conversely, non-
adjacent placement, especially diagonal position-
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Algorithm 1: LCP Algorithm for Collage
Arrangement Optimization

1 Parameters: n: size of arrangement
candidates, m: size of selected
arrangement, χ: crossover rate, µ:
mutation rate;

2 Initialise generation 0:;
3 k := 0;
4 Pk := a set of n randomly-generated

arrangements;
5 Evaluate Pk:;
6 Compute fitness(i) for each i ∈ Pk;
7 while not stop-criterion do
8 // Create generation k + 1:;
9 // 1. Copy:;

10 Select Top-m arrangements from Pk;
insert into Pk+1;

11 // 2. Crossover:;
12 Randomly pop out two arrangements

from Top-m; pair them up; produce
χ× n new arrangements; insert the
arrangements into Pk+1;

13 // 3. Mutate:;
14 Select µ× n arrangements of Pk+1;

invert a randomly-selected bit in each;
15 // Evaluate Pk+1:;
16 Compute fitness(i) for each i ∈ Pk+1;
17 // Increment:;
18 k := k + 1;
19 end
20 return the fittest arrangement from Pk;

ing, increases the likelihood of misclassification.
This underscores the need for careful consideration
of image layout in tasks requiring high recognition
accuracy, as the arrangement can substantially im-
pact the performance of visual recognition models.

D.2 More cases about Localization Errors

The visualization of collage prompt reveals distinct
variations in the recognition accuracy of collage im-
ages by GPT-4V across different positions within
the collage. Specifically, images positioned in the
top-left corner exhibit the highest recognition accu-
racy, while those in the bottom-left corner demon-
strate the lowest accuracy. For instance, in the first
row of Figure 9, the “Siberian Husky” is misclas-
sified when positioned in the bottom-left corner
but correctly identified in other positions. More-
over, relocating challenging samples to the top-left

corner notably enhances GPT-4V’s identification
accuracy. For instance, in the second row of Figure
9, the “coffee mug”, identified as a challenging
sample, is correctly recognized only when placed
in the top-left corner, whereas it is misclassified
in other positions. Similarly, such phenomena are
observed in the second row of Figure 11.

Additionally, we observed instances of mislocal-
ization during collage image recognition by GPT-
4V. This phenomenon entails the correct label of
an image within the collage being predicted for the
adjacent image’s position. For example, in the sec-
ond row of Figure 9, the “lighthouse” positioned
in the bottom-left corner of the third collage is
misclassified as the last image in the bottom-right
corner. This mislocalization is more pronounced
in the first row of Figure 11, where the “projector”
is consistently misclassified as a “rotary dial tele-
phone” when adjacent, but correctly classified as
other categories when positioned diagonally. This
observation offers insight into why the recogni-
tion accuracy of images in collages, particularly
in datasets like EuroSAT, surpasses that of single
images. When images of the same category are
juxtaposed in a collage, they provide mutual cues
for GPT-4V to predict the correct labels. This phe-
nomenon was further validated through experimen-
tation. These findings underscore the importance
of considering the spatial arrangement of images
within a collage when interpreting recognition accu-
racy and offer insights into the mechanisms under-
lying GPT-4V’s recognition performance in such
contexts.

D.3 Arrangement Optimization in LCP
Figure 10 displays various optimal collage arrange-
ments and their corresponding predictions by GPT-
4V across different generations, as generated by the
LCP algorithm. In the first row examples, the “auto-
mated teller machine” was initially mispredicted in
the first two generations but was correctly placed in
the top-left corner in the third generation, resulting
in a correct prediction by GPT-4V. The optimal ar-
rangement remained consistent in the fourth gener-
ation, suggesting that the LCP algorithm stabilized
after achieving the best arrangement.

In the second row examples, the “construc-
tion crane” was mispredicted when placed in the
bottom-left corner in the first generation. However,
it was correctly positioned in the top-left corner
in the second generation and remained there in
subsequent iterations. This indicates that the LCP
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Table 6: Baseline method v.s. Brute Force Solution. 3× 3 Grid Collage.

K Method Steps Time Fitness Accuracy

3×
3

LCP (Baseline)

100 1.631 0.114 0.330
500 4.479 0.138 0.334
1000 7.727 0.141 0.330
1500 10.952 0.141 0.334

Brute Force

100 0.670 0.102 0.330
500 3.301 0.124 0.329
1000 6.812 0.131 0.326
1500 9.856 0.136 0.328

2×
2

LCP (Baseline)

5 0.078 0.0419 0.445
10 0.107 0.0439 0.446
15 0.131 0.0433 0.448
24 0.187 0.0439 0.445

Brute Force

5 0.033 0.040 0.449
10 0.066 0.0428 0.448
15 0.099 0.0433 0.448
24 0.164 0.0436 0.451

algorithm learned to place challenging samples in
the top-left corner for improved prediction accu-
racy, while simpler samples were positioned in the
bottom-left corner to enhance overall collage recog-
nition accuracy.

In the third row examples, the “loupe magnify-
ing glass” was initially placed in the bottom-right
corner in the first generation, resulting in a mis-
prediction by GPT-4V. Subsequently, in the sec-
ond generation, the LCP algorithm positioned it
in the top-left corner, still leading to a mispredic-
tion. However, in the following iterations, “loupe
magnifying glass” persisted in the top-left corner,
indicating the LCP predictor’s confidence in this
arrangement despite the initial misprediction. Even-
tually, in the later generations, the correct predic-
tion was made when the “loupe magnifying glass”
was placed in the top-left corner again. This exam-
ple highlights the robustness of our trained LCP
predictor and suggests some stochasticity in the
prediction outcomes of GPT-4V.

These cases in Figure 10 further demonstrate that
GPT-4V’s accuracy in recognizing images within
a collage varies across different positions. The
LCP algorithm successfully learns the positions
that yield the highest and lowest accuracy and opti-
mally arranges the images to enhance the overall
collage recognition accuracy by GPT-4V.

E Ablation Study

E.1 Cost-Efficiency Analysis of Collage Sizes

Table 5 illustrates the Top-1 accuracy of collage
sizes ranging from 1× 1 to 5× 5 random grid ar-
rangements. It also presents the inference time per
image and the associated cost of using the GPT-
4V API for inference per 1000 images. Notably,
transitioning from single 1 × 1 images to 2 × 2
grid collages results in a reduction in accuracy of
approximately 22.6%. However, the inference time
and API usage cost decrease by nearly fourfold.
Subsequently, each increment in grid size, from
2 × 2 to 5 × 5, leads to a decrement in accuracy
by nearly 10%. Given the impracticality of using
4× 4 and 5× 5 grid sizes due to their significantly
lower accuracy and the extensive search space for
grid arrangements, focusing on optimizing the ar-
rangement learning solely for 2× 2 and 3× 3 grids
holds practical value. This is because 2 × 2 and
3 × 3 grids maintain acceptable accuracy levels
while ensuring sufficiently low costs.

E.2 Comparison of Optimization Methods

Table 6 compares the efficacy of random initial-
ization, brute force search using a trained model
predictor, and optimization using our LCP algo-
rithm for obtaining optimal grid arrangements for
both 2×2 and 3×3 collage sizes. It is evident from
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…

GPT-4V

Here is the prediction:
[0: ‘rotary dial telephone’, 1: 
‘computer mouse’, 2: ‘rotary 
dial telephone’, 3: ‘brown 
bear’]

…

GPT-4V

Here is the prediction:
[0: ‘music speaker’, 1: 
‘computer mouse’, 2: ‘sloth 
bear’, 3: ‘rotary dial 
telephone’]

…

GPT-4V

…

GPT-4V

Here is the prediction:
[0: ‘brown bear’, 1: ‘rotary 
dial telephone’, 2: ‘loupe 
magnifying glass’, 3: 
‘computer mouse’]

Here is the prediction:
[0: ‘brown bear’, 1: ‘rotary 
dial telephone’, 2: ‘computer 
mouse’, 3: ‘rotary dial 
telephone’]

…

GPT-4V

Here is the prediction:
[0: ‘Maltese’, 1: ‘golf ball’, 2: 
‘church’, 3: ‘hourglass’]

…

GPT-4V

Here is the prediction:
[0: ‘hourglass’, 1: ‘baseball’, 2: 
‘Afghan Hound’, 3: ‘church’]

…

GPT-4V

Here is the prediction:
[0: ‘Maltese’, 1: ‘hourglass’, 2: 
‘church’, 3: ‘golf ball’]

…

GPT-4V

Here is the prediction:
[0: ‘church’, 1: ‘golf ball’, 2: 
‘hourglass’, 3: ‘Afghan Hound’]

"6e04fce71f.jpeg": {
"0": {

"image": "n04009552_16201.JPEG",
"synset_id": 745,
"label": "projector",
"index": 0

},
"1": {

"image": "n03793489_9462.JPEG",
"synset_id": 673,
"label": "computer mouse",
"index": 1

},
"2": {

"image": "n03187595_3875.JPEG",
"synset_id": 528,
"label": "rotary dial telephone",
"index": 2

},
"3": {

"image": "n02132136_1152.JPEG",
"synset_id": 294,
"label": "brown bear",
"index": 3

}
},

"3eabc2dc4a.jpeg": {
"0": {

"image": "n02085936_10644.JPEG",
"synset_id": 153,
"label": "Maltese",
"index": 0

},
"1": {

"image": "n03445777_15113.JPEG",
"synset_id": 574,
"label": "golf ball",
"index": 1

},
"2": {

"image": "n03028079_18438.JPEG",
"synset_id": 497,
"label": "church",
"index": 2

},
"3": {

"image": "n03544143_7216.JPEG",
"synset_id": 604,
"label": "hourglass",
"index": 3

}
},

Figure 11: Examples of Localization Errors: Two cases that demonstrate different grids within the collage prompt
lead to different accuracy of classification. Blue indicates an accurate prediction while red indicates a wrong
prediction.

the table that grid arrangements obtained through
the model predictor-based search and optimization
generally outperform those obtained through ran-
dom initialization.

Moreover, the grid arrangements optimized us-
ing the LCP algorithm demonstrate higher accuracy
levels while requiring fewer steps and less time
compared to brute force search. For instance, the
LCP algorithm for 3 × 3 grids achieves a similar
accuracy as brute force search but with only 500
steps, three times fewer than brute force, and in half
the time. This emphasizes the efficiency and effec-
tiveness of using LCP algorithms for optimizing
grid arrangements.

F Failure Cases from Other LVLMs

To illustrate the challenges that other large vision-
language models (LVLMs) face in handling collage
prompts, we present several failed response exam-
ples from different models. These outputs highlight
the significant limitations of existing non-GPT-4V
models in visual recognition tasks involving col-
lage prompts.
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LLAVA-v1.6-vicuna-7b
{

"79 f1ff56be.jpeg": {
"airplane ": 0,
"bird": 0,
"car": 0,
"cat": 0,
"deer": 0,
"dog": 0,
"horse": 0,
"monkey ": 0,
"ship": 0,
"truck": 0

}
}

InternVL2-8B
{

"79 f1ff56be_topleft.jpg": {
__caption_uuidf5Gddf4 vardr steht

in the top left of the assigned
class for this picture is the
wrong one on the integration of
the - at the in the of the of
the of the of the of the of the
of the of the of the of the of
the of the of the of the of the
of the of the of the of the of
the of the

}
}

Gemini Pro 1.5
Sorry I can 't help with that image. Try

uploading another image or
describing the image you tried to
upload , and I can help you that way.

These examples demonstrate that current non-
GPT-4V models struggle significantly with collage
prompts, producing outputs that are either non-
sensical, repetitive, or completely uninformative.
These results underscore the infeasibility of bench-
marking these models against GPT-4V for collage-
based visual recognition tasks. Future iterations of
this work will continue evaluating LVLMs as they
evolve to determine if improvements in handling
collage prompts emerge.
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