
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 6255–6264

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Selective Self-to-Supervised Fine-Tuning for Generalization in Large
Language Models

Sonam Gupta *, Yatin Nandwani, Asaf Yehudai, Dinesh Khandelwal,
Dinesh Raghu and Sachindra Joshi

IBM Research

Abstract

Fine-tuning Large Language Models (LLMs)
on specific datasets is a common practice to
improve performance on target tasks. How-
ever, this performance gain often leads to over-
fitting, where the model becomes too special-
ized in either the task or the characteristics of
the training data, resulting in a loss of gen-
eralization. This paper introduces Selective
Self-to-Supervised Fine-Tuning (S3FT), a fine-
tuning approach that achieves better perfor-
mance than the standard supervised fine-tuning
(SFT) while improving generalization. S3FT
leverages the existence of multiple valid re-
sponses to a query. By utilizing the model’s
correct responses, S3FT reduces model spe-
cialization during the fine-tuning stage. S3FT
first identifies the correct model responses from
the training set by deploying an appropriate
judge. Then, it fine-tunes the model using
the correct model responses and the gold re-
sponse (or its paraphrase) for the remaining
samples. The effectiveness of S3FT is demon-
strated through experiments on mathematical
reasoning, Python programming and reading
comprehension tasks. The results show that
standard SFT can lead to an average perfor-
mance drop of up to 4.4 on multiple bench-
marks, such as MMLU and TruthfulQA. In
contrast, S3FT reduces this drop by half, i.e.
2.5, indicating better generalization capabili-
ties than SFT while performing significantly
better on the fine-tuning tasks.

1 Introduction

Large Language Models (LLMs) have made re-
markable progress in recent years, demonstrating
impressive capabilities across a wide range of tasks,
including question-answering (Rajpurkar et al.,
2016), summarization (Nallapati et al., 2016), and
more (Brown et al., 2020). Supervised fine-tuning
(SFT) of LLMs on task-specific data is a widely

*Corresponding author: Sonam.Gupta7@ibm.com

Task Write a function to add two lists using map and
lambda function.

Gold def add_list(nums1,nums2):
result = map(lambda x, y:x+y, nums1, nums2)
return list(result)

log probability = -84.32

Model def add_list(list1, list2):
Prediction return list(map(lambda x, y:x+y, list1, list2))

log probability = -36.64

Table 1: An example from the MBPP (Python Program-
ming dataset) (Austin et al., 2021), along with Mistral-
7B-Instruct-v0.2’s prediction.

used approach to enhance their performance in spe-
cialized applications. While fine-tuning improves
task accuracy, it can cause the model to overfit to
the domain or style present in the training data,
potentially limiting its broader applicability. In
this work, we focus on exploring how to fine-tune
an LLM for a specific task while preserving its
general-purpose capabilities.

SFT relies on gold responses for training. We
observe two key challenges when performing
SFT on LLMs: (1) in many datasets, model-
generated responses—though differing from gold
responses—are still valid and acceptable, and (2)
the distribution of gold responses often diverges
significantly from the model’s own response dis-
tribution. For instance, consider an example from
the MBPP dataset in Table 1. The base model,
Mistral-7B-Instruct-v0.2, assigns a log probability
of−84.32 to the gold answer. When prompted with
the same question, the model generates a response
containing the same information as the gold output,
but with a much higher log probability of −36.64.
This phenomenon is common in generation tasks,
where semantically equivalent responses can have
widely varying log-likelihood scores. This observa-
tion suggests that model-generated responses can
align more closely with the model’s native distribu-
tion, whereas gold responses may lie further apart.

6255

As a result, training exclusively on gold responses
risks introducing distributional drift, potentially re-
ducing the model’s ability to generalize effectively.

To address this issue, we propose Selective Self-
to-Supervised Fine-Tuning (S3FT), a simple yet
powerful technique that utilizes model-generated
answers for a subset of the training dataset to adapt
the model to desirable behaviours while maintain-
ing generalization. S3FT fine-tunes the model on
its own generated output for cases where it behaves
desirably and on gold output (or its paraphrase)
for the remaining data. This approach allows the
model to learn from its successes while benefiting
from human-labeled data when needed.

In our experiments, we show that S3FT outper-
form existing approaches, including SFT, on di-
verse tasks, namely code generation Austin et al.
(2021), math problem solving (Cobbe et al., 2021)
and reading comprehension (Kwiatkowski et al.,
2019). To show that S3FT generalizes better and
retains the base model’s capabilities, we evaluate
on multiple datasets such as MMLU (Hendrycks
et al., 2020), TruthfulQA (Lin et al., 2022), and
Hellaswag (Zellers et al., 2019). We observe that
the drop in performance for S3FT on these bench-
marks is smaller than that of existing approaches,
demonstrating better generalization capabilities.

2 Proposed Method

LetMθ parameterized by θ be a given large lan-
guage model. Let θ = θ0 be the given model
weights obtained after pre-training and instruction
tuning the model. We refer to Mθ0 as the base
model. Further, let T be the new task that we wish
to teach the modelMθ, and let D = {(xi, yi)}Ni=1

be the corresponding training dataset for T . In
standard SFT, we backpropagate through the stan-
dard Cross Entropy loss over the training dataset,
D. However, SFT can cause a degradation ofMθ0

general capabilities by forcing the model to predict
a gold response which is further away from theMθ

responses’ distribution.
To solve this, our method relies on two key ob-

servations. First, for many NLP tasks e.g. ma-
chine translation, summarization, reading compre-
hension etc., the same input x can have multiple
valid responses. Nandwani et al. (2020) define this
setup as 1oML (one of many learning) and propose
various strategies to handle it, albeit for combi-
natorial problems. Second, teaching the model
using its own words can help preserve its own dis-

tribution. This can regularizes the model train-
ing, helping it to tackle catastrophic forgetting and
maintaining its general capabilities. We note that
the standard practice of regularization via replay
buffer (Hayes et al., 2020), which involves mix-
ing a subset of instruction-tuning dataset with the
given task-specific data D is not always feasible as
the instruction-tuning dataset may not be available.
These two observations are the basis for S3FT. For
each example in the data, we start by generating
a prediction ŷi = Mθ0(xi) with the base model
where xi is the input. If ŷi is equivalent to yi, we
use (xi, ŷi) for model training. If ŷi is not equiva-
lent, we useMθ0 to rephrase the gold answer yi in
its own language, ỹi =Mθ0([xi; yi]). If ỹi is not
equivalent to yi we use the gold answer, yi. Fig-
ure 1 and the algorithm in Appendix A.4 gives an
overview of our approach.

An important component of S3FT is the ability
to identify the equivalence of model’s prediction or
gold paraphrasing to the gold answer. Towards that
end, we can use judges that aim to assess the equiv-
alence with ŷi, either by heuristics such as check-
ing the bottom-line agreement of the predicted and
gold response or employing a stronger LLM as a
judge to measure more semantic equivalence.

3 Experimental Setup

We evaluate and compare the proposed S3FT
method with the vanilla SFT and other methods
that try to perform fine-tuning while retaining gen-
eralization capabilities. We aim to answer the fol-
lowing research questions: RQ1. In-Domain Per-
formance: How well does S3FT learn the fine-
tuning task compared to baselines when fine-tuned
and evaluated on the same dataset? RQ2. Gener-
alization: How well does S3FT retain the inherent
capabilities of the base model post fine-tuning?
RQ3. Effect of gold response’s paraphrasing:
How beneficial is it to use gold paraphrases that are
closer to the base model’s distribution?
Datasets: We focus on three tasks, improving the
mathematical reasoning abilities, basic python pro-
gramming and reading comprehension skills. For
enhancing the mathematical skills we experiment
with GSM8K (Cobbe et al., 2021) dataset. This
dataset consists of grade school level math word
problems and solutions. To boost the Python pro-
gramming skill, we experiment with MBPP (Austin
et al., 2021) dataset which consists of a task de-
scription, three test cases, and a code solution for

6256

Base Model

is incorrect

is correct

Input

Write a function to add two lists using
map and lambda function.

def add_list(list1, list2):
 return list(map(lambda x, y:x+y, list1, list2)

Judge
Base Model

is correct

Judge
is incorrect

def add_list(nums1, nums2):
 result = map(lambda x, y: x + y, nums1, nums2)
 return list(result)

def add_list(nums1, nums2):
 result = list(map(lambda x, y: x + y, nums1, nums2))
 return result

gold

Figure 1: An overview of our proposed approach: Given the input xi and its corresponding gold response yi, we
employ the base modelMθ to transform yi such that it is correct but at the same time closer to model’s distribution.
First, the model predicts the output ŷ. The judge decides whether the yi is correct. If true, it becomes part of the
training dataset; otherwise, we paraphrase ([xi; yi]) to obtain ỹi. The judge evaluates the correctness of ỹi. If true,
we use ỹi; otherwise, we use yi as the target response. The resulting dataset D′ is used to train the model.

each example. We experiment with a variant of
NQ (Kwiatkowski et al., 2019) dataset as intro-
duced in (Slobodkin et al., 2023) to enhance the
reading-comprehension skills. The NQ dataset
from (Slobodkin et al., 2023) contains 3800 (con-
text, question, answer) pairs. The questions are
categorized into two types: (i) answerable – where
the provided context is relevant and contains suffi-
cient information to derive an answer, and ii) unan-
swerable – where the context lacks the necessary
information to answer the question. A detailed
description of the datasets, along with the train-
ing, validation and testing splits, is provided in the
Appendix A.2.

Evaluation Metrics: For GSM8K, we assess the
correctness of a generated response by checking
if its predicted answer matches the final answer
in the gold solution. For MBPP, we evaluate the
generated code by executing it against the provided
test cases. If the code passes all the test cases,
it is considered correct. For NQ dataset, we em-
ploy Mistral-instruct-v2 (7B) as a judge. Following
(Badshah and Sajjad, 2024), we use a reference-
guided prompt to judge the correctness of the gen-
erated responses. More details about the LLM
judge can be found in appendix A.5. Finally, we
report the accuracy of each method for the three
datasets.

Human Study on Judges’ Accuracy: Since re-
sponses in GSM8K and NQ are more open-ended,
we conduct a human study to assess the reliability

of the judges used for evaluating correctness. For
GSM8K, we randomly sampled 50 examples and
found that the judge is approximately 96% accu-
rate. Similarly, for NQ, testing on a set of 200
random samples yielded an accuracy of 86%. Ad-
ditionally, we highlight that improving the quality
of the judges could further enhance the evaluation
process and improve the overall generalizability of
the method.
Base model and Baselines: We experiment with
Mistral-instruct-v2 (7B) (Jiang et al., 2023) as our
base model. We use three baselines: (1) prompting
the base model (see Appendix A.1 for the exact
prompt), (2) Supervised Fine-Tuning (SFT), and (3)
Self-distill Fine-tuning (SDFT) (Yang et al., 2024).
SDFT is a contemporary work that adopts gold
answer rephrasing to preserve the generalization of
the fine-tuned model.
Implementation Details: For all fine-tuning, we
use Low-Rank Adaptation (LoRA) (Hu et al., 2022)
with a rank of 8, a scaling factor of 16 and a dropout
of 0.1. Please see Appendix A.3 for more details.

4 Results and Discussion

In-Domain Performance Table 2 reports the ac-
curacy of Mistral-Instruct-v2 (7B) fine-tuned over
GSM8K, MBPP and NQ datasets. Here, we evalu-
ate the base, SFT, SDFT and S3FT models over the
test set corresponding to the training dataset. The
base model shows suboptimal performance on all
the datasets. Fine-tuning using our method signif-

6257

Method GSM8K MBPP NQ

Base 40.3 22.2 64.7
SFT 53.4 32.8 60.0
SDFT 54.8 35.8 67.1
S3FT 56.9 39.4 67.1

Table 2: Performance comparison of various fine tuning
techniques over two different tasks using Accuracy(%)
as the metric. S3FT achieves the best performance on
the fine-tuning task while preserving the generalization
to the other tasks.

Dataset Model
responses

Gold
paraphrases

Gold
responses

GSM8K 49.5% 42.1% 8.4%
MBPP 30.2% 32.4% 37.4%
NQ 66.0% 25.6% 8.1%

Table 3: The proportions of examples used from each
data type; Model responses, Gold paraphrases, and Gold
responses. We can see that the exact composition de-
pend on the dataset, but the majority of responses are
either the model responses or its paraphrasing.

icantly improves the model’s performance. S3FT
achieves a 2.1% gain on GSM8K, 3.6% gain on
MBPP and comparable performance to the state-of-
the-art method SDFT on reading comprehension.
We note that S3FT significantly outperforms SFT
on all three datasets. This improvement stems from
a simple yet effective technique of using the base
model’s responses for training when the base model
is correct instead of the gold response. This verifies
that S3FT learns the fine-tuning task well outper-
forming all other baselines (RQ1).

Generalization A major issue with SFT is its ten-
dency to diminish the model’s previously learned
skills. To demonstrate that S3FT alleviates this
issue, we compare the baselines and our method
against the base model on a diverse set of publicly
available benchmarks. Specifically, we evaluate
them on MMLU (Hendrycks et al., 2020), Truthful-
QA (Lin et al., 2022), Hellaswag (Zellers et al.,
2019) and, Winogrande (Sakaguchi et al., 2019).
Table 4 reports our findings.

We observe that irrespective of the task used for
fine-tuning, there is a drop in the performance of
SFT models across all benchmarks. On average,
SFT on Mistral-7B results in an average drop of 4.4,
2.7 and 5.8 when trained using GSM8K, MBPP
and NQ respectively. On the other hand, S3FT

results in an average drop of only 2.5 when trained
on GSM8K and MBPP and a drop of 1.0 when
trained on MBPP. This clearly demonstrates that
our proposed technique for fine-tuning preserves
the base model’s capabilities (RQ2) without relying
upon any kind of replay buffer which might not
even be available in many cases. On the other
hand, standard SFT results in overfitting to the
training dataset, resulting in catastrophic forgetting
of the skills acquired by the base model during
pre-training and instruction tuning.

Effect of Gold response’s paraphrasing Our
findings from Tables 2 and 4 indicate that using the
model’s response as the target rather than the gold
response significantly enhances fine-tuning perfor-
mance without compromising the model’s overall
capabilities. Training on gold responses can cause
a shift from the original distribution, negatively
impacting the model’s generalization. Figure 2 il-
lustrates this gap between the distributions of gold
responses, gold paraphrases, and the base model’s
responses. The distribution is plotted using 84 ran-
dom samples for which the model’s prediction and
the paraphrases of the gold responses are accept-
able. The plot shows that in several cases model
responses can be valid and closer to model’s own
distribution and therefore curating the training data
in this way leads to minimal changes in the model
parameters while fine-tuning. Thus, the closer the
gold response’s paraphrases to the model distribu-
tion, the better it is (RQ3).

Training Data Proportions Table 3 presents the
proportions of examples in which S3FT utilizes
base model responses, gold paraphrases, and gold
responses across the three datasets. Notably, the
base model’s responses were deemed acceptable
for at least 30% of the training samples. When
incorporating gold paraphrases, more than 50% of
the training data originates from the model’s own
responses. This suggests that the base model’s out-
puts play a crucial role in S3FT’s success by acting
as an effective regularizer, helping to mitigate over-
fitting in the fine-tuning process.

5 Related Work

Continual learning for language models faces
challenges like overfitting and loss of generaliza-
tion (Yogatama et al., 2019; Zhang et al., 2021).
Rehearsal-based methods, such as experience re-
play (Rolnick et al., 2019) and representation con-

6258

Train
Dataset Method MMLU TruthfulQA HellaSwag WinoGrande Average

Base 58.7 59.6 66.0 74.0 64.6

GSM8K
SFT 57.0 48.0 62.4 73.4 60.2

SDFT 57.6 51.1 62.6 73.6 61.2
S3FT 58.2 53.7 63.2 73.5 62.1

MBPP
SFT 57.5 51.9 64.7 73.6 61.9

SDFT 57.1 56.6 65.2 73.4 63.1
S3FT 58.0 57.2 64.9 74.4 63.6

NQ
SFT 54.4 45.7 63.1 72.0 58.8

SDFT 55.2 53.9 65.3 72.6 61.8
S3FT 57.0 54.1 64.8 72.6 62.1

Table 4: Generalization over other benchmarks. 1st row reports the score obtained by prompting the base model
Mistral-instruct-v2-7B.

300 250 200 150 100 50 0
Base Model Log Probability

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Base Model prediction
Gold Paraphrase
Gold

Figure 2: Histogram of the log probability assigned by
Mistral-7B-Instruct-v0.2 to the gold responses, para-
phrase of gold responses and model’s own predictions.
The distribution is based on 84 examples from the
MBPP training data.

solidation (Bhat et al., 2022), show promise but
often depend on real data, which may be scarce.
To address this, model-generated responses are
used through techniques like self-training (He et al.,
2020; Xie et al., 2020) and self-supervised learning
(Lewis et al., 2020). However, their effectiveness
in continual learning remains underexplored. Cur-
rent methods focus on real data rehearsal (Scialom
et al., 2022; Mok et al., 2023; Zhang et al., 2023),
but these can be resource-intensive. In contrast,
S3FT avoids storing past data or training extra gen-
erative models, making it more data-efficient and
practical for real-world use. SDFT (Yang et al.,
2024), the closest contemporary work to ours, is
thoroughly compared in experiments, where we
achieve significantly higher accuracy.

6 Conclusion

In this paper, we present S3FT, a fine-tuning ap-
proach that enhances both task-specific perfor-
mance and generalization across tasks, as shown on
benchmarks like MMLU and Truthful QA. S3FT
leverages the idea that multiple correct outputs
may exist and avoids unnecessary changes by fine-
tuning on gold response (or its paraphrase) only
when the model’s response is incorrect. In future
work, we plan to investigate techniques like few-
shot prompting for sampling correct outputs that
are closer to the model’s own distribution to reduce
the changes from the base model’s weights.

7 Limitations

S3FT requires running model inference on the en-
tire training dataset, identifying correct and incor-
rect responses, then performing gold rephrasing on
incorrect responses and evaluating their correctness.
These additional steps introduce a few extra require-
ments not present in standard SFT. First, S3FT’s
improved results come at the cost of increased com-
putational demands. Second, it requires a qualified
judge. As we show, reliable heuristics can be used
to assess response equivalence in mathematical rea-
soning and Python programming tasks. However,
for open-ended tasks such as summarization and
translation, no simple heuristics exist. Here, we
demonstrate that for reading comprehension, an
LLM judge can serve as a reliable evaluator. As
LLM judges improve, the usability and applicabil-
ity of our method can extend to a broader range of
tasks.

6259

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Sher Badshah and Hassan Sajjad. 2024. Reference-
guided verdict: Llms-as-judges in automatic eval-
uation of free-form text, 2024. URL https://arxiv.
org/abs/2408.09235.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Sarthak Bhat, Oleg Sidorov, Ulrich Paquet, and Anirudh
Garg. 2022. Representation consolidation for contin-
ual learning. In International Conference on Learn-
ing Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj
Acharya, and Christopher Kanan. 2020. Remind your
neural network to prevent catastrophic forgetting. In
European Conference on Computer Vision, pages
466–483. Springer.

Junxian He, Jiatao Gu, Jianfeng Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In International Conference on
Learning Representations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Tanya Mok, Luisa Wellhausen, Hyung Won Choe, and
Hannaneh Hajishirzi. 2023. Large language mod-
els can be continuously updated without forgetting.
arXiv preprint arXiv:2303.01926.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çaglar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. In Conference on Computational
Natural Language Learning. Association for Compu-
tational Linguistics (ACL).

Yatin Nandwani, Deepanshu Jindal, Parag Singla, et al.
2020. Neural learning of one-of-many solutions for
combinatorial problems in structured output spaces.
In International Conference on Learning Representa-
tions.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. In Advances in Neural
Information Processing Systems, volume 32.

6260

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Thomas Scialom, Thierry Charnois, and Sylvain Lam-
prier. 2022. Continual learning for large language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 5432–5442.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido
Dagan, and Shauli Ravfogel. 2023. The curious case
of hallucinatory (un) answerability: Finding truths
in the hidden states of over-confident large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3607–3625.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. 2020. Self-training with noisy student
improves imagenet classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10687–10698.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang,
Wei Chen, Minfeng Zhu, and Qian Liu. 2024. Self-
distillation bridges distribution gap in language
model fine-tuning. arXiv preprint arXiv:2402.13669.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Zijun Zhang, Yue Wu, Hao Guan, Xinlei Chen, and
Yue Zhang. 2023. Continual learning with trans-
formers: Challenges and solutions. arXiv preprint
arXiv:2302.13713.

6261

"<s>[INST] You are an expert in math. Below is a math
question. Write a response that appropriately answers
the question. Your final answer should be an integer
at the end of your response, formatted as: The answer
is {answer}.
Question: {{question}} [/INST]"

Figure 3: Prompt used for training the model on GSM8K
dataset.

<s>[INST] You are an expert Python programmer, and
here is your task: {{task}}. Your code should pass
these tests:

{{testcase_1}}
{{testcase_2}}
{{testcase_3}}

Generate only the python code encapsulated between
[[BEGIN]] and [[DONE]] tags. Do not generate any
explanation. [/INST]

Figure 4: Prompt used for predicting the base model
response on MBPP training dataset.

A Appendix

A.1 Prompt for Generating the Response
We list the prompts used with mistral-instruct-v2
to generate the base model responses, gold para-
phrases and training in this section. For the sake of
consistency and fair comparison, the same prompts
are used for fine-tuning using SFT, SDFT and S3FT
techniques. Figure 4 and Figure 6 present the
prompts used for generating the base model predic-
tion and gold paraphrasing for MBPP dataset. To
simplify the process of extracting the code in the
generated output, we always ask the model to gen-
erate only the Python code starting with the string
"[[BEGIN]]" and ending in the string "[[DONE]]".
For the MBPP dataset, the training prompt is the
same as the base model’s prediction prompt. Sim-
ilarly, Figure 5 and Figure 7 present the prompt
used for generating the base model response and
paraphrasing the gold response. The details of the
training prompt are provided in Figure 3.

A.2 Datasets Details
GSM8K: GSM8K is a math word problem
dataset comprising of 7473 training examples and
1319 test samples. Each question takes approxi-
mately 2-8 steps to solve. Solving these problem
require knowledge of basic algebra only. Solutions
are human written containing steps in natural lan-
guage as well. We note that GSM8K does not have

"<s>[INST] You are an expert in math. Below is a math
question. Write a response that appropriately answers
the question. Your final answer should be an integer
at the end of your response, formatted as: The answer
is {answer}.
Question: {{question}}
Great! Let's think step by step. [/INST]"

Figure 5: Prompt used for predicting the base model’s
output on GSM8K dataset.

a validation set, so we took randomly sampled 150
samples from the dataset as validation.

MBPP: MBPP stands for Mostly basic python
programming dataset. As the name suggests, each
example of this dataset contains a task description
along with three test cases that the code solving the
given task should pass. The gold response contains
the python code. There are 372 training examples,
90 validation examples and 500 examples in the
testing dataset.

NQ: NQ is a content-grounded QA dataset. To in-
crease the complexity of the task, (Slobodkin et al.,
2023) augment the NQ dataset with unanswerable
queries. Here, the grounding content consists of
a single paragraph and the gold answers are short
phrases.

A.3 Training Details

Training for all the experiments was carried out
on a single A100 (80 GB) GPU. None of the ex-
periments took more than 1.5 hours to train. To
generate the base model’s responses, we deployed
Mistral-7B-Instruct-v0.2using vLLM on a single
A100 (80 GB) GPU. It took 1 hour to generate
the base model’s predictions for GSM8K, 30 min-
utes to generate the base model’s responses for NQ
dataset and 15 minutes on MBPP dataset. The en-
tire life cycle, including training data generation,
fine-tuning and evaluation, did not take more than
5 hours.

We use a learning rate of 1× e−4. For GSM8K
and NQ, we train all the models for 5000 steps,
validate after every 500 steps, and select the best
checkpoint. For MBPP, we train the models for
1000 steps, validate after every 100 steps, and select
the base checkpoint based on the accuracy over the
validation set.

For evaluating the GSM8K dataset, we matched
the last number of the gold response with the last
number extracted from the predicted response. If
these answers matched, we considered the gener-

6262

<s>[INST] Below are an instruction that describes a task along with a reference answer. Using
the reference answer as a guide, write your own response.

Instruction:
You are an expert Python programmer, and here is your task: {{task}}. Your code should pass
these tests.

{{testcase_1}}
{{testcase_2}}
{{testcase_3}}

Generate only the python code encapsulated between [[BEGIN]] and [[DONE]] tags. Do not generate
any explanation.

Reference Answer:
{{gold_response}}

Response:[/INST]

Figure 6: Prompt used for paraphrasing the gold response of training partition of the MBPP dataset.

<s>[INST] You are an expert in math. Below are a reference answer and its corresponding math
question. Refer to the reference answer and write a response that appropriately answers the
question. Your final answer should be an integer at the end of your response, formatted as:
The answer is {answer}.

Reference Answer:
{{gold_response}}

Question:
{{question}}

Response:
Great! Let's think step by step. [/INST]

Figure 7: Prompt used for paraphrasing the gold response of training partition of the GSM8K dataset.

<s>[INST] You are a helpful assistant acting as an impartial judge. You will be given a
Question, a Reference Answer, and a Provided Answer. Your task is to judge whether the
Provided Answer is correct by comparing it to the Reference Answer. If the Provided Answer is
correct, choose only 'True', otherwise choose only 'False'. Question: {{question}}
Provided Answer:
{{predicted_response}}
Reference Answer:
{{gold_response}}
Decision: [True/False] [/INST]

Figure 8: The prompt used for judging the correctness of the responses generated by the model for NQ dataset.
Here, question refer to the question that the model is answering, predicted response is the response generated by the
fine-tuned model and gold response is the gold answer for the question.

6263

ated response to be correct. For evaluating the
Python codes, we use bigcode-evaluation-harness
(Ben Allal et al., 2022). LLM-judge’s output was
parsed to check the correctness of the answers for
the NQ dataset. If the judge responded "TRUE",
the answer was considered correct; else, if the
judge predicted "FALSE", the answer was deemed
incorrect. We always used greedy decoding when
generating the model responses. Thus, we do a
single run of the evaluation and report the numbers.
To evaluate the trained models on various bench-
marks, the widely popular lm-evaluation-harness
(Gao et al., 2024) repository was used.

A.4 S3FT Algorithm
Here we show the algorithm for S3FT.

Algorithm 1 Training Method

1: Input: Base ModelMθ0

Data D = {(xi, yi)}ni=1

2: D′ ← {}
3: for each example (xi, yi) ∈ D do
4: ŷi ←Mθ0(xi)
5: if ŷi = yi then
6: D′ ← D′ ∪ {(xi, ŷi)}
7: else
8: ỹi ←Mθ0(yi)
9: if ỹi = yi then

10: D′ ← D′ ∪ {(xi, ỹi)}
11: else
12: D′ ← D′ ∪ {(xi, yi)}
13: end if
14: end if
15: end for
16: TrainMθ0 on D′ to obtain updated parameters

θ
17: Output: Updated model parameters θ

A.5 Judges for evaluating the model
performance

For tasks like reading comprehension, conventional
metrics like BLEU, ROUGE are useful but inade-
quate to capture the semantics of the generated
responses. Therefore, we use LLM-as-a-judge
for evaluation. Specifically, inspired by (Badshah
and Sajjad, 2024), we use Mistral-instruct-v2 (7B)
model as a judge with the prompt shown in Figure
8.

6264

