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Abstract

Sign language is a visual language that con-
veys information through gestures and fa-
cial expressions. Drawing inspiration from
how the human brain simultaneously processes
color, shape, and motion, this work presents
an efficient dual-stream early fusion approach,
which combines features from both RGB and
keypoint streams at an early stage for im-
proved sign language translation performance.
A key challenge addressed is extracting com-
plementary features from both streams while
ensuring global semantic consistency to en-
hance generalization. To address this chal-
lenge, a hypernetwork-based fusion strategy
is introduced to extract salient features from
both modalities, along with a partial short-
cut connection training method that reinforces
the complementary relationship between the
streams. Additionally, self-distillation and
shared semantic space (SST) contrastive learn-
ing are employed to preserve feature advan-
tages while aligning features in a shared seman-
tic space for better consistency. Experimen-
tal results demonstrate that the proposed ap-
proach achieves state-of-the-art performance
on two public sign language datasets, reducing
model parameters by approximately two-thirds
while improving translation accuracy. Codes
and models are available at HyperSign.

1 Introduction

Sign language is the primary mode of communi-
cation within the deaf community. Unlike spoken
languages, it has a distinct grammar and vocabu-
lary, conveying meaning through static shapes and
dynamic movements of the hands, face, and body.
Sign Language Translation (SLT) plays a crucial
role in bridging the communication gap between

*These authors contributed equally to this work.
†Corresponding author

pretrained
LM

final
logits

video keypoint

f

final
logits

(a)

pretrained 
LM

pretrained 
LM

f

(b)

video keypoint

Figure 1: The overview of (a) SLT models with late
fusion and (b) SLT models with early fusion (ours).

signers and non-signers by converting sign lan-
guage into spoken or written text (Camgoz et al.,
2018, 2020; Chen et al., 2022a; Zhang et al., 2025).
To achieve SLT, researchers typically use RGB

streams, which capture rich visual details but are
highly susceptible to noise caused by varying back-
grounds, lighting conditions, and occlusions (Cam-
goz et al., 2020; Chen et al., 2022a; Guo et al.,
2020). Alternatively, keypoint streams provide a
more abstract representation by focusing on geo-
metric aspects of gestures, but they may miss finer
nuances of complex movements (Xiao et al., 2021;
Cui et al., 2019). Therefore, combining both RGB
streams for static features and keypoint streams for
dynamic motion could enhance SLT accuracy by
efficiently integrating both modalities (Xiao et al.,
2021; Cui et al., 2019).
Current dual-stream SLT models mostly rely on

late fusion or no fusion, as illustrated in Figure 1
(a). For example, SignBERT+ (Hu et al., 2023) ap-
plies a simple cross-attention mechanism for late
fusion, while TS-Network (Chen et al., 2022b) av-
erages the final outputs of separately trained trans-
lation networks. However, this late fusion ap-
proach leads to parameter redundancy and fails to
synchronize static and dynamic visual cues effec-
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tively (Shankar et al., 2022; Ak et al., 2023). From
a cognitive psychology perspective(Grossberg and
Rudd, 1989; Wagemans et al., 2012), the brain in-
tegrates static (e.g., shape and color) and dynamic
(e.g., motion) information early on to form a uni-
fied perception. Inspired by this, we propose early
fusion to better capture the interdependencies be-
tween color, shape, and motion, as shown in Fig-
ure 1 (b). Early fusion synchronizes static and dy-
namic information, avoids parameter redundancy,
and improves overall model performance.
However, training an early fusion dual-stream

model presents two key challenges: (1) effectively
extracting complementary information from RGB
and keypoint streams, and (2) ensuring semantic
consistency between the two to prevent misalign-
ment, which could negatively impact the model’s
generalization ability.
To address these challenges, we propose theHy-

perSign SLT model, which uses hypernetworks
(Ha et al., 2016) to dynamically integrate RGB and
keypoint streams based on each SL sample, opti-
mizing the fusion process. Unlike traditional static
networks, hypernetworks dynamically adjust net-
work parameters, enhancing adaptability to differ-
ent SL actions. Additionally, we implement a par-
tial shortcut connection strategy to progressively
train the hypernetwork, further improving the fea-
ture extraction capabilities of both streams.
To ensure that the dual-streams are semanti-

cally aligned, we introduce self-distillation at both
the encoder and decoder stages, maintaining con-
sistency in their shared semantic space. For in-
stance, in the sign for “drinking water,” the RGB
stream captures static hand shapes resembling a
cup, while the keypoint stream focuses on the dy-
namic drinking motion. Ensuring alignment pre-
vents misinterpretation, such as confusing the ac-
tion with “brushing teeth.” Additionally, we pro-
pose a contrastive learning approach using shared
semantic tokens, reducing discrepancies between
the streams and significantly enhancing translation
accuracy.
In summary, our contributions include: (1) intro-

ducing a hypernetwork model with a partial short-
cut connection strategy for dynamically integrat-
ing RGB and keypoint streams; (2) proposing a se-
mantic alignment mechanism to harmonize static
and dynamic visual features; and (3) conducting
extensive experiments on the PHOENIX14T and
CSL-Daily datasets, demonstrating that our model
achieves state-of-the-art performance in SLTwhile

significantly improving inference speed.

2 Methodology

In this section, to better illustrate our method, we
first simply introduce our base model. Then, we
describe the hypernetwork mechanism used for dy-
namic feature fusion and the partial shortcut con-
nection strategy. Finally, we explain the seman-
tic synergy mechanisms, including self-distillation
and SST contrastive learning.

2.1 The Base Model
Given a sign language video V = (v1, . . . , vT )
containing T frames, our goal is to optimize the
SLT model to predict a spoken sentence S =
(s1, . . . , sL) containing L words.
As shown in Figure 1(B), in this study, we adopt

a dual-stream fusion SLT model based on early fu-
sion. The current paper focuses primarily on opti-
mizing the model’s translation network; therefore,
in terms of feature extraction, we follow the strat-
egy of (Chen et al., 2022b) to extract andmodel the
keypoint information, and train individual feature
extractors and VL-mapper for each stream. The
extracted visual features Fv and keypoint features
Fk both have dimensions of T/4×1024.
Subsequently, we integrate Fv and Fk into a uni-

fied feature representation Ff through a specific fu-
sion strategy. The fused feature Ff is fed into the
multilingual mBART model, where the decoder
generates tokens for the spoken sentence S one by
one using a causal masking mechanism.

2.2 Hypernetworks for Dynamic Feature
Fusion

Hypernetworks (Ha et al., 2016) can dynamically
parameterize the weights of the fusion network
based on the specific characteristics of the dual-
stream sample itself, thereby dynamically com-
bining effective information from the RGB and
keypoint streams to produce high-quality fusion
stream. The hypernetwork includes a generator
network for dynamically generating weights and a
dynamic MLP for deep semantic fusion. Addition-
ally, we introduce an efficient partial shortcut con-
nection strategy to optimize the training process
and stability of the hypernetwork.

2.2.1 Generator Network
The generator network is a core module of the hy-
pernetwork, receiving RGB features Fv and key-
point features Fk, and dynamically generating the
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Figure 2: The framework of HyperSign: The SLT model is responsible for converting sign language videos into
corresponding spoken text. Initially, the model encodes RGB and keypoint videos separately, obtaining visual
features Fv and keypoint features Fk. These features are jointly input into the hypernetwork, where they undergo
dynamic fusion to produce the fused visual feature Ff. In the inference phase, this stream is directly fed into the
translation network for spoken text prediction. During the training phase, Ff generates Pv and Pk through partial
shortcut connections. The dual-stream features are processed through a unified translation network, generating both
visual (Ev, Ek) and textual (Dv, Dk) representations. During the training phase, two-stage self-distillation enforces
KL divergence constraints on these dual-stream hidden states. Subsequently, the shared semantic space (SST)
converter transforms these visual and textual outputs into the SST space, facilitating simultaneous intra-stream and
inter-stream contrastive learning. These specific distillation and transformation processes are omitted during the
inference phase to streamline model execution.

weight matrix W and bias matrix b based on
the characteristics of the input samples. Unlike
traditional static weights, the generator network
uses subnetworksGW andGb to produce adaptive
weights and biases, ensuring the network can tailor
its processing to the specific features of each sam-
ple. The operations of the generator network are
defined as:

W = GW (Fv,Fk), (1)

b = Gb(Fv,Fk). (2)

2.2.2 Dynamic MLP
The dynamic MLP receives the weightsW and bi-
ases b generated by the generator network, along
with the input RGB features Fv and keypoint fea-
tures Fk, outputting the fusion features Ff. The
computation process is as:

Ff = σ(W ⊙ LayerNorm(Fv ⊙ Fk) + b), (3)

where σ represents the activation function, and ⊙
denotes the element wise product.

2.2.3 Partial Shortcut Connection
In the initial stages of training the hypernetwork,
directly using the fusion features may introduce
noise, affecting the learning outcomes of the
model. To mitigate these issues and enhance

model performance, we propose a method of par-
tial shortcut connection. This method adjusts the
fusion coefficients gradually, allowing the model
to focus on a single feature stream initially, re-
ducing information conflicts, and progressively
increasing the fusion level of different feature
streams later. The fusion process is described as:

Pi = αFi + (1− α)Ff, (4)

where i takes v for RGB features or k for keypoint
features. The fusion coefficient αt follows a trun-
cated normal distribution with a mean of 0 and a
standard deviation of σt, constrained within the in-
terval [0, 1], i.e., αt ∼ N[0,1](0, σ

2
t ). As the num-

ber of training steps t increases, σt is defined as
σt = max(1 − t

T , ϵ), where T is the total number
of steps, and ϵ is a very small positive number.

2.3 Semantic Synergy Mechanisms
Although hypernetworks can integrate RGB and
keypoint features effectively, the significant rep-
resentational differences between these modalities
can lead to semantic inconsistencies. To ensure
accurate capturing and alignment of semantic in-
formation from both feature types during the fu-
sion process and to better perform dynamic fea-
ture fusion, we introduce semantic synergy mech-
anisms, including self-distillation and SST con-
trastive learning.
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Methods Dev Test

R B1 B2 B3 B4 R B1 B2 B3 B4

PHOENIX14T

MMTLB-KP (2022) 50.21 51.13 38.43 30.59 25.28 50.79 52.01 39.50 31.52 26.14
MMTLB (2022) 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
CV-SLT (2024) 54.43 55.09 42.60 34.63 29.10 54.33 54.88 42.68 34.79 29.27
CorrNet+ (2024) 54.54 54.56 42.31 34.48 29.13 53.76 55.32 42.74 34.86 29.42

SignBERT+ (2023) 51.12 51.46 38.28 30.30 24.95 50.63 52.01 39.19 31.06 25.70
TS-SLT (2022) 54.08 54.32 41.99 34.15 28.66 53.48 54.90 42.43 34.46 28.95
HyperSign (ours) 54.98 55.35 43.06 35.21 29.78 54.51 55.20 42.80 34.84 29.42

CSL-Daily

MMTLB-KP (2022) 47.98 47.95 35.49 26.72 20.59 48.63 48.58 35.96 27.03 20.84
MMTLB (2022) 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
CV-SLT (2024) 56.36 58.05 44.73 35.14 28.24 57.06 58.29 45.15 35.77 28.94
CorrNet+ (2024) 55.52 55.64 42.78 33.13 26.14 55.84 55.82 42.96 33.26 26.14

TS-SLT (2022) 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.49 32.87 25.79
HyperSign (ours) 57.32 58.68 45.54 36.08 29.28 57.89 58.96 45.93 36.53 29.55

Table 1: Model performance on PHOENIX14T and CSL-Daily datasets.

2.3.1 Self-Distillation
During model training iterations, although both Pv
and Pk possess dual-stream semantic characteris-
tics, they emphasize different aspects. Pv high-
lights effective RGB-related features such as color,
texture, and partial gestures, whereas Pk empha-
sizes keypoint-related features like motion trajec-
tories and speeds. Using self-distillation at both
encoder and decoder ends by minimizing the KL
divergence between different feature streams, our
approach maintains semantic consistency across
modalities, enabling the model to discard irrele-
vant or noisy information and enhancing effective
features that are continuously passed to the fused
stream.
At the encoder and decoder ends of the mBART,

the encoder encodes Pv into Ev and Pk into Ek, re-
spectively. The decoder then decodes these into
Dv and Dk. The Kullback-Leibler divergence is
used for self-distillation at both the decoder and
encoder ends:

LEnc = KLenc(Ev ∥ Ek), (5)

LDec = KLdec(Dv ∥ Dk). (6)

2.3.2 SST Contrastive Learning
Despite the dual-stage KL divergence self-
distillation ensuring semantic consistency at

both encoder and decoder ends and enhancing
the transfer of effective information between
modalities, a direct alignment mechanism across
modalities is missing. Such a mechanism is
crucial for maintaining semantic consistency
among RGB stream, keypoint stream, and textual
information. We draw on contrastive learning
to further strengthen the alignment between
visual and textual semantics. However, directly
aligning cross-modal information is challenging
due to differences in semantic levels and gran-
ularity between visual and textual information.
Therefore, we introduce Shared Semantic Tokens
(SST), mapping different modal features into a
shared semantic space and synchronizing them
across time and space. This method ensures
more accurate semantic interaction between RGB,
keypoints, and text, significantly enhancing the
overall performance of the model.

Let {ci | i = 1, . . . , C} denote the shared se-
mantic token space, where C is the number of to-
kens, each of size d. Let Fx represent the fea-
ture transformed by an MLP from any one of Ev,
Dv, Ek, or Dk, of size RN×d. The mapping pro-
cess to the shared semantic token space can be
described as follows: First, we measure the rele-
vance between feature vectors and SST by calculat-
ing the maximum dot product between them, i.e.,
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ri = maxj⟨Fx,j , ci⟩, where ⟨·, ·⟩ represents the dot
product.
To reduce noise and improve model inter-

pretability, following the method in (Chen et al.,
2023), we employ the Sparsemax function (Mar-
tins and Astudillo, 2016) to enhance the sparsity
of relevance. Specifically, Sparsemax calculates
a threshold that sets weights below this thresh-
old to zero, thus obtaining a sparsified weight
vector w. This process can be represented as
Sparsemax(r) = argminw∈∆K−1 ∥w− r∥2, where
∆K−1 denotes the (K − 1)-dimensional probabil-
ity simplex. Finally, the mapped features f =∑C

i=1wi ·ci are obtained by summing the weighted
SST. The algorithm for mapping features to the
SST space is referred to as the SST Converter, de-
tailed in Algorithm 1.
For any two features Ep and Dq, the contrastive

loss function is defined as:

Li,j = − 1

N

N∑

k=1

log
exp

(
sim

(
f
Ep

i , f
Dq

j

)
/τ

)

∑N
m=1 exp

(
sim

(
f
Ep

i , f
Dq
m

)
/τ

) ,

(7)
where sim(·, ·) denotes the cosine similarity func-
tion, and τ is the temperature parameter.
Considering all possible feature pair combina-

tions, the total loss function LSST is:

LSST =
1

4
(LEv ,Dv +LEk,Dk

+LEv ,Dk
+LEk,Dv),

(8)
These loss functions respectively represent the con-
trastive losses between the visual information from
RGB features and keypoint features with textual in-
formation, as well as the cross-modal contrastive
losses between visual and textual information.

2.3.3 Loss Function
The overall loss function comprises translation
losses for two different paths (LTv , LTk

), KL
losses at the mBART encoder and decoder ends
(LEnc, LDec), and a discrete contrastive learning
loss LSST:

L = LTv +LTk
+ λ1LEnc+ λ2LDec+LSST. (9)

3 Experiments

3.1 Datasets and Evaluation Metrics
We evaluate our approach on SLT using the
PHOENIX14T (Camgoz et al., 2018) and CSL-
Daily (Zhou et al., 2021) datasets. All ablation
studies are conducted on the PHOENIX14T SLT
task. PHOENIX14T is a German Sign Language

Algorithm 1 SST converter
Input: Feature set Ev (similar operations for Dv,
Ek, Dk), semantic tokens {ci}Ci=1

Output: Mapped features fEv

1: Fx ← MLP(Ev)
2: for i = 1 to C do
3: ri ← maxj⟨Fx,j , ci⟩
4: end for
5: w← Sparsemax(r) ▷ Invoke Sparsemax
6: procedure Sparsemax(r)
7: Sort r to get rsorted
8: Compute cumulative sums sk =∑k

j=1 rsorted,j

9: Find k∗ = max
{
k | sk−1

k > rsorted,k
}

10: τ = sk∗−1
k∗

11: return max(r− τ, 0)
12: end procedure
13: fEv ←∑C

i=1wici ▷Weighted sum of
semantic tokens

dataset with a vocabulary of 1066 for annotated
Glosses and 2887 for German text. It consists of
7096, 519, and 642 samples in the training, de-
velopment, and test sets, respectively; CSL-Daily
is a newly released large-scale Chinese Sign Lan-
guage dataset, with a vocabulary of 2000 for an-
notations and 2343 for Chinese text, comprising
18401, 1077, and 1176 samples in the training, de-
velopment and test sets, respectively. Following
previous work (Chen et al., 2022a; Zhao et al.,
2024), we use BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) to assess the models of SLT.
Higher BLEU and ROUGE scores indicate better
translation performance.

3.2 Implementation Details
In line with TS-SLT (Chen et al., 2022b), we em-
ploy the same configurations for independently
pre-training the RGB encoder, keypoint encoder,
and the pretrained mBART. However, we do not
perform joint training on RGB and keypoint en-
coders nor integrate multiple mBARTs for log-
its, but instead, use a single shared mBART for
text decoding. The model is trained for only 40
epochs. Additionally, the hypernetwork gener-
ator consists of a two-layer feed-forward neural
network and employs dropout=0.5 for regulariza-
tion. The number of tokens and dimensions in
SST are both set to 128, with a learning rate of
1e-5 and the temperature hyperparameter τ set at
0.07. For PHOENIX14T, we set the partial short-
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cut connection fusion steps T to 40; for the CSL-
Daily dataset, where the modal discrepancy be-
tween RGB and keypoint streams is smaller, T is
set to 15. Based on preliminary experiments, the
weight for KL divergence at the encoder end is 1,
and at the decoder end, it is 5. We employ a KL an-
nealing technique (Bowman et al., 2015) to prevent
the disappearance of KL divergence in the first 4K
training steps. During inference, we follow previ-
ous studies (Chen et al., 2022a,b), using a beam
search with a beam size of 5 and a length penalty
of 1. The batch size is set to 16, and due to compu-
tational constraints, AMP (Baboulin et al., 2009) is
applied. HyperSign is implemented based on the
open-source SLRT project1. All experiments are
conducted on a single 3090 GPU.

3.3 Comparison with State-of-the-Art
Methods

As shown in Table 1, MMTLB is currently the
baseline model in the field of SLT. Building on
this, TS-SLT incorporates a translation network in-
tegrating both RGB andKeypoint streams. Follow-
ing the reference (Chen et al., 2022b), we replaced
the input stream of MMTLB with a keypoint
stream and showcased the results of MMTLB-KP.
Other results are drawn from the original paper.
Our proposed HyperSign method outper-

forms all previous state-of-the-art SLT methods.
Compared to the CV-SLT model, it achieves
performance improvements of +0.68/+0.15 and
+1.04/+0.61 on the development/test sets of
PHOENIX14T and CSL-Daily, respectively.
Notably, compared to MMTLB using only the
RGB stream and MMTLB-KP using only the
Keypoint stream, our method shows significant
improvements on the PHOENIX14T development
set, with increases in BLEU4 scores of +2.17
and +4.50, demonstrating the complementary
and enhancing effects of dual stream information.
Although CorrNet+ (Hu et al., 2024) slightly
outperforms us in B1 and B3 on the test set of the
PHOENIX14T dataset, our method demonstrates
significant superiority in most metrics compared
to theirs, particularly on the CSL-Daily dataset.
As shown in Figure 3, although the TS-SLT

model employs a more complex dual-stream joint
pre-training and multiple translation network inte-
gration strategy, our HyperSign model achieves a
1.12 BLEU4 score increase on the PHOENIX14T

1https://github.com/FangyunWei/SLRT

development set with only one-third the parame-
ters of TS-SLT. This significant performance im-
provement is attributed to HyperSign’s powerful
capabilities in dynamic feature fusion.

Figure 3: This scatter plot illustrates the performance
of three translation models (MMTLB, TS-SLT, and Hy-
perSign) in terms of BLEU4 score (horizontal axis) and
inference latency (vertical axis), with the size of each
marker representing the number of parameters in each
model. Different markers are used to represent each
model: squares forMMTLB, circles for TS-SLT, and di-
amonds for HyperSign. The color gradient, which tran-
sitions from the top-left to the bottom-right, indicates
the trade-off between accuracy and inference speed,
with models closer to the bottom-right exhibiting supe-
rior overall performance.

3.4 Ablation Studies
We conducted extensive ablation studies on our
proposed feature dynamic fusion module based on
hypernetworks and semantic synergy mechanisms
using the PHOENIX14T dataset.

3.4.1 Influence of Feature Fusion Type
Experiment No. 2 in Table 2 shows that using a
simple sample level mixup results in a 1.25 point
decrease in BLEU4 score, indicating the need for
carefully designed dual stream dynamic fusion net-
works. Experiment No. 3 utilizes a gated method,
generating two sets of static weights for weight-
ing RGB and Keypoint features. Experiment No.
4 employs the traditional Linear+ReLU approach,
resulting in static model weights. Compared to
these two experiments, the method proposed in
this paper uses hypernetworks to dynamically gen-
erate fusion weights based on individual sample
features. On the Dev set, relative to Experiments
No. 3 and No. 4, our method achieved improve-
ments of +2.84 and +2.02 on the BLEU4 and +1.32
and +0.69 on the ROUGE metrics, respectively,
demonstrating the superiority of dynamic feature
fusion via hypernetworks.
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No. Method BLEU4 ROUGE

1 HyperSign 29.78 54.98

Influence of Feature Fusion Type

2 MixUp 28.53 54.09
3 Gated 26.94 52.96
4 Linear + ReLU 28.46 54.29

Influence of Partial Shortcut Connection Strategy

5 R-Drop 29.05 54.67
6 Fixed Value 0.5 29.12 54.73
7 Random MixUp 28.87 54.52

Influence of Self-Distillation Strategy

8 w/o Encoder KL 28.27 54.02
9 w/o Decoder KL 27.12 52.38

Influence of SST Contrastive Learning

10 w/o Contrastive Learn-
ing

28.89 54.87

11 w/o SST 28.67 54.42
12 w/o Cross Stream 29.49 54.92

Table 2: Studies of contribution for each component on
Dev set of PHOENIX14T.

Metric DSG DShG PIG CIG
BLEU4 29.78 28.89 29.06 28.98
ROUGE 54.98 54.61 54.54 54.62

Table 3: Performance of Different Hypernet Variants on
BLEU4 and ROUGE Scores on the PHOENIX14T Dev
Set.

3.4.2 Influence of Different Hypernetwork
Variants

In this study, we designed and tested with four
variants of hypernetworks to evaluate their perfor-
mance on the SLT task, as illustrated in Figure 4
(see figure caption for detailed structures). The im-
pact of these variants on the HyperSign model’s
performance is summarized in Table 3. DSG
achieved the highest performance with a BLEU4
score of 29.78 and a ROUGE score of 54.98, as its
separate generators allowed for distinct optimiza-
tion of RGB and keypoint features. DShG, which
used a single generator for both streams, resulted in
a BLEU4 score decrease of 0.89 due to less precise
adaptations. PIG processed RGB and keypoint
features separately, but the lack of interaction dur-
ing fusion led to a BLEU4 score of 29.72, slightly
lower than DSG. CIG, with cross-stream process-

HyperSign

(a) Dual Separate Generators (DSG) (b) Dual Shared Generator (DShG)

(c) Parallel Individual Generators (PIG) (d) Cross Individual Generators (CIG)
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Figure 4: Illustration of hypernetwork variants for dy-
namic feature fusion. (a) Dual Separate Generators
(DSG) employs two distinct generators to dynamically
produce unified weightsW and biases b, which are then
applied to the combined RGB and keypoint features.
(b) Dual Shared Generator (DShG) utilizes a single
generator for both feature streams, outputting a vector
that is segmented intoW and b for the combined RGB
and keypoint features. (c) Parallel Individual Gen-
erators (PIG) operates with individual generators for
each stream, combining features after separate dynamic
MLP processing. (d) Cross Individual Generators
(CIG) incorporates cross-stream generator processing,
where each stream’s features are dynamically tailored
by the generator of the alternate stream, with outputs
combined following dynamic MLP processing.

ing, also saw a decline in performance, reducing
the BLEU4 score by 0.80 compared to DSG.

3.4.3 Influence of Partial Shortcut
Connection Strategy

In Table 2, Experiment No. 5 sets α to 0 to sim-
ulate R-Drop (Wu et al., 2021). Compared to Ex-
periment No. 5, Experiment No. 6, with α set to
0.5, shows a slight performance improvement, sug-
gesting that partial shortcut connections can fur-
ther enhance the model’s effectiveness. Relative
to Experiment No. 7, which randomly samples α
within the range of [0,1], our HyperSign method
improved the BLEU4 score by 0.91 points, under-
scoring the efficacy of the progressive α sampling
strategy introduced in this study.

3.4.4 Influence of Self-Distillation Strategy
In Experiment No. 8 and Experiment No. 9, we re-
moved the feature self-distillation KL divergence
strategy at both the encoder and decoder stages.
The results showed a notable decline in model per-
formance, with a decrease of 1.51 BLEU4 points
in Experiment No. 8 and 2.66 BLEU4 points in
Experiment No. 9. This decline substantiates the
critical role that self-distillation plays in enhancing
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semantic fusion and alignment within the model,
ensuring that the RGB and Keypoint streams can
learn complementary information from each other.

3.4.5 Influence of SST Contrastive Learning
In Table 2, removing SST contrastive learning in
Experiment No. 10 reduced the BLEU4 score
by 0.89, underscoring its role in dual-stream fea-
ture fusion. In Experiment No. 11, substituting
SST aggregation with average pooling lowered the
score by 1.11, demonstrating the advantage ofmap-
ping visual and textual information into the same
SST space to address feature granularity. Experi-
ment No. 12 further showed that cross-stream con-
trastive learning improves dual-stream semantic
alignment. Figure 5 illustrates that using 128 SSTs
and token dimensions optimally balances computa-
tional complexity and feature granularity for SLT.

Figure 5: BLEU4 scores from an ablation study on to-
ken numbers and dimensions in HyperSign trained on
the PHOENIX14T Dev set.

4 Related Work

4.1 Sign Language Translation
Sign Language Translation (SLT) involves translat-
ing sign language videos into spoken text. There
are two mainstream translation paradigms: the tra-
ditional pipeline approach, which first involves
sign language recognition to annotate sign lan-
guage videos with text Glosses, followed by a
text decoder to translate the Glosses into spoken
text. Although this approach has provided substan-
tial enhancements for SLT, it introduces a prede-
fined information bottleneck that limits translation
accuracy and typically fails to provide long-term
dependencies and contextual information (Cam-
goz et al., 2020; Kapoor et al., 2021; Zhou et al.,
2023). Consequently, more and more methods
(Chen et al., 2022a,b; Zhao et al., 2024) use a vi-
sual encoder directly as a tokenizer to extract vi-
sual features and a text decoder to directly gener-
ate spoken text, breaking the limitations of tradi-
tional methods. The text decoders typically utilize
sequence models such as RNNs (Camgoz et al.,

2018), LSTMs (Guo et al., 2018), or Transform-
ers (Zhang et al., 2023; Yu et al., 2023; Yao et al.,
2023; Zhou et al., 2023).
In this study, we focus on optimizing this direct

translation approach, particularly emphasizing the
dynamic fusion of dual-stream visual features and
semantic alignment, to achieve higher translation
accuracy and model efficiency.

4.2 Multi Stream Fusion

Multi-stream networks have shown great poten-
tial in video understanding and sign language
recognition as they can handle data from different
sources and capture dynamic information and de-
tails across modalities effectively. Researchers of-
ten use attention mechanisms (Mo and Morgado,
2023; Shan et al., 2024; Lv et al., 2024) or gated
networks (Ai and Wang, 2024; Yi et al., 2024)
to fuse features from different streams. In sign
language tasks, the design of multi-stream net-
works typically includes handling multiple inde-
pendent data streams for video, such as a single
RGB stream (Chen et al., 2022a), and adding key-
point streams (Chen et al., 2022b), optical flow
(Cui et al., 2019; Chen et al., 2024), and cropped
feature map streams (Zheng et al., 2021).
The keypoint streams have demonstrated sub-

stantial enhancement in model performance. How-
ever, previous methods combining RGB and key-
point streams (Hu et al., 2023; Chen et al., 2022b)
typically used a late fusion strategy, i.e., fine-
tuning two different pretrained language models
separately to obtain their own translation networks
and then averaging their translation logits to aggre-
gate effects. This approach failed to effectively ad-
dress distribution discrepancies between streams
early on, thus necessitating separate fine-tuning of
pretrained language models for each stream, lead-
ing to resource wastage.

5 Conclusion

We propose an efficient dual-stream fusion model
for sign language translation using an early fu-
sion strategy. Our model achieves dynamic fusion
of visual stream features through a hypernetwork
and partial shortcut connections. Additionally, our
proposed semantic synergy alignment mechanism
significantly reduces representational differences
between RGB and keypoint feature streams, fur-
ther strengthening semantic alignment between the
streams. Experiments on two SLT datasets demon-

6249



strate that our approach surpasses all state-of-the-
art methods. Our method can be applied to vari-
ous sign languages. In future work, we hope to in-
troduce more effective visual streams and explore
more advanced fusion strategies to achieve better
visual representations.

Limitations

The current sign language translation models have
certain limitations when applied in multi-sign lan-
guage translation environments, mainly reflected
in the following aspects. First, the language pro-
cessing capability of the model is typically lim-
ited to a single sign language or a specific lan-
guage, which significantly restricts the model’s
performance in communication scenarios involv-
ing multiple sign language users.
Secondly, existing sign language datasets are of-

ten focused on specific domains or scenarios. The
limitations of the data result in suboptimal perfor-
mance of the model in complex and dynamic en-
vironments. Due to the homogeneity of the data
samples, the model may struggle to fully meet the
sign language expression needs across different do-
mains, thus limiting its broader applicability.
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Example (a)
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Example (a)
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Figure 6: Visualization of Raw Videos and Keypoint Sequences from the PHOENIX14T dataset.

Example (c)

RGB

Keypoints

Example (d)

RGB

Keypoints

Figure 7: Visualization of Raw Videos and Keypoint Sequences from the CSL-Daily Dataset.

A Qualitative Results

A.1 Keypoint Modeling
We employ a methodology similar to the TS-Network, utilizing HRNet to extract keypoints from RGB
videos and generate corresponding keypoint heatmaps. As illustrated in Figures 6 and 7, the heatmaps
clearly and effectively capture the signer’s appearance, hand positions, and palm orientations, also intu-
itively displaying the movement information of the signer’s limb actions.

A.2 Results of HyperSign
As shown in Tables 4 and 5, we conducted a qualitative analysis of HyperSign, showcasing two samples
from the PHOENIX14T and CSL-Daily development sets respectively. The experimental results indicate
that HyperSign can dynamically fuse dual-stream features based on the respective strengths of RGB and
keypoints, thereby enhancing the translation performance.
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Example (a) Translation

Gloss SKANDINAVIEN / NORD / WOLKE / TIEF / AUCH /
DEUTSCHLAND / REGION / KOMMEN
(Scandinavia / north / cloud / low / also / Germany / region / come)

Groundtruth die wolken des tiefs über nordskandinavien überqueren bis mor-
gen auch die östlichen teile deutschlands.
(The clouds of the low over northern Scandinavia will also cross
the eastern parts of Germany by tomorrow.)

RGB only die wolken eines tiefs über skandinavien überqueren heute nacht
den norden deutschlands.
(The clouds of a low over Scandinavia will cross the north of Ger-
many tonight.)

Keypoint only die wolken des tiefs über nordskandinavien überqueren bis mor-
gen auch die östlichen teile deutschlands.
(The clouds of the low over northern Scandinavia will also cross
the eastern parts of Germany by tomorrow.)

HyperSign die wolken des tiefs über nordskandinavien überqueren bis mor-
gen auch die östlichen teile deutschlands.
(The clouds of the low over northern Scandinavia will also cross
the eastern parts of Germany by tomorrow.)

Example (b) Translation

Gloss JETZT /WETTER /WIE-AUSSEHEN /MORGEN / SONNTAG
/ SIEBEN / ZWANZIG / SEPTEMBER
(Now / weather / appearance / tomorrow / Sunday / seven / twenty
/ September)

Groundtruth und nun die wettervorhersage für morgen sonntag den siebe-
nundzwanzigsten september.
(And now the weather forecast for tomorrow, Sunday the twenty-
seventh of September.)

RGB only und nun die wettervorhersage für morgen sonntag den siebe-
nundzwanzigsten september.
(And now the weather forecast for tomorrow, Sunday the twenty-
seventh of September.)

Keypoint only und nun die wettervorhersage für morgen sonntag den sech-
sundzwanzigsten juli.
(And now the weather forecast for tomorrow, Sunday the twenty-
sixth of July.)

HyperSign und nun die wettervorhersage für morgen sonntag den siebe-
nundzwanzigsten september.
(And now the weather forecast for tomorrow, Sunday the twenty-
seventh of September.)

Table 4: Qualitative results on PHOENIX14T.
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Example (c) Translation

Gloss 爱 /感情 /跳 /每 /脉搏
(Love / emotion / beat / every / heartbeat)

Groundtruth 爱情跳动在每一次脉搏之中。
(Love beats with every heartbeat.)

RGB only 爱情是跳跃的,每个人都有脉搏。
(Love is jumping, everyone has a heartbeat.)

Keypoint only 爱情跳动在每一次脉搏之中。
(Love beats with every heartbeat.)

HyperSign 爱情跳动在每一次脉搏之中。
(Love beats with every heartbeat.)

Example (d) Translation

Gloss 猫 /看 /这 /小 /鸟 /惊吓
(Cat / look / this / small / bird / frighten)

Groundtruth 猫被背后的小鸟惊吓。
(The cat is frightened by the small bird behind it.)

RGB only 猫被背后的鸟惊吓。
(The cat is frightened by the bird behind it.)

Keypoint only 猫前的那只小鸟被惊吓了。
(The small bird in front of the cat is frightened.)

HyperSign 猫被背后的小鸟惊吓。
(The cat is frightened by the small bird behind it.)

Table 5: Qualitative results on CSL-Daily.
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