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Abstract
Large language models (LLMs) demonstrate
impressive few-shot learning capabilities, but
their performance varies widely based on the
sequence of in-context examples. Key factors
influencing this include the sequence’s length,
composition, and arrangement, as well as its
relation to the specific query. Existing meth-
ods often tackle these factors in isolation, over-
looking their interdependencies. Moreover,
the extensive search space for selecting opti-
mal sequences complicates the development
of a holistic approach. In this work, we intro-
duce Beam Search-based Example Sequence
Constructor (BESC), a novel method for learn-
ing to construct optimal example sequences.
BESC addresses all key factors involved in se-
quence selection by considering them jointly
during inference, while incrementally building
the sequence. This design enables the use of
beam search to significantly reduce the com-
plexity of the search space. Experiments across
various datasets and language models show no-
table improvements in performance.1.

1 Introduction

Large language models (LLMs) have demonstrated
impressive few-shot learning capabilities (Brown
et al., 2020), where they can learn to provide better
responses from just a few examples provided in
the prompt. This in-context learning (ICL) ability
(Brown, 2020; Gao and Das, 2024) has found a
wide range of applications. However, LLMs may
not always truly understand or generalize from the
few-shot examples provided (Min et al., 2022; Wei
et al., 2023), and their few-shot performance is
highly sensitive to the sequence of examples used
(Liu et al., 2021; Lu et al., 2021). Therefore, the
selection of the example sequence becomes an im-
portant factor in leveraging LLMs’ ICL capabili-
ties. Since the fundamental mechanism behind in-
context learning remains unclear (Min et al., 2022;

1Code will be released upon publication.

Figure 1: The in-context learning (ICL) performance of
large language models (LLMs) depends on the length,
composition, and arrangement of example sequences.
Existing methods address these factors separately, while
our algorithm jointly considers them and efficiently man-
ages the search space with beam search.

Xie et al., 2021; Olsson et al., 2022), existing work
often approaches example sequence selection ei-
ther by using heuristics or by focusing on specific
subproblems. There is a lack of approaches that
holistically learn to select the optimal example se-
quence, covering different aspects of the problem.

As illustrated in Figure 1, the example sequence
selection problem involves multiple factors, includ-
ing the dependence on specific queries (Liu et al.,
2021), composition (Ye et al., 2023; Levy et al.,
2022), arrangement (Lu et al., 2021), and the num-
ber of elements (Zhang et al., 2022). These factors
should be jointly considered to achieve optimal
performance. For example, Zhang et al. (2022)
showed that without good element composition,
merely reordering may not improve performance.

However, most existing methods focus on iso-
lated subproblems without addressing the interde-
pendence of different aspects of sequence selection,
as illustrated in Table 1. Rubin et al. (2021) and Lu
et al. (2022) overlook the relationships between ex-
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Dynamic Seq. Len. Composition Arrangement
kNN (Liu et al., 2021) ✓ ✗ ✓ ✗

EPR (Rubin et al., 2021) ✓ ✗ ✓ ✗
PromptPG (Lu et al., 2022) ✓ ✗ ✓ ✗

Cover-LS (Levy et al., 2022) ✓ ✗ ✓ ✗
CEIL (Ye et al., 2023) ✓ ✗ ✓ ✗

Reordering Lu et al. (2021) ✗ ✗ ✗ ✓
Q-learning (Zhang et al., 2022) ✗ ✓ ✓ ✓

BESC (Ours) ✓ ✓ ✓ ✓

Table 1: Existing methods address different aspects of example sequence selection, such as query dependence
(Dynamic selection), sequence length (Seq. Len), example composition (Composition), and example order in the
prompt (Arrangement). Our method considers all these factors.

amples within the sequence, selecting examples in-
dependently. On the other hand, Levy et al. (2022)
and Ye et al. (2023) consider the interactions be-
tween examples but neglect the effects of ordering
and the number of examples. Zhang et al. (2022)
build the sequence incrementally, but they rely only
on the current sequence length as a feature to select
the next example, leading to the loss of valuable
textual information and limiting the method’s ap-
plicability to dynamic example selection.

Most of the existing methods rely on researchers’
intuition rather than on learning algorithms. This
is likely due to the enormous search space of the
example sequence selection problem. The number
of possible sequences grows exponentially with
the number of example candidate and potential se-
quence length. Consequently, existing learning-
based example sequence algorithms either treat ex-
amples independently (Rubin et al., 2021; Lu et al.,
2022) or use simplified sequence representations
(Zhang et al., 2022).

In this work, we propose a novel approach,
Beam Search-based Example Sequence Construc-
tor (BESC), to tackle the example sequence selec-
tion problem using a learning algorithm that jointly
considers all aspects of the sequence—dynamically
selecting examples for each query while account-
ing for composition, arrangement, and sequence
length in a holistic manner. The model is designed
to allow sequence construction incrementally at in-
ference time, which makes it possible to employ a
beam search algorithm to address the challenge of
huge search space complexity.

2 Background

2.1 In-Context Learning Mechanisms

In-context learning (ICL) refers to the ability of
models to learn tasks by using only a few examples
as demonstrations, without updating their parame-

ters (Brown et al., 2020). Since ICL is training-free,
it greatly reduces the computational cost of adapt-
ing models to new tasks. However, the mechanisms
underlying ICL remain unclear.

While Min et al. (2022) suggest that certain
language models primarily rely on semantic prior
knowledge triggered by the examples, Wei et al.
(2023) show that large models can override seman-
tic priors when presented with in-context exem-
plars that contradict these priors. This suggests
that both semantic priors and input–label mappings
play important roles in ICL. Additionally, Olsson
et al. (2022) argue that the ICL capabilities of large
language models are rooted in "induction heads,"
which are transformer (Vaswani et al., 2017) cir-
cuits formed during pretraining that can copy pat-
terns from ICL examples. On the other hand, Xie
et al. (2021) showed that not only transformers but
also LSTM models (Hochreiter, 1997) can exhibit
ICL behavior.

The unclear nature of ICL mechanisms, along
with its dependence on model scale and architec-
ture, underscores the potential for learning-based
approaches to optimize the selection of example
sequences accordingly.

2.2 Example Sequence Selection
Suppose we have a set of examples for a given
task, ei, as a candidate pool, where each example
is a pair consisting of an input and a label, ei =
(xi, yi). The example sequence selection problem
involves selecting a sequence, E = [e1, e2, . . . , ek],
to include in the prompt in order to improve the
ICL generation quality. The selection may depend
on the query xquery (dynamic examples) or may
be independent of it (static examples). Example
sequence selection is typically studied across three
main aspects: the composition of the examples,
their arrangement, and the length of the sequence.
A comparison of existing methods with respect to
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Figure 2: An overview of our BESC approach. (a) We train a scoring model to predict the effectiveness of an
example sequence for a given query, using contrastive learning to compare LLM performance between sequences.
(b) During inference, the example sequence is constructed incrementally with beam search, where the trained scorer
ranks candidates and prunes nodes.

these factors is shown in Table 1.

Static examples In this setting, the goal is to
select E for a given task, and this selection does not
depend on the query xquery. In practice, researchers
use a set of labeled queries as a validation set to
determine E based on specific metrics evaluated
on this set (Lu et al., 2021; Zhang et al., 2022).

Dynamic examples In this setting, the goal is
to dynamically select a sequence of ICL exam-
ples, E, for each given query xquery. The dynami-
cal selection is expected to improve performance
compared to using a static sequence, as different
queries—even within the same task—may require
different sets of skills and information demon-
strated by varying examples. Several works have
explored this approach (Liu et al., 2021; An et al.,
2023; Rubin et al., 2021; Lu et al., 2022; Levy et al.,
2022; Ye et al., 2023).

Example composition This line of work focuses
on the composition of examples. Liu et al. (2021)
proposed selecting the top k examples, ei, that are
semantically similar to xquery. An et al. (2023)
suggested selecting examples that demonstrate a
similar set of "skills" required to solve xquery. Be-
yond similarity, diversity is another important fac-
tor in determining example composition. Levy et al.

(2022) proposed selecting diverse examples that
cover different aspects needed to solve xquery. Ye
et al. (2023) jointly considered both similarity and
diversity in example selection. Additionally, Zhang
et al. (2022) and Lu et al. (2022) employed rein-
forcement learning to optimize example selection.

Example arrangement Lu et al. (2021) demon-
strated that the order in which examples are pre-
sented in the prompt significantly impacts LLM
performance. They proposed using several entropy-
based metrics, measured on a validation set, to
determine the optimal order. These metrics are
grounded in the intuition that the model’s predic-
tions should not be overly confident or excessively
unbalanced.

Sequence length LLMs may struggle to effec-
tively utilize long contexts (Liu et al., 2024), and
ICL performance does not necessarily improve as
more examples are provided. Therefore, sequence
length is another important factor to consider in
example sequence selection. Zhang et al. (2022)
proposed including an "early termination" action
when constructing the example sequence to control
its length and prevent performance degradation.
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Figure 3: An illustration of the dual-encoder architecture of the scoring model. This design enables the model to
rank the next element for a given query and prefix, allowing incremental sequence construction with beam search
during inference.

3 Method

We propose Beam Search-based Example Se-
quence Constructor (BESC) to address the chal-
lenges of holistically multiple aspects of example
sequence selection and the huge search space com-
plexity.

To learn how to construct the optimal example
sequence, we train a model to score example se-
quences for a given query. The scoring model
s(E, xquery) is trained to predict the relative LLM
generation quality given the query xquery and exam-
ple sequence E. Using this scoring model as a guid-
ing signal, we employ a beam search algorithm to
navigate the vast sequence space at inference time.
Figure 2 provides an illustration of the training and
inference stages of our approach.

3.1 Model Design

We model the sequence using a prefix-suffix decom-
position, enabling incremental construction during
inference. At each step, the query and the current
prefix Eprefix = [e1, e2, . . . , ek−1] are used to se-
lect the next element ek, or the head of the suffix.
This element is appended to the prefix, and the pro-
cess repeats until a special termination element, ⊥,
is selected, marking the end of the sequence.

To enable this prefix-suffix selection, we de-
sign a dual-encoder architecture (Figure 3). The
model generates an embedding for the prefix,
hprefix(xquery, Eprefix), and another for the suffix,
hnext(ek). The score s is calculated as the dot prod-
uct of these two embeddings:

s(E, xquery) = hprefix(xquery, Eprefix) · hsuffix(ek)

Since the remaining elements [ek+1, . . . , el] are
unknown at inference time, the suffix encoder only
considers the head of the suffix, ek. This forces

Algorithm 1: Training BESCscorer
Requirement:
{ecand

i } the example candidate pool.
{equery

i } the set of labeled queries.
L the maximum length of example sequence.
Training:
// Illustrated with batch size 1 in 1 epoch
for equery

i = (xquery
i , yquery

i ) in {equery
i } do

// Sample a prefix sequence
lprefix ← Rand. int. 0 ≤ lprefix ≤ L
Eprefix ← lprefix rand elem from {ecandi }
// Sample two suffix sequences
for j ∈ {1, 2} do

lj ← Rand int 1 ≤ lprefix + lsuffixj ≤ L

Esuffix
j ← lsuffixj rand elem from {ecandi }

Ej ← Eprefix + Esuffix
j

gj ← LLM(xquery
i , Ej)

aj ← Quality of gj given yquery
i

sj ← sθ(x
query
i , Ej)

// Which is a better example sequence
for xquery

i ? The ground truth:

q ←
{
[1, 0] if a1 > a2

[0, 1] otherwise

// and the prediction:
p← Softmax([s1, s2])
// Loss and optimization
L← CrossEntropyLoss(p, q)
Update θ given ∇θL

return sθ

the model to learn to predict the effectiveness of a
sequence without having access to all its elements.
However, the model can also score a complete se-
quence by setting the suffix to the termination el-
ement ⊥, with the prefix comprising the actual
sequence elements [e1, e2, . . . , el].

The dot product formulation transforms this
ranking task into a nearest-neighbor search in the
embedding space, which can be efficiently per-
formed using a vector store with precomputed em-
beddings (see Section 3.3).
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3.2 Model Training

We train the scoring model to rank example se-
quences using a contrastive learning approach, as
outlined in Algorithm 1.

For a given task, the training dataset is divided
into an example candidate set, {ecand

i }, and a query
set, {equery

i }. The maximum number of examples
in the sequence is L, a hyperparameter. We assume
access to an automatic evaluation metric, a(g, y),
that measures the quality of the LLM’s generated
output g against a reference label y2.

For each query, we sample a pair of example
sequences, E1 and E2, which share a prefix Eprefix,
but their suffix may differ in length, composition,
and/or arrangement. The prefix Eprefix could be
empty, in which case the next element selected will
be the first in the sequence.

The goal is to train the model to predict which
of the two sequences will lead the LLM to generate
a higher-quality output for the given query x

query
i .

The ground truth ranking is determined by evaluat-
ing the LLM’s output for each sequence Ej using
the evaluation metric a.

We optimize the model by minimizing the cross-
entropy loss between the ground truth ranking and
the predicted probabilities. In this contrastive learn-
ing setup, the sequence with better output quality
is treated as the positive sample, and the other as
the negative sample.

3.3 Inference with Beam Search

The search space for example sequences is vast, on
the order of O(NL), where N is the number of ex-
ample candidates and L is the maximum sequence
length3. An efficient search algorithm is therefore
necessary.

Inspired by its success in speech understanding
(Medress et al., 1977), natural language genera-
tion (Och et al., 1999), and recommendation sys-
tems (Gao et al., 2020), we employ beam search
to construct the example sequence during infer-
ence. Beam search is a form of pruned breadth-first
search where the breadth is limited by a parameter,
b, called the beam width.

We incrementally extend the example sequence
by appending promising examples to the partial

2The metric can also be reference-free, provided it yields
a scalar quality score.

3The complexity to evaluate all possible sequences from
length 1 to L is

∑L
k=1 A(N, k) =

∑L
k=1

N !
(N−k)!

, which can
be approximated as NL when N is much larger than L.

Algorithm 2: BESC inference
Requirement:
xquery the query input.
{ecand

i } the example candidate pool.
L the maximum sequence length.
sθ the trained scoring model
b the beam width
c the number of next elements to consider for each

prefix
Trained model sθ(E, xquery) to rank candidates
Beam search:
B0 ← {∅}, initial beam
for l← 1 to L do

// Prune previous beam with scorer
Bl−1

kept ← Top b candidates in Bl−1

// Branch and save in the new beam
Bl ← ∅, current beam
for Ei ∈ Bl−1

kept do
enextj ← Top-c candidates given Ei

for j ← 1 to c do
Add seq [Ei, e

next
j ] to Bl

return E of the highest BESC score sθ(x,E)

sequence while pruning less promising ones. The
algorithm is detailed in Algorithm 2.

At each step, we use the embedding
hprefix(xquery, Eprefix) to find the top c exam-
ples with the nearest embeddings, hsuffix(ei), that
have not yet been added to Eprefix. This step can be
efficiently implemented using a vector store with
pre-computed hsuffix(ei) embeddings, using the
dot product as the distance measure. This process
generates b · c example sequences at each time step,
which are pruned by the scoring model, retaining
only the top b candidates as the new prefix for the
next step.

Initially, Eprefix is empty, so the first step in-
volves selecting the most promising starting exam-
ple for the given query. We repeat the grow-prune
cycle until a sequence is pruned, reaches the maxi-
mum length L, or the end action ⊥ is selected.

Finally, we rank all complete sequences explored
during beam search, which may vary in length,
based on their score s, returning the top-ranked
sequence as the final selection (see Figure 2).

3.4 Reduced Complexity

Pruning allows us to score only a small subset of all
possible example sequences, which greatly reduces
the size of the search space.

In addition, our dual-encoder architecture, com-
bined with the dot product formulation and approx-
imate k-nearest neighbor (k-NN) search (Andoni
and Indyk, 2008), makes the process more efficient.
The prefix encoder hprefix is run only once per pre-
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fix, and the suffix encoder hsuffix is computed just
once per candidate example, significantly lowering
computational costs.

The overall complexity to score sequences is
reduced from O(NL) to:

O(L · b · c) +O(N) +O(L · b · c · logN)

The first term corresponds to the computation of
the prefix encoder for all prefix candidates explored.
The second term accounts for computing the suffix
encoder for all N suffix head candidates. The third
term represents the complexity of the approximate
k-NN search to find the top c examples at each step.

4 Experiments

4.1 Datasets

Given the wide application of few-shot learning
with LLMs, prior works on example sequence se-
lection have been evaluated across a range of tasks,
including text classification (Zhang et al., 2015;
Socher et al., 2013; Li and Roth, 2002; Hovy et al.,
2001) and text generation (Wolfson et al., 2020; Li
et al., 2020; Lu et al., 2022).

Following this, we consider a broad set of six
datasets4, including AGNews (Zhang et al., 2015),
SST (Socher et al., 2013), and TREC (Li and Roth,
2002; Hovy et al., 2001) for text classification, and
TabMWP (Lu et al., 2022), BREAK (Wolfson et al.,
2020), and GSM8K (Cobbe et al., 2021) for text
generation, as summarized in Table 3.

4.2 Language Models

We experiment with four language models of vary-
ing sizes and training paradigms: GPT-2 (Radford
et al., 2019), GPT-neo (Black et al., 2021), GPT-3
(Brown, 2020), and GPT-3.5.

While prior studies have primarily focused on
earlier models that lack instruction tuning (Ouyang
et al., 2022), we include GPT-3.5 to examine the
effect of example sequence selection on instruction-
tuned models.

Our experiments cover both small and large mod-
els, spanning open-source models (GPT-2 and GPT-
neo) and closed API models (GPT-3, GPT-3.5), as
well as models that are pretrain-only and those with
post-training (instruction-tuned) capabilities.

4GSM8K and BREAK are released under the MIT license,
and TabMWP under the CC BY-NC-SA license.

4.3 Baselines

We compare our method with several existing ex-
ample selection approaches, including kNN (Liu
et al., 2021), EPR (Rubin et al., 2021), CEIL (Ye
et al., 2023), and PromptPG (Lu et al., 2022), which
focus on example composition. We also include Re-
ordering (Lu et al., 2021), which prioritizes exam-
ple arrangement, and a Q-learning-based method
(Zhang et al., 2022), which considers sequence
length, composition, and arrangement but over-
looks query dependence and textual information. A
comparison of the design features of these methods
and ours is summarized in Table 1.

4.4 Implementation

4.4.1 Modeling
The two encoders in the model can be implemented
in various ways. In our implementation, we ensure
that the prediction depends on the textual informa-
tion from the query and examples, while consid-
ering sequence length, composition, and arrange-
ment.

For the prefix encoder, we use a hierarchical ap-
proach. We first encode xquery and each ei using
transformers initialized with a pretrained sentence
BERT model (Reimers and Gurevych, 2019), then
pass the resulting embeddings to a two-layer LSTM
network to generate the final sequence representa-
tion. This hierarchical structure helps handle long
sequences, especially when L is large.

The suffix encoder also uses transformer-based
textual encoders initialized with sentence BERT.
Both the transformer and LSTM parameters are
fine-tuned during contrastive learning.

4.4.2 Training
For each task, we split the training data into 1,000
instances as the query set, with the remainder serv-
ing as the example candidate set. We use greedy
sampling for LLMs generation.

To generate positive and negative samples for
contrastive learning, we use L = 7 and apply uni-
form random sampling to generate the variables
(e.g., lprefix, lsuffix

j , Eprefix, and Esuffix
j ). However,

more effective sequences for contrastive learning
may be obtained by either leveraging existing ex-
ample selection methods or using the BESC scor-
ing model trained in the previous epoch. Adding
these samples to the training data may further im-
prove the model. We leave the exploration of such
strategies for future work.

6157



GPT-2 GPT-3 GPT-neo GPT-3.5
AGNews SST2 TREC TabMWP BREAK SST5 BREAK TREC GSM8K

Random 0.55 0.66 0.41 0.65 0.04 0.31 0.02 0.55 0.87
Reordering (Lu et al., 2021) 0.63 0.68 0.33 - - - - 0.59 0.91

kNN (Liu et al., 2021) - - - 0.68 - - - 0.70 0.90
EPR (Rubin et al., 2021) - - - - 0.25 0.43 0.30 0.75 0.93

Q-learning (Zhang et al., 2022) 0.71 0.81 0.43 - - - - - -
PromptPG (Lu et al., 2022) - - - 0.71 - - - - -

CEIL (Ye et al., 2023) - - - - - 0.47 0.34 - -
BESC(ours) 0.77 0.87 0.48 0.77 0.28 0.50 0.38 0.85 0.97

Table 2: Comparison between the accuracy achieved by our method (BESC) and baseline methods.

Dataset Task Train set
AGNews Topic classification 44.3k

SST Sentiment classification 67.3k
TREC Question classification 5.5k

TabMWP Mathmatical reasoning 38.4k
BREAK Meaning representations 44.3k
GSM8K Mathmatical reasoning 7.5k

Table 3: Datasets used in this work.

4.5 Inference

We perform beam search using b = 5 beams and a
maximum of c = 5 candidates per beam.

5 Results and Discussion

In this section, we present our results, comparing
our method to baselines and analyzing key compo-
nents through ablation studies. We also examine
the model’s transferability across tasks.

5.1 Improved Performance over Baselines

We compare our method with the baseline ap-
proaches on the datasets they were originally tested
on. The results, summarized in Table 2, show that
our method consistently outperforms all baselines
across six datasets and four language models.

We hypothesize that this improvement is due to
the holistic consideration of all key factors involved
in dynamic example sequence selection that our
method incorporates.

To further investigate, we conduct ablation stud-
ies to evaluate the contribution of each key factor.
All ablation studies are conducted on the TREC
and GSM8K datasets using GPT-3.5 as the LLM.

5.2 Effects of Dynamic Examples

The first key factor we explore is the impact of
dynamic example selection, where the example
sequence is adapted to each query rather than being
fixed for all queries (static examples). Previous
works by Lu et al. (2021) and Zhang et al. (2022)

focused on static examples, and we hypothesize
that adapting the example sequence to the query
can improve performance.

To evaluate this, we create a “static” version of
BESC by removing xquery from the inputs of the
prefix encoder, making the prediction (or next el-
ement selection) not dependent on the query. We
train this static version of the scoring model and
compare it to the original, query-dependent "dy-
namic" BESC.

Dynamic Static
TREC 0.85 0.79

GSM8K 0.97 0.92

Table 4: Ablation study on the effects of dynamic
example sequence selection using two BESC variants.
The “Static” version is trained without taking queries as
input to the scoring model.

The results, summarized in Table 4, show that
the dynamic version significantly outperforms the
static version, highlighting the importance of se-
lecting examples dynamically based on the specific
query.

5.3 Effects of Automatic Sequence Length

Our method automatically determines the opti-
mal sequence length (“Auto l”) during inference.5

To study the impact of this feature, we compare
BESC with fixed-length versions (l = 1, l = 3,
l = 5), where only candidates of the specified
length are considered during inference.

The results, summarized in Table 5, show that
automatically determining sequence length leads
to further performance improvements compared to
simply increasing the sequence length. We hypoth-
esize that this is because the LLM may struggle to

5This is achieved by: 1) learning to selecting the termina-
tion token ⊥, and 2) picking the best sequence from explored
candidates of varying lengths during beam search. See Sec-
tion 3
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Auto l l = 3 l = 5 l = 7
TREC 0.85 0.80 0.83 0.84

GSM8K 0.97 0.91 0.95 0.95

Table 5: Ablation study on the effects of example se-
quence length. BESC, which automatically determines
the sequence length (1 ≤ l ≤ 7), is compared with
variants using fixed sequence lengths.

fully utilize longer contexts, especially when they
include less useful or distracting information (Liu
et al., 2024).

5.4 Effects of the Element Arrangement
The impact of element ordering has been discussed
by Lu et al. (2021), but their work focused on the
ordering of randomly selected elements. In con-
trast, we study the effects of ordering for carefully
selected examples as part of our ablation study.

BESC Shuffled
TREC 0.85 0.84

GSM8K 0.97 0.95

Table 6: Ablation study on the effects of example ar-
rangement in the ICL example sequence. “Shuffled”
uses the same examples as BESC for each query, but in
a shuffled order.

We randomly shuffle the example sequence gen-
erated by BESC for each query and present the
experimental results in Table 6. The results show a
decrease in performance after shuffling, indicating
that element arrangement remains a relevant factor
in dynamic example sequence selection.

5.5 Effects of Sequential Modeling
Zhang et al. (2022) observed performance improve-
ment from example sequence selection in smaller
models like GPT-2, but noted that this improvement
diminishes with larger models such as GPT-3. They
hypothesized that this reduction is due to the emerg-
ing capabilities of larger LLMs. However, other
works, including ours, experimenting with GPT-
3 (Lu et al., 2022; Rubin et al., 2021), show that
example sequence selection can still provide signif-
icant performance improvements in larger models.

We suspect that the diminished improvement
observed by Zhang et al. (2022) is due to their
method using an oversimplified representation of
the sequence, relying only on sequence length as
the feature.

To test this, we implemented a variant of
BESC where the prefix encoder only uses the prefix

length as the feature, ignoring the textual informa-
tion. The performance of this variant decreases
significantly compared to the original BESC, high-
lighting the importance of more comprehensive
sequential modeling.

5.6 Transferability

Similar to other learning-based methods (Lu et al.,
2022; Zhang et al., 2022; Rubin et al., 2021), our
approach requires task-specific training, which in-
troduces a one-time additional cost compared to
learning-free methods such as kNN (Liu et al.,
2021). To mitigate this, we explore transfer learn-
ing by applying a pretrained BESC model to new
tasks without additional task-specific training.

BESC
kNN Single-task Pretrained

TREC 0.70 0.85 0.82
GSM8K 0.90 0.97 0.94

Table 7: Comparison of a learning-free method (kNN),
the original BESC, and a pretrained version of BESC.

In a leave-one-out setting, we use five of the
six datasets listed in Table 3 to train a “pretrained”
BESC scoring model and test its performance on
the remaining target task. The experimental results,
with TREC and GSM8K as target tasks and GPT-
3.5 as the LLM, are summarized in Table 7. The
results show that while the pretrained BESC model
performs worse than one trained specifically on
the target task, it still outperforms the learning-
free kNN method (Liu et al., 2021). This suggests
that knowledge about optimal example sequence
selection can transfer across tasks.

6 Conclusion

We introduce Beam Search-based Example Se-
quence Constructor (BESC) to address the exam-
ple sequence selection problem. BESC incremen-
tally constructs sequences during inference, us-
ing beam search to reduce search space complex-
ity. Experiments across multiple datasets and lan-
guage models show substantial performance im-
provements. Ablation studies highlight key con-
tributions: dynamic example selection, automatic
sequence length, element arrangement, and sequen-
tial modeling. We also explore BESC’s potential in
transfer learning. Lastly, we discuss limitations and
propose future directions, including open-ended
tasks and integration with prompting strategies.
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7 Limitations

The datasets used in this work mainly consist of
short text and focus on tasks with a unique ground
truth. It is unclear how this method, or in-context
learning (ICL) in general, performs on more open-
ended tasks like dialogue (Zhang et al., 2020), role-
play (Sadeq et al., 2024) or creative writing, which
warrants further exploration.

Moreover, the effectiveness of ICL examples
can540 vary with different prompting strategies,
espacially those eliciting LLM reasoning abilities
(Wei et al., 2022; Yao et al., 2024; Lightman et al.,
2023). The interaction between example selection
and such techniques remains an open question.

The proposed method could introduce bias in
the generated content through the selection of ex-
amples, and like other large language model tech-
niques, it could be misused for harmful content
generation.
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