
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 6123–6133

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Ignore the KL Penalty! Boosting Exploration on Critical Tokens to
Enhance RL Fine-Tuning

Jean Vassoyan1,2 Nathanaël Beau2,3 Roman Plaud2,4

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, France
2onepoint, France 3Université de Paris, LLF, CNRS, France

4 Institut Polytechnique de Paris
jean.vassoyan@ens-paris-saclay.fr

nathanael.beau.gs@gmail.com

roman.plaud@telecom-paris.fr

Abstract

The ability to achieve long-term goals is a key
challenge in the current development of large
language models (LLMs). To address this, pre-
trained LLMs can be fine-tuned with reinforce-
ment learning (RL) to explore solutions that op-
timize a given goal. However, exploration with
LLMs is difficult, as a balance has to be struck
between discovering new solutions and staying
close enough to the pre-trained model, so as
not to degrade basic capabilities. This is typi-
cally controlled with a Kullback-Leibler (KL)
penalty. In this paper, we investigate the explo-
ration dynamics of a small language model on
a simple arithmetic task. We show how varying
degrees of pre-training influence exploration
and demonstrate the importance of “critical to-
kens” which have a dramatic impact on the final
outcome. Consequently, we introduce a sim-
ple modification to the KL penalty that favors
exploration on critical tokens, increasing the
efficiency of the RL fine-tuning stage. 1

1 Introduction

In recent years, expectations on large language
models (LLMs) have evolved, viewing them more
and more as agents intended to achieve long-term
goals (Wei et al., 2022; Bellos et al., 2024; Havrilla
et al., 2024). In particular, a number of research
studies have found that LLMs can learn to achieve
long-term objectives when fine-tuned with Rein-
forcement Learning (RL), even with a sparse suc-
cess/failure signal (Bakhtin et al., 2022; Zelikman
et al., 2024; Havrilla et al., 2024; Guo et al., 2025).
In such setting, a pre-trained language model is typ-
ically used as a policy to explore solutions within
a text-generation task. Pre-training plays an am-
bivalent role in guiding exploration: on the one
hand, the policy should not deviate too far from
the pre-trained model in order to maintain basic

1Our code and experiments are publicly available at:
https://github.com/jvasso/llm-rl-arithmetic.

Figure 1: Illustration of the addition task with scratch-
pad, for a model pre-trained on numbers up to 3 digits.
The highlighted critical tokens are decision points where
the model tends to make mistakes, mainly because it is
tempted to process the number as if it were shorter. This
occurs when the model is faced with a number that is
longer than those encountered during the pre-training
stage (here, 4 digits instead of 3).

capabilities (like language structure) – this is why
a KL-divergence penalty is typically added to the
loss (Ziegler et al., 2019). On the other hand, stay-
ing too close to the pre-trained model can signifi-
cantly hinder its potential for exploration. On this
matter (Havrilla et al., 2024) have demonstrated
that LLM agents typically fail to explore beyond
solutions produced by the pre-trained models. We
hypothesize that more precisely balancing the trade-
off between old and new policies can improve the
model’s exploration capabilities, especially as the
distribution shift increases between pre-training
and fine-tuning.

This article examines how varying levels of pre-
training affect language model performance in a
task requiring some level of exploration. We in-
troduce an experimental setup where the model is
first pre-trained on a simple arithmetic task, then
fine-tuned with RL on a similar task with a small

6123

https://github.com/jvasso/llm-rl-arithmetic

distribution shift. We chose the arithmetic task
for two main reasons. First, prior research high-
lights the value of studying language models on
basic arithmetic problems (Liu and Low, 2023;
Zhou et al., 2024), noting challenges in general-
izing to novel digit lengths — though these dif-
ficulties vary by model type and use of scratch-
pads (Yuan et al., 2023; Lee et al., 2024). Second,
this task closely mirrors real-world LLM applica-
tions while enabling fine-grained control over the
distribution shift between pre-training and RL fine-
tuning stages. Notably, we find that performance on
this RL task is determined by a few critical tokens
where the policy must diverge from the pre-trained
model’s predictions. This observation motivated a
modification to the original KL penalty, making it
more dependent on the pre-trained model’s confi-
dence.

Our contribution is two-fold: we first conduct
an analysis of the influence of pre-training on
a small language model’s ability to explore out-
of-distribution. More precisely, we investigate
how pre-training with a broader range of operand
lengths influences the model’s performance on new
operand lengths. Second, we introduce a simple
trick that allows to adapt the KL penalty to the
token-wise confidence of the pre-trained model.
Our empirical results show that this modification to
the KL penalty substantially enhances exploration
efficiency.

2 Related Work

LLMs and Reasoning Recent state-of-the-art
LLMs (Touvron et al., 2023; OpenAI, 2023) have
shown strong performance on reasoning tasks
across various benchmarks, including mathemat-
ics (Cobbe et al., 2021; Hendrycks et al., 2021) and
code (Chen et al., 2021; Li et al., 2022). Combin-
ing LLMs with prompting strategies like chain-of-
thought (Wei et al., 2022) has become a common
approach for tackling complex reasoning tasks by
guiding the model to break down problems into
smaller subproblems.

LLMs and RL The integration of LLMs and RL
has primarily been driven by Reinforcement Learn-
ing from Human Feedback (RLHF) (Christiano
et al., 2017; Ziegler et al., 2020; Stiennon et al.,
2020), which aligns model outputs with human
preferences. However we stress that learning from
human preferences is a different framework from
the more general one of RL, as the latter focuses

on optimizing long-term objectives – possibly with
high level of exploration – while learning from hu-
man preferences can be achieved solely with a fixed
dataset. RL has also been applied to LLMs in this
more general framework, in tasks such as ground-
ing (Yao et al., 2020; Carta et al., 2023), code gener-
ation (Le et al., 2022), and mathematical reasoning
(Havrilla et al., 2024). Training LLMs with RL
presents challenges due to reward sparsity (Cao
et al., 2024), credit assignment difficulties in iden-
tifying key actions that led to failure (Hwang et al.,
2024), large state spaces requiring exploration, and
unstable training processes. Havrilla et al. (2024)
have raised concerns about RL algorithms, strug-
gling to explore beyond solutions already produced
by supervised fine-tuning (SFT) models.

LLMs and Addition The addition task remains
challenging even for the latest LLMs, which strug-
gle to accurately add large numbers and track digit
positions (Wallace et al., 2019). Most related
studies have focused on supervised learning ap-
proaches (Lee et al., 2024; McLeish et al., 2024)
and improving positional encoding (Shen et al.,
2023; Kazemnejad et al., 2023; McLeish et al.,
2024; Zhou et al., 2024). Generalization to un-
seen lengths is a common evaluation criterion in
these studies (Kazemnejad et al., 2023; Xiao and
Liu, 2023; Zhou et al., 2024). Despite the addition
task being a reasoning problem with a well-defined
long-term reward, no research, to our knowledge,
has addressed it using RL with a language model.
The closest work is by Zhang and Parkes (2023),
who incorporated a self-training loop after the su-
pervised fine-tuning phase.

3 Problem formulation

3.1 Addition as a Markov Decision Process
We propose to study the performance of a language
model on a simple arithmetic task. The model is
prompted to perform the addition of two numbers
whose lengths range from 1 and N . To do this,
it has to break down the calculation step by step,
following a predefined scratchpad. In practice, we
opted for the scratchpad from (Lee et al., 2024)
with minor modifications (see Figure 1).

This task can be simply expressed as a Markov
Decision Process M = (S,A, T ,R) where the ac-
tion space A is the vocabulary, each state st ∈ S
is the text generated up to t steps, with s0 the
initial prompt and T the (deterministic) transi-
tion function that derives directly from the ac-

6124

tions taken by the model. The reward func-
tion R is 0 all along the episode, and takes the
value of 1 if the final result is correct (0 other-
wise). As in most reinforcement learning prob-
lems, the goal is to find a policy π : S → A that
maximizes the expected return over each episode:
π∗ = argmax

π
E
[∑T−1

t=0 R(st)
]
. We directly

take the language model, denoted πθ, as the policy.

3.2 Experimental setting

Our experimental pipeline consists in pre-training
the language model on number lengths ranging
from 1 to N , then fine-tuning it with RL on number
lengths N + 1 or N + 2.

In the pre-training phase, we followed the ap-
proach from Lee et al. (2024), training the lan-
guage model from scratch using supervised learn-
ing on a scratchpad dataset. The dataset was bal-
anced across number lengths from 1 to N , ensuring
uniform representation. The resulting pre-trained
model πθold performs well on numbers up to length
N . The evaluation was conducted on two setups:
fixed digit addition, where both terms had exactly
N digits, and varying digit addition, where one
term had N digits and the other had fewer. More
details on the evaluation methods are provided in
Appendix A.

For the RL fine-tuning stage, we initialized the
policy with πθ = πθold and performed training on
number lengths N +1 or N +2. This corresponds
to an “out-of-distribution” scenario that the model
cannot reliably handle without further training. As
a result, the only way for the model to succeed in
this new task is to explore, so as to identify the
errors it makes in the scratchpad and correct them.

3.3 Critical tokens

A notable finding from our experiments is the emer-
gence of a small subset of tokens that significantly
influence the final outcome. We refer to these as
“critical tokens” and define them as follows. Within
the output generated by a language model, a “crit-
ical token” is a token that satisfies both of these
criteria:

• it is decisive for the rest of the answer: if
the model is wrong about this token, the final
answer will most likely be wrong (the model
fails to correct itself);

• the pre-trained model shows substantially
more uncertainty on these tokens than on the

∆Ĵθold(s)
critical

∆Ĵθold(s)
non-critical (min.)

N = 3 -0.33 ± 0.01 0.0012 ± 0.0001
N = 5 -0.21 ± 0.18 0.0002 ± 0.0001
N = 7 -0.13 ± 0.04 0.0004 ± 0.0001

Table 1: Comparison of the quantity ∆Ĵθold(s) for crit-
ical and non-critical tokens, averaged over 50 genera-
tions. This shows the model’s high level of uncertainty
on critical tokens.

rest of the output.

In our experiments, these tokens arise when the
model has to act in a different way from that en-
countered during pre-training (out-of-distribution
decision making). More precisely, if the model is
pre-trained on numbers up to N digits, critical to-
kens occur in the decomposition stages that process
the (N+1)-th or (N+2)-th digit (highlighted in Fig-
ure 1). Regarding the first criterion, we found that
whenever these tokens are generated incorrectly,
the model inevitably produces the wrong answer.
As for the second criterion, we carried out a quanti-
tative analysis comparing the model’s certainty on
these tokens against the others. More precisely, for
each token, we measured the quantity ∆Ĵθold(s),
defined as the difference between the certainty on
this token and the mean certainty on the others. The
results, reported in Table 1, show a significant gap
in certainty between the critical tokens and the rest
of the output. More details on these critical tokens
and their location in the scratchpad are provided in
Appendix B.

4 Prioritized KL penalty

When fine-tuning a language model with RL, a
Kullback-Leibler (KL) penalty term is usually
added to the loss to avoid deviating too far from
the pre-trained model: L = LRL + αLKL where
LKL = Es,a∼πθ

[
log πθ(a|s)

πθold (a|s)

]
and πθold is the pre-

trained model. As a result, the target policy πθ is
encouraged to approach the predictions of πθold on
each state-action pair. We argue that this penalty
term could lead to more efficient exploration out of
distribution if each state-action term was weighted
by the certainty on the old policy predictions:

L̃KL = Es,a∼πθ

[
Ĵθold(s)

β. log
πθ(a|s)
πθold(a|s)

]
(1)

6125

Figure 2: Model accuracy on addition tasks for models
trained on numbers up to digit lengths N = 7, 9, 11, 13.
Results are shown for varying digit evaluation. Error
bars indicate 95% confidence intervals. Full detailed
results are provided in Appendix D.1.

where Ĵθold(s) estimates the certainty of the pre-
trained model in state s and β is a hyperparame-
ter. This quantity can be taken as the normalized
negentropy (Brillouin, 1953), which is negatively
correlated with entropy: J = Hmax−H

Hmax
. In an ideal

scenario, one would not only account for the data
uncertainty but also for the model uncertainty, for
example leveraging a bayesian approach2. How-
ever, since our framework falls within a context
where the pre-trained model is given and fixed, we
deliberately settle for an approximation that does
not take into account this type of uncertainty. Our
final estimate is as follows:

Ĵθold(s) =
Hmax −H(πθold(·|s))

Hmax
(2)

Our results in the next section show that, al-
though the penalty term from Equation 1 does not
address crucial aspects such as model overconfi-
dence, it outperforms the standard KL penalty in
our experimental setting.

5 Experimental results

5.1 Training Details
All experiments were carried out with the GPT-2
language model (Radford et al., 2019). A character-
level tokenizer was used to ensure proper represen-
tation of digits, facilitating addition tasks (Wallace
et al., 2019). The resulting model had 85M parame-
ters. The reinforcement learning experiments were
carried out with A2C (Mnih et al., 2016). We chose
this algorithm because it is both simple and effi-
cient, with few hyperparameters, making it more

2In a bayesian approach, one would provide an estimate
of J not only based on data uncertainty but also on model
uncertainty: J(s) = J

[∫
θold

πθold(·|s)p(θold|Dpretrain)dθold

]
.

Figure 3: Learning curves of multiple models pre-
trained up to N , fine-tuned with RL on N + 2.

suitable for our comparison purposes. When appli-
cable, the computation of the KL divergence was
approximated with the estimator from Schulman
(2020): KL[q, p] ≈ 1

2(log p(x) − log q(x))2. The
hyperparameters used for each experiment are pro-
vided in Appendix D.

5.2 Comparison of varying levels of
pre-training

Before the application of any fine-tuning with RL,
we show in Figure 2 that increasing the number N
of digits during the pre-training stage improves gen-
eralization on addition tasks with larger numbers of
digits. The same trend holds for equal-length addi-
tion evaluations, where models trained on larger N
demonstrate better generalization. Detailed results
on each task are provided in Appendix D.1.

In another experiment, we fine-tuned each pre-
trained model with RL and examined their perfor-
mance on additions with N + 1 digits. The results
are reported in Figure 3. Interestingly, the models
pre-trained on more digits — despite being initially
more effective — tend to plateau during the ex-
ploration phase. One possible explanation is that
making fewer early mistakes reduces the incentive
to explore. Moreover, a qualitative analysis of the
scratchpads generated by these models revealed
that the errors they make (mostly copying or token-
duplication issues) are less generic than those re-
lated to critical tokens. Correcting such errors may
require substantially more training steps.

5.3 Impact of the prioritized KL penalty
To assess the effectiveness of the prioritized KL
penalty, we conducted an experiment where a pre-
trained model was fine-tuned with RL using this
trick and compared it against a fine-tuning with
the standard KL penalty. We chose to run this ex-
periment on N = 7 digits as this is the first value

6126

Figure 4: Top: Learning curves of a model fine-tuned
with RL on N+1=8 digits. Bottom: Probability of mak-
ing the right prediction on two critical tokens. Results
on more critical tokens are provided in Appendix D.2.

of N for which generalization capabilities emerge
after pre-training. The resulting learning curves
are provided in Figure 4. From these results, one
can notice that the model that benefited from the
prioritized KL penalty significantly outperformed
the other one. We also provide, on the same figure,
some curves depicting the probability of making
the right prediction on two critical tokens. Notably,
the first model consistently increased and main-
tained a high probability of correct predictions over
the long term, whereas the other one frequently
reverted to its initial probability levels, likely due
to the effects of the standard KL divergence. In
Appendix C, we test multiple orders of magnitude
for the value of the exponent β and show that the
performance gain provided by the prioritized KL
penalty is robust over a wide range of values.

6 Conclusion

In this paper, we studied the performance of a lan-
guage model pre-trained with supervised learning
and fine-tuned with RL on a simple arithmetic task.
We showed that this experimental setting allowed
to identify a new error mode – critical tokens –
featuring decisions out of the pre-training data dis-
tribution. Therefore, we proposed a simple trick –
the prioritized KL penalty – allowing to boost ex-
ploration on these tokens during the RL fine-tuning
stage. In future work, we will try to extend the
analysis of critical tokens to broader domains and

examine the possible application of the prioritized
KL penalty to more standard LLM problems.

7 Limitations

The main limitation of our study relates to the re-
stricted experimental setup, which limits the scope
of the results. Our experiments were carried out
with a small language model, GPT-2, with much
less capabilities than the newer, bigger models. As
a result, the task is far less challenging than the
benchmarks usually used to evaluate LLMs. How-
ever, this simplicity is also a strength as it allows to
study the behavior of the model in a very flexible
environment, with more control over the distribu-
tion shift. Moreover, the use of a formatted scratch-
pad for each answer allowed to easily run statistics
about the model behaviour on critical tokens.

Acknowledgment

We warmly thank Matthieu Labeau for reviewing
an earlier version of this paper and offering valu-
able feedback. We also thank Nicolas Vayatis,
Pirmin Lemberger, Antoine Saillenfest and Ben
Kabongo for insightful discussions about this work.
This work was granted access to the HPC resources
of IDRIS under the allocation 2024-TMP32592
made by GENCI.

References
Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele

Farina, Colin Flaherty, Daniel Fried, Andrew Goff,
Jonathan Gray, Hengyuan Hu, et al. 2022. Human-
level play in the game of diplomacy by combining
language models with strategic reasoning. Science,
378(6624):1067–1074.

Filippos Bellos, Yayuan Li, Wuao Liu, and Jason Corso.
2024. Can large language models reason about goal-
oriented tasks? In Proceedings of the First edition
of the Workshop on the Scaling Behavior of Large
Language Models (SCALE-LLM 2024), pages 24–34,
St. Julian’s, Malta. Association for Computational
Linguistics.

Leon Brillouin. 1953. The negentropy principle of in-
formation. Journal of Applied Physics, 24(9):1152–
1163.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers,
Yinxiao Liu, and Lei Meng. 2024. Beyond sparse
rewards: Enhancing reinforcement learning with lan-
guage model critique in text generation. Preprint,
arXiv:2401.07382.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.

6127

https://aclanthology.org/2024.scalellm-1.3
https://aclanthology.org/2024.scalellm-1.3
https://arxiv.org/abs/2401.07382
https://arxiv.org/abs/2401.07382
https://arxiv.org/abs/2401.07382

2023. Grounding large language models in interac-
tive environments with online reinforcement learn-
ing. In International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 3676–3713. PMLR.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, and et al. 2021.
Evaluating large language models trained on code.
Preprint, arXiv:2107.03374.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024. Teaching large lan-
guage models to reason with reinforcement learning.
Preprint, arXiv:2403.04642.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim,
Seonghyeon Ye, and Minjoon Seo. 2024. Self-
explore: Enhancing mathematical reasoning in lan-
guage models with fine-grained rewards. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pages 1444–1466. Association for Com-
putational Linguistics.

Amirhossein Kazemnejad, Inkit Padhi,
Karthikeyan Natesan Ramamurthy, Payel Das,
and Siva Reddy. 2023. The impact of positional
encoding on length generalization in transformers. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:

Mastering code generation through pretrained models
and deep reinforcement learning. In Advances in
Neural Information Processing Systems, volume 35,
pages 21314–21328. Curran Associates, Inc.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2024. Teach-
ing arithmetic to small transformers. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, and et al. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092–1097.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms GPT-4 on arithmetic
tasks. CoRR, abs/2305.14201.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain,
John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi
Schwarzschild, and Tom Goldstein. 2024. Trans-
formers can do arithmetic with the right embeddings.
Preprint, arXiv:2405.17399.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1928–1937, New
York, New York, USA. PMLR.

OpenAI. 2023. Gpt-4: Generative pre-trained trans-
former 4. https://openai.com. Accessed: 2024-
02-06.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

John Schulman. 2020. Approximating kl divergence,
2020. URL http://joschu. net/blog/kl-approx. html.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat
Lee, Yuanzhi Li, and Yi Zhang. 2023. Posi-
tional description matters for transformers arithmetic.
Preprint, arXiv:2311.14737.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, and et al. 2023. Llama 2:
Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288.

6128

https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.mlr.press/v202/carta23a.html
https://arxiv.org/abs/2107.03374
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2403.04642
https://arxiv.org/abs/2403.04642
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://aclanthology.org/2024.findings-emnlp.78
https://aclanthology.org/2024.findings-emnlp.78
https://aclanthology.org/2024.findings-emnlp.78
http://papers.nips.cc/paper_files/paper/2023/hash/4e85362c02172c0c6567ce593122d31c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4e85362c02172c0c6567ce593122d31c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://openreview.net/forum?id=dsUB4bst9S
https://openreview.net/forum?id=dsUB4bst9S
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.48550/ARXIV.2305.14201
https://doi.org/10.48550/ARXIV.2305.14201
https://doi.org/10.48550/ARXIV.2305.14201
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2405.17399
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://openai.com
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2311.14737
https://arxiv.org/abs/2311.14737
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You,
Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su,
and Jun Zhu. 2022. Tianshou: A highly modular-
ized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1–6.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Changnan Xiao and Bing Liu. 2023. Conditions for
length generalization in learning reasoning skills.
Preprint, arXiv:2311.16173.

Shunyu Yao, Rohan Rao, Matthew J. Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 8736–8754. Association for Computational
Linguistics.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? CoRR,
abs/2304.02015.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D Goodman. 2024.
Quiet-star: Language models can teach them-
selves to think before speaking. arXiv preprint
arXiv:2403.09629.

Hugh Zhang and David C. Parkes. 2023. Chain-of-
thought reasoning is a policy improvement operator.
Preprint, arXiv:2309.08589.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang,
Rishabh Agarwal, and Denny Zhou. 2024. Trans-
formers can achieve length generalization but not
robustly. Preprint, arXiv:2402.09371.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences. Preprint,
arXiv:1909.08593.

6129

https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2311.16173
https://arxiv.org/abs/2311.16173
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.704
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.704
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.704
https://doi.org/10.48550/ARXIV.2304.02015
https://doi.org/10.48550/ARXIV.2304.02015
https://arxiv.org/abs/2309.08589
https://arxiv.org/abs/2309.08589
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

A Evaluation Methodology

The evaluation methodology assesses the perfor-
mance of models pre-trained on digit addition tasks,
following the framework of Lee et al. (2024). Each
model, denoted as πθold , is pre-trained using super-
vised learning on addition tasks involving up to
N digits. The evaluation is conducted under two
scenarios:

1. Identical Digit Addition: Both terms in the
addition consist of exactly N digits (i.e., N +
N digit addition).

2. Varying Digit Addition: The model is tested
on addition tasks where the number of dig-
its in the two terms varies (i.e., N +M digit
addition, where M ≤ N). The pairs of num-
bers with different digit counts are sampled to
ensure a broader range of difficulty.

Model outputs are evaluated by comparing the
predicted results to the ground truth for each addi-
tion. Accuracy is computed as the proportion of
correct predictions over the total number of exam-
ples.

The evaluation is performed on 1,000 test ex-
amples. To account for variability in performance,
results include confidence intervals obtained via
resampling.

B Critical tokens

In this section, we provide insight into critical to-
kens, that play a crucial role in determining the
success of the addition task. Consider a pre-trained
model on additions of numbers up to N digits.
Now, consider a generalization test in which the
model is prompted to add numbers with N +1 dig-
its. Our experiments reveal that when the model
fails at this task, the failure can typically be traced
back to errors made on critical tokens. We observe
that these critical tokens arise at the stage of the
generation where the model must choose whether
to treat the problem as an addition of N -digit num-
bers – leading to failure – or correctly addressing
the task of adding (N + 1)-digit numbers. More
precisely, this error is caused by the omission of
digits when copying the numbers from the previous
step. Figure 5a shows two examples of failed gen-
eration caused by errors on the critical tokens. In
the first case, the model pre-trained on numbers up
to 3 digits mistakenly recopies the last digit instead

(a)

(b)

(c)

Figure 5: Output examples for addition tasks on N + 1
digit lengths (the model is faced with numbers one notch
longer than those encountered in pre-training). Each
generated token is colored according to its certainty. A
green color is a maximal certainty, while a red color is
a minimal certainty.

of the penultimate digit, leading to an incorrect out-
come. In the second example, where the model is
pre-trained on numbers up to 5 digits, it incorrectly
closes the bracket in both cases instead of inserting
a comma (the stage preceding the copying of the
sixth digit). These examples illustrate two types
of critical tokens. We only show them on the first
decomposition line, but they can be found on the
subsequent lines as well.

As explained in Section 4, we quantify the cer-
tainty of model being in state s through the quantity
Ĵθold(s). To provide more visual understanding of
this quantity, we display in Figure 5 a few output
examples with the colors as indication of the model
certainty (green: high certainty, red: low certainty).

6130

Figure 6: Fine-tuning results with various values of β
(averaged over 9 random seeds)

C Assessing the impact of the certainty
exponent β

In order to better assess the robustness of our pri-
oritized KL penalty, we have carried out an experi-
ment testing multiple orders of magnitude for the
value of the β exponent in Equation 1. The cor-
responding learning curves are reported in Figure
6. Despite important error margins, these results
show that the prioritized KL penalty slightly out-
performs the standard KL penalty for values of β
ranging from 10 to 500, reaching its maximum at
β = 500 and starting to decline from β = 1000
(which shows early signs of instability). The per-
formance drops drastically at β = 10000. The
good performance over such a wide range of beta
values can be explained by the fact that after our
pre-training, the confidence of the model is ex-
tremely high (except on critical tokens), which is
why it takes large values of β to drastically reduce
the weight Ĵθold(s)

β in the prioritized KL penalty.
Therefore, we believe that this range (10-500) of
acceptable β values might be quite different in an-
other problem.

D Experiments Details

The hyperparameters used in the experiment from
Section 5.2 are provided in Table 2. The hyperpa-
rameters used in the experiment from Section 5.3
are provided in Table 3.

D.1 Detailed Pretraining Results

Tables 4 and 5 display the model’s performance
on addition tasks for different digit lengths that the
model was pretrained on. These digit lengths refer
to the number of digits used during pretraining (7, 9,
11, and 13 digits), with accuracy then measured on

Hyperparameter Value

Learning rate 10−6

Discount factor 1
Value function coefficient 0.1

Entropy coefficient 0.0005
KL penalty coefficient 10

Repeat per collect 1
Episodes per collect 50

Episodes per test 100

Table 2: Hyperparameters used in the RL experiment
comparing multiple levels of pre-training

Hyperparameter Value

Learning rate 10−6

Discount factor 1
Value function coefficient 0.1

Entropy coefficient 0.0005
KL penalty coefficient 5

KL penalty exponent (β) 150
Repeat per collect 1

Episodes per collect 50
Episodes per test 100

Table 3: Hyperparameters used in the RL experiment
evaluating the impact of the prioritized KL penalty

tasks involving identical digit lengths and varying
digit lengths. The model is subsequently evaluated
on its ability to generalize to more complex tasks,
i.e., N + 1, N + 2, and N + 3 digits, where the
total number of digits exceeds the training range.

Across both tables, the general trend indicates
that the model is more adept at solving tasks within
its training range, and it exhibits improved gener-
alization with larger digit lengths training. How-
ever, in both identical and varying digit tasks, the
model’s ability to handle tasks involving N + 2
and N + 3 is limited, particularly for smaller digit
lengths. This suggests that while pretraining en-
ables the model to generalize to some extent, there
are clear limitations when the task complexity sur-
passes the data on which the model was trained.

D.2 Details on the fine-tuning with RL
experiments

In Figure 7 we expose the evolution of the right
prediction probability for 6 different critical tokens.
These critical tokens are selected as the commas on
the (N + 1)-th token for each operand list, which

6131

Nb. of
Digits

N
Accuracy

N + 1
Accuracy

N + 2
Accuracy

N + 3
Accuracy

7 98.9% ± 0.7% 48.8% ± 3.0% 0.0% ± 0.0% 0.0% ± 0.0%
9 96.4% ± 0.6% 78.9% ± 2.4% 0.5% ± 0.5% 0.0% ± 0.0%
11 91.2% ± 1.3% 75.1% ± 2.7% 30.7% ± 2.4% 0.2% ± 0.3%
13 93.0% ± 1.6% 88.9% ± 2.1% 67.7% ± 3.1% 20.4% ± 2.4%

Table 4: Model accuracy on addition tasks with identical digit lengths.

Nb. of
Digits

N
Accuracy

N + 1
Accuracy

N + 2
Accuracy

N + 3
Accuracy

7 100.0% ± 0.0% 69.0% ± 2.4% 0.0% ± 0.0% 0.0% ± 0.0%
9 97.0% ± 0.6% 89.4% ± 1.8% 6.9% ± 1.3% 0.0% ± 0.0%
11 94.4% ± 1.4% 87.0% ± 2.1% 53.7% ± 3.2% 7.3% ± 1.6%
13 95.6% ± 1.4% 92.5% ± 1.9% 84.7% ± 2.4% 51.8% ± 3.2%

Table 5: Model accuracy on addition tasks with varying digit lengths.

is a frequent source of errors. One can observe that
in each situation (despite important error margins),
the probabilities outputted by the model trained
with prioritized KL penalty are higher than the
other. Note that this effect is more pronounced on
tokens “step 1 / operand 2” and “step 2 / operand
2” as on the others, the probability of success is
already very high from the start.

E Softwares

We carried out our experiments using the Python
packages Transformers (Wolf et al., 2020) and Tian-
shou (Weng et al., 2022).

6132

Figure 7: Evolution of the right prediction probability on multiple critical tokens, during the RL fine-tuning on
number length N + 1 = 8.

6133

