
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 5937–5958

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Systematic Knowledge Injection into Large Language Models via Diverse
Augmentation for Domain-Specific RAG

Kushagra Bhushan*†1, Yatin Nandwani*2, Dinesh Khandelwal2, Sonam Gupta2,
Gaurav Pandey2, Dinesh Raghu2, and Sachindra Joshi2

20je0506@mc.iitism.ac.in, {yatin.nandwani@, dikhand1@in., sonam.gupta7@,
gpandey1@in.,diraghu1@in., jsachind@in.}ibm.com

1IIT(ISM) Dhanbad 2IBM Research

Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a prominent method for incorporat-
ing domain knowledge into Large Language
Models (LLMs). While RAG enhances re-
sponse relevance by incorporating retrieved do-
main knowledge in the context, retrieval errors
can still lead to hallucinations and incorrect
answers. To recover from retriever failures, do-
main knowledge is injected by fine-tuning the
model to generate the correct response, even in
the case of retrieval errors. However, we ob-
serve that without systematic knowledge aug-
mentation, fine-tuned LLMs may memorize
new information but still fail to extract rele-
vant domain knowledge, leading to poor per-
formance. In this work, we present a novel
framework that significantly enhances the fine-
tuning process by augmenting the training data
in two ways – context augmentation and knowl-
edge paraphrasing. In context augmentation,
we create multiple training samples for a given
QA pair by varying the relevance of the re-
trieved information, teaching the model when
to ignore and when to rely on retrieved con-
tent. In knowledge paraphrasing, we fine-tune
with multiple answers to the same question, en-
abling LLMs to better internalize specialized
knowledge. To mitigate catastrophic forgetting
due to fine-tuning, we add a domain-specific
identifier to a question and also utilize a replay
buffer containing general QA pairs. Experi-
mental results demonstrate the efficacy of our
method over existing techniques, achieving up
to 10% relative gain in token-level recall while
preserving the LLM’s generalization capabili-
ties.

1 Introduction

Large Language Models (LLMs) have transformed
natural language processing, excelling across vari-
ous tasks (Brown et al., 2020). To tailor LLMs

*Equal contribution.
†Work done during Kushagra Bhushan’s internship at IRL

for domain-specific applications, such as ques-
tion answering over specialized corpora, Retrieval-
Augmented Generation (RAG) has emerged as a
popular approach (Lewis et al., 2020; Karpukhin
et al., 2020). Although RAG enhances the rele-
vance of generated answers, it is prone to hallu-
cinations (Ji et al., 2023; Nandwani et al., 2023),
especially when the retriever fails to fetch relevant
documents from the corpus.

To address this issue, knowledge injection tech-
niques (Zhang et al., 2024a; Yoran et al., 2024)
have been proposed. Knowledge injection has two
main objectives: (1) when the retriever succeeds in
fetching correct documents, then the LLM should
be able to leverage that information to generate an
appropriate response, and (2) when the retriever
fails, the LLM should recall the domain specific in-
formation from the infused parametric knowledge
to generate the response. To achieve them, existing
techniques fine-tune LLMs with domain-specific
data, embedding the knowledge directly into the
LLM’s parameters. Specifically, these techniques
fine-tune LLMs to generate the correct response
to a question irrespective of the relevance of the
retrieved documents. However, existing knowledge
injection techniques suffer from two main issues:
1) Conditional Memorization Bias: In the train-

ing data, each question is assigned to either a
retrieval success or a retrieval failure scenario.
I.e., the relevant information to answer the ques-
tion is either present or absent in the given con-
text for a question. This static assignment de-
termines how the LLM learns the knowledge.
For example, consider a scenario where all train-
ing questions from a particular document are
assigned to the ‘retrieval success’ bucket, i.e.,
information required to answer is present in the
accompanying context. In this case, the LLM
is encouraged to rely on the external retrieved
context, and it may not memorize information
from such documents. Conversely, if all train-

5937

ing questions from a particular document are
assigned to ‘retrieval failure’ bucket, the LLM
will be forced to memorize its content during
fine-tuning and may learn to ignore the provided
information for questions from that document.
As a result, the LLM learns different sections
of the domain data in different ways. This in-
consistency can be problematic, as the LLM
might struggle when faced with opposite scenar-
ios during inference. We confirm this behaviour
in our experiments.

2) Canonical Answer Overfitting: Each question
in the fine-tuning dataset is associated with only
one canonical answer. This singular association
leads the LLM to learn and replicate spurious
patterns (Allen-Zhu and Li, 2024), treating the
answer as a fixed representation for that spe-
cific question. As a result, the LLM’s ability to
generate nuanced or diverse responses based on
varying contextual factors is constrained.

To mitigate these issues, we propose PA-
RAG: Paraphrase Augmentation for Retrieval-
Augmented Generation, a novel fine-tuning frame-
work that improves knowledge injection into LLMs
for domain-specific RAG tasks. PA-RAG intro-
duces two different ways of training data augmen-
tation to mitigate conditional memorization bias
and canonical answer overfitting.

First, PA-RAG uses context augmentation to
simulate both retrieval success and retrieval failure
scenarios for all the training questions. This pre-
vents conditional memorization bias by teaching
the model to identify whether the given retrieved
information is relevant or not and then accordingly
decide to ignore or utilize it.

Second, PA-RAG synthetically generates multi-
ple answers for each training question to mitigate
canonical answer overfitting. It is inspired by a re-
cent study (Allen-Zhu and Li, 2024) demonstrating
that paraphrasing knowledge during pre-training
significantly enhances LLMs’ ability to inject and
extract that information in the downstream tasks.
However, they focus on paraphrasing only during
pre-training and not during fine-tuning. Building
on this, we propose to systematically augment the
fine-tuning data by synthetically generating mul-
tiple answers for each question. This encourages
LLMs to memorize and extract the domain knowl-
edge effectively while minimizing the overfitting
on stylistic features.

Furthermore, to address the challenge of catas-
trophic forgetting (Zhang and Wu, 2024; Ke

et al., 2023; Jang et al., 2022)—where an LLM’s
general language understanding deteriorates as
domain-specific fine-tuning overwrites prior knowl-
edge—we introduce a self-selective rehearsal re-
play buffer (Gupta et al., 2024; Huang et al., 2024).
This buffer contains samples from an instruction
tuning dataset. But unlike traditional replay buffers,
the self-selective approach uses LLM’s own pre-
dictions rather than the gold response to retain
the LLM’s versatility across tasks when injecting
knowledge.

In addition, we also introduce the novel use of
Domain Identifiers—phrases pre-pended to ques-
tions—to help the LLM distinguish new knowledge
from its existing skills. This improves domain-
specific accuracy and also mitigates catastrophic
forgetting, preserving LLM’s general competence
during fine-tuning.

To validate PA-RAG’s ability to inject new
domain-specific knowledge, we require a corpus
that the LLM hasn’t seen during pre-training or
instruction tuning. In the absence of such a cor-
pus, we create two datasets using domain-specific
books that were published in 20241. In our experi-
ments, PA-RAG achieves a significant increase in
performance against other methods on this domain-
specific benchmark while maintaining general rea-
soning capabilities that we measure using various
benchmarks such as MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2022), Hellaswag
(Zellers et al., 2019), and GSM8k (Cobbe et al.,
2021).

2 Related Work

Retrieval Augmented Generation: RAG en-
hances Large Language Models (LLMs) by inte-
grating external data sources, such as knowledge
bases, to improve relevance and accuracy (Lewis
et al., 2020; Guu et al., 2020; Karpukhin et al.,
2020). Recent advancements have extended its ap-
plicability across domains (Asai et al., 2024; Kim
et al., 2024; Yan et al., 2024; Liu et al., 2024), but
RAG systems still face key challenges: hallucina-
tions due to mismatches between retrieved data and
the LLM’s pre-existing knowledge (Setty et al.,
2024; Jin et al., 2024), difficulty with complex
multi-document reasoning (Setty et al., 2024), and
an inability to fully leverage fixed-domain settings
where all domain-specific documents are available
beforehand because typically neither the retriever

1after the cutoff date of the fine-tuned LLM

5938

nor the generator LLM are trained on the domain
data.
Domain-Aware Fine-Tuning for RAG: Joint train-
ing of the retriever and LLM has been proposed as
a way to improve RAG’s domain-specific perfor-
mance (Guu et al., 2020; Sachan et al., 2021; Siri-
wardhana et al., 2023; Shi et al., 2024). By jointly
training the retriever and LLM, the system can bet-
ter adapt to domain-specific contexts. However,
this approach introduces complexities, including
the need for specialized loss functions and frequent
retriever updates.

Another line of work (Mecklenburg et al., 2024;
Zhang et al., 2024b) focuses solely on adding do-
main knowledge to LLMs as an alternative to RAG.
These approaches fine-tune LLMs using question-
answer (QA) pairs derived from domain data and
aim to answer any new test query without retriev-
ing any document. As a result, they fail to leverage
access to the domain documents during inference.

Recently, Zhang et al. introduced Retrieval-
Augmented Fine-Tuning (RAFT), a fine-tuning
method for LLMs to incorporate domain knowl-
edge and enhance in-domain RAG performance.
RAFT combines RAG and fine-tuning by training
LLMs on domain data using a mixture of oracle and
distractor document contexts. However, it suffers
from conditional memorization bias and canonical
answer overfitting. On the other hand, PA-RAG
uses context augmentation and answer paraphras-
ing to address these issues.
Catastrophic forgetting: Catastrophic Forget-
ting (French, 1999; Zheng et al., 2024) occurs
when new domain-specific fine-tuning overwrites
previously learned general knowledge, reducing
performance on earlier tasks. Replay-based meth-
ods (de Masson d’Autume et al., 2019; Rolnick
et al., 2019), help mitigate this by rehearsing
prior task data during training. Recent advances
in replay-based approaches for language mod-
els (Scialom et al., 2022; Mok et al., 2023) have
shown promise in reducing catastrophic forget-
ting. The Self-Synthesized Rehearsal (SSR) (Gupta
et al., 2024; Huang et al., 2024) framework uses the
LLM to generate synthetic rehearsal data, reducing
reliance on stored instances.

3 Problem Definition

Given a domain-specific corpus D = {di}ni=1,
where each document contains domain-relevant
knowledge, the goal is to fine-tune Large Lan-

guage Models (LLMs) for enhanced performance
in domain-specific Retrieval-Augmented Genera-
tion (RAG) systems. Unlike previous works (Lin
et al.; Wang et al.; Mecklenburg et al., 2024), which
handle changing test-time domains or documents,
our approach, like RAFT, assumes a fixed target
domain with known access to domain-specific doc-
uments.

Our proposed method, PA-RAG described in
Section 4, addresses the following key challenges:
1) Canonical answer overfitting: In Section 4.1,

we discuss how paraphrased answer augmenta-
tion is used to generate multiple variations of
answers per train question, ensuring the LLM
learns the underlying knowledge and avoids
overfitting to fixed answers.

2) Conditional memorization bias: In Section 4.2,
we introduce a method that simulates both suc-
cessful and failed retrieval scenarios for each
question. This helps the LLM learn how to han-
dle various retrieval conditions, preventing it
from memorizing answers in static settings and
improving its generalization.

3) Catastrophic forgetting: In Sections 4.3 and
4.4, we outline how a self-selective rehearsal re-
play buffer and domain-specific identifiers help
balance domain-specific knowledge acquisition
while retaining the LLM’s general knowledge
and capabilities.

Through these strategies, PA-RAG enables
more effective knowledge integration, improving
domain-specific performance while maintaining
generalization capabilities in RAG systems.

4 Approach

In this section, we outline our approach, which
involves – 1). generating a synthetic QA dataset
from the documents of the given domain; 2). aug-
menting it to improve knowledge extraction and; 3).
incorporating domain identifiers to clearly define
boundaries between distinct knowledge areas.

4.1 Synthetic QA Generation

Given a domain-specific corpus D = {di}ni=1 of
n documents, our objective is to generate diverse
question-answer (QA) pairs that maximize infor-
mation coverage across the documents using an
LLM. We generate these QA pairs using Mixtral-
8x22B-Instruct-v0.12 as the LLM.

2mistralai/Mixtral-8x22B-Instruct-v0.1

5939

https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1

Document Chunking: If a document di has more
than T tokens, we split it into chunks of size T//2.
Otherwise, it is processed as a single chunk. Here
T is a hyperparameter. We denote the set of chunks
for document di as C(i) = {c(i)1 , c

(i)
2 , . . . , c

(i)
mi},

where mi is the total number of chunks for doc-
ument di. Each c

(i)
s represents the s-th chunk of

document di, where 1 ≤ s ≤ mi.
QA Pair Generation: For each chunk c

(i)
s ∈ C(i),

we prompt the LLM Nc times using an instruction
P1 along with the chunk c

(i)
s . Each call to the

LLM using prompt P1 generates multiple QA pairs,
ensuring that most of the tokens in c

(i)
s are covered.

Multiple calls with nucleus sampling (Holtzman
et al., 2020) ensure adequate token coverage. Let
{(qjs, ajs)}kj=1 be the set of QA pairs generated for

chunk c
(i)
s . We call this dataset of QA pairs as

Dbase = {{(qjs, ajs)}kj=1,∀c
(i)
s ∈ C(i),∀di ∈ D}.

This approach ensures broad content coverage, but
the lack of variability in the generated answers can
lead to Canonical Answer Overfitting, as described
in Section 1.
Adding Answer Multiplicity: To address canoni-
cal answer overfitting, we introduce answer multi-
plicity by re-prompting the LLM to generate multi-
ple answers for each generated question qjs using a
separate prompt P2. For each chunk-question pair
(c

(i)
s , qjs), we generate a set of paraphrased answers

{aj1s , aj2s , . . . , ajps }, where p is the number of para-
phrases:
LLM(P2, c

(i)
s , qjs) → {aj1s , aj2s , . . . , ajps }

This results in the augmented dataset Daug., where
each question q is linked to diverse paraphrased
answers. The added variability mitigates canonical
answer overfitting and improves generalization. As
shown in ablation studies, the model fine-tuned on
Daug. outperforms the one fine-tuned on the base
dataset Dbase. All prompts used for dataset creation,
including P1 and P2, are provided in Section E.

4.2 Fine-tuning Strategy

In the original RAFT approach (Zhang et al.,
2024a), each data point used for fine-tuning con-
sists of a question (q), a context (a collection of
documents), and an answer (a). The context is clas-
sified as either relevant, i.e., it contains at least one
document (alongside distractor documents) that
provides the information needed to deduce the an-
swer, or irrelevant where the entire context consists
of distractor documents. Baseline RAFT, referred
to as RAFT(p), presents a fraction (1− p) of ques-

tions with a relevant context. We call this train-
ing subset as the ‘retriever success’ bucket. For
the remaining p fraction of questions, only an ir-
relevant context (composed entirely of distractor
documents) is provided. We call such a training
subset as the ‘retriever failure’ bucket. However,
this fine-tuning setup leads to conditional memo-
rization bias, where the LLM either relies on rele-
vant contexts or stores the necessary information
in its parametric memory when presented with ir-
relevant contexts. As a result, the model may excel
at handling specific retrieval scenarios but strug-
gle to generalize effectively across varied contexts
during inference. For some parts of the document,
the LLM memorizes the content, while for others,
it relies on the retrieved documents, resulting in
inconsistent performance.

To address conditional memorization bias, we in-
troduce CA-RAFT (Context-Augmented RAFT),
which combines RAFT(0) and RAFT(1) with
RAFT(p) for more granular control over relevant
and irrelevant contexts. In RAFT(0), all ques-
tions are paired with irrelevant contexts, teaching
the model to rely solely on its internal memory.
In RAFT(1), only relevant contexts are provided.
By mixing RAFT(0), RAFT(1), and RAFT(p),
CA-RAFT(p) effectively mitigates Conditional
Memorization Bias.

Our complete approach, PA-RAG significantly
enhances CA-RAFT by incorporating paraphrased
answer augmentation to address Canonical Answer
Overfitting. While CA-RAFT ensures the model
learns how to handle both relevant and irrelevant
contexts without over-relying on one or the other,
PA-RAG goes further by exploiting diverse para-
phrased answers during training to effectively in-
ject new knowledge. This augmentation ensures
that the model does not overfit to a single canon-
ical answer for each question, promoting deeper
learning of underlying knowledge.

Interestingly, answer augmentation implicitly
takes care of conditional memorization bias as well.
When we randomly assign each training QA pair
in Daug. to ‘retriever success’ or ‘retriever failure’
bucket, it automatically distributes different QA
pairs for the same question into different buckets.
Thus, when training with Daug., we do not need
context augmentation separately.

4.3 Domain Identifiers
LLMs store vast amounts of information across dif-
ferent domains, which can lead to confusion when

5940

handling specialized questions. To ensure accurate
and relevant responses, we introduce domain iden-
tifiers that establish boundaries within the model’s
parametric memory by specifying the context of
each question. A domain identifier is a simple to-
ken or phrase prepended to each question during
training and evaluation. For example:
"This question is from {domain_name}.
{Question}"

Here, the placeholder {domain_name} is replaced
with the specific domain (e.g., Healthcare, Legal),
and {Question} is replaced with the actual
question. This template ensures that each question
is clearly tied to its domain, reducing ambiguity
and helping the model differentiate between similar
questions from different fields. Additionally,
domain identifiers have minimal impact on general
performance, as removing them may allow the
model to return to its original state, preserving its
generalization capabilities.

4.4 Self-Selective Replay Buffer

Typically, a replay buffer contains old samples from
previous tasks on which the LLM has been trained.
This helps the model retain general knowledge and
mitigate catastrophic forgetting (Zhang and Wu,
2024; Ke et al., 2023; Jang et al., 2022) while
fine-tuning on new domain-specific data. How-
ever, since we do not have access to the original
instruction-tuning data of the target LLM, we intro-
duce a self-selective rehearsal replay buffer (Gupta
et al., 2024; Huang et al., 2024).

This approach differs from traditional replay
buffers in that it generates new outputs for old in-
puts. Using the technique introduced in (Sudalairaj
et al., 2024), we generate diverse inputs that belong
to different categories, such as code, math, reason-
ing, extraction, safety, writing etc.. We then pass
each input (x) through the LLM and use (x,LLM(x))
as an auxiliary dataset during the fine-tuning pro-
cess.

By combining this self-selective replay buffer
with the current synthetic QA data, we ensure that
the model retains general knowledge while fine-
tuning on domain-specific tasks, thereby mitigating
catastrophic forgetting.

5 Experimental Setup

5.1 Objectives

The main objectives of our experiments are to:

1) demonstrate that PA-RAG successfully injects
new knowledge in LLM while preserving its
generic capabilities and show that it performs
better than the other fine-tuning methods in both
dimensions – injecting new knowledge and pre-
serving generic capabilities.

2) demonstrate the importance of each of the com-
ponents of PA-RAG, viz., data identifier, replay-
buffer, and answer multiplicity.

3) systematically analyze the issues with RAFT
(Zhang et al., 2024a), viz., contextual overfitting
and canonical answer overfitting.

All the code and test datasets used for our exper-
iments are available on GitHub. 3

5.2 Base model and Datasets

We use Mistral-7B-Instruct-v0.24 as our base LLM
and inject new knowledge in it using LoRA(Hu
et al., 2022) tuning. To demonstrate the capability
of PA-RAG to inject new knowledge, we would
need information published after the cutoff date of
the base model. Accordingly, we chose two Red-
books5 published on 23rd July and 16th May 2024
as our two different corpora. We use LlamaIndex6

to parse the PDFs into markdown and extract the
text from the 5 chapters of the first book and the 6
chapters of the second book, respectively.
Base data: We consider each chapter as a docu-
ment and arbitrarily set T = 8000 to split the chap-
ters into chunks for creating synthetic QAs. Using
base–data prompt P1, we get a total of 5122 and
33570 QA pairs for book1 and book2, respectively,
and we randomly split them into train/val/test splits.
As a post-facto analysis, we compute the coverage
of each chapter by the generated QA pairs and
obtain 84.4% and 82.5% average coverage at the
token level by the train data for book1 and book2,
respectively.
Answer multiplicity in training data: We use
multiplicity prompt P2 to generate multiple an-
swers for each question in the base dataset. We
restrict the number of answers per question to 5
and get 4.6 answers per question on average in the
training data of both books. Generating multiple
answers also results in an increase in the token-

3https://github.com/kushagrabhushan/Systematic-
Knowledge-Injection

4mistralai/Mistral-7B-Instruct-v0.2
5Book 1: Do More with Less: Automating IBM Storage

FlashSystem Tasks with REST APIs, Scripting, and Ansible
Book 2: Red Hat OpenShift Container Platform on IBM Z
and LinuxONE

6LlamaIndex

5941

https://github.com/kushagrabhushan/Systematic-Knowledge-Injection
https://github.com/kushagrabhushan/Systematic-Knowledge-Injection
https://github.com/kushagrabhushan/Systematic-Knowledge-Injection
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5711.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5711.pdf
https://www.llamaindex.ai/

level coverage to 93.6% and 92.4%, respectively,
for the two books.
Test Sets: Along with the base data test set, we
also created an additional factoid test set consist-
ing of questions with up to eight words as answers.
In the base data test set, answers often consist of
multiple sentences and can be expressed in various
paraphrased forms, making evaluation challenging.
In contrast, factoid answers have a limited set of
acceptable responses, making it easier to assess
model performance. Evaluating models on this fac-
toid test set provides a more direct measure of how
many facts from the corpus have been injected into
the model. Additionally, we observed that several
questions in the test sets contained phrases such
as "in the above passage" and "in the given con-
text." To address this, we removed such contextual
questions by prompting a large language model
(LLM) to filter them out. Table 19 provides the
exact prompt for filtering the test set. All results in
the paper are on the filtered base and factoid test set,
with results on the factoid dataset presented in Ap-
pendix C. Please see Table 5 in the Appendix A.1
for detailed statistics of all the training and test
datasets.

5.3 Training Details:
Please see Appendix A.2 for training details.

5.4 Evaluation criteria
We evaluate all the methods under the RAG setup,
i.e., we fetch the top 5 passages that are similar
to the question and provide them as context along
with the question. To test under a realistic scenario,
instead of setting up the index on passages from
only book1 and book2, we downloaded 34 red pa-
pers 7 and indexed all of them. This results in the
indexing of a total of 4,765 passages, each with 512
tokens. We use LlamaIndex with BGE Embedding
(Xiao et al., 2023) to create the index. See Table 16
for the exact prompt used while fine-tuning.

Following (Adlakha et al., 2023), we use token
level Recall w.r.t. the gold response as an automated
metric to evaluate the generated response. In addi-
tion, we prompt Mixtral-8x22B-Instruct-v0.18 and
LLaMA-3.3-70B-Instruct9 to identify if the pre-
dicted answer conveys the same message as gold
while answering the question or not. See Table 18
for the prompt used. We report these metrics for the

7https://www.redbooks.ibm.com/
8mistralai/Mixtral-8x22B-Instruct-v0.1
9meta-llama/Llama-3.3-70B-Instruct

test split of base data. To quantify catastrophic for-
getting and model’s generic reasoning capabilities,
we use a diverse set of standard benchmarks, viz.,
MMLU (Hendrycks et al., 2021), GSM8k (Cobbe
et al., 2021), Hellaswag (Zellers et al., 2019), and,
TruthfulQA (Lin et al., 2022).

5.5 Baselines

We compare PA-RAG against the following base-
lines. The first three are inspired by Zhang et al.,
and the last one is an augmented version of RAFT.
1) Domain-specific fine-tuning (DSF): We train

the base LLM using base data to generate a
response to a question without accessing any re-
trieved passages. Since the QAs in the training
data cover most of the corpus content, the LLM
should be able to answer test queries, provided
it has injected the knowledge shown during fine-
tuning. See Table 17 for the prompt used.

2) DSF+RAG: We prompt the DSF model with the
top 5 retrieved passages along with the question.
The prompt used here is the same as in the other
baselines and PA-RAG (Table 16).

3) RAFT(p∗): method proposed in (Zhang et al.,
2024a), trained using base data. We treat corrup-
tion probability p in RAFT as a hyper-parameter
and select amongst {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
based on the validation loss.

4) CA-RAFT(p∗): Here we augment the training
data of RAFT(p) with RAFT(0) and RAFT(1).
As earlier, we treat corruption probability p as
a hyper-parameter and select the optimum p∗
based on validation loss.

6 Experimental Results

6.1 Comparison with baselines

Table 1 compares the performance of our method
with various baselines. PA-RAG performs the
best in both dimensions: knowledge injection (mea-
sured by recall and LLM Judge), as well as main-
taining the base model’s general capabilities, as
measured by the drop in average regression score.
We observe that the base LLM performs better than
most of the baselines when the retrieved passage
overlaps with the gold document (we call it "some
overlap" subset), demonstrating that the instruction-
tuned Mistral has decent reading comprehension
capabilities. However, when the retrieved passages
do not overlap with the gold document ("No over-
lap" subset), the model has to recognize this and
then answer from its memory. We observe that all

5942

https://www.redbooks.ibm.com/
https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Overall No Overlap Some Overlap Reg.
ScoreRecall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J

Book 1

Base+RAG 68.9 80.7 79.3 57.7 61.1 56.4 76.1 93.4 94.1 56.4
DSF 71.1 84.0 83.3 72.3 83.8 81.9 70.3 84.1 84.1 -5.7
DSF+RAG 68.1 80.9 82.7 68.0 71.9 79.5 68.2 86.8 84.8 -5.7
RAFT 70.6 82.8 84.0 67.0 76.0 78.4 73.0 87.2 87.6 -5.4
CA-RAFT 72.5 85.2 83.9 69.2 80.2 78.3 74.6 88.4 87.5 -6.4
PA-RAG 77.6 95.3 93.6 73.4 91.0 89.8 80.3 98.1 96.1 -1.2

Book 2

Base+RAG 69.5 67.8 67.5 67.1 58.6 58.9 71.0 73.2 72.5 56.4
DSF 68.2 70.3 71.5 68.1 69.4 70.7 68.2 70.7 71.9 -5.6
DSF+RAG 66.0 65.8 66.3 64.0 61.7 61.9 67.2 68.3 68.9 -5.6
RAFT 70.9 76.2 77.2 70.0 73.1 75.1 71.4 78.0 78.5 -4.8
CA-RAFT 71.4 78.2 78.0 70.2 77.0 74.8 72.2 78.9 79.9 -5.6
PA-RAG 76.4 86.2 85.7 75.9 83.7 82.8 76.6 87.7 87.4 -1.8

Table 1: Comparing PA-RAG with various baselines defined in Section 5.5. Overall: performance over the
entire test set; No overlap: the subset of test split where retriever fails; Some overlap: subset where the retriever
fetches at least one passage from the gold document; Reg. Score: average performance on various benchmarks
(GSM8k, Hellaswag, MMLU, and TruthfulQA). Mixtral-J and LLaMA-J stand for Mistral-8x22B-Instruct-v0.1
and Llama-3.3-70B-Instruct as judges, respectively. For the base model(Mistral-Instruct-v2), we show the average
regression score, and for others, we show the drop from the base model. For RAFT, the optimal corruption
probability, p∗ = 0.6 for both books; For CA-RAFT, p∗ = 0.2, 0.4, and for PA-RAG p∗ = 0.4, 0.6, for book1
and book2, respectively.

the baselines perform poorly in such a scenario.
On the other hand, PA-RAG beats all the baselines
in both cases, demonstrating that: 1. When the
retriever succeeds, PA-RAG can identify this and
leverage the retrieved information to respond. 2.
When the retriever fails, PA-RAG can ignore the
retrieved information and answer correctly from its
own parametric memory.

Next, we observe that CA-RAFT performs bet-
ter than RAFT, confirming the presence of condi-
tional memorization bias. Recall that such a bias
occurs due to the static assignment of each ques-
tion to retriever success or failure case during train-
ing. In CA-RAFT, when we augment RAFT(p)
with RAFT(0) and RAFT(1), we ensure that each
question is seen with and without correct passages
during training. This forces the model to learn that
irrespective of the question, it has to leverage the
information present in the context only when it is
correct and rely on its own parametric knowledge
when the retriever fails.

Next, we observe that using a replay buffer,
data identifier, and multiple answers for the same
question significantly improves the model’s perfor-
mance without impacting its generic capabilities.
We note that PA-RAG implicitly takes care of con-

ditional memorization bias. In Section 6.3, we
empirically validate that this is indeed the case.

6.2 Ablations
To understand the value addition by different com-
ponents of PA-RAG, we run ablations by removing
each of the components and retraining the model.
Specifically, we ablate on replay buffer, Data Identi-
fier (DI), and multiple answers (Multi Ans.). Table
2 shows the results. For each ablation, we show the
change in the metric w.r.t. PA-RAG.

We first observe that removing the replay buffer
has a significant impact on the average regression
score that measures the model’s generic capabilities
(a drop of 1.9 from PA-RAG and an overall drop of
3.1 from the base model). Interestingly, removing
the replay buffer negatively impacts the model’s
performance on the "some overlap" subset. This
demonstrates that the replay buffer helps in bolster-
ing the reading comprehension capabilities of the
model as well. On the other hand, performance on
the "no overlap" subset improves slightly, demon-
strating that the reduced burden of remembering
existing skills helps in memorizing and recalling
new information.

Next, we observe that removing the Data Iden-
tifier (DI) results in an overall drop in the model’s

5943

Overall No Overlap Some Overlap Reg. Scores
Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J

PA-RAG 77.6% 95.3% 93.6% 73.4% 91.0% 89.8% 80.3% 98.1% 96.1% 55.2
- DI 76.5% 94.6% 94.8% 72.3% 92.2% 90.3% 79.1% 96.1% 97.6% -0.1
- Replay Buffer 77.0% 96.0% 94.8% 73.6% 92.8% 91.6% 79.2% 98.1% 96.9% -1.9
- Multi Ans. 72.0% 84.9% 84.6% 65.8% 79.0% 78.9% 76.0% 88.8% 88.3% 0.6

Table 2: Ablation results on book 1. The first row has absolute performance metrics of PA-RAG whereas the
remaining rows show the change in the metric by removing the corresponding component from PA-RAG. DI:
Data Identifier; Multi Ans: multiple answers. Mixtral-J and LLaMA-J stand for Mistral-8x22B-Instruct-v0.1 and
Llama-3.3-70B-Instruct as judges, respectively.

Ch. Method Overall No
overlap

Some
overlap

1-3
Ch.w. bucket 74.1 71.3 76.0
PA-RAG 76.3 70.9 79.9

4-5
Ch.w. bucket 74.8 68.1 79.1
PA-RAG 78.4 75.0 80.5

Table 3: Comparing chapter-wise assignment into ‘re-
triever success’ and ‘retriever failure’ buckets during
training with PA-RAG that does random assignment.

performance. The drop is more prominent over "no
overlap" subset of the test data, demonstrating that
the DI helps in injecting and recalling the domain
knowledge when the model has to answer from its
own parametric memory.

Finally, we observe that using multiple para-
phrases of the same answer significantly impacts
the performance – recall drops by 5.65 pts from
77.0. As expected, dropping multiple answers has
no negative impact on the model’s generic capabil-
ities.

6.3 Analysis of conditional memorization bias

In this section, we empirically demonstrate: 1).
Conditional memorization bias exists, and it can
significantly hamper the learning process, and 2).
Answer multiplicity during training implicitly re-
sults in context augmentation when we randomly
assign each augmented QA pair to either of the two
buckets (‘retriever success’ or ‘retriever failure’).

To do so, we systematically assign each QA
pair to the ‘retriever success’ and ‘retriever failure’
buckets while training. In the first analysis, all QA
pairs from chapters 1 to 3 from book 1 are assigned
to the ‘retriever failure’ bucket, and all QA pairs
from chapters 4 and 5 are assigned to the ‘retriever
success’ bucket. Table 3 separately compares the
token level recall for the test queries from chapters
1-3 and chapters 4-5. We observe that when there

is no overlap between the retrieved passages and
the gold documents, the performance over ques-
tions from chapters 4-5 is significantly poor for the
chapter wise bucketing method. This happens be-
cause during training, all questions from chapters
4-5 had relevant context, and thus the model relied
only on the given context to answer questions from
chapters 4-5. Hence, when provided with irrelevant
passages during testing, the model fails to recall
that information and thus performs poorly. We do
not see any such pattern for questions from chap-
ters 1-3. Interestingly, when relevant information is
provided during testing for questions from chapters
1-3, the model fails to leverage that, demonstrating
that it learnt to always ignore the context when the
question is from chapters 1-3.

Recall that our PA-RAG finetunes LLM using
Daug. that has multiple QA pairs for the same ques-
tion. We show that in such a scenario, random
assignment of train QA pairs to the ‘retriever suc-
cess’ or ‘retriever failure’ bucket alleviates the need
for explicit context augmentation in PA-RAG. To
do so, we systematically assign all QA pairs with
the same question to the same bucket. For a ques-
tion, the ‘retriever failure’ bucket is chosen with
probability p = 0.4. In such a setup, we have
systematically removed the context augmentation
but have kept multiple answers. Table 4 compares
the token level recall of question-wise bucketing
with PA-RAG that has QA-wise bucketing. We
observe that the overall token level recall worsens
with question-wise bucketing. Notice that the gap
is wider (2.5 pt) when there is no overlap between
retrieved passages and the gold document for a
test question. This demonstrates that the model
struggles to either inject all the knowledge or recall
it when required. We attribute this to the lack of
context augmentation in question-wise bucketing.

5944

Overall No
overlap

Some
overlap

Q.w. bucket 76.2 71.1 79.5
PA-RAG 77.6 73.4 80.3

Table 4: Comparing question-wise assignment into ‘re-
triever success’ and ‘retriever failure’ buckets during
training with PA-RAG that randomly assigns QA pairs.

6.4 Effect of model size and model family

All the results presented above are obtained by
fine-tuning a Mistral-7B model. To evaluate the ro-
bustness of our method to variations in model size
and architecture, we train two additional models
from the LLaMA family, LLaMA-2-7B-Chat10 and
LLaMA-2-13B-Chat11. Table 8 reports our find-
ings. In both cases, we observe trends similar to
Mistral-7B, demonstrating that PA-RAG is robust
to varying architectures and model sizes.

6.5 Effect of ingesting already seen knowledge

We conduct additional experiments using a small
subset (50 documents and 50 queries) of the re-
cently proposed CLAPNQ dataset (Rosenthal et al.,
2025). It is derived from NQ dataset (Kwiatkowski
et al., 2019) and consists of a human-annotated
corpus of actual user queries and corresponding
answers from Wikipedia articles. Mistral may not
have seen the specific QA pairs during training,
but it likely encountered the underlying informa-
tion from Wikipedia pages in various paraphrased
forms. As a result, there is no new knowledge to
be ingested, and we do not expect our method to
yield significant performance gains over the base
model. See table 13 for the results.

Surprisingly, RAFT performs worse than the
base model, while PA-RAG’s performance re-
mains at par with the base model. We hypothesize
two causes for this: First, RAFT is trained using
only a single answer per question, which may re-
sult in overfitting to canonical answers and losing
its ability to recall knowledge already seen dur-
ing pretraining. In contrast, PA-RAG trains on
multiple answers and varied contexts, preserving
and leveraging this ability. Second, our syntheti-
cally generated QAs cover only 49% of a document
on average. However, it is plausible that the base
model would have seen the remaining 51% dur-

10meta-llama/Llama-2-7b-chat-hf
11meta-llama/Llama-2-13b-chat-hf

ing pretraining, giving it an edge. RAFT results
in overfitting to 49% of the information, whereas
PA-RAG generalises better by retaining the pre-
existing knowledge and skills due to the replay
buffer.

7 Conclusion

We introduced PA-RAG, a novel framework de-
signed to enhance the fine-tuning process for
domain-specific RAG tasks. By incorporating con-
text augmentation and answer multiplicity through
paraphrasing, our approach effectively mitigates
both conditional memorization bias and canonical
answer overfitting. It results in a more adaptable
LLM that is robust to retriever errors on domain-
specific questions. We use a novel replay buffer
technique along with a data identifier that mitigates
catastrophic forgetting. Our experimental results
demonstrate that PA-RAG outperforms baseline
methods, offering a promising direction for improv-
ing domain-specific knowledge injection in LLMs.

8 Limitations

While PA-RAG demonstrates promising results in
reducing catastrophic forgetting, it does not com-
pletely eliminate the issue. The retained parametric
knowledge may still degrade when new domain-
specific information is introduced due to domain-
specific fine-tuning. Additionally, the effectiveness
of PA-RAG depends on a strong LLM to generate
high-quality QA pairs from domain documents. If
the LLM struggles to generate accurate or contex-
tually rich pairs, the overall performance may be
affected. Moreover, the enhancements introduced
by PA-RAG such as paraphrased answer augmen-
tation and dynamic retrieval simulation, require
additional computational resources, which can be
a concern when injecting large-scale domain data.
Despite these limitations, PA-RAG shows consid-
erable promise, though further work is needed to
address these challenges and make it more robust
and widely applicable.

Acknowledgements

We thank anonymous reviewers for their insightful
comments and suggestions that helped in further
improving our paper. We also thank Meghanadh
Pulivarthi for reviewing our code independently
and Ojas Gramopadhye for helping out with many
teething issues during the experimental setup.

5945

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

References

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han
Lu, Nicholas Meade, and Siva Reddy. 2023. Eval-
uating correctness and faithfulness of instruction-
following models for question answering. ArXiv
preprint.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of
language models: Part 3.1, knowledge storage and
extraction. In Forty-first International Conference on
Machine Learning.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv preprint.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
(4).

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Sonam Gupta, Yatin Nandwani, Asaf Yehudai, Mayank
Mishra, Gaurav Pandey, Dinesh Raghu, and Sachin-
dra Joshi. 2024. Selective self-rehearsal: A fine-
tuning approach to improve generalization in large
language models. ArXiv preprint.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proc. of ICML, Pro-
ceedings of Machine Learning Research.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In Proc. of ICLR.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proc. of ICLR.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and
Jinsong Su. 2024. Mitigating catastrophic forget-
ting in large language models with self-synthesized
rehearsal. ArXiv preprint.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu
Choi, and Minjoon Seo. 2022. Towards continual
knowledge learning of language models. In Proc. of
ICLR.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Zhuoran Jin, Pengfei Cao, Yubo Chen, Kang Liu, Xiao-
jian Jiang, Jiexin Xu, Li Qiuxia, and Jun Zhao. 2024.
Tug-of-war between knowledge: Exploring and re-
solving knowledge conflicts in retrieval-augmented
language models. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proc. of EMNLP.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. In Proceedings of The
Eleventh International Conference on Learning Rep-
resentations.

5946

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,
and Jinwoo Shin. 2024. Sure: Summarizing re-
trievals using answer candidates for open-domain
qa of llms. In The Twelfth International Conference
on Learning Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proc. of ACL.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Richard James, Pedro Rodriguez, Ja-
cob Kahn, Gergely Szilvasy, Mike Lewis, et al. Ra-
dit: Retrieval-augmented dual instruction tuning. In
The Twelfth International Conference on Learning
Representations.

Yanming Liu, Xinyue Peng, Xuhong Zhang, Weihao
Liu, Jianwei Yin, Jiannan Cao, and Tianyu Du. 2024.
RA-ISF: Learning to answer and understand from
retrieval augmentation via iterative self-feedback. In
Findings of the Association for Computational Lin-
guistics ACL 2024.

Nick Mecklenburg, Yiyou Lin, Xiaoxiao Li, Daniel
Holstein, Leonardo Nunes, Sara Malvar, Bruno Silva,
Ranveer Chandra, Vijay Aski, Pavan Kumar Reddy
Yannam, et al. 2024. Injecting new knowledge into
large language models via supervised fine-tuning.
ArXiv preprint.

Jisoo Mok, Jaeyoung Do, Sungjin Lee, Tara Taghavi,
Seunghak Yu, and Sungroh Yoon. 2023. Large-scale
lifelong learning of in-context instructions and how
to tackle it. In Proc. of ACL.

Yatin Nandwani, Vineet Kumar, Dinesh Raghu, Sachin-
dra Joshi, and Luis Lastras. 2023. Pointwise mutual
information based metric and decoding strategy for
faithful generation in document grounded dialogs.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10335–10347, Singapore. Association for Computa-
tional Linguistics.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-
othy P. Lillicrap, and Gregory Wayne. 2019. Expe-
rience replay for continual learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada.

Sara Rosenthal, Avirup Sil, Radu Florian, and Salim
Roukos. 2025. Clapnq: C ohesive l ong-form a
nswers from p assages in natural questions for rag
systems. Transactions of the Association for Compu-
tational Linguistics, 13:53–72.

Devendra Singh Sachan, Siva Reddy, William L. Hamil-
ton, Chris Dyer, and Dani Yogatama. 2021. End-to-
end training of multi-document reader and retriever
for open-domain question answering. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proc. of EMNLP.

Spurthi Setty, Harsh Thakkar, Alyssa Lee, Eden Chung,
and Natan Vidra. 2024. Improving retrieval for rag
based question answering models on financial docu-
ments.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Richard James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2024. Replug: Retrieval-
augmented black-box language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers).

Shamane Siriwardhana, Rivindu Weerasekera, Elliott
Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. 2023. Improving the domain
adaptation of retrieval augmented generation (RAG)
models for open domain question answering. Trans-
actions of the Association for Computational Linguis-
tics.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo
Pareja, Kai Xu, David D Cox, and Akash Srivas-
tava. 2024. Lab: Large-scale alignment for chatbots.
ArXiv preprint.

Boxin Wang, Wei Ping, Lawrence McAfee, Peng
Xu, Bo Li, Mohammad Shoeybi, and Bryan Catan-
zaro. Instructretro: Instruction tuning post retrieval-
augmented pretraining. In Forty-first International
Conference on Machine Learning.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2023. C-pack:
Packaged resources to advance general chinese em-
bedding. arXiv preprint arXiv:2309.07597.

5947

https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2024.findings-acl.281
https://doi.org/10.18653/v1/2024.findings-acl.281
https://doi.org/10.18653/v1/2023.emnlp-main.639
https://doi.org/10.18653/v1/2023.emnlp-main.639
https://doi.org/10.18653/v1/2023.emnlp-main.639
https://doi.org/10.1162/tacl_a_00530
https://doi.org/10.1162/tacl_a_00530
https://doi.org/10.1162/tacl_a_00530

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
ArXiv preprint.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proc. of
ACL.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E. Gon-
zalez. 2024a. RAFT: Adapting language model to
domain specific RAG. In First Conference on Lan-
guage Modeling.

Xiao Zhang and Ji Wu. 2024. Dissecting learning and
forgetting in language model finetuning. In The
Twelfth International Conference on Learning Repre-
sentations.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan
Zhou, Yipeng Zhang, Haitao Mi, and Helen Meng.
2024b. Self-tuning: Instructing llms to effectively
acquire new knowledge through self-teaching. ArXiv
preprint.

Junhao Zheng, Shengjie Qiu, and Qianli Ma. 2024.
Learn or recall? revisiting incremental learning with
pre-trained language models. In Proc. of ACL.

5948

https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2024.acl-long.794
https://doi.org/10.18653/v1/2024.acl-long.794

A Experimental Details

A.1 Data statistics
See Table 5 for detailed statistics of all the training and test datasets used in our experiments.

#Chapters/
Pages #Trn #Val Test

(Raw)
Test

(Filtered)
%cover.

trn
Aug.

trn.
%cover.

aug.

Book1 5 / 76 4,122 515 515 425 84.4 18,986 93.6
Book2 6 / 158 27,056 3,382 3,132 2,269 82.5 126,213 92.4

Table 5: Data statistics. #Trn: number of training QA pairs in base data; #Val: number of validation QA pairs. #Test
(Raw): number of test QA pairs before filtering. #Test (Filtered): number of test QA pairs after filtering. %cover.
trn: average coverage of the chapters by the train QA pairs in the base data. It is computed as token level overlap
between the chapter and all QA pairs from that chapter. #Aug. trn.: number of training QA pairs in the augmented
train data. %cover. aug.: average coverage of the chapters by the train QA pairs in the augmented base data.

A.2 PA-RAG training details
We use Huggingface’s SFTTrainer12 to finetune the base model separately for book1 and book2 using
LoRA adapters with rank 16 and 32, respectively. We experimented with the learning rates of 1e − 5
and 1e− 4 and selected 1e− 4 based on validation set performance. We train for 400 and 1200 steps for
book1 and book2, respectively, with an effective batch size of 256 (16 gradient accumulation steps on 4
A100 80GB GPUs with 4 batch-size on each GPU) and select the best checkpoint based on validation
loss. Training time for the two models is less than 5 and 15 hours, respectively.

A.3 Effect of domain identifiers and replay buffer on catastrophic forgetting

GSM8k HellaSwag MMLU TQA TQA_Gen

Flexible Strict Acc Acc TQA_MC1
(acc)

TQA_MC2
(acc)

RougeL
(acc)

Base Model 41.9 41.6 66.0 59.0 52.4 66.8 54.1
DSF 35.7 35.4 63.9 57.6 39.0 56.1 48.7
DSF + DI 37.1 36.8 64.2 57.7 39.8 57.0 49.3
DSF + RB 42.8 42.3 64.8 59.2 47.7 65.2 55.2
DSF + DI + RB 41.7 41.2 64.8 58.7 48.1 65.7 54.5

Table 6: Regression Scores For Book 1: Performance of the training methods discussed in paper on various
benchmark tasks using Mistral-7B-v0.1. Flexible, Strict are the different criteria for assessing the exact match
metric. TQA refers to the TruthfulQA benchmark, where MC1 is the subset of multiple choice question with one
answer and MC2 is the subset of questions with more than one answer

Here, we demonstrate the effectiveness of both Domain Identifiers and Replay Buffer to mitigate
catastrophic forgetting. Tables 6 and 7 report the individual regression scores for each task. We use
github repo(Gao et al., 2024) to compute all the scores. For GSM8k, we take the average of Flexible and
Strict Match. For TruthfulQA (TQA), we take the average accuracy over MC1 and MC2. We consider
TruthfulQA_Gen separately from MC1 and MC2 and use RougeL to quantify the performance. Reported
average score is the average of these five scores.

B Experimental Analysis of LLaMA Models

Tables 8 and 9 show the results of , LLaMA-2-7B-Chat and , LLaMA-2-13B-Chat respectively on both
book 1 and book 2. We see in both the cases that PA-RAG outperforms all baselines, proving its
robustness to model architecture and size.

12docs/trl/sft_trainer

5949

https://huggingface.co/docs/trl/sft_trainer

GSM8k HellaSwag MMLU TQA TQA_Gen

Flexible Strict Acc Acc TQA_MC1
(acc)

TQA_MC2
(acc)

RougeL
(acc)

Base Model 41.9 41.6 66.0 59.0 52.4 66.8 54.1
DSF 37.6 37.3 62.8 55.6 37.6 55.1 51.7
DSF + DI 36.5 36.3 62.8 56.5 40.4 57.8 53.0
DSF + RB 41.0 40.7 64.1 58.9 48.3 64.5 54.0
DSF + DI + RB 40.7 40.4 64.2 58.4 48.7 65.0 53.2

Table 7: Regression Scores for Book 2: Performance of the training methods discussed in paper on various
benchmark tasks using Mistral-7B-v0.1. Flexible, Strict are the different criteria for assessing the exact match
metric. TQA refers to the TruthfulQA benchmark, where MC1 is the subset of multiple choice question with one
answer and MC2 is the subset of questions with more than one answer

Overall No Overlap Some Overlap Reg. Scores
Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J

Book 1

Base+RAG 69.7 73.2 70.9 60.7 53.3 48.8 75.5 86.0 84.9 41.9
DSF 66.0 72.9 74.2 67.0 70.7 73.5 65.3 74.4 74.7 -3.1
DSF+RAG 57.6 64.9 68.8 56.6 59.3 64.8 58.3 68.6 71.4 -3.1
RAFT 68.9 77.2 78.5 65.4 68.3 69.3 71.2 82.9 84.4 -1.9
CA-RAFT 71.8 79.5 78.8 67.1 70.7 70.7 74.8 85.3 84.0 -2.9
PA-RAG 73.7 89.6 88.7 69.7 83.8 83.8 76.3 93.4 91.8 -0.2

Book 2

Base+RAG 70.9 60.2 57.9 68.0 50.7 49.6 72.7 65.7 62.8 41.9
DSF 67.7 68.0 69.0 67.4 66.1 66.2 67.9 69.1 70.7 -2.9
DSF+RAG 55.3 54.3 55.9 55.1 49.6 52.8 55.4 57.0 57.7 -2.9
RAFT 69.0 70.5 71.1 68.0 66.5 68.2 69.6 72.8 72.8 -2.9
CA-RAFT 70.5 72.7 73.1 69.9 70.8 70.3 70.9 73.8 74.7 -4.2
PA-RAG 73.7 82.4 82.0 73.2 78.6 78.1 74.1 84.7 84.3 -0.7

Table 8: Comparison of , LLaMA-2-7B-Chat trained using PA-RAG against baselines mentioned in 5.5.

Overall No Overlap Some Overlap Reg. Scores
Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J

Book 1

Base+RAG 70.8 74.4 73.5 61.6 54.5 54.2 76.7 87.2 86.0 45.4
DSF 70.2 78.6 78.9 70.2 74.3 73.7 70.2 81.4 82.4 -1.9
DSF+RAG 58.3 65.2 71.4 56.6 58.1 66.5 59.3 69.8 74.6 -1.9
RAFT 70.3 79.3 79.4 66.0 69.5 71.7 73.1 85.7 84.4 -1.1
CA-RAFT 72.7 83.5 83.6 67.5 74.3 77.0 76.1 89.5 87.8 -1.9
PA-RAG 77.1 92.0 92.0 73.6 89.2 89.8 79.4 93.8 93.4 -1.8

Book 2

Base+RAG 72.9 63.1 62.4 70.2 53.9 53.5 74.4 68.4 67.6 45.4
DSF 67.5 68.8 69.9 67.7 68.7 69.7 67.4 68.9 70.1 -1.9
DSF+RAG 59.3 55.7 59.8 58.6 52.2 56.6 59.7 57.8 61.6 -1.9
RAFT 68.7 71.4 72.7 67.7 67.9 69.7 69.3 73.5 74.4 -1.5
CA-RAFT 68.8 72.6 73.3 67.4 68.9 68.9 69.6 74.8 75.9 -2.3
PA-RAG 74.7 83.6 83.3 74.0 81.0 80.4 75.1 85.2 85.0 -0.3

Table 9: Comparison of , LLaMA-2-13B-Chat trained using PA-RAG against baselines mentioned in 5.5.

5950

Overall No Overlap Some Overlap

Book 1

Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J
Base+RAG 56.1 73.0 69.7 30.1 50.0 44.0 76.1 93.4 87.6
DSF 69.2 83.4 81.0 66.4 79.9 77.5 70.3 84.1 83.4
DSF+RAG 66.1 80.7 79.5 56.0 71.6 67.9 68.2 86.8 87.6
RAFT 70.3 84.1 84.1 62.1 75.7 75.0 80.3 98.1 90.5
CA-RAFT 72.5 85.6 85.4 64.4 74.6 76.3 73.0 87.2 91.7
PA-RAG 76.7 88.0 87.3 71.3 81.7 81.7 74.6 88.4 91.3

Book 2

Base+RAG 56.3 61.8 60.5 46.3 47.2 46.4 62.6 70.9 69.4
DSF 53.9 62.5 60.1 51.4 58.6 56.4 55.5 64.9 62.5
DSF+RAG 57.5 66.1 65.7 51.2 57.9 57.3 61.3 71.2 70.9
RAFT 61.5 71.6 70.7 55.4 64.6 63.9 65.3 76.0 75.0
CA-RAFT 62.2 72.1 71.1 56.9 65.4 64.1 65.6 76.3 75.5
PA-RAG 68.5 80.3 79.2 64.8 75.2 73.9 70.8 83.4 82.6

Table 10: Results of PA-RAG and other baselines using Mistral-7B-v0.1 on the factoid dataset

Overall No Overlap Some Overlap

Book 1

Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J
Base+RAG 52.5 65.6 60.7 26.2 37.3 30.8 71.0 85.5 81.7
DSF 61.5 73.2 73.2 61.0 73.4 71.6 61.9 73.0 74.3
DSF+RAG 53.0 68.5 68.5 46.0 62.7 60.7 57.9 72.6 73.9
RAFT 65.0 79.8 78.8 55.4 70.4 70.4 71.8 86.3 84.6
CA-RAFT 69.6 82.7 81.0 65.0 76.9 75.1 72.8 86.7 85.1
PA-RAG 71.4 86.8 86.3 62.3 79.3 79.8 77.8 92.1 90.9

Book 2

Base+RAG 53.6 58.5 56.3 43.1 42.9 41.2 60.1 68.3 65.8
DSF 51.5 58.5 57.1 46.8 52.7 51.2 54.4 62.2 60.7
DSF+RAG 50.0 57.1 57.0 42.9 46.6 46.5 54.4 63.7 63.5
RAFT 58.3 67.1 65.4 51.0 57.4 55.2 62.9 73.3 71.8
CA-RAFT 59.2 68.2 66.6 54.0 62.1 59.7 62.5 72.0 70.9
PA-RAG 62.8 73.8 73.0 57.2 65.0 65.2 66.2 79.3 77.9

Table 11: Results of PA-RAG and other baselines using , LLaMA-2-7B-Chat on the factoid dataset

C Results on Factoid Dataset

As mentioned in 5.2, we curated a factoid dataset consisting of QA pairs containing only factoid answers,
i.e., short, factual questions. Tables 10, 11 & 12 show the comparisons between PA-RAG and various
other baselines, on all three models, Mistral-7B-v0.1 , LLaMA-2-7b-chat-hf and LLaMA-2-13b-chat-hf.

D Results on CLAPNQ Dataset

As mentioned in 6.5, here we show the result of PA-RAG along with Base+RAG and RAFT on the
CLAPNQ dataset which is a subset from the Natural Questions dataset. We see in table 13 that token level
recall for RAFT is lower than both the baseline and PA-RAG.

5951

Overall No Overlap Some Overlap

Book 1

Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J
Base+RAG 54.1 65.8 62.7 29.1 41.6 36.1 71.7 82.5 81.3
DSF 67.9 80.7 79.2 67.3 77.5 75.1 68.3 83.0 82.1
DSF+RAG 55.5 69.0 69.3 43.6 58.6 60.4 63.8 76.3 75.5
RAFT 66.9 81.0 81.7 63.7 73.4 75.1 69.1 86.3 86.3
CA-RAFT 70.3 82.7 82.2 67.8 78.7 78.1 72.0 85.5 85.1
PA-RAG 74.9 86.1 86.8 68.1 78.7 79.8 79.7 91.3 91.7

Book 2

Base+RAG 56.3 59.8 57.3 45.5 44.3 42.4 63.0 69.5 66.7
DSF 52.9 61.0 59.4 49.5 54.9 53.5 55.0 64.9 63.2
DSF+RAG 47.0 51.7 54.5 41.0 43.6 46.9 50.8 56.8 59.3
RAFT 58.7 67.9 66.7 52.0 58.2 57.1 63.0 74.0 72.8
CA-RAFT 59.1 68.2 66.8 52.7 59.2 57.8 63.1 73.9 72.5
PA-RAG 66.5 77.7 77.0 61.5 69.9 69.7 69.7 82.6 81.6

Table 12: Results of PA-RAG and other baselines using , LLaMA-2-13B-Chat on the factoid dataset

Overall No Overlap Some Overlap Reg. Scores
Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J Recall Mixtral-J LLaMA-J

Base+RAG 46.7 78.0 78.0 34.8 65.4 69.2 59.6 91.7 87.5 56.4
RAFT 35.7 74.0 78.0 25.1 69.2 73.1 47.1 79.2 83.3 -8.4
PA-RAG 47.7 78.0 78.0 40.4 80.8 80.8 55.6 75.0 75.0 -1.2

Table 13: Comparison of PA-RAG with base model and RAFT on the CLAPNQ dataset to see the effect of trying
to ingest already known knowledge.

E Prompts

This section enumerates all the prompts that are used in our experiments. We use LLaMA-3.3-70B-
Instruct13 as judge and employ Mixtral-8x22B-Instruct-v0.114 both for data generation and as a judge to
evaluate the fine-tuned model’s predicted answers against the ground truth.

E.1 Prompt for generating question-answer pairs

The prompt in Table 14 instructs the model to create question-answer pairs from a given document,
ensuring that the questions do not use co-referencing or pronouns and that they are fully contextualized.

<s> [INST] Create question answer pairs from the document given below within <document> tags. Title
of the document is given in the first line of the document. Do not use co-referencing and pronouns at
all in the questions. Do not refer to the document in the question like "according to the document ..." or
any similar paraphrasing. When needed, contextualize the question by using the topic that the question
is about. You can use the title of the document as well for contextualizing. There are several figures in
the document, while referring to the figure in any question, contextualize it by mentioning the title of
the passage it was present in. Put questions within <question> and </question> tags and answers within
<answer> and </answer> tags. Ensure that the question and answers cover the entire document. When
you are done generating QA pairs, generate </done> token. [/INST]

Table 14: Prompt for generating question-answer pairs from a document.

13https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
14https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1

5952

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1

E.2 Prompt for generating multiple answers

The prompt in Table 15 enables the generation of multiple distinct answers for a question based on the
provided document, encouraging diverse answer styles and formats.

<s> [INST] You are provided with a document within <document> and </document> tags. Followed by
the document, you are provided with a question within <question> and </question> tags. Using only the
information provided in the document, generate multiple correct, complete and comprehensive answers
for the given question, varying the style and format. Each of your answers should be within separate
<answer> and </answer> tags so that I can parse and extract them using a code. Each answer must be
complete, correct, comprehensive and only from the provided document.
Start by first generating <answer> token. Then generate one valid answer following any one style or
format. Then generate </answer> token. Then again generate <answer> token, followed by another
valid answer. Then generate </answer> token. Keep on repeating this till you generate as many correct
answers as possible. In the end, generate </done> token once you are done generating all the answers in
all possible styles and formats.
Some example styles and format that you must use:
1. List Answer: Answer can be in the form of a list.
2. Extractive answer: Answer with extracted sentences from the document.
3. Inferential answer: Answer that summarizes the information in the document but is not directly quoted.
4. Definitions: Answer that gives definitions related to the question.
5. Examples: Providing examples that can be valid responses to the question.
Ensure that the answers are not just paraphrases but differ in their content and are factually correct based
on the document. [/INST]

Table 15: Prompt for generating multiple answers to a question from a document.

E.3 Prompt used while fine-tuning

Table 16 shows the prompt used while fine-tuning PA-RAG using RAFT and PA-RAG. Table 17 shows
the prompt for the DSF baseline that trains the model to generate a response to a given question without
any retrieved passages in the context.

<s> [INST] You are an AI assistant who is provided with a conversation between a user and an agent.
User utterances start with "User:" and agent utterances start with "Agent:". Your task is to generate agent’s
response to the last user utterance. Enclosed within <passage> tags, you will find various excerpts. These
passages may or may not contain the answer. You may or may not use the information in them to generate
your response. Present your response within <response> and </response> tokens.
<passage_0> {document_0} </passage_0>
<passage_1> {document_1} </passage_1>
<passage_2> {document_2} </passage_2>
<passage_3> {document_3} </passage_3>
<passage_4> {document_4} </passage_4>
User: {data_identifier} {question}
[/INST]
Answer:

Table 16: Prompt used while fine-tuning the base model. {document_i} ∀i = 1 · · · 5 are replaced by the retrieved
passages; {question} is replaced by the user question. For both book1 and book2, {data_identifier} is replaced by
"This query is with reference to IBM Redbooks".

5953

<s> [INST] You are an AI assistant who is provided with a conversation between a user and an agent.
User utterances start with "User:" and agent utterances start with "Agent:". Your task is to generate agent’s
response to the last user utterance. Present your response within <response> and </response> tokens.
User: {data_identifier} {question}
[/INST]
Answer:

Table 17: Prompt used during Domain-specific fine-tuning (DSF) using only QA pairs without any passages;
{question} is replaced by the user question. For both book1 and book2, {data_identifier} is replaced by "This query
is with reference to IBM Redbooks".

E.4 Prompt for LLM-as-Judge evaluation

The prompt in Table 18 is used to evaluate the fine-tuned model’s predicted answers against the ground
truth answers, with Mixtral-8x22B-Instruct-v0.1 and LLaMA-3 70b serving as the evaluation judge.

<s> [INST] You are given a question, the corresponding ground-truth answer and two predictions from
two different AI models. Compare the "Ground-truth answer" with both the predictions to determine
which of them is better at answering the given question.
There should be no contradicting statements in a good prediction. A good prediction may contain extra
information. If the prediction states something as a possibility, treat it as a definitive answer.
A good prediction must contain all the important information presented in the ground truths, but doesn’t
have to fully match it word by word.
Consider an incorrect or incomplete prediction as bad.
To make your decision, first read the question and Ground-truth answer carefully. Then compare the two
predictions with the Ground-truth answer in the light of the question.
Start with a crisp explanation and reasoning for your evaluation within <explanation> and </explanation>
tags.
Then, within <score> and </score> tokens, generate your evaluation according to the followin rubric:
If "Prediction 1" is preferred over "Prediction 2", then generate "1 better".
If "Prediction 2" is preferred over "Prediction 1", then generate "2 better".
If both "Prediction 1" and "Prediction 2" are equally good, then generate "both good".
If both "Prediction 1" and "prediction 2" are equally bad, then generate "both bad".
Question: {question}
Ground-truth answer: {gold_response}
Prediction 1: {predicted_response1}
Prediction 2: {predicted_response2} [/INST]

Table 18: Prompts for Mixtral-8x22B-Instruct-v0.1-based evaluation. Here, {question}, {ground-truth-answer}, and
{predicted-answer} are placeholders that are replaced by the actual question, ground truth answer, and predicted
answer, respectively.

E.5 Prompt for filtering test dataset

The prompt in Table 19 is used to filter dependent questions from the test set of the synthetic datasets. We
used Mixtral-8x22B-Instruct-v0.1 to do the filtering.

F Example Predictions

F.1 Example where the Retriever Fails

As seen in Table 20, PA-RAG is able to correctly recall the information necessary for answering the
question even when the retrieved passages did not contain any relevant information. The RAFT method is

5954

<s> [INST] You are given a question, and your task is to determine whether the question is complete and
makes sense in isolation. A complete question should not contain text like "based on given example" or
"mentioned in the chapter" because only question text is there to answer it, not the chapter or examples.
Based on this, assign a final score of **Complete** or **Incomplete** for the question. Only assign
Incomplete if the question uses phrases like these: "based on given example" or "mentioned in the
chapter".
Scoring:
- **Complete:** The question contains all necessary details.
- **Incomplete:** The question uses phrases like "based on given example", "mentioned in the chapter",
"mentioned in the passage", "given in the document", or something similar.
Provide your feedback in the following format:
“‘
Feedback:::
Evaluation: (Provide your rationale for the scoring in detail)
Scoring: (State "Complete" or "Incomplete")
“‘
Important: You must provide values for both ’Evaluation:’ and ’Scoring:’ in your answer.
Now, here is the question:
Question: {question}
Provide your feedback.
Feedback:::
Evaluation: [/INST]

Table 19: Prompt for filtering test data using Mixtral-8x22B-Instruct-v0.1. Here, {question} is a placeholder that
will be replaced by the actual question.

expected to perform poorly conditional memorization bias, where as DSF is unable to recall the relevant
information.

F.2 Example where the Retriever is Successful
Refer to Table 21 for responses to a question where the retrieved passages contained the gold answer.
We see that although all the methods are able to extract some relevant information from the provided
context, they are unable to extract all the necessary information. However, PA-RAG captures all necessary
information from the retrieved passages demonstrating its effectiveness in utilizing the retrieved data for
accurate responses.

5955

Question How can extended data tables be retrieved in IBM Storage Virtualize?

Gold Answer Many ls commands in IBM Storage Virtualize can leverage the -gui parameter to
retrieve an extended data table similar to the output displayed in the IBM Storage
Virtualize GUI. This provides more detailed information for all objects of the requested
type and can be helpful for automation and scripting.

Base Model IBM Storage Virtualize does not directly support the concept of extended data tables
as described in the provided passages, which involve creating external tables in Presto
using data in IBM Storage Scale directories. Instead, IBM Storage Virtualize is
a software-defined storage solution that provides virtualization of physical storage
resources, enabling the consolidation and management of multiple storage systems
into a single, unified storage pool.

To retrieve data from IBM Storage Virtualize, you can use various access methods
such as block I/O (iSCSI), file I/O (POSIX compliant), or object storage (S3). The
data can then be accessed using appropriate tools or applications based on the chosen
access method.

If you need to work with data in a distributed file system like HDFS or use Spark
for data processing, you may consider using IBM Watson for Data and AI solutions,
such as IBM Watson Studio or IBM Watson Machine Learning, which can interact
with IBM Storage Scale and provide the required functionality for managing and
processing extended data tables.

DSF+RAG Extended data tables can be retrieved in IBM Storage Virtualize by using the lsdeltas
command with the -extended parameter. This command returns more detailed infor-
mation about the changed objects, including the old and new values of the object
attributes.

RAFT Extended data tables can be retrieved in IBM Storage Virtualize by using the
-gui parameter with the lsdrive command. This will retrieve more detailed informa-

tion about each drive, including its capacity, status, and type.

PA-RAG To retrieve extended data tables in IBM Storage Virtualize, you can use the
-gui parameter in many ls commands . This parameter allows you to retrieve

an extended data table similar to the output displayed in the IBM Storage Vir-
tualize GUI. For example, the lsdrive command with the -gui parameter will
provide more detailed information about each drive, such as UID, block_size,
vendor_id, product_id, FRU_part_number, FRU_identity, RPM, firmware_level,
FPGA_level, quorum_id, port_1_status, port_2_status, was_spare, interface_speed,
write_endurance_used, transport_protocol, compressed, physical_capacity, physi-
cal_used_capacity, effective_used_capacity, date_of_manufacture, protection_enabled,
write_endurance_usage_rate, replacement_date, anomaly_detection_active, and so on.

Table 20: An example where the retriever fails and the models have to recall domain-specific information from their
parametric knowledge.

5956

Question What are the options for configuring password policy in IBM Storage Virtualize?

Gold Answer The following attributes can be defined in password policy in IBM Storage Virtu-
alize: - Minimum password length : 6-64 characters . - Minimum number of: -

Uppercase characters : 0-3 . - Lowercase characters : 0-3 . - Special characters :

0-3 . - Digits : 0-3 . - History check (0-10) before password reuse. -

Password expiry : 0-365 days . - Password expiry warning (0-30 days) which is

displayed on CLI at login only. - Password age (1-365 days) which is the minimum
age before a password can change.

Base Model The password policy in IBM Storage Virtualize can be configured through the GUI
or CLI. Here are the steps to configure it through the GUI: 1. Select ‘Settings‘ >
‘Security‘. 2. Select the ‘Password Policies‘ tab. 3. Set the required password
parameters in the ‘Password creation‘ and ‘Password expiration and account lock-
out‘ sections. 4. Click ‘Save‘. Alternatively, you can use the ‘chsecurity‘ com-
mand in the CLI to change the password policy. For example, to set the mini-
mum password length to 8 characters, you can use the following command: “‘bash
IBM_FlashSystem:ITSO:securityadmin > chsecurity -minpasswordlength 8“‘. The
‘chsecurity‘ command also allows you to configure other password policy attributes
such as minimum number of uppercase , lowercase , special characters , digits ,

history check , password expiry , and password expiry warning Note that if
you disable password reset and you do not have local or remote Security Administrator
users except superuser, there is no way to restore management access if superuser
password is lost.

DSF+RAG The options for configuring password policy in IBM Storage Virtualize include
setting password expiration , password expiry warning , password history check ,

minimum password length , minimum number of uppercase characters ,

lowercase characters , special characters , digits , and minimum password age.

RAFT The options for configuring password policy in IBM Stor-
age Virtualize include setting minimum password length ,

minimum number of uppercase characters , lowercase characters ,

special characters , and digits, history check before password reuse ,

password expiry , password expiry warning , and password age .

PA-RAG The options for configuring password policy in IBM Storage Virtualize are as follows:
- Minimum password length : 6-64 characters . - Minimum number of: -

Uppercase characters : 0-3 . - Lowercase characters : 0-3 . - Special character s:

0-3 . - Digits : 0-3 . - History check (0-10) before password reuse. -

Password expiry : 0-365 days. - Password expiry warning (0-30 days) which

is displayed on CLI at login only. - Password age (1-365 days) which is the mini-
mum age before a password can change.
These attributes can be set in the GUI by selecting Settings > Security, then selecting
the Password Policies tab. The chsecurity command can also be used in the CLI to set
the password policy.

Table 21: An example where the retriever is successful and the models must leverage the retrieved information
efficiently to answer the questions.

5957

G Licenses

Tool Used License

LlamaIndex The MIT License Copyright (c) Jerry Liu
LM Evaluation Harness MIT License, Copyright (c) 2020 EleutherAI
HuggingFace Apache License, Version 2.0, January 2004

Table 22: Licenses of the different tools we used for running our experiments.

5958

