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Abstract

Despite the massive advancements in large lan-
guage models (LLMs), they still suffer from
producing plausible but incorrect responses.
To improve the reliability of LLMs, recent re-
search has focused on uncertainty quantifica-
tion to predict whether a response is correct
or not. However, most uncertainty quantifica-
tion methods have been evaluated on single-
labeled questions, which removes data un-
certainty—the irreducible randomness often
present in user queries, which can arise from
factors like multiple possible answers. This
limitation may cause uncertainty quantification
results to be unreliable in practical settings.
In this paper, we investigate previous uncer-
tainty quantification methods under the pres-
ence of data uncertainty. Our contributions are
two-fold: 1) proposing a new Multi-Answer
Question Answering dataset, MAQA, consisting
of world knowledge, mathematical reasoning,
and commonsense reasoning tasks to evaluate
uncertainty quantification regarding data un-
certainty, and 2) assessing 5 uncertainty quan-
tification methods of diverse white- and black-
box LLMs. Our findings show that previous
methods relatively struggle compared to single-
answer settings, though this varies depending
on the task. Moreover, we observe that entropy-
and consistency-based methods effectively es-
timate model uncertainty, even in the presence
of data uncertainty.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in performing diverse tasks,
such as solving math problems, acquiring world
knowledge, and summarizing long texts (Achiam
et al., 2023). However, these language models still
suffer from hallucination (Ji et al., 2023), where
LLMs generate false responses that appear plausi-
ble, leading users to rely on incorrect information.

*This work was done during the internships at NAVER AI
Lab.

Q. Which country has the longest coastline? (A: Canada)

Without Data Uncertainty (e.g. Single-Answer)

Certain ✅
Canada

🤖
Russia
USA
…

0.93
0.03
0.02

USA

🤖
Canada
Russia
…

0.30
0.27
0.26 Uncertain ✅ 

Q. Which are renewable energy sources? (A: Solar, Wind, etc.)

With Data Uncertainty (e.g. Multi-Answer) 

Certain ✅
Solar

🤖
Wind
…
Fossil Fuel

0.93
0.03

0.02

Solar

🤖
Wind
…

0.48
0.45 Is it Uncertain?  🤔

Fossil Fuel 0.02

Model Confidence Threshold

Figure 1: Evaluation settings with and without data
uncertainty. When asking for a single label set, the prob-
ability distribution can be used to estimate the model
uncertainty. On the other hand, when evaluating a ques-
tion that has multiple answers, it may become difficult to
distinguish between model uncertainty and data uncer-
tainty, due to the existence of multiple possible answers.

To address this issue, recent studies (Xiong et al.,
2023; Kuhn et al., 2022) have focused on the uncer-
tainty quantification of LLMs, allowing the users to
accept or reject responses based on the uncertainty
value to improve reliability. These methods utilize
either the internal states of white-box LLMs (Kada-
vath et al., 2022; Kuhn et al., 2022; Yadkori et al.,
2024) or response-based approaches (Xiong et al.,
2023; Manakul et al., 2023) with black-box LLMs
to measure the uncertainty of responses.

However, previous research mostly investigates
uncertainty quantification under single-label ques-
tion and answering (QA) scenarios without con-
sidering the different sources of uncertainty: data
uncertainty (aleatoric uncertainty) and model un-
certainty (epistemic uncertainty) (Hou et al., 2023;
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Ahdritz et al., 2024). Model uncertainty pertains to
the insufficient capability of LLMs, indicating the
model’s level of knowledge about a given query. In
contrast, data uncertainty arises from the inherent
randomness in the inputs, such as when multiple
answers are possible for a given query, which is
the primary source of data uncertainty in our pa-
per. While model uncertainty affects the reliabil-
ity of LLMs, data uncertainty remains outside the
model’s control. User queries mostly introduce
data uncertainty (Ahdritz et al., 2024), making it
difficult for the model to accurately estimate its
own uncertainty, as shown in Figure 1.

Recently, several works (Ahdritz et al., 2024;
Hou et al., 2023) have attempted to estimate the
uncertainty regarding data uncertainty. These
approaches have primarily utilized ambiguous
datasets (Min et al., 2020), where each question
has multiple possible answers due to its ambigu-
ity. To address data uncertainty, these methods em-
ploy input clarification to eliminate other answer
choices, enabling them to estimate only the model
uncertainty. However, data uncertainty can still
arise even when the user’s intention is unambigu-
ous, such as the question “What are the renewable
energy sources?”. Unlike the ambiguous query,
the question inherently requires multiple answers
and cannot be resolved through input clarification,
forcing the model to consider data uncertainty.

In this paper, we aim to enhance the current
understanding of uncertainty quantification, par-
ticularly in practical scenarios where data uncer-
tainty plays a role. To achieve this, we have two
main contributions. Firstly, we create a new bench-
mark, called Multi-Answer Question and Answer-
ing (MAQA), to introduce data uncertainty by con-
structing questions that clearly require a finite num-
ber of multiple answers. Secondly, we explore
uncertainty quantification methods regarding data
uncertainty using the MAQA across various models,
tasks, and quantification methods, encompassing
both white-box and black-box LLMs.

Through the investigation using the MAQA, we
found several key observations across tasks and
method types. For white-box methods, data uncer-
tainty does influence the logit distribution, caus-
ing previous uncertainty quantification methods
to struggle. However, logit-based methods, espe-
cially entropy, still provide useful insights about
model uncertainty, as logits tend to concentrate on a
few tokens regardless of the uncertainty (▷ Obs. 1).
Also, for reasoning tasks, LLMs become overconfi-

Dataset Reasoning Tasks Answer Type Ambiguity

Natural Questions (2019) ✗ single & multi ✓
AmbigQA (2020) ✗ single & multi ✓

MAQA (Ours) ✓ multi ✗

Table 1: Comparison of MAQA with previous datasets
that involve some multiple-answer questions.

dent after providing an initial answer, complicating
uncertainty quantification (▷ Obs. 2). For black-
box methods, although LLMs tend to overstate
their confidence verbally, the consistency of their
responses reliably predicts correctness across mod-
els and tasks, even regarding data uncertainty (▷
Obs. 3). Our findings suggest that uncertainty quan-
tification methods could benefit from being devel-
oped to decompose two types of uncertainty in a
task-specific manner, with a promising approach
being to leverage the LLMs’ probabilistic outputs.

2 Related Work

2.1 Multi-Answer QA Datasets

There are several question-answering datasets that
include questions requiring multiple answers rather
than a single one. These datasets either contain
a small portion of multi-answer questions (Joshi
et al., 2017; Kwiatkowski et al., 2019) or include
ambiguous question-answer pairs (Min et al., 2020).
However, most of these datasets are often confined
to a single domain of world knowledge (Joshi et al.,
2017; Kwiatkowski et al., 2019), with noisy labels
not clarifying all the answer choices. Moreover, in
cases where multiple answers arise from ambigu-
ity (Min et al., 2020; Zhang et al., 2021), the ques-
tion itself mostly requires a single-answer. There-
fore, the model selects one interpretation and tries
to answer with a single answer, as shown in Sec-
tion 5.3. Amouyal et al. (2022) propose a similar
type of dataset but differ in closed-book solvabil-
ity and question ambiguity. Our new benchmark
includes more than 2,000 questions requiring multi-
ple answers across tasks such as mathematical rea-
soning, commonsense reasoning, and world knowl-
edge, forcing LLMs to consider data uncertainty
clearly. The comparison of MAQA with previous
datasets is shown in Table 1.

2.2 Uncertainty Quantification for LLMs

Recently, uncertainty quantification (Xiong et al.,
2023; Plaut et al., 2024; Kadavath et al., 2022; Slo-
bodkin et al., 2023; Cole et al., 2023; Lin et al.,
2022; Manakul et al., 2023; Kuhn et al., 2022; Yad-
kori et al., 2024) has emerged as a significant prob-
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lem in increasing the reliability of LLMs. There
are two types of approaches for uncertainty quan-
tification: white- and black-box based. White-box
approaches such as max softmax logit or entropy
are based on the assumption that one can access
the logits (Kadavath et al., 2022; Kuhn et al., 2022;
Plaut et al., 2024; Yadkori et al., 2024) or hidden
states of LLMs (Slobodkin et al., 2023; Chuang
et al., 2023). In contrast, black-box based methods
assume that one cannot utilize internal values, and
thus use the responses of LLMs to estimate the con-
fidence, either through verbalized confidence (Lin
et al., 2022), or response-consistency (Xiong et al.,
2023; Manakul et al., 2023; Ulmer et al., 2024).
Based on these works, we employ both white-box
and black-box approaches to analyze uncertainty
quantification under data uncertainty.

3 Multi-Answer Dataset

In this section, we present our newly proposed
benchmark, MAQA, which consists of 2,042 question-
answer pairs, each requiring more than one answer.
Our dataset includes non-ambiguous questions with
clear and finite label sets and covers three distinct
tasks: world knowledge, mathematical reasoning,
and commonsense reasoning.

3.1 Data Collection

We generate the MAQA by modifying existing bench-
marks using GPT-4-turbo to be multi-answer
datasets as well as by creating additional question-
answer sets authored by us. We then perform
quality checks and validate the labels ourselves.
The final dataset consists of 642 world knowledge
question-answer pairs, 400 mathematical reasoning
pairs, and 1,000 commonsense pairs, totaling 2,042
closed-book, multi-answer QA pairs. Detailed in-
formation on the creation of the MAQA, including
the used prompts is provided in Appendix A.

World Knowledge For the world knowledge
evaluation set of the MAQA, we modify the Natu-
ral Questions (Kwiatkowski et al., 2019) into a
multi-answer format using the LLM in four stages:
filtering question-answer pairs by the number of an-
swers, rewriting pairs with the LLM, quality check-
ing, and human review. First, we filter the QA pairs
to ensure that each question requires more than one
answer. Then, we instruct the LLM to either dis-
card pairs that ask for a single answer or refine the
questions to request multiple answers. In the third
stage, we conduct quality checks with the LLM to

remove ambiguous questions. Finally, the authors
manually review the remaining questions, ensuring
the factual accuracy and validity of each answer.

Additionally, to test the behavior of LLMs with
extreme cases involving a large number of answers,
we generate 50 additional questions that require
more than 10 answers (i.e. Huge Label Sets (HLS)).
The final data consists of 592 questions generated
using the NQ dataset (World Knowledge NQ) and
50 questions that require a large number of answers
(World Knowledge HLS), totaling 642 questions.

Mathematical Reasoning For the mathematical
reasoning dataset, we generate 200 new questions
that require multi-answer sets, covering diverse
subjects such as algebra, geometry, graphs, lin-
ear algebra, and others. Additionally, we modify
150 GSM8k (Cobbe et al., 2021) questions and 50
MMLU high school questions (Hendrycks et al.,
2020) into a multi-answer format using LLMs,
through the same process as creating the dataset
for the world knowledge task. Finally, the authors
manually annotate all the answers for these 400
questions, each requiring multiple answers.

Commonsense Reasoning For commonsense
reasoning, we modify the StrategyQA (Geva et al.,
2021) dataset, which consists of true-false ques-
tions that require a reasoning process to answer the
question. We reformulate a multi-answer question
by presenting multiple true-false questions from
Strategy QA and requiring the selection of ques-
tions with true answers (i.e., true statements). The
answers are formatted as a list of question indexes.
Specifically, from the StrategyQA dataset, we ran-
domly select questions within the range of 5-15,
including at least 2 true and 2 false answers, to
form a single question-answers pair. The process
is repeated to create a total of 1000 pairs.

3.2 Data Analysis
Table 2 presents examples and statistics of the MAQA.
As observed, the generated questions require multi-
ple answers without ambiguity. The questions can
ask for people, nations, numbers, or the indexes of
true-false questions.

The resulting dataset has a diverse range of an-
swers, indicated by the average number of answers
for each task and the standard deviation, which
varies significantly. This makes the dataset highly
suitable for analyzing data uncertainty. The final
dataset comprises 2,042 QA pairs, covering three
different tasks with a varying number of answers
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Task Examples # Samples Avg. # Ans.

World Knowledge NQ Question : Who were the judges on “Britain’s Got Talent” during its first season
in 2007? 592 4.51±2.56

(Natural Questions) Answer : [ “Simon Cowell”, “Piers Morgan”, “Amanda Holden” ]

World Knowledge HLS Question : What are the members of the Commonwealth of Nations? 50 32.67±37.47(Huge Label Sets) Answer : [ “Antigua and Barbuda”, “Australia”, . . . , “Zambia” ]

Mathematical Reasoning

Question : Tom plants 10 trees a year. Every year he also chops down 2 trees.
He starts with 50 trees. After x years, 30% of the trees die. Determine the
possible values of x that would leave Tom with fewer than 100 trees but more
than 80 trees.

400 6.86±6.29

Answer : [9, 10, 11]

Commonsense Reasoning

Question : What are the indexes of the questions that have true answers? (a)
Will Noah’s Ark hypothetically sail through flooded Lincoln Tunnel? (b) Can
someone with dermatitis be a hand model? . . . (g) Could you drive a Rowe 550
to the 2008 Summer Olympics?

1000 4.04±1.47

Answer : [ “d”, “e”, “g” ]

Table 2: Examples and statistics of our proposed MAQA.

for each question, with each question not ambigu-
ous and labeled with all possible finite answers. A
more detailed category distribution of the data is
provided in Appendix B.

4 Experimental Settings

In this section, we present experimental setups,
including datasets, uncertainty quantification meth-
ods, evaluation metrics, and models that we use
to explore the uncertainty quantification methods
regarding data uncertainty.

4.1 Datasets

Multi-Answer Datasets For the evaluation under
data uncertainty, we assess uncertainty quantifica-
tion methods using our newly proposed MAQA. As
detailed in Section 3, this dataset consists of three
different tasks: world knowledge, mathematical
reasoning, and commonsense reasoning.

Single-Answer Datasets We also evaluate single
QA sets with similar tasks to compare the effects
of the multi-answer setting. For world knowledge,
we extract questions with a single answer from
the NQ-open (Kwiatkowski et al., 2019) dataset,
totaling 1,288 pairs. For mathematical reasoning,
we use the GSM8k dataset with 1,319 pairs. For
commonsense reasoning, we use the StrategyQA
dataset (Geva et al., 2021), that consists of 2,290
QA pairs. Moreover, we also evaluate the uncer-
tainty quantification methods on the mixture of
single- and multi-answer datasets, denoted as all.

4.2 Uncertainty Quantification

In the following section, we will introduce the
white- and black-box based uncertainty quantifi-
cation methods used in our analysis.

4.2.1 White-box LLMs
Multiple methods have been proposed to measure
uncertainty using the internal states of white-box
LLMs (Slobodkin et al., 2023; Kuhn et al., 2022;
Plaut et al., 2024). Here, we explore the most
common approaches based on the probability dis-
tribution of the next token.

Max Softmax Logit Max softmax logit has been
widely used for measuring the confidence or uncer-
tainty of deep neural networks (Fomicheva et al.,
2020). For the LLMs, let z = (z1, z2, . . . , zn) be
the logit outputs by the model before normalization,
where n is the vocab size. Using the maximum
logit value zmax = max zj , the maximum soft-
max logit can be expressed as σ(zmax) =

ezmax∑n
j=1 e

zj ,

where σ is a softmax operation. High values of
σ(zmax) suggest the model is confident in its predic-
tion, while lower values indicate high uncertainty.
In our experiments, we use the logit values of the
first token of each answer (Slobodkin et al., 2023),
both for single- and multi- answer datasets.

Entropy Entropy is also a popular measure for
estimating the uncertainty (Fomicheva et al., 2020),
which quantifies the randomness in the predicted
probability distribution over the possible tokens.
For a probability distribution p = (p1, p2, . . . , pn)
of the next token, entropy H(p) is defined as
H(p) = −∑n

i=1 pi log pi, where pi = σ(zi) is
the probability of the i-th token. High entropy val-
ues indicate that the model’s predictions are spread
out over many tokens, suggesting greater uncer-
tainty. For the entropy, we use the logit values of
the first token of each answer.

Margin Softmax logit margin can also be used
to measure the model’s uncertainty (Schuster et al.,
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2022), which is defined as the difference between
the largest and the second largest softmax logits.
Let pmax1 = max(p1, p2, . . . , pn) be the largest
logit and pmax2 = max({pi} \ {pmax1}) be the sec-
ond largest logit. The margin M is then given
by M = pmax1 − pmax2. A larger margin between
the top tokens indicates lower uncertainty, while a
smaller margin suggests higher uncertainty. Like-
wise the other methods, we use the logit values of
the first token of each answer.

4.2.2 Black-box LLMs
As some proprietary models do not support logit in-
formation, uncertainty quantification using only the
responses of LLMs has been well studied (Manakul
et al., 2023; Lin et al., 2022). In our experiments,
we investigate the two most popular approaches.

Verbalized Confidence The concept of verbal-
ized confidence (Lin et al., 2022) involves the
model explicitly stating its confidence level in its
generated response. Specifically, we ask the model
to provide a single answer or multiple answers (see
Appendix C), and then provide a confidence score,
which is a numerical value in the range of 0-100.

Response Consistency Response consistency as-
sesses uncertainty by generating multiple responses
to the same prompt and analyzing the differences
among them. A high degree of consistency in the re-
sponses suggests greater confidence, while diverse
responses indicate higher uncertainty. Specifically,
let {r1, r2, . . . , rm} be the set of responses gener-
ated by the LLMs for a given question, where m is
the number of responses. The response consistency
can be formulated as follows:

consistency =
2

m(m− 1)

m−1∑

i=1

m∑

j=i+1

sim(ri, rj),

where sim is the function that calculates the simi-
larity between two texts. We utilize an exact match
for the similarity function.

4.3 Evaluation Metrics

Metrics for Correctness To calculate the cor-
rectness of a single answer, we use the accuracy
with the exact match between the predicted answer
and the ground-truth answer. For the correctness
of multiple answers, we adopt three metrics. The
main metric, as we aim to assess the reliability of
each answer in the response, is precision. This met-
ric calculates the proportion of correctly predicted

answers out of all predicted answers, using an ex-
act match. We also define recall and F1 score in
our setting, with details in Appendix C , and results
using these additional metrics in Appendix E.

Metrics for Uncertainty Quantification High
performance in uncertainty quantification indicates
that the uncertainty measure can effectively predict
whether the model’s predictions are likely to be
correct or incorrect. Note that our evaluation does
not focus on calibration, which aims to predict the
exact correctness score using the confidence value.
We primarily use the Area Under the Receiver Op-
erating Characteristic Curve (AUROC) for failure
prediction, which provides a comprehensive evalu-
ation of the model’s ability to distinguish between
correct and incorrect predictions. Results using
Area under the Precision-Recall Curve (AUPRC)
are presented in Appendix E.

4.4 Evaluation Models and Inference

We use Llama3-(8b, 72b) (AI@Meta, 2024),
Qwen1.5-(7b, 72b) (Bai et al., 2023), Mistral-v02-
7b (Jiang et al., 2023), and Mixtral-8x7b (Jiang
et al., 2024) for white-box LLMs. For black-
box LLMs, we use GPT-3.5-turbo-0125 (Ouyang
et al., 2022) and GPT-4-turbo-0125 (Achiam et al.,
2023), along with some white-box LLMs used as
black-box LLMs. For the evaluation of white-box
LLMs, we use greedy sampling with a tempera-
ture value of 1.0. For the black-box LLMs, we
sample 5 responses for each question, using a tem-
perature value of 0.99 and top-p sampling with p
equal to 0.9. We use vanilla prompting for world
knowledge questions, where the instruction in the
prompt guides the model to answer in a specific
format. On the other hand, we utilize the Chain
of Thought (CoT) prompting (Wei et al., 2022) for
reasoning tasks, as vanilla prompting significantly
degrades performance. More implementation de-
tails are presented in Appendix C.

5 Experimental Results

5.1 Results of White-box based UQ methods

Table 3 shows the AUROC scores of different
uncertainty quantification methods for white-box
LLMs across various tasks and models. Based on
the results, we have two key observations.

Observation 1 Data uncertainty does impact logit
distributions in the world knowledge task; how-
ever, the logits—particularly those represented as
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Model Method World Knowledge Mathematical Reasoning Commonsense Reasoning Overall

single multi all single multi all single multi all single multi all

Qwen1.5-7b
Max Logit 73.27 64.68 67.65 74.36 64.06 70.70 59.88 54.05 57.78 69.17 60.93 65.38

Entropy 71.75 64.35 66.54 74.15 64.47 70.72 60.13 54.10 58.02 68.68 60.97 65.09
Margin 71.78 62.38 65.50 74.23 64.07 70.59 59.64 54.03 57.57 68.55 60.16 64.55

Mistral-v02-7b
Max Logit 54.55 52.47 52.63 66.17 60.62 62.34 36.97 42.88 40.12 52.56 51.99 51.70

Entropy 69.03 68.69 68.24 65.72 61.49 62.46 63.58 54.28 56.86 66.11 61.49 62.52
Margin 55.06 52.85 53.11 66.30 60.60 62.46 37.85 43.15 40.58 53.07 52.20 52.05

Llama3-8b
Max Logit 81.73 69.64 74.09 64.85 59.21 62.48 58.22 48.72 49.97 68.27 59.19 62.18

Entropy 81.03 70.05 74.24 64.83 59.15 62.54 59.23 48.71 50.20 68.36 59.30 62.33
Margin 79.51 67.46 71.61 64.73 59.01 62.44 57.54 48.73 49.80 67.26 58.40 61.28

Mixtral-8x7b
Max Logit 48.82 53.70 52.93 56.12 55.86 55.40 41.67 42.90 40.53 48.87 50.82 49.62

Entropy 72.82 69.40 71.76 55.83 60.39 56.70 58.58 55.48 59.39 62.41 61.76 62.62
Margin 49.14 53.98 53.17 56.13 58.54 56.62 42.62 42.38 41.24 49.29 51.63 50.34

Llama3-70b
Max Logit 78.27 66.00 69.78 61.45 56.19 57.94 51.42 55.53 53.55 63.71 59.24 60.43

Entropy 79.47 66.45 70.46 60.87 55.43 57.28 51.64 55.46 53.61 63.99 59.11 60.45
Margin 77.38 65.38 69.09 60.71 55.40 57.19 51.16 55.45 53.40 63.08 58.74 59.89

Qwen1.5-72b
Max Logit 74.72 69.67 71.11 57.25 66.95 62.26 74.58 56.36 62.96 68.85 64.33 65.44

Entropy 75.13 70.10 71.52 57.15 66.91 62.28 74.63 56.46 63.06 68.97 64.49 65.62
Margin 73.53 68.60 70.01 57.06 66.79 62.22 74.52 56.30 62.88 68.37 63.90 65.04

Average
Max Logit 68.56 62.69 64.70 63.37 60.48 61.85 53.79 50.08 50.82 61.91 57.75 59.12

Entropy 74.87 68.17 70.46 63.09 61.31 62.00 61.30 54.08 56.86 66.42 61.19 63.10
Margin 67.73 61.78 63.75 63.19 60.73 61.92 53.89 50.01 50.91 61.60 57.50 58.86

Table 3: AUROC scores obtained using white-box based uncertainty quantification models on different datasets and
models. A high score indicates high quantification performance. “single” refers to the results on a QA set with only
single answers, “multi” refers to the MAQA, and “all” refers to the combination of these two datasets, which includes
both single and multi-answer sets. Bold denotes the row-wise maximum AUROC for each task.

entropy—remain useful for predicting the factuality
of responses due to internal prioritization.

In the world knowledge task, we observe that the
AUROC scores for both the multi and all decline
across almost all models and methods compared to
the single-answer dataset evaluation. This decrease
can be attributed to the data uncertainty, as previous
methods do not account for the composition of
data and model uncertainties separately. Figure 2a
supports this claim, showing that the maximum
logit values of the correct answers decrease as the
number of ground-truth answers increases.

However, despite the impact of data uncertainty,
logit values, especially entropy, remain useful for
predicting the correctness of answers, as evidenced
by the average AUROC higher than 60. The ef-
fectiveness of entropy indicates that LLMs may
prioritize a few tokens when generating each an-
swer regardless of the number of answers.

As depicted in Figure 2b, the sum of the top 5
softmax logits of the correct answers remains con-
sistent regardless of the number of ground-truth
answers. Moreover, when LLMs are asked to pro-
vide multiple answers in an order that seems more
probable and common, the AUROC scores increase,
especially when the true answer space is larger, as
detailed in Appendix E. This supports the claim that
LLMs have their own internal priority of answers,
making the model less affected by data uncertainty.

Observation 2 In reasoning tasks, LLMs tend to
be overconfident even under data uncertainty, espe-
cially after providing the first answer, complicating
the performance of uncertainty quantification.

In the mathematical and commonsense reason-
ing tasks, where LLMs need to output answers after
multiple intermediate reasoning steps, we observe
that the performance of uncertainty quantification
based on logit values also decreases. This trend
becomes more pronounced in the multi-answer
case, as performance mostly decreases compared
to single-answer cases.

This can be explained by the LLMs’ tendency to
be overconfident on reasoning tasks. As illustrated
in Figure 2c, the average maximum softmax logit
for each answer token tends to be high, exceed-
ing 0.9 in some models (e.g., Llama3, Qwen1.5).
This value increases as the LLMs continue gen-
erating subsequent answers. This suggests that
LLMs become progressively more overconfident af-
ter producing the initial answer with the reasoning
process, complicating uncertainty quantification,
especially in scenarios involving multiple answers.

To support this observation, we compare the re-
sults of CoT with vanilla prompting as depicted
in Figure 3a. The results show that CoT prompts
significantly increase the logit values, indicating
that the reasoning process further boosts the LLMs’
confidence.
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Figure 2: (a) Maximum probability of correct answer by the number of answers when evaluated on world knowledge
part of MAQA. The number of answers clearly affects the probability value, indicating the data uncertainty. (b) Sum
of top 5 probabilities of correct answer per each number of answers, which seems constant across answer count.
The results are averaged over three 7-8B models. (c) Max probabilities of correct answers per each answer position
when evaluated on reasoning tasks. LLMs tend to be overconfident, especially after the first answer.

Model Method World Knowledge Mathematical Reasoning Commonsense Reasoning Overall

single multi all single multi all single multi all single multi all

Qwen1.5-7b Verbalize 56.36 54.10 53.67 69.43 58.71 65.40 58.16 56.74 52.49 61.32 56.52 57.19
Consistency 81.56 62.11 81.07 94.58 91.35 94.23 60.78 61.17 60.78 78.97 71.54 78.69

Mistral-v02-7b Verbalize 65.82 66.21 68.57 57.78 64.82 58.90 62.17 47.39 51.84 61.92 59.47 59.77
Consistency 75.83 85.02 79.53 94.55 94.57 94.63 60.20 68.26 63.75 76.86 82.62 79.30

Llama3-8b Verbalize 71.68 64.24 69.54 61.02 60.51 62.39 59.56 50.10 59.15 64.09 58.28 63.69
Consistency 87.51 85.20 86.89 92.59 91.24 92.87 65.74 62.97 55.27 78.62 77.14 75.01

GPT-3.5 Verbalize 62.68 60.33 64.98 58.34 61.30 50.29 55.59 59.46 58.04 58.87 60.36 57.77
Consistency 80.93 84.31 81.53 87.90 87.07 88.04 63.61 64.94 63.00 77.48 78.77 77.52

GPT-4 Verbalize 69.28 64.76 68.42 72.23 72.45 68.58 55.80 50.11 52.13 65.77 62.44 63.04
Consistency 78.92 77.44 71.30 93.85 92.15 88.04 72.14 71.54 60.65 81.64 80.38 73.33

Average Verbalize 65.16 61.93 65.04 63.76 63.56 61.11 58.26 52.76 54.73 62.39 59.42 60.29
Consistency 80.95 78.82 80.06 92.69 91.28 91.56 64.49 65.78 60.69 78.71 78.09 76.77

Table 4: The AUROC scores obtained using black-box based uncertainty quantification models on different datasets
and models. A high score indicates high uncertainty quantification performance. “single” refers to the results on a
QA set with only single answers, “multi” refers to the MAQA, and “all” refers to the mixture of these two datasets,
which includes both single and multi-answer sets. Bold denotes the row-wise maximum AUROC for each task.

5.2 Results of Black-box based UQ methods

Table 4 shows the results of uncertainty quantifica-
tion methods for black-box LLMs, resulting in a
key observation.

Observation 3 LLMs tend to be overconfident
when verbally providing a confidence score regard-
less of the data uncertainty, making uncertainty
quantification difficult. On the other hand, utilizing
response consistency works extremely well on all
tasks, regardless of single- or multi-answers.

As shown in Table 4, verbalized confidence
struggles, as evidenced by the relatively low AU-
ROC scores, especially on the commonsense rea-
soning task. The trend is similar for both single-
answer and multi-answer datasets, as verbalized
confidence is usually less affected by data uncer-
tainty since the confidence is measured by LLMs
themselves. The low AUROC score of verbalized

confidence can be explained by overconfidence. As
shown in Figure 3b, for both single-answer and
multi-answer cases, the confidence is mostly dis-
tributed above 80 on a scale of 0-100. This over-
confidence of LLMs aligns with the findings of
Xiong et al. (2023) for single-answer cases and is
also evident for multi-answer cases.

In contrast, consistency-based methods have sig-
nificantly high AUROC scores on all tasks, espe-
cially on multi-answer datasets. This implies that
even with multiple possible answers, the consis-
tency is strongly correlated with model correctness.
Figure 3c demonstrates that consistency scores are
less influenced by the number of true labels. Addi-
tionally, because the multi-answer approach mea-
sures finer-grained similarity based on the overlap
rate across all answers, it proves highly effective
for multi-answer datasets.
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Figure 3: (a) Maximum probability of correct answer per answer position by different prompting methods. CoT
prompting clearly increases the confidence score. (b) Histogram of verbalized confidence values when evaluated on
MAQA. LLMs tend to be overconfident, as confidence score is concentrated in the range of 80-100. (c) Response
consistency per answer count. Score is averaged over all datasets. For all three results, Llama-3-8b is utilized.

5.3 Discussions

Unifying Observations from White- and Black-
Box Approaches Overall, the presence of data
uncertainty in multi-answer sets leads to a decrease
in traditional uncertainty measures, except for re-
sponse consistency. Furthermore, the trend varies
by task, particularly in cases where reasoning is cru-
cial. These findings suggest that new quantification
methods are needed to decompose model uncer-
tainty without requiring input clarification, and the
approach to uncertainty quantification should be
tailored to the specific task at hand.

Among the evaluated uncertainty quantifica-
tion methods, response consistency performs best,
demonstrating the value of using multiple re-
sponses per prompt, despite the relatively high
computational cost of sampling. Among white-
box methods, entropy, which incorporates logit
values for all vocabulary terms, either matches or
outperforms other methods. This highlights the
effectiveness of leveraging the model’s probabilis-
tic outputs, whether through entropy or response
variability. Therefore, a promising approach could
involve a method that takes into account this prob-
abilistic nature, while further improvements are
needed to reduce the high cost of utilizing it.

Performance by Model Types As shown in Ta-
ble 3 and 4, Llama3 and Qwen1.5 exhibit similar
trends, with relatively strong quantification perfor-
mance for both white- and black-box methods. In
contrast, the Mistral models tend to struggle, par-
ticularly with white-box methods at a temperature
value of 1.0. This may be attributed to differences
in logit scales that impact the overall scale of soft-
max values. These issues could potentially be miti-
gated by using more logits, such as entropy.

Method
World Knowledge AmbigQA

single multi all single multi all

Max Logit 81.73 69.64 74.09 79.23 77.22 77.60

Entropy 81.03 70.05 74.24 78.55 76.21 77.73

Margin 79.51 67.46 71.61 77.16 74.92 75.38

Verbalize 71.68 64.24 69.54 62.34 64.71 63.16

Consistency 87.51 85.20 86.89 82.26 82.45 81.82

Table 5: The AUROC scores of different uncertainty
quantification meathods using the Llama-3-8b model on
two MAQA world knowledge and AmbigQA.

Comparison with Performance on AmbigQA
To test whether the ambiguity of questions affects
the performance of uncertainty quantification, we
evaluate the uncertainty quantification performance
using the test set from AmbigQA (Min et al., 2020).
For the AmbigQA dataset, we utilize the portion
annotated with “singleQA” for the single set, “mul-
tipleQA” for the multi set, and a mixture of both for
the all set. Since the dataset mostly involves world
knowledge, we compare the results with those from
the world knowledge portion of MAQA.

As shown in Table 5, the decrease in AUROC
scores when transitioning from single-answer to
multi-answer or all-answer settings is significantly
greater for the MAQA world knowledge dataset
than for the AmbigQA dataset. This suggests that
previous quantification methods are less impacted
by data uncertainty arising from ambiguous ques-
tions, as most questions themselves inherently re-
quire a single answer. These differences arise from
the model’s behavior in response to different ques-
tion types, as further explained in the qualitative
comparison of model behaviors in Appendix D.
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6 Conclusion

In this paper, we contribute to the uncertainty quan-
tification of LLMs in two aspects: First, we pro-
pose a new benchmark, MAQA, which consists of
question-answer pairs where each question requires
more than two unambiguous answers, ensuring data
uncertainty at the question level. Second, we inves-
tigate uncertainty quantification for both white- and
black-box LLMs regarding data uncertainty, find-
ing key observations. We hope our work serves as
a foundation for future research on realistic settings
for uncertainty quantification.

Limitations

We created a novel multi-answer dataset, MAQA, that
covers three different tasks. Although we con-
ducted a quality check, there may remain some
ambiguous questions or unclear answers. Addition-
ally, likewise many other QA datasets, our data
contains answers that can take multiple forms. De-
spite our efforts to include all possible answers,
there may be some noise in the dataset.

Moreover, to ensure that the answer space is
precise and unambiguous, our dataset primarily
consists of short-form answers. For long-form an-
swers, it is difficult to analyze the influence of data
uncertainty, and the correctness of such answers
can be vague, making the assessment of uncertainty
quantification performance challenging. We may
extend this analysis to long-form answers in future
research.

In this paper, we evaluate multiple uncertainty
quantification methods for both white-box and
black-box LLMs in the presence of data uncertainty.
Although we have several observations, none of the
methods are free of hyperparameters, such as tem-
perature, sampling methods, etc. We believe that
future work should investigate these settings further
and establish guidelines for their use.

Ethics Statement

Hallucination, where large language models
(LLMs) generate responses that appear plausible
but are factually incorrect, poses a significant eth-
ical issue. This phenomenon can lead to the dis-
semination of misinformation, which may cause
harm by misleading users, decreasing the reliabil-
ity of LLMs, and potentially influencing decision-
making processes in critical areas such as health-
care, legal, and financial services. Therefore, ad-

dressing hallucinations in LLMs is crucial to ensure
that AI systems operate within ethical boundaries.

Uncertainty quantification methods offer a
promising approach to addressing the ethical chal-
lenges posed by hallucinations in LLMs. By esti-
mating the confidence levels of the models’ outputs,
these methods can help identify and flag poten-
tially unreliable or erroneous information. This
transparency enables users to better assess the trust-
worthiness of AI-generated content and make in-
formed decisions. Moreover, incorporating uncer-
tainty quantification can guide developers in refin-
ing LLMs to reduce hallucinations, thereby enhanc-
ing the ethical deployment of AI technologies.
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Appendix

A Dataset Construction

In this section, we will explain in detail how
each task of MAQA was created. We utilize the
Natural Questions (Kwiatkowski et al., 2019),
which is under the Apache 2.0 license, as well as
GSM8k (Cobbe et al., 2021), MMLU (Hendrycks
et al., 2020), and StrategyQA (Geva et al., 2021),
which are under the MIT license. Our dataset MAQA
will be distributed under the Apache 2.0 license.

A.1 World Knowledge

World Knowledge NQ As explained in Sec-
tion 3, we modify the question-answering pairs so
that each question requires multiple answers from
the Natural Questions (Kwiatkowski et al., 2019)
dataset using the OpenAI GPT-4-turbo model. We
adopt the following prompt template to modify the
dataset (Note: some parts are skipped and marked
as . . . , as the original prompt is too long).

Prompt Template for Modifying Natural Question
Dataset

You are given a question and answer pair. For each
question, there are multiple answers. You have two options:
1) reject a pair, or 2) refine a pair.

Reject a pair with the answer “reject" if the ques-
tion and answer pair contains the following features:

- The user’s intention in asking the question is to re-
ceive a single answer. Therefore, if multiple answers imply
the same meaning, or if there are multiple answers because
the question is "ambiguous," you should reject this pair.

Example 1: All the answers convey the same mean-
ing. ...

- If there are conflicts between the answers.
Example: The question below has conflicting answers. ...

- If the question is time-dependent, meaning its an-
swer can change in the future.
...
Otherwise, refine the question and answer pair and return
them. Instructions for refining are as follows:

- Properly format the question to make it a com-
plete sentence. Modify the question so that it clearly
requires multiple different answers.
Example:
...

- Remove all incorrect answers ...
...
- Remove duplicated responses ("the queen" and "The
Queen" have the same meaning).
...

**Now, here is the question-answer pair:**

Question :
{question}
Answer :
{answer}

After that, we conduct an additional quality
check through the LLM, assessing the validity and
ambiguity of the answers, the quality of the ques-
tions, and their time-dependency, using the instruc-
tion below (Zheng et al., 2024):

Prompt Template for Quality Check

Please act as an impartial judge and assess the qual-
ity of given question-and-answer pairs. The ideal question
should naturally encourage a range of answers, rather than
bundling multiple distinct questions together. Use the
following criteria to determine if a pair scores highly:

1. (3 points) The question genuinely requires multi-
ple, semantically unique responses, and should not consist
of two sub-questions (e.g. What are A and B?). Also, the
questions should reflect those that real users actually want
to ask.
2. (2 points) All provided answers must be semantically
distinct from one another, and one answer should not
encompass another (e.g. low score cases: [ 1980, 06.1980
], [ Vancouver, Vancouver Canada ]).
3.(3 points) Each answer in the list must appropriately
address the question, without any missing answers or
wrong answers. Missing or wrong answers would result in
a low score.
4. (1 points) The question is unambiguous, clear and
interpretable in only one way.
5. (1 points) The question should not be time-dependent
(answers change over time).

Begin your evaluation by providing a short and brief
explanation that consist of two to three sentences. Be as
objective as possible. After providing your explanation,
please rate the response on a scale of 1 to 10 by strictly
following this format: "[[rating]]", for example: "Rating:
[[5]]".

**Now, here is the question-answer pair:**

Question :
{question}
Answer :
{answer}

Based on the scores, we remove the answers that
have a score lower than 5. Finally, three authors
manually check the factuality, the ambiguity of the
question, whether the question consists of multiple
sub-questions, and also label the question type for
each question. We adopted consensus validation,
where all all three authors must arrive at the same
answer set and agree on the question’s difficulty
level. The final data totals 592 pairs, covering
diverse subjects and question types.

5872



World Knowledge Huge Additionally, we gen-
erate 50 questions that require large sets of answers.
Specifically, we look for Wikipedia lists that have
more than 10 items for specific subjects. Using
these lists as sources, we generate new questions
that have all the list components as answers. The
final data consists of 50 question-answer pairs that
cover diverse domains.

A.2 Mathematical Reasoning

Manual Generation For 200 math questions that
require multiple answers, covering algebra, graphs,
linear algebra, arithmetic, and other topics, we
mostly set the range, such as finding the x that
satisfies the condition. Each condition is related
to different domains, such as arithmetic, numbers,
graphs, etc.

Modify dataset using LLMs We also modify
some GSM8k (Cobbe et al., 2021) and MMLU
questions (Hendrycks et al., 2020) into multi-
answer format.

You’re given a question that involves mathematical
reasoning from the previous dataset. Your task is to
refine this question and create a new question-answer
pair. The refined question should be designed to require
multiple answers, hence the answer should be presented
as a list containing at least three elements. Each refined
question must demand a deeper level of thought and
involve complex problem-solving skills that are not trivial.
Here are illustrative examples across various areas of
mathematics for guidance:

1. **Example 1**
- **Original Question:** "Jane’s quiz scores were 98, 97,
92, 85, and 93. What was her mean score?"
- **Refined Question:** "Jane’s quiz scores were 98, 97,
92, 85, and 93. List the integer numbers that are higher
than her mean score, but lower than 100."
- **Answer:** [94, 95, 96, 97, 98, 99]
2. **Example 2**
- **Original Question:** "What is the second number in
the row of Pascal’s triangle that has 43 numbers?"
- **Refined Question:** "List the unique numbers in the
row of Pascal’s triangle that has 6 numbers."
- **Answer:** [1, 5, 10]
3. **Example 3**
- **Original Question:** "How many arithmetic sequences
of consecutive odd integers sum to 240?"
- **Refined Question:** "List the smallest number in of
arithmetic sequences that contain consecutive odd integers
that sum to 240."
- **Answer:** [9, 15, 23, 35, 57, 119]

If the given question seems too challenging to refine, you
may generate a new, simpler question that necessitates
more than four answers.

Now here is the question that you need to refine

Task # Category #

World Knowledge NQ 592

History 103
Sports 72
Geography 58
Movie 57
Science 56
Literature 41
Entertainment 34
Politics 27
Music 26
Art 10
Others (Religion, Education, etc) 108

World Knowledge HLS 50

Science 17
Geography 14
History 9
Entertainment 6
Culture 5

Mathematical Reasoning 400

Arithmetic and Number Theory 215
Algebra 118
Statistics 26
Combinatorics and Probability 17
Graph Theory 14
Geometry 10

Table 6: Detailed statistics of each dataset, including
the number of question-answer pairs for each category
of each task. We omit the statistics of commonsense
reasoning as it is originated from the single Strate-
gyQA (Geva et al., 2021) dataset.

A.3 Commonsense Reasoning

For commonsense reasoning, we modify the Strat-
egyQA (Geva et al., 2021) dataset, which includes
multiple true-false questions that require a reason-
ing process to answer. To create a question that
needs multiple answers from each true-false ques-
tion, we design a task that asks for the indexes of all
questions with true answers (true statements), given
multiple questions with answers that are either true
or false. Specifically, from the StrategyQA dataset,
we randomly select questions ranging from 5-15 so
as not to exceed the maximum input prompt length,
ensuring at least 2 true and 2 false statements in
each selection. This process is repeated until we
generate 1000 question-answer pairs.

B Dataset Distribution

Table 6 shows the detailed statistics of our proposed
MAQA benchmark. As observed, our benchmark cov-
ers a wide range of categories for world knowledge,
including history, sports, geography, and others.
Additionally, we cover multiple problems for math-
ematical reasoning, involving arithmetic, algebra,
graph theory, and others, making MAQA a strong
benchmark that can test a wide range of domains
and tasks.
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C Implementation Details

Inference For white-box LLM experiments, we
use greedy sampling with a temperature value of
1.0 to get the normalized probability logit. For all
models, we use float 16 precision to save memory.
All our experiments are conducted on 4 NVIDIA
A100 GPUs. For the black-box LLMs, we utilize
white-box LLMs such as Llama3-8b, Qwen1.5-7b,
and Mistral-v02, and additionally OpenAI GPT-3.5
and GPT-4 using the OpenAI API. We adopt top-p
sampling with p equal to 0.9.

For the prompting method, we use vanilla
prompting for world knowledge, as shown below:

Instruction : Given a question that has multiple answers,
answer the question following the instructions below:

1. Keep your response as brief as possible without
any explanation.
2. Mark each answer with a number followed by a period.
3. Separate each answer with a number, a comma and a
space.

The format of the answer should be given as fol-
lows:

1.YourAnswer1, 2.YourAnswer2, 3.YourAnswer3

Now, please answer this question.

Input :

Question:

{ question }

For reasoning tasks, we employ CoT (Wei et al.,
2022) prompting. To make LLMs do CoT reason-
ings, we add the instruction of “explain step-by-
step” as follows:

Instruction : Given a question that has multiple answers,
answer the question following the instructions below:

1. Explain step-by-step, and then provide your an-
swer.
2. When providing an answer, use the format ||ANSWERS||
where ANSWERS are the answers to the given question.
3. Separate each answer of ANSWERS with a comma and
a space.

The format of the final answer should be given as
follows:

||ANSWER1, ANSWER2, ANSWER3||

Now, please answer this question.

Input :

Question:

{question}

Answer :

Moreover, to calculate the verbalize confidence,
we follow the instruction format of Xiong et al.
(2023), displayed below:

Instruction : Given a question that has multiple answers,
answer the question and then provide the confidence in this
answer, which indicates how likely you think your answer
is true, following the instructions below:

1. Keep your response as brief as possible without
any explanation, and then provide your answer and
confidence.
2. When providing an answer, use the format ||ANSWERS||
where ANSWERS are the answers to the given question.
3. Separate each answer of ANSWERS with a comma and
a space.
4. The confidence should be a numerical number in the
range of 0-100.

Use the following format for the final answer and
confidence:

||ANSWER1, ANSWER2, ANSWER3||, CONFI-
DENCE

Now, please answer this question.

Question:

The generated answers are then parsed and com-
pared to the ground truth for evaluation.

Metric We primarily utilize accuracy to assess
correctness for single-answer and precision for
multi-answer settings. For further analysis, we also
define recall, which is the proportion of correctly
predicted answers out of all ground-truth answers.
Additionally, we use the F1 score, which is the
harmonic mean of precision and recall, to provide
a balanced measure of the model’s accuracy in pre-
dicting multiple answers.

For the experiments with white-box LLMs, we
calculate the logit-based uncertainty quantification
for each answer, and the total AUROC score is
calculated using all the answers. This results in the
number of predictions and true labels being much
higher than the number of question-answer pairs.

For the evaluation of black-box methods, since it
is impossible to calculate the uncertainty for each
answer, we use a threshold for the precision score.
Specifically, we set the prediction label as 1 if the
precision score is higher than 0.5, as setting the
threshold at 1.0 results in too low accuracy, making
the evaluation of uncertainty quantification diffi-
cult.
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Source Question LLM Answers # answers

AmbigQA Which religion has the highest population in africa? [ “Christians", “Christiany" ] 2

MAQA Who were the original members of the Traveling Wilburys? [ “Tom Petty", “Jeff Lynne", “Roy Orbison", “George Harrison", “Bob Dylan" ] 5

Table 7: Examples of answers from Llama3-8b with different question types: one with ambiguity and one without.
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Figure 4: AUROC scores by precision for MAQA using uncertainty quantification methods: (a) Max Softmax Logit,
(b) Entropy, (c) Margin.
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Figure 5: AUROC scores by precision for MAQA using
uncertainty quantification methods: Verbalized Confi-
dence and Response Consistency.

D Analysis of Model Behaviors by
Question Types

The multi-answer nature can arise from questions
that clearly require multiple answers, as in the case
of MAQA, or from ambiguity, even when the question
requires a single answer. Here, we qualitatively
analyze how the models behave differently by the
existence of ambiguity in questions.

As shown in Table 7, when LLMs respond to
an ambiguous question, even when notified that it
is a multi-answer question, they tend to interpret
it in one way and provide similar answers. In the
example question, “Which religion has the highest
population in Africa?” the multi-answer responses
stem from variations in the sources that calculate
population and the year of those sources, leading
models to confidently provide two answers with the
same meaning. On the other hand, questions from
MAQA clearly request multiple answers, prompting
the models to generate multiple distinct responses,
one by one.

Method
World Knowledge NQ World Knowledge HLS

w/o priority w priority w/o priority w priority

Max Logit 72.96 73.75 59.34 69.74

Entropy 73.02 74.89 60.07 78.61

Margin 70.09 72.46 57.51 77.61

Table 8: The AUROC scores for different promptings us-
ing the Llama-3-8b model on world knowledge datasets.
Priority prompting includes the additional instruction
of providing answers in a way that makes the model’s
responses seem more probable and common.

E Additional Results

Internal Priority Table 8 presents the results of
white-box uncertainty quantification methods using
various prompt strategies. In “priority prompting,”
we include an additional instruction that directs the
model to provide responses in the order it deems
most probable and common.

As observed, using priority prompting signif-
icantly increases the quantification scores. This
suggests that LLMs have internal priorities, and by
encouraging them to utilize these, we can improve
quantification performance. It also implies that the
reduced quantification performance for MAQA com-
pared to the single-answer dataset is due to the data
uncertainty introduced by the multi-answer nature.

Recall and F1 score To test the uncertainty quan-
tification methods for predicting aggregated scores,
we also calculate the AUROC score using recall
and F1 score as true labels on the world knowledge
set with the Llama3-8b model. Table 9 shows the
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Method
World Knowledge NQ World Knowledge HLS

precision recall f1 score precision recall f1 score

Max Logit 72.85 65.47 69.74 59.34 65.69 67.81

Entropy 72.99 65.96 70.37 60.07 66.86 68.00

Margin 70.09 64.64 73.89 57.51 65.50 68.19

Verbalize 67.13 62.05 64.27 80.56 69.49 68.75

Consistency 88.51 84.51 88.92 80.79 90.06 91.24

Table 9: The AUROC scores by different correctness
metrics using the Llama-3-8b model on two different
world knowledge datasets.

results of uncertainty quantification methods for
predicting recall and F1 score. As we can see, re-
gardless of the size of true labels, high AUROC
scores for both recall and F1 scores are observed,
with outstanding performance in response consis-
tency. This demonstrates that uncertainty quan-
tification methods are also related to LLMs’ will-
ingness to answer all the questions, even without
explicit prompting to respond to all.

Model Capability and Uncertainty Quantifica-
tion Figure 4 shows the correlation between the
precision score, defined as the correctness of the
LLMs, and the uncertainty quantification using
white-box-based methods. The results demonstrate
that there is little correlation with the world knowl-
edge dataset, a higher correlation with the common-
sense dataset, and no significant correlation with
the mathematical reasoning dataset. This indicates
that higher capability does not always correlate
with the performance of uncertainty quantification,
as it is more dependent on the model and task.

This trend differs for black-box-based methods.
As shown in Figure 5, there is a high correlation
between the precision and AUROC for verbalized
confidence. This implies that as LLMs become
more capable and possess better knowledge, they
also become more capable of accurately predicting
their confidence. Additionally, response consis-
tency shows the opposite trend of verbalized confi-
dence, as the performance of using response con-
sistency shows a slightly negative correlation with
the precision score. This may be due to the fact
that as accuracy increases, response consistency
becomes less effective at distinguishing between
correct and incorrect answers, reducing its utility
as a confidence measure.

Different Metric Table 10 presents the AUPRC
scores for the uncertainty quantification methods
for white-box LLMs, with the positive label set

as 1. For the AUPRC score, the scores mostly
decrease for multi-answer sets in all tasks, show-
ing the impact of data uncertainty induced by the
multi-answer nature. Still, entropy serves as the
best uncertainty quantification method among the
white-box methods. Additionally, these trends dif-
fer significantly by model, but the AUPRC scores
generally increase as the model size grows, as ev-
idenced by the performance on Mixtral, Llama3-
70b, and Qwen1.5-72b.

Table 11 demonstrates the AUPRC scores for
black-box methods. Unlike white-box-based meth-
ods, the scores mostly decrease for multi-answer
sets in reasoning tasks, while the scores somewhat
increase for world knowledge tasks. This implies
that black-box-based methods are less affected by
the presence of data uncertainty. Nonetheless, con-
sistency serves as a strong baseline, especially for
the multi-answer datasets, showing the efficacy
of estimating model uncertainty under data uncer-
tainty.

F Qualitative Results

Figure 6 shows examples of token probability dis-
tributions when LLMs are asked a multi-answer
question. As the question has multiple answers,
including “Italy,” “Spain,” and “Greece,” we can
clearly see that the token probability is distributed
among the answers, which could be interpreted
as data uncertainty. However, the probability of
the fifth token remains below 0.001, implying an
internal priority within the LLMs.

Table 12 presents examples of using response
consistency for uncertainty quantification. As ob-
served, when LLMs demonstrate higher consis-
tency scores, they typically show high correctness,
which corresponds to high precision in this case.
However, this could be attributed to the fact that
the answers are in a short format, allowing for fine-
grained evaluation of consistency.

G More Related Work

G.1 Question and Answering Datasets
To test the diverse abilities of language models,
multiple open-domain question answering (ODQA)
datasets (Kwiatkowski et al., 2019; Min et al.,
2020; Joshi et al., 2017; Boratko et al., 2020; Zhu
et al., 2020; Lin et al., 2021) have been proposed.
These datasets involve the task of answering any
factual question. Early benchmarks created open-
ended questions based on evidence from certain
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Model Method World Knowledge Mathematical Reasoning Commonsense Reasoning Overall

single multi all single multi all single multi all single multi all

Qwen1.5-7b
Max Logit 51.60 42.32 44.28 60.36 63.25 62.18 68.64 55.97 62.21 60.20 53.85 56.22

Entropy 51.16 42.17 43.86 60.40 64.12 62.59 68.77 55.96 62.30 60.11 54.08 56.25
Margin 51.06 41.27 43.31 60.90 63.45 62.23 68.33 55.96 62.10 60.10 53.56 55.88

Mistral-v02-7b
Max Logit 57.94 57.62 61.07 52.37 45.64 47.84 42.76 31.38 37.05 51.02 44.88 48.65

Entropy 64.07 65.08 68.38 51.57 46.06 47.34 62.24 39.38 46.97 59.29 50.17 54.23
Margin 58.05 57.81 61.20 52.15 46.77 48.29 43.16 31.42 37.20 51.12 45.33 48.90

Llama3-8b
Max Logit 75.50 72.41 72.28 76.95 60.58 68.30 67.98 57.32 59.26 73.48 63.44 66.61

Entropy 75.49 72.67 72.52 76.18 60.37 68.24 68.53 57.39 59.37 73.40 63.47 66.71
Margin 74.24 71.43 71.06 76.32 60.41 68.31 67.55 57.34 59.21 72.70 63.06 66.20

Mixtral-8x7b
Max Logit 69.17 72.83 76.70 76.08 53.68 62.06 45.34 53.29 46.84 63.53 59.93 61.87

Entropy 83.60 77.89 84.79 76.27 60.69 65.06 60.97 62.53 61.29 73.61 67.04 70.38
Margin 69.75 72.67 76.65 76.57 59.57 64.98 45.76 53.06 47.20 64.03 61.77 62.94

Llama3-70b
Max Logit 76.16 75.98 75.36 94.29 80.52 85.78 78.05 77.95 77.38 82.83 78.15 79.51

Entropy 76.89 76.09 75.61 93.84 79.66 85.11 78.08 77.40 77.12 82.93 77.72 79.28
Margin 75.76 75.80 75.12 93.74 79.76 85.10 77.97 77.41 77.08 82.49 77.65 79.10

Qwen1.5-72b
Max Logit 79.32 74.09 75.00 86.38 77.71 79.83 87.28 70.50 77.50 84.32 74.10 77.44

Entropy 79.56 74.44 75.28 85.56 77.47 79.38 87.30 70.58 77.55 84.14 74.17 77.40
Margin 78.63 73.77 74.58 85.63 77.28 79.36 87.32 70.59 77.54 83.86 73.88 77.16

Average
Max Logit 68.28 65.87 67.45 74.41 63.56 67.66 65.01 57.73 60.04 69.23 62.39 65.05

Entropy 71.79 68.06 70.07 73.97 64.73 67.95 70.98 60.54 64.10 72.25 64.44 67.38
Margin 67.91 65.46 66.99 74.22 64.54 68.04 65.02 57.63 60.06 69.05 62.54 65.03

Table 10: The AUPRC scores obtained using white-box based uncertainty quantification models on different tasks,
methods, and models. A high score indicates high quantification performance. “single” refers to the results on a QA
set with only single answers, “multi” refers to the MAQA, and “all” refers to the combination of these two datasets,
which includes both single and multi-answer sets.
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Figure 6: Examples of the probability distribution for each answer in the response from the Mistral-v02 model to
the question, “Which countries have coastlines on the Mediterranean Sea?"

Wikipedia paragraphs (Chen et al., 2017), framing
the task as reading comprehension. Due to the de-
velopment of LLMs, these QA tasks are sometimes
tested using only the LLMs without evidence (Jiang
et al., 2023), assuming a deterministic single an-
swer for each question.

Among these datasets, some datasets contain
multi-answer question-answer pairs (Joshi et al.,
2017; Kwiatkowski et al., 2019; Min et al., 2020).
Specifically, TriviaQA (Joshi et al., 2017) in-
cludes some questions with multiple answers
that can be found in documents. Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) collects nu-
merous user queries from Google, some of which
require multiple answers. AmbigQA (Min et al.,

2020) also contains multi-answer question tasks
arising from ambiguity, with most of the questions
based on the NQ dataset. Additionally, there is
a line of research focusing on multi-span reading
comprehension tasks (Li et al., 2022; Zhu et al.,
2020; Malaviya et al., 2023).

G.2 Uncertainty Benchmarks
There is also a line of research focused on develop-
ing uncertainty benchmarks specifically designed
to evaluate the uncertainty quantification of large
foundation models (Ye et al., 2024; Wang et al.,
2024; Chandu et al., 2024). These datasets primar-
ily either incorporate conformal prediction meth-
ods to create uncertainty benchmarks (Ye et al.,
2024), or they assess uncertainty through model
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Model Method World Knowledge Mathematical Reasoning Commonsense Reasoning Overall

single multi all single multi all single multi all single multi all

Qwen1.5-7b Verbalize 48.41 39.70 34.82 32.49 36.15 35.53 58.46 59.02 58.31 46.45 44.96 42.89
Consistency 41.64 36.77 39.15 95.01 90.51 86.61 66.23 58.64 61.40 67.63 61.97 62.39

Mistral-v02-7b Verbalize 55.37 63.44 55.01 54.26 44.18 48.72 62.70 39.43 49.82 57.44 49.02 51.18
Consistency 57.64 78.78 59.82 89.19 84.01 79.59 61.02 58.28 60.44 69.28 73.69 66.62

Llama3-8b Verbalize 63.07 68.94 58.37 80.98 62.28 75.60 65.98 41.73 61.82 70.01 57.65 65.26
Consistency 72.70 73.46 75.02 97.84 89.43 94.27 62.47 61.25 61.82 77.67 74.71 77.04

GPT-3.5 Verbalize 60.62 67.02 64.45 75.14 53.70 67.62 72.00 53.63 66.89 69.25 58.12 66.32
Consistency 78.23 79.32 78.71 95.09 84.78 91.27 77.49 76.11 75.52 83.60 80.07 81.83

GPT-4 Verbalize 78.82 85.73 76.24 95.16 81.07 92.97 75.82 83.59 85.24 83.27 83.46 84.82
Consistency 70.26 78.03 75.45 97.07 88.78 96.12 84.90 83.72 85.04 84.08 83.51 85.54

Average Verbalize 61.26 64.97 57.78 67.61 55.48 64.09 66.99 55.48 64.42 65.29 58.64 62.09
Consistency 64.09 69.27 65.63 94.84 87.50 89.57 70.42 67.60 68.84 76.45 74.79 74.68

Table 11: The AUPRC scores obtained using black-box based uncertainty quantification models on different tasks,
methods, and models. A high score indicates high quantification performance. “single” refers to the results on a QA
set with only single answers, “multi” refers to the MAQA, and “all” refers to the combination of these two datasets,
which includes both single and multi-answer sets.

Question Answers C P

List members of the Ivy League, a specific group of
prestigious universities predominantly in the
Northeastern United States.

[ “Brown", “Columbia", “Cornell", “Dartmouth", “"Harvard", “Penn", “Princeton", “Yale" ]

0.83 96.42
[ “Brown", “Columbia", “Cornerstone", “Dartmouth", “Harvard", “Penn", “Princeton", “Yale" ]
[ “Brown", “Columbia", “Cornerstone", “Dartmouth", “Harvard", “Penn", “Princeton", “Yale" ]
[ “Brown", “Columbia", “Cornerstone", “Dartmouth", “Harvard", “Penn", “Princeton", “Yale" ]
[ “Brown", “Columbia", “Cornerstone", “Dartmouth", “Harvard", “Penn", “Princeton", “Yale" ]

What are the names of the actresses who voiced the
muses in Disney’s “Hercules"?

[ “Jennifer Lewis", “Liz Callaway", “Susan Egan" ]

0.19 4.00
[ “Jennifer Love Hewitt", “Rene Russo", “Patrick Dempsey", “Teri Hatcher", “Jennifer Coolidge" ]
[ “Meg Ryan", “Christy Carlson Romano", “Roz Ryan", “Lynn Hollander", “Joseph Ann Sullivan"
]
[ “Meg Ryan", “Lindsay Lohan", “Rene Russo", “Patrick Stewart", “Jennifer Love Hewitt", “Christy
Carlson Romano", “Zoe Shanahan" ]
[ “Meg Ryan", “Liz Callaway", “Jennifer Lewis" ]

Shawna’s father is x times as old as Shawna.
Shawna is currently three times as old as Aliya. If
Aliya is 3 years old, determine all possible values of
x that would make Shawna’s father’s age more than
30 but less than 60.

[ 4, 5 ]

0.79 88.00
[ 4, 5, 6, 7 ]
[ 3, 4, 5 ]
[ 4, 5 ]
[ 4, 5, 6 ]

Table 12: Examples of sampling multiple answers for each question using Llama3-8b, along with its precision score
(P) and uncertainty estimation using consistency (C).

responses (Wang et al., 2024). Additionally, a
benchmark has been proposed that accounts for
two sources of uncertainty in the vision-language
domain (Chandu et al., 2024).

G.3 Uncertainty Decomposition for LLMs

Uncertainty decomposition has been widely stud-
ied in machine learning, particularly in computer
vision domains (Hüllermeier and Waegeman, 2021;
Valdenegro-Toro and Mori, 2022; He and Jiang,
2023). Recently, efforts have been made to de-
compose model uncertainty and data uncertainty
in the context of LLMs (Hou et al., 2023; Cole
et al., 2023). These methods typically involve a
clarification stage, a process that adds more details
to the question to eliminate data uncertainty caused
by the ambiguity of the user’s question. However,
even though the questions are unambiguous, there
are many cases where data uncertainty still exists,

and users require multiple answers, motivating us
to investigate uncertainty quantification under the
existence of data uncertainty without clarification.

5878


