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Abstract

Reaching a human-level understanding of real-
world documents necessitates effective ma-
chine reading comprehension, yet recent de-
velopments in this area often struggle with
table images. In response, we introduce the
Visual Table Reading Comprehension (Tab-
Comp) dataset, which includes table images,
questions, and generative answers designed to
evaluate OCR-free models. Unlike general
Visual Question Answering (VQA) datasets,
TabComp uniquely focuses on table images,
fostering the development of systems which
obviate the use of optical character recogni-
tion (OCR) technology, which often struggles
with complex table layouts. Our findings re-
veal that current OCR-free models perform
poorly on TabComp, highlighting the need for
robust, specialized models for accurate table
reading comprehension. We propose TabComp
as a benchmark for evaluating OCR-free mod-
els in table reading comprehension and en-
courage the research community to collabo-
rate on developing more effective solutions.
The code and data are available at - https:
//github.com/dialabiitj/TabComp/

1 Introduction

The ability to automatically read and comprehend
textual and visual information from documents has
become increasingly critical as vast amounts of
structured data are embedded within document im-
ages, particularly in the form of tables. However,
extracting and interpreting information from table
images poses significant challenges, as traditional
text-processing systems are often ill-equipped to
handle the complexities of table layouts, format-
ting, and multi-modal content. This challenge em-
phasizes the need for table reading comprehension,
which not only reads the content but also interprets
and answers questions from tabular data.

Table reading comprehension is a generative Ma-
chine Reading Comprehension (MRC) task that

Dr. William W. Parmley
University of California,

San Francisco

Q: Who is the Investigator at the University of California?
A: The investigator at the University of California is Dr.
William W. Parmley.

Figure 1: Sample example from our TabComp dataset.
The dataset consists of Table images of documents with
questions (Q) and their generative answers (A). The im-
age was sourced from Task 1 of the DocVQA (Mathew
et al., 2021) dataset: https://rrc.cvc.uab.es.

integrates natural language understanding (NLU)
and natural language generation (NLG) capabilities.
However, extracting relevant information from ta-
bles remains challenging, especially when dealing
with scanned or photographed documents where
Optical Character Recognition (OCR) may not be
reliable.

In recent years, there has been a growing interest
in developing OCR-free models that can perform
downstream tasks in document images. These mod-
els have shown promising results in various doc-
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ument understanding tasks, including layout anal-
ysis, form understanding, VQA, and information
extraction. Despite these achievements, their po-
tential in table reading comprehension has not been
thoroughly investigated.

Our extensive experiments with current OCR-
free models Donut (Kim et al., 2022), UReader (Ye
et al., 2023) revealed that they underperform on our
dataset. This underperformance highlights a gap
in existing solutions, as these models struggle with
the complexity of the table reading task, which
requires understanding table structures, element
relationships, and context.

To bridge this gap and enhance the OCR-free
models’ capabilities in understanding and gener-
ating, we present TabComp in two formats: (1) a
question-answering format for a model like Donut
and (2) an instruction-tuning format for a univer-
sal model like UReader, where all the downstream
tasks are reorganized into instruction-tuning format
(Dai et al., 2023). Notably, existing works such
as (Deng et al., 2024) and (Zheng et al., 2024a)
have explored solving table VQA tasks through
prompting and fine-tuning, respectively. This paper
provides an analysis of the challenges and opportu-
nities within TabComp, enriched by insights from
these recent studies

Our main contributions are as follows:

• While most existing Visual Question Answer-
ing (VQA) models struggle with queries re-
lated to tables, charts, and figures, we intro-
duce TabComp, a custom dataset which em-
phasizes a generative question-answering task
specifically focused on table images.

• TabComp does not incorporate an accompa-
nying OCR. It is currently the only dataset
focused on enabling models to read and com-
prehend the text within tables from document
images and generate contextually accurate an-
swers.

• We identify and highlight the shortcomings of
existing models that prevent them from per-
forming effectively on our dataset.

2 Related Work

2.1 Dataset containing few words

Visual Question Answering (VQA) on images con-
taining text has been an area of intensive study
(Antol et al., 2015), (Goyal et al., 2017). Recently,

several VQA datasets featuring text in images, an-
notated using optical character recognition (OCR),
have been released. For example, VizWiz-VQA
(Gurari et al., 2018) includes questions from blind
individuals who took pictures using their mobile
phones. TextVQA (Singh et al., 2019), STVQA
(Biten et al., 2019), and EST-VQA (Wang et al.,
2020) are crowd-sourced datasets focusing on daily
scenes. Other datasets target specific image types,
such as OCR-VQA (Mishra et al., 2019) with book
covers, FigureQA (Kahou et al., 2017), and DVQA
(Kafle et al., 2018) with diagrams and charts. Our
dataset distinguishes itself by featuring images
of tables with a higher volume of text plus non-
dependence on the OCR machine, emphasizing the
development of Natural Language Understanding
(NLU) on tables where multiple pieces of text and
visual content are presented together.

2.2 Generative answers

One of the recent works, VisualMRC by Tanaka
et al. (Tanaka et al., 2021), represents a signifi-
cant milestone in integrating natural language un-
derstanding (NLU) and natural language genera-
tion (NLG) with visual data analysis. In this work,
the authors introduced a dataset containing images,
questions, and generative answers, requiring mod-
els to interpret textual content extracted from im-
ages and contextualize it within the visual scene.
Along similar lines, WebSRC (Chen et al., 2021),
another dataset, expands this vision by focusing
on structured reading comprehension within web-
based images and reasoning tasks, few works like
TabFact (Chen et al., 2020), (Pasupat and Liang,
2015), (Zheng et al., 2024b) used for table under-
standing and QA task. These tasks challenge mod-
els to demonstrate robust NLU capabilities to ac-
curately parse and comprehend text in its visual
and contextual surroundings while leveraging NLG
to generate coherent, contextually appropriate re-
sponses.

While this work marks a significant advance-
ment in the simultaneous enhancement of NLU
and NLG capabilities, it is important to note that
it relies on an OCR-dependent dataset and method.
This dependency on Optical Character Recognition
(OCR) technology implies that the efficacy of the
models is fundamentally linked to the precision and
reliability of the OCR system utilized, potentially
introducing various challenges and constraints.
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2.3 OCR-free Models
Recently, OCR-free document understanding and
Visual Question Answering (VQA) models Donut
(Kim et al., 2022), and UReader (Ye et al., 2023)
present a significant evolution in handling multi-
modal data. These models are designed to interpret
and analyze visual documents without relying on
Optical Character Recognition (OCR) to answer
the question, thereby preserving the original vi-
sual context and nuances that OCR might distort
or overlook. In the VQA domain, these models
directly interpret the text within images, enabling
them to effectively comprehend and answer ques-
tions. Donut utilizes a transformer-based architec-
ture to directly interpret the visual layout and text
in document images. UReader, on the other hand,
combines OCR capabilities with advanced NLU to
interpret documents.

3 Dataset Creation

Internet

DocVQA SplitImage
Questions

DatasetExtract
Table/List

Train

Test

Write
generative
answers

Figure 2: Dataset creation process: We extracted
images of tables/lists from DocVQA dataset, along
with their corresponding questions and answers. Sub-
sequently, we replaced each short answer with more
generative responses. Following this modification, we
divided the dataset into training and test sets in a 70:30
ratio. The contents of each set are detailed later in this
section.

As mentioned earlier, OCR-free models struggle
with table images due to complex structures and di-
verse content. Thus we create a specialized dataset
focused solely on table images, enhancing the per-
formance of OCR-free models in this domain.

3.1 Table image collection
According to VisualMRC (Tanaka et al., 2021),
the DocVQA dataset does not primarily focus on
answer generation, which led us to develop a tai-
lored dataset. We chose to utilize the DocVQA
dataset due to its comprehensive collection of doc-
ument images. From this dataset, we manually
extracted table images, which were predominantly
from industrial documents containing both hand-
written and printed text. These table images be-
longed to a variety of semi-structured document

images, adding to the complexity and diversity of
our dataset. Notably, these images differ from Vi-
sualMRC in two aspects:

1. Industrial Documents: Our dataset includes
images from industrial documents, which are
typically not present in VisualMRC.

2. Handwritten Document Contents: Unlike
VisualMRC, our dataset incorporates hand-
written text, adding another layer of challenge
for OCR-free models.

3.2 QA Pairs extraction and ground truth
Following the extraction of table images, the next
step involved the extraction of QA pairs corre-
sponding to each image. Upon reviewing each
question and answer, we observed that while the
questions were often lengthy and detailed, the
answers maintained a concise format similar to
the SQuAD-like format. We replaced the original
SQuAD-like answers with more detailed ones to
better fit our reading comprehension tasks. This
manual annotation ensured the answers were ac-
curate and provided a deeper understanding, en-
hancing the dataset’s utility for training OCR-free
models.

TabComp

images

Instruction-Tuning-Format

json

test

train

test

train

test

Question-Answering-Format

train

documents

documents

metadata.jsonl

metadata.jsonl

image1, image2, image3. . .

image1, image2, image3. . .

image1, image2, image3. . . 

image1, image2, image3. . .

test.jsonl

train.jsonl

Figure 3: TabComp Structure: The dataset is presented
in two formats.

4 Experimental Setup

The dataset was employed to fine-tune the existing
donut-base and donut-proto models. We conducted
the fine-tuning process for a total of 300 epochs,
ensuring that the models had ample opportunity to
learn and adapt to the nuances of the dataset. In
addition to fine-tuning, we also trained the donut-
base and donut-proto models in end-to-end settings.
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VisualMRC TabComp

# Images 10,197 3,318

# Questions 30,562 19,610

# Unique questions 29,419 15,164

% Unique answers 91.82 91.87

Avg. len. questions 10.55 10.32

Avg. len. answers 9.53 11.48

Table 1: Statistics of TabComp and VisualMRC datasets,
the average length of questions and answers are mea-
sured by tokenizing them with NLTK.

The image sizes used during the training process
were tailored to each model’s specifications. For
the donut-base model, the images were resized
to 2560x1920 pixels, while for the donut-proto
model, the images were resized to 2048x1536 pix-
els. Moreover, the swin window sizes for the donut-
base and donut-proto models were set to 10 and 8,
respectively. These configurations were adopted
as per the recommendations outlined in the Donut
paper.

5 Results and Analysis

Table 2 shows the performance of different OCR-
free models on our TabComp dataset, comparing
fine-tuned and end-to-end configurations. The test
set is in instruction-tuning format and is used for
UReader inference. Upon examination, it is evi-
dent that in the case of Donut, end-to-end models
outperform fine-tuned models for tasks with com-
plex, task-specific interdependencies (such as gen-
erating answers or information extraction). This
superiority is particularly noticeable in generating
answers, where end-to-end models excel. End-to-
end models can understand the intricate connec-
tions between various stages of a task because they
are trained on the entire task (Generation + Ex-
traction) as a unified process. Additionally, they
are more flexible when applied to new tasks or do-
mains since they don’t depend on fixed steps or
predefined features during the process. In contrast,
fine-tuned models may experience catastrophic for-
getting (French, 1999), where adapting to new tasks
can result in losing previously acquired knowledge.
This challenge can hinder their performance on
tasks that require generating answers. Since URe-
ader performs well on table VQA tasks without
fine-tuning (Ye et al., 2023), we used it as-is for
inference with our dataset.

Q: What is the date of the first film?
GT: The date of the first film is June 1980.
Donut-base fine-tuned: The date of the first film is June
1980.(✓)
UReader: 1927 (✗)

Figure 4: Inference output of Donut-base (fine-tuned)
and UReader on handwritten document image from the
test set.

Q: as per table v-13, in which state is total funds expended
the highest
GT: In table V-13, total funds expended are highest in N.Y.
Donut-base fine-tuned: The total funds expended the highest
year 1963 is $34,475,75..(✗)
UReader: 27 (✗)

Figure 5: Incorrect Example generated by both Donut-
base fine-tuned and UReader model.
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Models Fine-tuned End-to-end B-1 B-2 B-3 B-4 R-L BERTScore Meteor CIDEr

Donut-base
✓ ✗ 66.60 55.59 48.84 42.69 37.29 83.38 60.14 69.32
✗ ✓ 55.12 41.36 34.28 28.59 32.24 85.06 47.19 54.01

Donut-proto
✓ ✗ 29.82 15.30 09.73 06.49 17.84 73.26 19.80 23.56
✗ ✓ 62.69 49.32 41.63 34.87 37.02 87.74 56.49 66.03

UReader ✗ ✗ 42.01 35.86 31.59 28.14 37.64 88.04 20.71 210.77

Table 2: Performance of TabComp on OCR-free VQA models: B implies BLEU, and R-L implies ROUGE-L.

6 Conclusion

We present a custom table reading comprehension
dataset, carefully curated and manually checked
to ensure high confidence in its generative an-
swers. The dataset includes a diverse array of ta-
ble images extracted from industrial documents
with both handwritten and printed text, providing
a comprehensive resource for training and evaluat-
ing advanced models. Our fine-tuning experiments
demonstrated the need for a more robust OCR-free
model to accurately understand and interpret ta-
ble images, highlighting TabComp’s potential for
improving OCR-free VQA systems. Moreover, by
making our dataset available to the research com-
munity, we aim to foster further advancements in
the field of table reading comprehension and docu-
ment analysis.

Limitations

Unlike the VisualMRC dataset, TabComp lacks
text localization information, which is essential
for identifying the answer’s position within the
document image for OCR-based models. While a
study by (Kim et al., 2023) offers methodologies
for OCR-free models to potentially address this
limitation, the lack of specified regions of interest
remains a constraint.

Ethics Statement

Our dataset utilizes document images from the pub-
lically available DocVQA dataset. We ensured that
the use of the DocVQA dataset complies with its
intended usage policies and respects all conditions
set forth by the original data providers. The author
performed manual QA annotation to transform ex-
isting structured answers into more generative for-
mats suitable for advanced document understand-
ing tasks. The annotations were conducted with
a commitment to maintaining the integrity of the
original data and without introducing any biases or

alterations that could misrepresent the information
presented in the images.
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A Appendix

A.1 Output Example
Table 3 illustrates several outputs produced by the
model. Among the four models examined, the
donut-base model stands out as the best performer,
generating the highest number of exact correct
answers. In comparison, the donut-proto model
tends to repeat tokens, resulting in non-sequitur
sentences. This observation leads to the conclu-
sion that the donut-proto model is overfitting and
would benefit from additional training data to im-
prove its performance and generalization. Despite
these differences, it is noteworthy that both mod-
els, when used in an end-to-end setting, exhibit the
generation capability.

A.2 Computational setup
The dataset was employed to fine-tune the exist-
ing donut-base and donut-proto models. The fine-
tuning process was carried out using two Nvidia
A30 GPUs, each equipped with 24GB of memory.
This setup provided the necessary computational
power to handle the extensive training tasks effi-
ciently. For the donut-base model, the fine-tuning
process took approximately 2.5 days to complete.
On the other hand, the donut-proto model required
about 2 days for fine-tuning. The difference in
training durations can be attributed to the varying
complexities and configurations of the models.

A.3 Suitable Metrics
To evaluate the quality of the generated answers,
we used a variety of widely adopted metrics:

• BLEU (Bilingual Evaluation Understudy)
(Brown et al., 2020) measures the precision of
N-grams between the generated and reference
texts. The score is calculated by taking the
geometric mean of N-gram precisions with
a brevity penalty to discourage overly short
translations:

BLEU = BP · exp
(

N∑

n=1

wnlogpn

)

Where pn is the precision of N-grams of
length n. wn is the weight assigned to N-
grams of length n, typically equal across all
N-grams. BP is the brevity Penalty that penal-
izes shorter generated sequences.

• ROUGE-L (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004) evaluates the

longest common subsequence (LCS) between
the generated and reference texts. It captures
both precision and recall, with a combined F1
score:

ROUGE − L =
(1 + β2) · P ·R
β2 · P +R

β is typically set to 1, giving equal weight to
precision (P ) and recall (R).

• BERTScore (Zhang et al., 2019) leverages
BERT embeddings to measure semantic simi-
larity between generated and reference texts.
It computes the precision and recall based on
cosine similarities of word embeddings, fol-
lowed by the F1 score:

FBERT =
2 · PBERT ·RBERT

PBERT +RBERT

where, PBERT is PrecisionBERT and
RBERT is RecallBERT .

• METEOR (Metric for Evaluation of Transla-
tion with Explicit ORdering) (Banerjee and
Lavie, 2005) aligns the generated and refer-
ence texts based on unigram matches (includ-
ing stemming and synonyms). It emphasizes
recall, with a weighted F1 score and penalty
for disjoint word chunks:

METEOR = (1− Penalty) · Fmean

Penalty = 0.5(#chunks
m )3, which penalizes

cases where the generated text has many dis-
joint chunks.

• CIDEr (Consensus-based Image Description
Evaluation) (Vedantam et al., 2015) measures
the consensus between generated and refer-
ence texts using TF-IDF weighting, reward-
ing N-grams that are important yet rare across
multiple references:

CIDEr =
1

m

m∑

j=1

N∑

n=1

T (gn) · T (rn)
∥T (g)∥ · ∥T (r)∥

Where m is the number of reference texts, gn
and rn are the N-grams in the generated and
reference texts. T () is the TF-IDF score of
N-grams xn.

5794



Questions Answers

who is the speaker?

who is the supplier?

The speaker is Miss Midred Kauman.
The supplier is LRM.
The speaker is Dr. T. Turner.
The supplier is M/A/R/C.
The speaker by the speaker by the a faxances1% of 12.
The supplier of supplier of 25, 25, 25, 25, 25, also simply represented by a fax.

Table 3: Samples showcasing different cases of generated answers for the same question across different models.
Green indicates correct answers generated by the Donut-base model, blue represents incorrect answers (instances of
catastrophic forgetting) generated by fine-tuned and inference models, and red highlights non-sequitur sentences
(instances of overfitting) generated by the Donut-proto model.

Metric Purpose Methodology

BLEU Machine Translation n-gram precision

ROUGE Document Summarization n-gram recall

METEOR Machine Translation n-gram with synonym matching

CIDEr Image Captioning tf-idf weighted n-gram similarity

Table 4: Summary of Metrics Used for Generative Answers Evaluation.

Feature DONUT UReader

Input Type Document Images Document Images, optionally with Text
Inputs

Model Type Vision-Language Model Multimodal Vision-Language Model

Architecture
Base

Vision Transformer (ViT) + Transformer
Decoder

Vision Transformer (ViT) + Transformer
Encoder-Decoder

OCR Usage Not required; operates without OCR Optional; can operate with or without
OCR

Task Special-
ization

Document Text Recognition, Key-Value
Extraction, Document Layout Analysis

Document Classification, Information Ex-
traction, Question Answering, Table Pars-
ing

Adaptation End-to-End, Fine-tuning low-cost instruction tuning

Pre-training Uses document images for vision pre-
training

Uses both document images and text for
pre-training

Table 5: Key Architectural Differences between DONUT and UReader Models
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