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Abstract

Argument mining (AM) focuses on analyz-
ing argumentative structures such as Argument
Components (ACs) and Argumentative Rela-
tions (ARs). Modeling dependencies between
ACs and ARs is challenging due to the complex
interactions between ACs. Existing approaches
often overlook crucial conceptual links, such as
key phrases that connect two related ACs, and
tend to rely on cartesian product methods to
model these dependencies, which can result in
class imbalances. To extract key phrases from
the AM benchmarks, we employ a prompt-
based strategy utilizing an open-source Large
Language Model (LLM). Building on this, we
propose a unified text-to-text generation frame-
work that leverages Augmented Natural Lan-
guage (ANL) formatting and integrates the ex-
tracted key phrases inside the ANL itself to
efficiently solve multiple AM tasks in a joint
formulation. Our method sets new State-of-the-
Art (SoTA) on three structurally distinct stan-
dard AM benchmarks, surpassing baselines by
up to 9.5% F1 score1, demonstrating its strong
potential.

1 Introduction

Argument mining is a field of study dedicated to
the identification and analysis of argumentative
structures within a text. It has garnered significant
attention recently due to its potential applications
in automated essay scoring (Ke et al., 2018), legal
decision support (Walker et al., 2018), healthcare
applications (Mayer et al., 2020), etc. AM is often
divided into four key tasks: (i) Argument Compo-
nent Identification (ACI), identifying argumentative
text spans; (ii) Argument Component Classifica-
tion (ACC), categorizing these spans into AC types
(e.g., claims, premises); (iii) Argumentative Rela-
tion Identification (ARI), detecting relationships
between the spans; and (iv) Argumentative Rela-
tion Classification (ARC), classifying the types of

1Our code is available here.

Figure 1: Examples of Related Key Phrases between
related AC pairs, highlighted in green. Claim A is sup-
ported by Premise A, with two key phrases serving as
conceptual bridges between these components. Simi-
larly, Premise B attacks Claim B, as they are connected
by conceptually opposing key phrases.

these relationships (e.g., support, attack). Most
prior studies have approached these tasks indepen-
dently using task-specific customization (Morio
et al., 2020) or have solved a subset of them ei-
ther through joint modeling (Bao et al., 2021) or
in a pipelined manner (Mayer et al., 2020). Many
studies assume that the ACI task has already been
completed, focusing solely on other tasks (Liu et al.,
2023). Following the existing work, this paper fo-
cuses on the joint modeling of ACC and ARI, given
the argumentative spans.

Among the various AM tasks, the ARI task is of-
ten considered more challenging than the others. It
demands the identification of complex interactions
between related pairs of ACs. Few studies in the
literature have explored these interactions from di-
verse perspectives. For example, Trautmann (2020)
identified aspect terms for a deeper understanding
of related ACs, whereas Chakrabarty et al. (2021)
and Saadat-Yazdi et al. (2023) explored the Com-
mon Sense Knowledge as explicit features to enrich
the representation of the ACs. Recently, Sun et al.
(2022) analyzed structural dependencies to iden-
tify semantically and syntactically similar words
between related ACs, which led to performance
improvement. While the presence of such similar
words can signal the existence of relations between
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related AC pairs, they do not fully capture the inher-
ent connections between these ACs. For example,
in Figure 1, both Claim B and Premise B contain
the phrase "Electric cars", suggesting a potential
connection between these ACs. Yet, this similarity
does not effectively convey the attacking nature
of the relationship between them. Instead, it is
the conceptual contrast between "Electric cars" in
Claim B and "Public transportation" in Premise
B that reveals the true argumentative nature of the
relation, where opposing ideas are at play. This
demonstrates the need for a deeper understanding
of the relationships between ACs. We refer to such
conceptual connections as Related Key Phrases, as
they form the crucial conceptual bridge between
related pairs of ACs. These phrases serve as crucial
indicators, helping to identify ARs. Apart from
this, most of the previous studies commonly utilize
Cartesian products to match all possible pairs of
ACs to identify ARs between them (Kuribayashi
et al., 2019; Sun et al., 2022). However, these meth-
ods are inefficient and often suffer from class im-
balance problems, as the majority of AC pairs are
unrelated. This imbalance results in sub-optimal
performance, highlighting the need for more effec-
tive approaches to model those complex relational
dependencies in an efficient manner.

The annotation schemes of standard AM cor-
pora vary significantly, with no universally ac-
cepted norms regarding the types of ACs and ARs.
In some AM datasets, ACs are categorized into
coarse-grained classes (Stab and Gurevych, 2017),
while others adopt more detailed fine-grained cate-
gories (Schaefer et al., 2023). Additionally, the rela-
tional structures across corpora differ substantially.
For example, certain corpora represent ARs in a
tree-structured format (Stab and Gurevych, 2017),
whereas others model them as non-tree structures
(Niculae et al., 2017). In non-tree AM corpora, if
two ARs are given as (a → b) and (b → c), a tran-
sitive relation (a → c) is also established, unlike in
tree-structured corpora. This introduces additional
challenges, particularly for the ARI task. Recently,
end-to-end frameworks have emerged to jointly
model all four tasks of AM (Morio et al., 2022),
aiming to address these complexities of AM cor-
pora by mutual information sharing among differ-
ent tasks. However, these approaches have shown
limited success. This highlights the need for a more
focused effort on solving individual or a subset of
the AM tasks to address the unique challenges at

each task level and improve overall performance.
This paper presents a unified approach to jointly

model a subset of the key tasks in AM: ACC and
ARI. Our method leverages a text-to-text gener-
ation framework, where both input and output
are structured using the Augmented Natural Lan-
guage (ANL) format. In the input, AC spans are
augmented and enclosed with special symbols. On
the output side, AC types and their corresponding
related spans are embedded with augmented labels,
also using special symbols. To invoke the knowl-
edge of related key phrases, we first prompt an
open-source LLM, guiding it in extracting these
phrases between pairs of ACs from the standard
AM datasets. Such extracted phrases are then ap-
pended to the ANL output sequence, embedding
this knowledge directly into the text-to-text gener-
ation task. Through extensive experiments across
multiple structurally diverse standard AM bench-
marks, our proposed approach achieves SoTA re-
sults for both tasks, outperforming all existing base-
lines. These results highlight the strong potential
of our method in effectively addressing two distinct
AM tasks jointly. In summary:

1. We propose a joint modeling of two key AM
tasks, ACC and ARI, using an ANL-based text-
to-text generation framework to model both
tree and non-tree structured arguments.

2. We integrate the explicit knowledge in terms
of related key phrases within the target ANL
to strengthen its relational representation.

3. We utilize LLM-based prompting techniques
to extract related key phrases between related
AC pairs, which in turn enhances the proposed
task performance.

4. We conduct extensive experiments achieving
SoTA results across datasets and demonstrate
strong noise resilience through a Noise Adapt-
ability Study. We also assess the impact of ex-
ternal knowledge and the utility of joint model-
ing with an in-depth argumentative structural
analysis.

2 Related Work

2.1 Argument Mining

Most previous studies have tackled different AM
tasks either independently (Kuribayashi et al.,
2019; Saadat-Yazdi et al., 2023) or sequentially
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in a pipelined fashion (Mayer et al., 2020). How-
ever, there is a growing trend towards jointly ad-
dressing multiple AM tasks within a unified frame-
work (Bao et al., 2021; Morio et al., 2022). In
this context, several approaches have been devel-
oped to jointly address two pivotal tasks: ACC and
ARI. Early works like Stab and Gurevych (2017)
introduced joint optimization using Integer Linear
Programming (ILP), while Niculae et al. (2017)
applied structured SVMs with factor graphs. Later,
Potash et al. (2017) proposed a Pointer Network,
and Galassi et al. (2018) used residual networks
with link-guided training. Further innovations in-
clude Kuribayashi et al. (2019) using span represen-
tations and LSTMs, and Morio et al. (2020) lever-
aging task-specific parameterization with biaffine
attention. Recent models like Bao et al. (2021) used
transition-based approaches with pre-trained lan-
guage models, while Morio et al. (2022) combined
Longformer with biaffine parsing. More recently,
Liu et al. (2023) framed AM tasks as machine read-
ing comprehension using BART. However, none ex-
plored fine-grained AC interactions, leaving room
for improvement in joint modelling.

2.2 Use of External Knowledge in AM
Several studies have emerged for NLP applications
that elicit external knowledge by prompting LLMs.
For example, Wadhwa et al. (2023) used the LLM
(GPT-3) to generate explanations about why the re-
lated tuples of entities are related. Later, Jiang et al.
(2024) also adopted this approach to solve the NER
tasks. Specifically in AM, Chakrabarty et al. (2021)
used Paragraph-Level Commonsense Transform-
ers (COMET) (Gabriel et al., 2021) as an external
knowledge source to solve the implicit premises
generation task through a text-to-text generation
approach. Similarly, Saadat-Yazdi et al. (2023) uti-
lized a different COMET (Hwang et al., 2020) to
solve the relational AM tasks. However, none of
the works in AM literature utilizes the knowledge
of LLMs to solve the AM tasks.

2.3 Applications of Augmented Natural
Language (ANL)

With the rise of generative methods, many NLP
tasks are now being approached as ANL-based
generation problems. Athiwaratkun et al. (2020)
utilized ANL-based generation to solve a range of
tasks such as NER, slot labelling and intent clas-
sification in a single generation sequence. Zhang
et al. (2021) used a similar approach to solve aspect-

based sentiment analysis with both extraction style
and annotation style ANL sequences. Later, Paolini
et al. (2021) introduced TANL, a unified framework
for structured prediction tasks by treating them as
generative text-to-text translation problems. Liu
et al. (2022) framed structures as sequences of ac-
tions that build the target step by step. In AM,
Kawarada et al. (2024) first applied TANL to jointly
handle ACC and ARC tasks using ANL-based tar-
get generation. However, the impact of incorpo-
rating explicit knowledge into ANL generation re-
mains unexplored in solving AM tasks.

3 Proposed Method

The proposed method consists of two main steps.
First, the input ANL is represented with special
markers to indicate argumentative spans. For ex-
ample: “Nevertheless, supporters would argue that
[ Argument 1 ]. They further point out that [ Ar-
gument 2 ]." Here, the special tokens “[" and “]"
denote the start and end of each argument. The
output representation further extends this format to
include argument classification and relationships:
“Nevertheless, supporters would argue that [ Ar-
gument 1 | Claim | Argument 2 ]". This indi-
cates that Argument 1 is classified as a Claim and
is related to Argument 2. Next, from each argu-
ment pair, related key phrases are extracted using
Lamma-3.1-instruct in a few-shot setup. Then,
these extracted key phrases are appended with the
target ANL to produce the final ANL output.

This structured input and output ANL are then
used to fine-tune a T5 model. During inference,
T5 classifies AC spans, predicts argument relations,
and generates key phrases as a by-product. Figure
2 illustrates the overall process. Further details are
discussed in subsequent sections.

3.1 Key-Phrases Extraction with LLM

Utilizing an open-sourced LLM Meta-LLaMa-3.1-
instruct, we employ a prompt-based strategy to
extract related key phrases from the related ACs.
To enhance the quality of the extracted key phrases,
we adopt a few-shot prompting approach, where
we manually create five carefully crafted examples
from a standard AM dataset. These examples illus-
trate both the input and the expected output, help-
ing guide the model towards producing the desired
results. To prevent the model from generating irrel-
evant or random text, we design a well-structured
instruction composed of four distinct steps, each
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Figure 2: Illustration of the proposed method. On the left, the prompt description for extracting Related Key Phrases
using the LLM in a 5-shot setting is shown. On the right, the input/output ANL configurations for the proposed
generation task are presented. Claim spans are marked in red, Premises are in blue, and augmented labels are in
green. The Related Key Phrases within the AC spans are in bold and are explicitly appended at the end of the output.

aimed at constraining the extraction process (See
Figure 2). The first step consists of extracting key
phrases from AC_1, focusing on the most relevant
phrases that reflect its core argument. In the second
step, the model performs a similar extraction from
the AC_2. Notably, both AC_1 and AC_2 may
contain more than one central point. Next, in the
third step, those extracted phrases from both the
ACs are matched by identifying conceptual links
to establish a connection between these arguments.
In the fourth step, the model provides an explana-
tion of how and why the chosen pairs of related
key phrases are linked. The reasoning is expressed
through meaningful sentences that articulate the
logical or thematic connections, ensuring that the
extracted links are relevant and coherent. By rea-
soning this way, the model is forced to reduce the
likelihood of extracting unrelated key phrases.

3.2 Joint Formulation of ACC & ARI

We define the proposed ANL formatting based
on five key elements: (i) the input paragraph,
W = w1, w2, w3, . . . , wn, where n is the total
number of tokens in W . We denote a text span
from wi to wj in W as wi:j ; (ii) a list of ACs,
C = {(ci, ti, si, ei)}ni=1, where ci represents the
AC span, ti specifies its type (e.g., Claim, Premise),
si is the start index, and ei is the end index of

the AC; (iii) a list of ARs, R = {(hj , tj)}mj=1,
where hj , tj ∈ C are the head and tail ACs, re-
spectively; (iv) a list of LLM-extracted related key
phrases from all the ARs is denoted by KP =
{(e1h , e1t), (e2h , e2t), . . . , (ekh , ekt)}, where eih
and eit denote the related key phrases extracted
from related head and tail ACs, respectively; (v) a
set of special symbols S = {[, ], (, ), |,=}, where
“[” marks the start of an augmented label, “]” marks
the end of an augmented label, “(” and “)” are
used to enclose the phrases, “|” separates different
augmented labels, and “ = ” connects the related
AC spans. Now, consider two arbitrary ACs Cp

and Cq from the set C, which are related by an
AR Rk from R, where hk = Cp and tk = Cq.
The spans of Cp and Cq are denoted by wcsp:c

e
p

and
wcsq :c

e
q
, respectively. In the input W , the spans of

those ACs are constructed as: [wcsp:c
e
p
] and [wcsq :c

e
q
].

And, in the output, the augmented labels are cre-
ated as: [wcsq :c

e
q
| cq | wcsp:c

e
p
] to make connection

between the pairs of ACs, and for the head AC Cp,
the augmented label is written as: [wcsp:c

e
p
| cp]. The

remaining tokens in W are rewritten as they are for
both input and output. Finally, all the related key-
phrase from all the ARs present in W are appended
at the end of the label-augmented paragraph as:
Strongly Related Key Phrases: (e1h , e1t),

(e2h , e2t), . . . , (ekh , ekt).

5777



Corpus Model Macro-F1 AVG
ACC ARI

CDCP

Deep-Res-LG 65.3 29.3 47.3
St-SVM (strict) 73.2 26.7 50.0
TSP-PLBA 78.9 34.0 56.4
BERT-Trans 82.5 37.3 59.9
SB-Parser 82.3 40.1 61.2
PITA 83.6 44.9 64.3
Base (Ours) 77.9 35.3 56.6
XL (Ours) 84.2 53.4 68.8
XXL (Ours) 84.2 (+0.6) 53.9 (+9.0) 69.0 (+4.7)

AAE-FG

SB-Parser* 56.6 67.8 62.2
Base (Ours) 71.4 66.1 68.8
XL (Ours) 74.0 (+17.4) 69.4 71.7 (+9.5)
XXL (Ours) 73.3 69.4 (+1.6) 71.3

AAE

Joint-ILP 82.6 58.5 70.6
St-SVM (full) 77.6 60.1 68.9
Joint-Ptr-Net 84.9 60.8 72.9
Span-LSTM 85.7 67.8 76.8
SB-Parser 86.8 69.3 78.1
BERT-Trans 88.4 70.6 79.5
MRC-GEN 89.2 70.9 80.1
PITA 88.3 73.5 80.9
Base (Ours) 87.4 69.3 78.4
XL (Ours) 89.4 72.7 81.1
XXL (Ours) 89.5 (+0.3) 73.5 81.5 (+0.6)

Table 1: Comparison of experimental results against
the baselines. Best scores are marked in bold. Recent
SoTA results are underlined. * indicates the baseline
results produced by running the corresponding open-
source code with original hyperparameters. All values
are rounded to one decimal place. Base, XL, and XXL
refer to different variants of the Flan-T5 model.

4 Experimental Setup

4.1 Datasets

We evaluate our proposed method on three struc-
turally distinct standard AM benchmarks: (i) AAE:
Argument Annotated Essay (Stab and Gurevych,
2017), (ii) AAE-FG: Fine-Grained Argument An-
notated Essay (Schaefer et al., 2023), and (iii)
CDCP: Consumer Debt Collection Practices (Nic-
ulae et al., 2017). Both AAE and AAE-FG are
tree-structured, while CDCP is non-tree-structured.
Details of datasets are provided in Appendix B.

4.2 Implementation Details

We utilize the Flan-T5 model family (Chung et al.,
2024) in three variants: Base (220M), XL (3B),
and XXL (11B) for all our experiments. A batch
size of 32 is used for AAE and AAE-FG, and that
of 16 is used for CDCP. In each case a maximum
input/output sequence length of 1024 is kept. We
apply a learning rate of 0.0005 with the AdamW
optimizer. All experiments are conducted on a
single A100 GPU over 10000 steps, with check-
points taken every 400 steps. The results are av-
eraged over three independent runs. For the XL

and XXL variants, we incorporate QLoRA adapters
(Dettmers et al., 2024) for parameter-efficient fine-
tuning. Further details on the QLoRA hyperparam-
eters are given in Appendix A.

4.3 Evaluation

Following the prior studies (Bao et al., 2021; Liu
et al., 2023), we evaluate the performance of the
proposed method using the Macro-Averaged F1
score for both ACC and ARI tasks. We consider
only exact matches of AC spans as correct, dis-
regarding any partial matches to maintain strict
alignment with previous benchmarks.

4.4 Baselines

We consider the following SoTA joint models as
baselines: Joint-ILP (Stab and Gurevych, 2017),
St-SVM (Niculae et al., 2017), Joint-Ptr-Net
(Potash et al., 2017), Deep-Res-LG (Galassi et al.,
2018), Span-LSTM (Kuribayashi et al., 2019),
TSP-PLBA (Morio et al., 2020), BERT-Trans
(Bao et al., 2021), SB-Parser (Morio et al., 2022),
MRC-GEN (Liu et al., 2023), and PITA (Sun et al.,
2024). Details of these baselines are described in
Appendix C.

5 Results and Discussion

5.1 Comparison with Baseline Models

Table 1 compares the proposed method with the
SoTA baselines. Our approach consistently outper-
forms all existing baselines by a significant margin
in both ACC and ARI tasks, achieving new SoTA
results across all datasets. While most baselines
perform well on the tree-structured AAE dataset,
they struggle with the non-tree-structured CDCP
dataset, particularly for the ARI task. The mix of
transitive and non-transitive relations in CDCP pose
challenges that our method handles relatively bet-
ter. In this dataset, the proposed method marginally
outperforms the latest baseline by 0.6% F1 score
for the ACC task with an impressive relative im-
provement of F1 score of 9% for the challenging
ARI task. Such improvements indicate the strength
of our method in managing complex relationships.
In the case of the tree-structured AAE dataset, it
gave similar F1 scores or marginal improvement
over the compared baselines for both the ACC and
ARI tasks. This shows that the proposed approach
works equally well for both tree-structured and
non-tree-structured data. For the AAE-FG dataset,
we benchmark our results against the SB-Parser
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Error Type Related AC Spans Extracted Key Phrases Correct Key Phrases
Generated New
Words

AC1: The better a person feels, the better his brain works.
AC2: Putting physical activities in early steps of human development would
finally lead to mentally healthy society.

(Better feelings, Mentally
healthy society)

(Better his brain works,
Mentally healthy society)

Smaller or
Larger Phrases

AC1: The more cars and motorbikes are on roads, the more seriously the
ozone layer is damaged.
AC2: This is sure to lead to more carbon emitted into the atmosphere, which
can cause skin cancer.

(Cars, Carbon emitted) (Cars and motorbikes,
Carbon emitted)

Unrelated
Phrases

AC1: Roommate turns down the music or television volume at night time.
AC2: Consideration is always important in relationship.

(Nighttime, Relationship) (Roommate, Relation-
ship)

Table 2: Examples of different erroneous extraction of related key phrases using Meta-LLaMa-3.1-instruct.

Corpus Variant Macro-F1
ACC ARI

CDCP
With KP 77.88 35.28
Without KP 80.58 (+2.7) 34.27 (-1.01)

AAE-FG
With KP 71.39 66.13
Without KP 69.83 (-1.56) 64.07 (-2.06)

AAE
With KP 87.44 69.26
Without KP 87.20 (-0.24) 68.02 (-1.24)

Table 3: Experimental results of "with" or "without"
the related key phrases (KP) in the target ANL with
Flan-T5-Base. Best scores are marked in bold.

baseline. Considering the original data content of
AAE is classified into nine AC classes in AAE-FG as
compared to three AC classes in the original one,
this baseline struggles to classify those fine-grained
AC classes correctly, resulting in poor performance
in the ACC task. In contrast, our method achieves
a significant 17.38% F1 score gain in ACC and
a 1.65% F1 score improvement in ARI as com-
pared to the baseline. Such strong performance
of our ANL-based method across diverse datasets,
whether tree-structured or not, highlights its gener-
alizability to manage complex argumentative struc-
tures, all while achieving SoTA results.

5.2 Impact of Related Key Phrases

To assess the contribution of the related key phrases,
we perform the proposed task without using key
phrase information in the output ANL. For this, we
use the Flan-T5-Base model. As shown in Table
3, omitting key phrases leads to a decline in per-
formance in most of the cases across all datasets.
This highlights the positive impact of key phrase
information within the ANL in improving both
ACC and ARI tasks. By generating this informa-
tion, the model gains an internal understanding
of the phrase-level AR connections, enabling it
to better distinguish between related ACs. As a
result, the likelihood of incorrectly associating non-
related ACs is reduced, which significantly boosts
ARI performance. Noticeably, the drop in ARI
performance is more substantial than in ACC for

all datasets. However, there is an exception: the
CDCP dataset actually performs better without key
phrases in the ACC task. This exception could
be due to 207 out of 731 paragraphs lacking ARs,
meaning a significant portion of the target ANL
lacks key phrase information. This increases the
difficulty for the model to generalize across both
types of ANL sequences in the same training set:
those that contain key phrases and those that do
not. This complex distribution negatively impacts
the ACC task performance when the key phrase
information is on.

5.3 Human Evaluation of the Extracted Key
Phrases

Since standard AM benchmarks lack explicit an-
notations for related key phrases, we conducted a
manual evaluation. Two annotators (authors of this
paper) assessed 10% of randomly selected related
ACs and their key phrases from the AAE and CDCP
training sets, classifying them as Correct or Wrong.
Out of 506 key phrases analyzed, 451 and 442 were
correct, yielding an average accuracy of 88.24%.
The main error types are summarized in Table 2.
Generated New Words: The model generates a
new phrase instead of extracting it directly from
the span, resulting in a mismatch with the original
span words. This error is the most frequent one.
Smaller or Larger Phrases: The extracted spans
are either too short or too long. Very few instances
of this type of error were found.
Unrelated Phrases: The extracted phrases are not
semantically related to the corresponding ACs.

We relied entirely on the capabilities of the LLM
for related key phrase extraction tasks and did not
manually filter the erroneous extractions, leaving
them unchanged as they were utilized during train-
ing for the proposed generation task. Despite us-
ing these silver-standard key phrases, we achieved
SoTA results, highlighting the strength of the pro-
posed method even when the utilized key phrases
are partially noisy.
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KP Corpus Variants Macro-F1
Status ACC ARI

Joint 77.88 35.28
CDCP ACC Only 79.71 (+1.83) −

ARI Only − 33.73 (-1.55)
Joint 71.39 66.13

with KP AAE-FG ACC Only 70.29 (-1.1) −
ARI Only − 65.06 (-1.07)
Joint 87.44 69.26

AAE ACC Only 86.75 (-0.69) −
ARI Only − 65.06 (-4.2)
Joint 80.58 34.27

CDCP ACC Only 79.83 (-0.75) −
ARI Only − 33.22 (-1.05)
Joint 69.83 64.07

w/o KP AAE-FG ACC Only 69.83 −
ARI Only − 66.12 (+2.05)
Joint 87.20 68.02

AAE ACC Only 85.55 (-1.65) −
ARI Only − 66.12 (-1.9)

Table 4: Joint Vs. Standalone formulation of AM tasks
including "with" and "without" Key Phrases (KP) with
Flan-T5-Base. Best scores are in bold.

5.4 Joint vs. Standalone Formulation

To evaluate the importance of solving ACC and
ARI tasks together rather than handling them in-
dependently, we propose two standalone task for-
mulations by modifying the original ANL: (i) ACC
Only, which focuses solely on the ACC task; (ii)
ARI Only, which handles only the ARI task. In
the ACC Only formulation, we remove the related
AC span wcsp:c

e
p

from the original augmented label
[wcsq :c

e
q
|cq |wcsp:c

e
p
], creating a new augmented label

[wcsq :c
e
q
| cq ] in the target ANL sequence. In the ARI

Only formulation, the AC type cq is removed to
make a new augmented label as [wcsq :c

e
q
| wcsp:c

e
p
],

which only contains the two related AC spans with-
out their class labels. The input ANL format re-
mains unchanged for both formulations. We formu-
late the target ANL in both with and without key
phrase information settings.

Table 4 shows the joint setting outperforms the
standalone formulations in nearly all cases. This
demonstrates the advantage of joint modeling over
treating the AM tasks independently. The most
significant drop of 4.2% F1 scores was observed
for the ARI task on AAE while using key phrases.
Performance drop is also observed for the ACC
task, with a maximum drop of 1.65% F1 scores
on AAE. The joint formulation benefits from the
mutual feature sharing across different tasks for-
mulated in the same target ANL, uplifting each
others’ performances. In contrast, the standalone
formulations miss out on these advantages, lead-
ing to lower performance. However, we observe

Corpus Variant Macro-F1
ACC ARI

CDCP
No Noise 77.88 35.28
Noise-Inf 75.11 (-2.77) 28.29 (-6.99)
Noise-FT 77.65 (-0.23) 36.81 (+1.53)

AAE-FG
No Noise 71.39 66.13
Noise-Inf 70.81 (-0.58) 60.89 (-5.24)
Noise-FT 71.48 (+0.09) 64.02 (-2.11)

AAE
No Noise 87.44 69.26
Noise-Inf 86.14 (-1.3) 65.09 (-4.17)
Noise-FT 87.50 (+0.06) 68.02 (-1.24)

Table 5: Performance comparison under different noise
setups using Flan-T5-Base. No Noise refers to training
and inference without noise, Noise-Inf adds noise only
during inference, and Noise-FT includes noise in both
training and inference.

two exceptions, one each in CDCP and AAE-FG. For
the CDCP, the standalone model using key phrases
performs better on the ACC task. This is likely
due to the fact that 207 out of 731 paragraphs lack
ARs in the joint formulation, complicating gener-
alization across ANL sequences with and without
ARs. In contrast, the exclusion of ARs in the stan-
dalone formulation enhances the performance in
this dataset. In the AAE-FG dataset, the standalone
ARI task yields better results than the joint formu-
lation with muted key phrase information. The
higher number of AC types in this dataset may lead
to increased number of misclassified ACs, result-
ing in error propagation with inaccurate relation
identification in the joint formulation. However, by
removing AC-type information in the standalone
ARI task, the model improves performance by re-
ducing the chance of error propagation.

5.5 Noise Adaptability Study

This analysis aims to evaluate the robustness of our
proposed method to noise by introducing noisy sen-
tences into the input ANL. These noisy sentences
are unrelated to the paragraph’s content, often pre-
senting an opposing viewpoint or being distinctly
off-topic. We use few-shot prompting contain-
ing manually created noise with Meta-LLaMa-3.1-
instruct to generate noisy sentences (See Appendix
D). On average, the AAE and CDCP datasets con-
tain 72.35 and 111.2 tokens per paragraph, respec-
tively. Inserting a single noisy sentence in a para-
graph adds roughly 18.57% noisy tokens to AAE
and 17.2% to CDCP. For this significant amount of
noise injection, we define two experimental setups:
(I) Train the model with noise and evaluate with
noisy inputs. (II) Train the model without noise
and evaluate with noisy inputs. Table 5 presents the
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Corpus Model Macro-F1 AVG
ACC ARI

CDCP

Flan-T5 (Fine-Tuned) 80.58 34.27 38.51
LLaMa (5-shot) 39.96 8.50 16.41
LLaMa (10-shot) 52.95 8.88 20.82
LLaMa (20-shot) 52.40 7.64 20.29

AAE-FG

Flan-T5 (Fine-Tuned) 69.83 64.07 44.88
LLaMa (5-shot) 25.73 38.75 21.76
LLaMa (10-shot) 37.61 40.95 26.40
LLaMa (20-shot) 39.52 43.95 28.08

AAE

Flan-T5 (Fine-Tuned) 87.20 68.02 51.97
LLaMa (5-shot) 43.56 19.80 21.37
LLaMa (10-shot) 42.53 27.36 23.51
LLaMa (20-shot) 42.46 39.59 27.62

Table 6: Performance comparison of Few-shot Meta-
LLaMa-3.1-instruct Vs. Fine-tuned Flan-T5-Base.

Dataset Model 2-length
(%)

3-length
(%)

4-length
(%)

AVG
(%)

Base 6.52 3.57 0.00 3.36
CDCP XL 26.09 25.00 33.33 28.81

XXL 10.87 7.14 0.00 6.67
Base 38.44 27.06 0.00 21.83

AAE-FG XL 46.26 35.29 6.25 29.93
XXL 43.54 35.88 18.75 32.06
Base 39.46 30.00 18.75 29.40

AAE XL 50.68 40.59 6.25 32.51
XXL 43.88 33.53 12.50 29.97

Table 7: Performance analysis of n-length chains in
terms of Accuracy(%), where n = {2, 3, 4}.

results under these conditions. The performance on
the ACC task remains notably stable across datasets
in both setups, highlighting the resilience of our
method in noisy environments. However, for the
ARI task, there is a significant drop in performance
when noise is introduced during inference with-
out prior exposure in training. When the model is
trained with noise, the drop is notably smaller.

5.6 Few-shot Decoder-based LLM vs
Fine-tuned Flan-T5-Base

Table 6 presents a comparison between the per-
formance of 5-shot, 10-shot, and 20-shot experi-
ments using the SoTA decoder-based LLM Meta-
LLaMa-3.1-instruct and the fine-tuned Flan-T5-
Base, both evaluated without key-phrase informa-
tion. Although the few-shot performance improves
as the number of examples increases, it consis-
tently falls short of the fine-tuning approach, which
outperforms it by a substantial margin across all
datasets. It is worth noting that we did not conduct
an extensive search for the optimal prompt in the
AM task, as determining the most effective prompt
can be quite challenging. Instead, we use the same
input-output combination employed in the text-to-
text generation of the proposed model to construct
the few-shot prompts.

5.7 Argumentative Structural Analysis

We perform an in-depth performance study of our
proposed approach in three important argumenta-
tive structural aspects as follows:

(I) Analysing the Relation Chains: Consider
an argumentative paragraph containing multiple
ACs, denoted as C1, C2, C3, C4, and C5. These
ACs may form a sequential chain such as C1 →
C2 → C3 → C4 → C5, with C5 being the root
AC. Each consecutive AC is related to the previ-
ous one, thereby forming a 4-length chain, as four
relations connect these five ACs. Several such n-
length chains are present in a paragraph in both AAE
and CDCP, where n = {2, 3, 4}. In such configura-
tions, relation identification between two closely
connected ACs becomes challenging. Because,
given that all ACs in the chain are (in-)directly
related through the root, there is a high likelihood
of incorrectly identifying relations, such as predict-
ing C3 → C5 instead of the correct C4 → C5.
Table 7 reports the performance of different length
chains across different datasets with all three model
variants. Considering the inherent difficulties, the
results are promising in both tree and non-tree-
structured datasets. As the chain length increases,
the larger models mostly show better capability in
detecting these chains correctly. Notably, we con-
sider the counts of smaller sub-chains that are part
of the bigger chains in our analysis.

(II) Capturing Long-Range Relations: In an
argumentative paragraph, some ACs are related de-
spite being far apart. For instance, one AC may
appear at the start, while the other is found near
the end. We compare the long-range relation iden-
tification performance based on the number of in-
termediate ACs between the linked components.
Figure 3 shows a heatmap comparing model perfor-
mance across varying distances. For both versions
of the AAE dataset, most model variants excel at
capturing these distant connections. However, in
CDCP, the Base model struggles, and the XL model
outperforms the XXL variant. Short-range relations
with few or no intermediate ACs are more preva-
lent across the datasets, making them easier for
most models to identify. Interestingly, the strong
performance on long-range connections, despite
their presence in lower numbers across datasets,
showcases the effectiveness of our approach.

(III) Performance of Transitive Relations:
The inherent challenge of the ARI task for non-
tree-structured arguments lies in the presence of
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Figure 3: Performance comparison of the ARI task in capturing long-range relations, based on the distance between
related ACs, measured by the number of components separating them. The X-axis represents different Flan-T5
variants (Base, XL, XXL), while the Y-axis indicates the distance.

Ground Truth
ANL

That is not to say, however, that advertisements have no downsides. Of course, [ the advertising expenses lead to a higher product
price and some of them express fake information, creating information asymmetry between consumers and companies | Claim ].
Yet, [ its merits still outweigh these downsides | Premise | the advertising expenses lead to a higher product price and some of
them express fake information, creating information asymmetry between consumers and companies ]. Strongly Related Key
Phrases: (Merits, Advertising expenses)

Flan-T5-Base
generated ANL

That is not to say, however, that advertisements have no downsides. Of course, [ the advertising expenses lead to a higher product
price and some of them express fake information, creating information asymmetry between consumers and companies | Claim ].
Yet, [ its merits still outweigh these downsides | MajorClaim ].

Flan-T5-XXL
generated ANL

That is not to say, however, that advertisements have no downsides. Of course, [ the advertising expenses lead to a higher product
price and some of them express fake information, creating information asymmetry between consumers and companies | Claim ].
Yet, [ its merits still outweigh these downsides | Premise | the advertising expenses lead to a higher product price and some of
them express fake information, creating information asymmetry between consumers and companies ]. Strongly Related Key
Phrases: (Merits, Advertisement expense)

Table 8: Errors where missing key phrases in the generated sequence cause incorrect AC classification with
Flan-T5-base, while the larger Flan-T5-XXL generates the correct ANL sequence. Incorrect generations are marked
in red, and correct ones in green.

additional transitive relations. We evaluate the per-
formance of identifying these transitive relations
on the non-tree-structured CDCP corpus across dif-
ferent model variants. The base variant identified 9
out of 31 ground truth transitive relations, achiev-
ing an accuracy of 29.03%. The XL variant per-
formed better, correctly identifying 14 out of 31
transitive relations with an accuracy of 45.16%.
The XXL variant exhibited the best results, detect-
ing 17 out of 31 transitive relations, yielding an
accuracy of 54.84%. These findings highlight the
strength of our method in handling complex non-
tree argumentative structures.

5.8 Error Analysis

In all datasets, there are a few instances where
the Base model either fails to capture or mistak-
enly captures relational dependencies. One such
instance is shown in Table 8. This issue arises due
to the erroneous generation or missing key phrases.
In contrast, the larger XXL model effectively gen-
erates correct key phrases, enabling accurate iden-
tification of AC types and their spans, thus reduc-
ing errors. Also, a small number of cases exhibit
unclosed brackets in the augmented labels in the

generated ANL sequences. Since these errors are
rare, we choose not to address them and retain the
generated output as it is.

6 Conclusion

This paper introduces an ANL-based generative
framework for jointly modeling ACC and ARI
tasks in AM. By utilizing few-shot LLM prompting
to extract related key phrases between AC pairs, we
enrich the output ANL to improve the capability
of capturing complex relations. With extensive ex-
periments across multiple datasets, the proposed
approach achieves SoTA results and handles both
tree- and non-tree-structured data with ease, demon-
strating strength and generalizability. Moreover, it
handles noise effectively and is capable of captur-
ing longer relation chains, long-range relational
dependencies and transitive relations.

7 Limitations and Future Scope

Despite the strong performance of our ANL-based
method for AM tasks, several limitations remain.
First, the accuracy of the extracted key phrases is
closely tied to the quality of the prompts and the
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performance of the LLM. As the LLM’s output
is not fully predictable, it can occasionally gener-
ate irrelevant or incomplete key phrases. These
are discarded, and we do not attempt further ex-
traction from these instances, leaving them empty
during the construction of the proposed target ANL.
Second, the method’s reliance on key phrases in-
troduces variability in performance, particularly
in datasets like CDCP, where the inclusion of key
phrases sometimes leads to performance drops. A
more dynamic strategy for key phrase integration,
tailored to dataset characteristics, could improve
results. Another limitation is the challenge of han-
dling transitive relations in non-tree-structured ar-
guments. While our method performs well, the
accuracy for detecting transitive links remains mod-
erate (up to 54.84%), indicating room for improve-
ment in more complex, non-hierarchical structures.
Finally, the joint modeling of ACC and ARI tasks
can lead to error propagation, especially in datasets
with a large number of AC types, such as AAE-FG,
where mistakes in one task may negatively impact
the other. Refining error mitigation strategies could
help reduce these issues. Addressing these limita-
tions in future work will enhance the robustness
and adaptability of the proposed method further.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback. This work was supported in part
by the Ministry of Human Resource Development
(MHRD), Govt. of India, for financial assistance.
This work is also supported by the IITG Tech-
nology Innovation and Development Foundation
(TI&DF) as a part of the National Mission on
Interdisciplinary Cyber-Physical Systems with fi-
nancial assistance from the Department of Sci-
ence and Technology, India, through grant number
DST/NMICPS/TIH12/IITG/2020.

References
Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason

Krone, and Bing Xiang. 2020. Augmented Natu-
ral Language for Generative Sequence Labeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, pages 375–
385.

Jianzhu Bao, Chuang Fan, Jipeng Wu, Yixue Dang, Ji-
achen Du, and Ruifeng Xu. 2021. A neural transition-
based model for argumentation mining. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6354–6364, Online.
Association for Computational Linguistics.

Tuhin Chakrabarty, Aadit Trivedi, and Smaranda
Muresan. 2021. Implicit premise generation with
discourse-aware commonsense knowledge models.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6247–6252, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz,
Ronan Le Bras, Maxwell Forbes, and Yejin Choi.
2021. Paragraph-level commonsense transformers
with recurrent memory. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 12857–12865.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2018.
Argumentative link prediction using residual net-
works and multi-objective learning. In Proceedings
of the 5th Workshop on Argument Mining, pages
1–10, Brussels, Belgium. Association for Compu-
tational Linguistics.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2020. Comet-atomic 2020: On symbolic
and neural commonsense knowledge graphs. In AAAI
Conference on Artificial Intelligence.

Guochao Jiang, Ziqin Luo, Yuchen Shi, Dixuan Wang,
Jiaqing Liang, and Deqing Yang. 2024. Toner: Type-
oriented named entity recognition with generative
language model. In International Conference on
Language Resources and Evaluation.

Masayuki Kawarada, Tsutomu Hirao, Wataru Uchida,
and Masaaki Nagata. 2024. Argument mining as a
text-to-text generation task. In Proceedings of the
18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2002–2014, St. Julian’s, Malta.
Association for Computational Linguistics.

Zixuan Ke, Winston Carlile, Nishant Gurrapadi, and
Vincent Ng. 2018. Learning to give feedback: Mod-
eling attributes affecting argument persuasiveness
in student essays. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 4130–4136. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

5783

https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2021.acl-long.497
https://doi.org/10.18653/v1/2021.acl-long.497
https://doi.org/10.18653/v1/2021.emnlp-main.504
https://doi.org/10.18653/v1/2021.emnlp-main.504
https://doi.org/10.18653/v1/W18-5201
https://doi.org/10.18653/v1/W18-5201
https://api.semanticscholar.org/CorpusID:222310337
https://api.semanticscholar.org/CorpusID:222310337
https://api.semanticscholar.org/CorpusID:269148849
https://api.semanticscholar.org/CorpusID:269148849
https://api.semanticscholar.org/CorpusID:269148849
https://aclanthology.org/2024.eacl-long.121
https://aclanthology.org/2024.eacl-long.121
https://doi.org/10.24963/ijcai.2018/574
https://doi.org/10.24963/ijcai.2018/574
https://doi.org/10.24963/ijcai.2018/574


Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Ken-
taro Inui. 2019. An empirical study of span rep-
resentations in argumentation structure parsing. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4691–
4698, Florence, Italy. Association for Computational
Linguistics.

Boyang Liu, Viktor Schlegel, Riza Batista-Navarro, and
Sophia Ananiadou. 2023. Argument mining as a
multi-hop generative machine reading comprehen-
sion task. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 10846–
10858, Singapore. Association for Computational
Linguistics.

Tianyu Liu, Yuchen Jiang, Nicholas Monath, Ryan Cot-
terell, and Mrinmaya Sachan. 2022. Autoregressive
structured prediction with language models. In Con-
ference on Empirical Methods in Natural Language
Processing, pages 993–1005.

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare
applications. In European Conference on Artificial
Intelligence.

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, Yuta
Koreeda, and Kohsuke Yanai. 2020. Towards bet-
ter non-tree argument mining: Proposition-level bi-
affine parsing with task-specific parameterization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3259–
3266, Online. Association for Computational Lin-
guistics.

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, and
Kohsuke Yanai. 2022. End-to-end argument min-
ing with cross-corpora multi-task learning. Transac-
tions of the Association for Computational Linguis-
tics, 10:639–658.

Vlad Niculae, Joonsuk Park, and Claire Cardie. 2017.
Argument Mining with Structured SVMs and RNNs.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 985–995.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai,
Cícero Nogueira dos Santos, Bing Xiang, and Ste-
fano Soatto. 2021. Structured prediction as transla-
tion between augmented natural languages. ArXiv,
abs/2101.05779.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. Here’s my point: Joint pointer architecture
for argument mining. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1364–1373, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Ameer Saadat-Yazdi, Jeff Z. Pan, and Nadin Kokciyan.
2023. Uncovering implicit inferences for improved
relational argument mining. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2484–
2495, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Robin Schaefer, René Knaebel, and Manfred Stede.
2023. Towards fine-grained argumentation strategy
analysis in persuasive essays. In Proceedings of the
10th Workshop on Argument Mining, Singapore.

Christian Stab and Iryna Gurevych. 2017. Parsing Ar-
gumentation Structures in Persuasive Essays. Com-
putational Linguistics, 43(3):619–659.

Yang Sun, Bin Liang, Jianzhu Bao, Min Yang, and
Ruifeng Xu. 2022. Probing structural knowledge
from pre-trained language model for argumentation
relation classification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
pages 3605–3615, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yang Sun, Muyi Wang, Jianzhu Bao, Bin Liang, Xi-
aoyan Zhao, Caihua Yang, Min Yang, and Ruifeng
Xu. 2024. PITA: Prompting task interaction for ar-
gumentation mining. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5036–
5049, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Dietrich Trautmann. 2020. Aspect-based argument min-
ing. In Proceedings of the 7th Workshop on Argu-
ment Mining, pages 41–52, Online. Association for
Computational Linguistics.

Somin Wadhwa, Silvio Amir, and Byron Wallace. 2023.
Revisiting relation extraction in the era of large lan-
guage models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15566–
15589, Toronto, Canada. Association for Computa-
tional Linguistics.

Vern R. Walker, Dina Foerster, Julia Monica Ponce, and
Matthew Rosen. 2018. Evidence types, credibility
factors, and patterns or soft rules for weighing con-
flicting evidence: Argument mining in the context
of legal rules governing evidence assessment. In
Proceedings of the 5th Workshop on Argument Min-
ing, pages 68–78, Brussels, Belgium. Association for
Computational Linguistics.

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and
Wai Lam. 2021. Towards Generative Aspect-Based
Sentiment Analysis. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 504–510.

5784

https://doi.org/10.18653/v1/P19-1464
https://doi.org/10.18653/v1/P19-1464
https://doi.org/10.18653/v1/2023.findings-emnlp.724
https://doi.org/10.18653/v1/2023.findings-emnlp.724
https://doi.org/10.18653/v1/2023.findings-emnlp.724
https://api.semanticscholar.org/CorpusID:253116993
https://api.semanticscholar.org/CorpusID:253116993
https://api.semanticscholar.org/CorpusID:221713735
https://api.semanticscholar.org/CorpusID:221713735
https://doi.org/10.18653/v1/2020.acl-main.298
https://doi.org/10.18653/v1/2020.acl-main.298
https://doi.org/10.18653/v1/2020.acl-main.298
https://api.semanticscholar.org/CorpusID:248835546
https://api.semanticscholar.org/CorpusID:248835546
https://doi.org/10.18653/v1/P17-1091
https://api.semanticscholar.org/CorpusID:231602921
https://api.semanticscholar.org/CorpusID:231602921
https://doi.org/10.18653/v1/D17-1143
https://doi.org/10.18653/v1/D17-1143
https://doi.org/10.18653/v1/2023.eacl-main.182
https://doi.org/10.18653/v1/2023.eacl-main.182
https://aclanthology.org/2023.argmining-1.8
https://aclanthology.org/2023.argmining-1.8
https://doi.org/10.1162/COLI_a_00295
https://doi.org/10.1162/COLI_a_00295
https://doi.org/10.18653/v1/2022.findings-emnlp.264
https://doi.org/10.18653/v1/2022.findings-emnlp.264
https://doi.org/10.18653/v1/2022.findings-emnlp.264
https://doi.org/10.18653/v1/2024.acl-long.275
https://doi.org/10.18653/v1/2024.acl-long.275
https://aclanthology.org/2020.argmining-1.5
https://aclanthology.org/2020.argmining-1.5
https://doi.org/10.18653/v1/2023.acl-long.868
https://doi.org/10.18653/v1/2023.acl-long.868
https://doi.org/10.18653/v1/W18-5209
https://doi.org/10.18653/v1/W18-5209
https://doi.org/10.18653/v1/W18-5209
https://doi.org/10.18653/v1/W18-5209
https://doi.org/10.18653/v1/2021.acl-short.64
https://doi.org/10.18653/v1/2021.acl-short.64


A Hyperparameters

We use the following hyperparameters setting for
fine-tuning with QLoRA:

Parameter Value
r 16
lora alpha 32
lora dropout 0.05
bias none
task type SEQ_2_SEQ_LM
target modules q, v, k, o, wo, wi0, wi1
load_in_4bit True
bnb_4bit_quant_type nf4
bnb_4bit_use_double_quant True
bnb_4bit_compute_dtype torch.bfloat16

Table 9: Hyperparameter setting of QLoRA

B Dataset Description

We conduct experiments on three standard AM
datasets that are structurally distinct. A brief de-
scription of these datasets is given below.

Argument Annotated Essay (AAE) (Stab and
Gurevych, 2017): This dataset comprises a tree-
structured annotation scheme, where each AC con-
sists of at most one outgoing AR. It contains 402
student essays annotated at the segment (span)
level. Each essay is organized into several para-
graphs. In total, there are 1,833 paragraphs contain-
ing three types of ACs: Claim, MajorClaim, and
Premise, resulting in 6,089 ACs and 3,832 ARs.

Fine-Grained Argument Annotated Essay
(AAE-FG) (Schaefer et al., 2023): It is a more
detailed annotation of the AAE dataset, where the
ACs are categorized in a fine-grained manner. The
Major Claim and Claim categories have been sub-
divided into Fact, Value, and Policy. Similarly, the
Premise category has been further refined into Com-
mon Ground, Testimony, Hypothetical Instance,
Statistics, Real Example, and Others. Conse-
quently, there are now nine AC types in total: Fact,
Value, Policy, Common Ground, Testimony, Hy-
pothetical Instance, Statistics, Real Example, and
Others.

Consumer Debt Collection Practices (CDCP)
(Niculae et al., 2017): This dataset is annotated
with a non-tree argumentation scheme, where an
AC might contain more than one outgoing AR. It
contains 731 user comments from the Consumer
Financial Protection Bureau (CFPB) website. It
includes five AC types: Fact, Testimony, Reference,
Policy, and Value with two AR types: Reason and
Evidence. A total of 4931 ACs are present in this
dataset, while the number of ARs is 1220.

C Details of Baselines

Joint-ILP (Stab and Gurevych, 2017): An argu-
mentation structure parser that performs joint op-
timization of ACs and ARs using Integer Linear
Programming (ILP).
St-SVM (Niculae et al., 2017): A structured SVM
that models AM as an inference problem in both
full and strict factor graph.
Joint-Ptr-Net (Potash et al., 2017): This joint
model leverages a Pointer Network architecture
to simultaneously address ACC and ARI tasks.
Deep-Res-LG (Galassi et al., 2018): It utilizes a
residual network with link-guided training.
Span-LSTM (Kuribayashi et al., 2019): An LSTM-
based span representation with argumentative mark-
ers for improved AC and AR processing.
TSP-PLBA (Morio et al., 2020): It employs task-
specific parameterization for encoding ACs and a
biaffine attention module for ARs.
BERT-Trans (Bao et al., 2021): A neural model
that employs a transition-based approach.
SB-Parser (Morio et al., 2022): Latest dependency
parsing approach using Longformer combined with
a Span-Biaffine(SB) architecture for sub-task infor-
mation sharing.
MRC-GEN (Liu et al., 2023): A multi-hop gen-
erative formulation converting the AM tasks into
machine reading comprehension.
PITA (Sun et al., 2024): A generative multitask
formulation with prompt-tuning for efficient task
interactions.

D Few-shot Prompt Template for Noise
Generation

We present the following instance of a few-shot
prompt to generate noisy sentences. In this prompt,
the noisy sentences are carefully crafted by hand.
Input Prompt:
Given an argumentative paragraph,

generate a noisy sentence in 5-20 words
only, which contradicts this paragraph.
Here are the following examples for your
reference.
Paragraph: Technology has brought

significant advantages to education. With
the help of modern gadgets and the
internet, students now have access to
unlimited resources that can enhance
their learning experience. Online
courses and educational apps provide
flexibility, allowing students to study

5785



at their own pace and revisit difficult
topics. Technology also encourages
collaboration through platforms like
Google Classroom, where students can
work together on assignments remotely.
Furthermore, interactive learning tools
such as simulations and educational games
make complex subjects more understandable
and engaging. As technology continues to
advance, its role in education will only
grow, making learning more accessible and
effective.

Noisy Sentence: Technology has no
positive impact on education or learning.

Paragraph: Exercise is essential for
maintaining good health. Regular physical
activity helps to reduce the risk of
many chronic diseases, including heart
disease, diabetes, and obesity. It
also improves mental health by reducing
symptoms of depression and anxiety while
boosting overall mood. Moreover, exercise
promotes better sleep and increases
energy levels, making daily tasks easier
to manage. Whether it’s running,
swimming, or practicing yoga, staying
active is a key factor in living a long and
healthy life. Everyone should incorporate
at least 30 minutes of exercise into their
daily routine for optimal well-being.

Noisy Sentence: Exercise is unnecessary
and offers no health benefits at all.

Paragraph: Sustainable energy is the
key to a better future. With climate
change threatening the planet, we must
transition from fossil fuels to renewable
energy sources like solar, wind, and
hydropower. These alternatives produce
far fewer greenhouse gases, reducing
our carbon footprint and helping to
combat global warming. Additionally,
sustainable energy is cost-effective in
the long run, as renewable resources
are abundant and will not run out.
By investing in renewable energy
infrastructure today, we can create a
cleaner, healthier environment for future
generations while also fostering economic
growth in green industries.

Noisy Sentence: Sustainable energy has
no effect on the environment and isn’t

worth pursuing.

Paragraph: Reading books is one of the
best ways to develop the mind and enhance
knowledge. Books offer a wealth of
information, provide deep insights, and
stimulate critical thinking. Unlike short
online articles or videos, books allow for
a comprehensive exploration of subjects,
fostering a greater understanding of
various topics. Furthermore, reading
improves focus, concentration, and
vocabulary, all of which contribute to
better communication skills. Whether
fiction or non-fiction, books open up
new worlds and perspectives, making
them indispensable tools for intellectual
growth and personal development.

Noisy Sentence: Reading books wastes
time and doesn’t improve knowledge or
skills.

Paragraph: Healthy eating is crucial
for maintaining a balanced lifestyle
and preventing disease. A diet rich
in fruits, vegetables, whole grains,
and lean proteins provides the body
with essential nutrients that support
overall well-being. Proper nutrition
strengthens the immune system, boosts
energy levels, and reduces the risk of
chronic conditions such as heart disease,
diabetes, and obesity. Moreover, healthy
eating improves mental clarity and mood,
promoting both physical and psychological
health. By making mindful food choices,
we can ensure a healthier, longer life.

Noisy Sentence: Healthy eating has no
effect on health and is unnecessary for
well-being.

#### Real Example ####

Paragraph: In addition, being free
to stay away from classes improves
flexibility and therefore quality of
student life. Sometimes the wild party on
Thursday night is too good to end already
at midnight only because of a lecture on
Friday in the morning. With a liberal
policy students are able to postpone the
learning to the afternoon which gives
a feeling of freedom and improves time
efficiency. Research has shown that the
more satisfied the students are with those

5786



life aspects, the better they perform in
academic areas.
Noisy Sentence:
Note: Give the sentence only without

any prefix. No code please.
Output:
Being required to attend classes

actually leads to better grades and higher
satisfaction rates among students.
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