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Abstract

Multimodal content generation has become an
area of considerable interest. However, existing
methods are hindered by limitations related to
model constraints and training strategies: (1)
Most current approaches rely on training mod-
els from scratch, resulting in inefficient train-
ing processes when extending these models;
(2) There is a lack of constraints on adjacent
steps within the models, leading to slow sam-
pling and poor generation stability across vari-
ous sampling methods. To address the issues,
we introduce Multimodal Generation with Con-
sistency Transferring (MGCT). The method in-
troduces two key improvements: (1) A Model
Consistency Transferring (MCT) strategy to
acquire low-cost prior knowledge, increasing
training efficiency and avoiding error accumu-
lation; (2) A Layer Consistency Transferring
(LCT) between adjacent steps, enhancing de-
noising capabilities at each step and improving
model stability across various generation meth-
ods. These strategies ensure the consistency of
jointly generated multimodal content and im-
proving training efficiency. Experiments show
that the algorithm enhances the model’s ability
to capture actions and depict backgrounds more
effectively. In both the AIST++ and Landscape
datasets, it improves video generation speed
by approximately 40% and quality by about
39.3%, while also achieving a slight 3% im-
provement in audio quality over the baseline.

1 Introduction

In recent years, content generation in the fields
of image ((Rombach et al., 2022; Saharia et al.,
2022a; Ramesh et al., 2022; Chang et al., 2023)),
video ((Blattmann et al., 2023; Singer et al., 2022;
Guo et al., 2019; Wang et al., 2018; Hao et al.,
2022)), and audio ((Huang et al., 2023)) has gar-
nered significant attention from both the global
academic community and industry. However, most
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image and video generation methods are limited
to unimodal content production. Existing multi-
modal approaches ((Ruan et al., 2023; Tang et al.,
2024; Wang et al., 2019)) for generating audio and
video face several challenges, including high train-
ing complexity, significant costs, heavy reliance on
dataset quality, and inadequate emphasis on model
constraints and training strategies.

Using diffusion models ((Ho et al., 2020; Sohl-
Dickstein et al., 2015)), significant progress has
been made in image generation, video generation,
and multimodal generation. Some recent methods
((Ruan et al., 2023)) have successfully achieved
joint audio-video generation. However, unlike
image and short video generation, joint audio-
video generation presents higher complexity and
demands more sampling steps, resulting in longer
sampling times. However, continuing to use the
common approach of training multimodal genera-
tion models from scratch to address the aforemen-
tioned issues may lead to error accumulation and
inefficiency. To mitigate this issue, we employ
Model Consistency Transferring (MCT) strategy,
which leverages the initial training methods of MM-
Diffusion (Ruan et al., 2023). This allows for the
rapid acquisition of preliminary knowledge about
the generation scene at a low cost, significantly
improving training efficiency.

Furthermore, it has been observed that maintain-
ing the quality and stability of generated samples
across different sampling methods, such as DDPM
((Ho et al., 2020)) and DPM-Solver ((Lu et al.,
2022)), is challenging with existing joint audio-
video generation techniques. These current meth-
ods often fail to consider the relationships between
adjacent steps in diffusion models, suggesting that
there is still considerable room for improvement in
both generation speed and stability.

The introduction of the Consistency Model
((Song et al., 2023)) offers a promising strategy
to mitigate the high sampling costs associated with
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diffusion models and enhance the sampling effec-
tiveness at each step. This model enhances the
denoising effectiveness at each step, reducing the
number of sampling steps needed for image synthe-
sis, and thereby accelerating the generation process
and improving generation stability. While this ap-
proach has been successfully applied in image gen-
eration ((Luo et al., 2023a)) and video generation
((Wang et al., 2023)), its potential in joint audio-
video generation has not yet been explored. To
address this gap, we propose a cross-modal Layer
Consistency Transferring (LCT) method that ap-
plies the Consistency Model to enforce consistency
across adjacent steps in audio-video sampling.

Therefore, in this paper, we introduce Multi-
modal Generation with Consistency Transferring
(MGCT) method, which improves the training effi-
ciency. Specifically: we employ MCT strategy, con-
tinuing to use the MM-Diffusion training method
in the early stages of training, to quickly learn pre-
liminary knowledge corresponding to the genera-
tion scenarios under low-cost conditions. At the
same time, we have proposed a cross-modal LCT
method that enforces consistency constraints on the
sampling capability of the consistency model for
adjacent steps in audio-visual sequences. In sum-
mary, the contributions of MGCT are threefolds:

• We introduced Model Consistency Transfer-
ring, which reduces the training time cost of
the model and effectively avoids the accumu-
lation of errors.

• We designed Layer Consistency Transferring
to enforce consistency in adjacent frame gen-
eration within the model, thereby enhancing
its denoising capability.

• In the experiments, the model is able to gener-
ate high-quality audio and video content in a
shorter amount of time. Compared to the slow
sampling method, the fast sampling method
can generate samples of equivalent quality.

2 Related Work

This paper primarily addresses Multimodal Diffu-
sion Models and Consistency Models. This chap-
ter offers a comprehensive overview of their back-
ground, highlights the characteristics and limita-
tions of previous research, and details the enhance-
ment methods we have selected.

Multimodal Diffusion Models. Probability dif-
fusion models (DPMs) ((Ho et al., 2020; Sohl-

Dickstein et al., 2015)) are a type of generative
model that creates data samples from random noise.
Compared to models like GANs ((Goodfellow
et al., 2014)), DPMs deliver superior performance
in terms of generation quality and diversity ((Dhari-
wal and Nichol, 2021)). They excel in various
image generation tasks, including image inpaint-
ing ((Lugmayr et al., 2022)), image classification
(Wang et al., 2022; Lu et al., 2023; Zhu et al.,
2024; Wang et al., 2024a,b), super-resolution ((Sa-
haria et al., 2022b)), textual generation (Ben et al.,
2024), and image restoration ((Kawar et al., 2022)).
However, DPMs typically suffer from slower sam-
pling speeds due to the repeated denoising required
during sampling. To make DPMs more practical,
DDIM ((Song et al., 2020)) modifies the traditional
diffusion model’s reverse process, reducing the
number of inference steps needed to generate im-
ages and thereby accelerating the sampling process.
DPM-Solver ((Lu et al., 2022)) takes this further
by solving the ordinary differential equations of the
DPM reverse process and providing higher-order
approximate solutions, significantly reducing the
steps required for sampling.

As the theory of DPMs has evolved and been
refined, diffusion models have increasingly been
applied in the field of multimodal generation, such
as text-to-vision ((Mou et al., 2024)), text-to-audio
((Liu et al., 2023)), vision-to-audio ((Luo et al.,
2024)), and vision editing ((Ceylan et al., 2023)).
Despite this progress, these approaches typically
generate only one modality at a time. Some re-
search has started to explore multimodal joint gen-
eration ((Ruan et al., 2023; Tang et al., 2024; Zhu
et al., 2023)). MM-Diffusion ((Ruan et al., 2023))
represents a pioneering approach for simultane-
ous audio and video generation; however, it lacks
constraints on the diffusion steps, which limits its
scalability and effectiveness.

Consistency Models. To tackle the issue of
slow generation speeds caused by the extensive in-
ference steps required in diffusion models, consis-
tency models ((Song et al., 2023)) were introduced.
Built on the foundation of the probability flow
ordinary differential equation (PF-ODE), consis-
tency models are designed to map any point at any
time step directly back to the start of the trajectory.
Consistency models enable efficient one-step im-
age generation without sacrificing the advantages
of multistep iterative sampling, thereby achieving
higher-quality results through multistep inference.
Based on this, LCM ((Luo et al., 2023a)) explored
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Figure 1: Overview of MGCT. In the Stage 1, we use MM-Diffusion for training to obtain initial weights with
preliminary knowledge, and these weights serve as the starting model for our approach. Next, we transfer the prior
knowledge from this model to the MGCT model, using it as the starting point of training in the Stage 2. During
subsequent training, we retain the loss function between the ground truth and the reverse output, and incorporate a
consistency loss to train the model on adjacent steps at fixed intervals, enhancing its denoising capability.

consistency models in latent space to reduce mem-
ory consumption and enhance inference efficiency.
Subsequently, several methods ((Luo et al., 2023b;
Xiao et al., 2023)) investigated efficient generation
techniques and achieved significant results. Vide-
olcm ((Wang et al., 2023)) extended consistency
models to the video generation domain, reducing
the sampling steps to single digits. Inspired by
this, we further extend consistency models to the
domain of audio-visual generation.

Based on the analysis of related work, the meth-
ods most relevant to MGCT are MM-Diffusion and
Consistency Models. Recent multimodal genera-
tion techniques often focus on enhancing model
functionality while neglecting the constraints be-
tween adjacent steps in diffusion models. This
oversight can lead to insufficient denoising capabil-
ities and a loss of generation quality, particularly
when using fast sampling methods. Furthermore,
the exploration of consistency models is still in
progress. In MGCT, we extend the application of
consistency models to the audio and video gen-
eration domains, applying constraints to adjacent
frames to enhance denoising performance. Addi-
tionally, because consistency constraints can intro-
duce greater convergence challenges and are prone
to error accumulation, MGCT integrates MCT to
address these issues.

3 Approach

Our approach incorporates consistency constraints
between adjacent steps in multimodal generative
models to address issues such as poor denoising
performance at each step and unstable denoising re-
sults. By leveraging pretrained weights as a starting
point, we streamline the learning process, acceler-
ate training, and avoid error accumulation.

3.1 Preliminaries

The training data includes pairs of videos and au-
dio, which we define separately as v and a. The
corresponding video v and audio a are collectively
referred to as data x. The overview of our approach
is illustrated in Figure 1. Initially, we use the train-
ing methodology from MM-Diffusion to train an
initial set of weights, which we designate as the
start point of Stage 2. These weights are able to
learn from the prior knowledge of the datasets, thus
significantly dorping the MGCT training difficulty
and reducing the time required for training. Dur-
ing the subsequent training phase (Stage 2), we
retain the loss function that compares the ground
truth with the output of the Diffusion Model. To
further enhance this, we introduce an additional
multimodal consistency loss. This consistency loss
involves calculating the difference between the de-
noising results of consecutive frames,

←
x tn+1 and

x̂tn , for both the audio and video pairs. Finally, we
combine the consistency loss and the multimodal
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loss by weighting them appropriately. By incor-
porating this consistency loss, we ensure that the
model maintains consistent denoising capability at
fixed intervals, thereby improving its overall de-
noising performance.

3.2 Layer Consistency Transferring

Based on diffusion models refer to a class of gen-
erative methods that first transform a given data
distribution x into Gaussian noise (forward pro-
cess) and then learn to recover the data distribution
by reversing the aforementioned forward process
(reverse process). In the following text, at step t, we
refer to the data as vt, at, and xt respectively. And
noise is progressively added to the data through a
forward process, which is represented as follow:

q(
→
x t |

→
x t−1) =

N (
→
x t;

√
1− βt

→
x t−1,βtI),

(1)

where
→
x represents that x is in the forward pro-

cess, t ∈ [1, T ], and βt is a parameter associated
with the time step. The entire process is modelled
using Markov chains N starting at p

(←
xT

)
=

N
(←
xT ; 0, I

)
, where

←
x represents that x is in the

reverse process (Similarly,
←
a and

←
v represent the

audio and video data in the reverse process, respec-
tively). Subsequently, the reverse process begins
from the final noise state and progressively restores
the data, represented as follow:

pθ(
←
x t−1 |

←
x t) =

N (
←
x t−1;µθ(

←
x t, t),Σθ(

←
x t, t)).

(2)

where µθ denotes the Gaussian mean value pre-
dicted by θ.

For multimodal generation, the forward process
uses a noise-adding method similar to DDPM and
processes audio and video separately. Therefore,
this part is intentionally omitted. Unlike the for-
ward process of independently modeling audio and
video, we consider the correlation between the two
modalities and propose a unified model θav, which
takes both modalities as inputs and enhances each
other’s audio and video generation quality. The
reverse process is as follows:

pθav(
←
a t−1|(

←
a t,
←
v t)) =

N (
←
a t−1;µθav(

←
a t,
←
v t, t)),

(3)

where
←
a t−1 is generated from a Gaussian distribu-

tion determined jointly by
←
a t and

←
v t. The authors

use ϵ-prediction, which is defined as follows:

LMM =

Eϵ∼Na(0,I)

[
λ(t)

∥∥∥ϵ̃θ
(←
a t,
←
v t, t

)
− ϵ

∥∥∥
2

2

]
,

(4)

where t ∈ [0, T ], and λ is an optional weighting
function. Video and audio have similar representa-
tions in this process.

In a diffusion model, generation is performed
through multi-step sampling, whereas a consistency
model assumes the existence of a function f that
outputs the same value at each node in the afore-
mentioned process, defined as follows:

f
(←
x t, t

)
= f

(←
x t′ , t

′
)
, (5)

where t, t′ ∈ [α, T ] and for the initial point of the
trajectory

←
x 0 = α, the following equation holds:

f
(←
xα,α

)
=
←
xα. (6)

Then, for any point on the trajectory, substitut-
ing the prior distribution completes a one-step sam-
pling. A neural network is trained to fit f , but two
conditions must be met: first, the output value must
be consistent for points on the trajectory, and sec-
ond, at the initial time point, f must be an identity
function with respect to x. Therefore, the follow-
ing formula is designed:

fθ

(←
x , t

)
= cskip (t)

←
x + cout (t)Fθ

(←
x , t

)
,

(7)
where cskip and cout are differentiable functions
that satisfy cskip (α) = 1 and cout (α) = 0. Fθ is
a deep neural network with an output dimension
equal to that of

←
x . This ensures that:

fθ

(←
x , t

)
=

{←
x , t = α,

Fθ

(←
x , t

)
, t ∈ (α, T ] .

(8)

Previous works did not impose constraints be-
tween adjacent steps, leading to poor denoising
capability at each step. This is the main reason
for the longer time required for generation and the
degradation in quality under fast generation meth-
ods. Therefore, we plan to use a consistency loss
to constrain adjacent steps, ensuring that they have
the same denoising capability. In this way, the
same generation quality as MM-Diffusion can be
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achieved with fewer sampling steps. However, con-
sistency models are known to be difficult to train,
especially in the final stages, which require a signif-
icant amount of time. Thus, in this work, we only
use it to improve the denoising capability of each
step. The loss function of the consistency model is
defined as follows:

LN
CD

(
θ, θ−;ϕ

)
:= E [λ (tn) ·

d
(
fθ

(←
x tn+1 , tn+1

)
, fθ−

(
x̂ϕ

tn
, tn

))]
.

(9)

N − 1 represents the number of sub-intervals.
And the expectation is taken with respect to x ∼
pdata, n ∼ u[1, N−1], and xtn+1 ∼ N

(
x; t2n+1I

)
.

Here, u[1, N − 1] denotes the uniform distribution
over {1, 2, . . . , N − 1}, θ− represents the running
average of past θ values during the optimization
process, and d(·, ·) is a metric function satisfying
∀j, k : d(j, k) ≥ 0 and d(x, y) = 0 if and only if
j = k. The definition of x̂ϕ

tn
is as follows:

x̂ϕ
tn

:=
←
x tn+1 + (tn − tn+1)Φ

(←
x tn+1 , tn+1;ϕ

)
,

(10)

where Φ(· · · ;ϕ) denotes the update function ap-
plied to the empirical PF-ODE as a one-step ODE
solver. Rewrite Equation 9 into multimodal form,
the CM loss can be shown in Equation 11:

LN
CM

(
θ, θ−;ϕ

)
:=

E
[
λ (tn)d

(
fθ

(←
a tn+1 ,

←
v tn+1 , tn+1

)
,

fθ−

(
âϕ

tn
, v̂ϕ

tn
, tn

))]
,

(11)

where âϕ
tn

and v̂ϕ
tn

are the audio and video repre-
sentations of x̂ϕ

tn
, respectively. As shown in Figure

1, MGCT builds upon MM-Diffusion by introduc-
ing the concept of a consistency model and incor-
porating a consistency loss LN

CM to focus on and
unify the denoising capabilities of adjacent steps,
thereby enhancing the denoising ability at each
step. In terms of computation, we retain the MM
loss (multimodal loss). Meanwhile, both LN

CM and
LMM are calculated, and their weighted sum is
computed. During training, we minimize the objec-
tive by applying stochastic gradient descent to the
model parameters θ, and update θ− using exponen-
tial moving averages (EMA). The MGCT training
method is detailed in Algorithm 1.

Algorithm 1 MGCT Training

Input: dataset x, initial model parameters θ,
learning rate η, loss function ratio w, ema decay
rate schedule µ (·) and λ (·)
θ− ← θ
sample a ∼ x [′audio′], v ∼ x [′video′]
while L >= δ do

L← LMM

θ ← θ − η∇θL
end while
while not converged and L < δ do

L← (1− ω)LMM + ωLN
CM

θ ← θ − η∇θL
θ− ← stopgrad (µ (k)θ− + (1− µ (k))θ)

end while

3.3 Model Consistency Transferring
Although consistency models can enhance the
model’s denoising capability, ensuring information
consistency across different modalities requires the
introduction of complex loss functions and training
mechanisms, which increases the model’s compu-
tational complexity and training time. Therefore,
as shown in Figure 1, we initially use only multi-
modal loss during the early stages of model train-
ing, allowing the model to learn basic generative
information. Then, after the training reaches a cer-
tain point, we transfer the pretrained model to a
MGCT model of the same size. On this basis, we
introduce the consistency model, allowing the two
loss functions to work together. Specifically, we set
a threshold δ to evaluate the degree of convergence.
In these two stages, we have the Loss Function as
shown in Equation 12 and Algorithm 1:

L =

{
LMM , L > δ,

(1− ω)LMM + ωLN
CM , L < δ.

(12)

4 Experiments

In this section, we evaluate the proposed MGCT
diffusion model and compare its joint audio and
video generation performance with MM-Diffusion.
Additionally, we conducte ablation experiments to
verify the effectiveness of the method proposed in
this paper. Our experiments are intended to address
the following research questions (RQ):
RQ1: How does MGCT perform compared to the
baseline methods?
RQ2: How does the loss function ratio affect the
quality of generated samples?
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RQ3: What are the effects of MCT?
RQ4: Quality of audio and video samples gener-
ated by MGCT?

4.1 Experiment Settings
In this experiment, we selected the AIST++ ((Lee
et al., 2022)) and landscape ((Li et al., 2021))
datasets for testing, where AIST++ has high re-
quirements for capturing the detailed contours and
audio rhythm of characters, while landscape poses
a challenge to the model’s ability to generate large-
scale landscapes. For the diffusion model, we set
the diffusion step length T to 1000, and to accel-
erate the sampling process, we default to using
DPM-Solver [27] unless additional annotations are
provided. For video quality assessment, we em-
ployed the FVD and KVD metrics, and for audio
quality evaluation, we used the FAD metric. When
comparing different models, we randomly gener-
ated 2,048 samples for objective evaluation, and
all calculations were performed at a resolution of
64×64. During the experiment, we utilized two
A40 GPUs to support the computational demands.

4.2 Comparison with Other Methods
Comparison with baseline (RQ1). To verify the
denoising capability of MGCT and its stability
under different sampling methods, experiments
in Table 1 and Table 2 use the slow generation
method DDPM and the fast generation method
DPM-Solver for sampling, and tests are conducted
on the AIST++ and Landscape datasets. MM-
Diffusion is used as the baseline for comparison.

We are able to find from Table 1 that: (1) In
the comparison of DPM-Solver generation meth-
ods between MGCT and MM-Diffusion, MGCT
significantly outperforms MM-Diffusion in both
the AIST++ and Landscape datasets. For instance,
on the AIST++ dataset, MGCT achieves the low-
est FVD score of 209.729 with 20 inference steps,
compared to MM-Diffusion’s FVD of 345.724 un-
der the same conditions. Similarly, MGCT per-
forms better on the Landscape dataset, with an
FVD of 313.545 compared to MM-Diffusion’s
369.379 at 20 steps. This demonstrates MGCT’s
strong advantage in the domain of fast genera-
tion, particularly in scenarios where a reduction
in inference steps is required while still maintain-
ing high-quality output; (2) Regarding the impact
of reducing inference steps on generation quality,
MGCT demonstrates that even with only 12 steps
of DPM-Solver, it can achieve or exceed the gen-

eration quality of MM-Diffusion using 20 steps.
Specifically, MGCT achieves an FVD of 279.384
at 12 steps on the AIST++ dataset, which outper-
forms MM-Diffusion’s FVD of 345.724 at 20 steps.
This showcases MGCT’s ability to maintain high
performance with fewer inference steps.

From Table 2, it can be seen that using DDPM
sampling, the generation quality of the Landscape
dataset is superior to that of MM-Diffusion. For ex-
ample, MGCT has an FVD of 330.745 and an FAD
of 1.489, which are better than MM-Diffusion’s
FVD of 353.283 and FAD of 1.521. For the
AIST++ dataset, MGCT also generates samples
of comparable quality to MM-Diffusion.

Comparing the results from Table 1 and Ta-
ble 2, we find that: (1) When comparing the
DDPM generation methods of MGCT and MM-
Diffusion, MGCT’s DPM-Solver method in the
AIST++ dataset produces samples of compara-
ble quality to those generated by MM-Diffusion’s
DDPM method. This indicates that MGCT can
maintain high generation quality even with fast
generation methods. In the Landscape dataset,
MGCT’s DPM-Solver method even surpasses MM-
Diffusion’s DDPM method, achieving an FVD
of 313.545, a KVD of 7.457, and an FAD of
1.216 with 20 inference steps, compared to MM-
Diffusion’s FVD of 353.283, KVD of 9.030, and
FAD of 1.521. This highlights the superior balance
MGCT achieves between generation quality and
efficiency; (2) In terms of the generation quality
difference between MM-Diffusion and MGCT, par-
ticularly in the AIST++ dataset, MM-Diffusion’s
generation quality significantly deteriorates when
using the DPM-Solver method, whereas MGCT
can maintain or even surpass DDPM’s generation
quality when using the DPM-Solver method, fur-
ther underscoring MGCT’s advantage. In conclu-
sion, MGCT excels in fast generation scenarios,
especially when fewer inference steps are involved,
and it clearly outperforms MM-Diffusion under
similar conditions. This balance between efficiency
and generation quality offers a promising approach
for practical applications.

4.3 Ablation Study
To verify the necessity and effectiveness of the
proposed method, we designed two ablation exper-
iments.
Effect of loss function ratio (RQ2). First, to de-
termine the appropriate value of w, we investigated
the impact of different w ratios on the optimal re-
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Training Method Inference Step AIST++ Landscape
FVD ↓ KVD ↓ FAD ↓ FVD ↓ KVD ↓ FAD ↓

MM-Diffusion

DPM-Solver-9step 921.407 190.405 2.495 538.759 22.575 1.794
DPM-Solver-10step 716.247 153.138 2.513 483.957 17.436 1.618
DPM-Solver-12step 344.164 61.109 2.402 421.588 13.334 1.858
DPM-Solver-15step 335.284 68.558 2.25 508.294 17.245 1.855
DPM-Solver-20step 345.724 66.731 1.604 369.379 9.891 1.256

MGCT (Ours)

DPM-Solver-9step 861.514 191.27 2.384 644.841 33.461 1.685
DPM-Solver-10step 552.488 109.934 2.333 532.555 22.002 1.77
DPM-Solver-12step 279.384 36.776 2.305 387.195 14.359 1.874
DPM-Solver-15step 245.689 35.568 2.41 398.043 12.195 1.3
DPM-Solver-20step 209.729 20.919 1.558 313.545 7.457 1.216

Table 1: Comparison of the performance of MGCT and MM-Diffusion under different inference steps, using the
fast generation method DPM-Solver for sampling.

Dataset Training Method FVD↓ KVD↓ FAD↓

AIST++
MM-Diffusion 198.469 27.572 1.347
MGCT(Ours) 212.669 28.654 1.545

Landscape
MM-Diffusion 353.283 9.030 1.521
MGCT(Ours) 330.745 9.777 1.489

Table 2: Comparison of the optimal performance of MGCT and MM-Diffusion, using the slow generation method
DDPM for sampling.

Dataset w FVD↓ KVD↓ FAD↓
0.7 209.729 20.919 1.558

AIST++
0.5 335.318 54.875 1.467
0.7 364.452 9.499 1.225

Landscape
0.5 313.545 7.457 1.216

Table 3: Comparison of the optimal generation results of
MGCT with different w values across various datasets.
Since a large w can lead to convergence difficulties,
while a small w may not provide sufficient constraint
for adjacent steps, we only consider w = 0.5, 0.7 in this
experiment.

sults for MGCT, trained on the AIST++ and Land-
scape datasets. We are able to find from Table 3
that when w is 0.7, MGCT achieves the best results
on the AIST++ dataset; when w is 0.5, MGCT
achieves the best results on the Landscape dataset.
This indicates that the value of w has a signifi-
cant impact on MGCT’s performance, and different
datasets may require different w values to optimize
results. Additionally, compared to Table 1, we ob-
serve that regardless of the value of w, MGCT con-
sistently outperforms MM-Diffusion. This demon-
strates that the introduction of multimodal consis-
tency constraints significantly enhances the genera-
tion quality.

Dataset MCT FVD↓ KVD↓ FAD↓
MS 593.72 142.05 1.569
w/ 209.729 20.92 1.558AIST++
w/o 752.826 156.86 2.015
MS 509.041 27.35 1.242
w/ 313.545 7.457 1.216Landscape
w/o 653.884 28.41 1.347

Table 4: Comparison of the optimal values for MGCT
with and without MCT. For easier comparison, we in-
clude MM-Start (MS) as the baseline after applying
MCT.

Effect of MCT (RQ3). Next, we will train MGCT
from scratch without MCT and compare its best
results with those model trained with MCT to ver-
ify the necessity of MCT. For a fair comparison,
each model will be trained for the same number
of iterations, with w set to 0.7 for all models. We
are able to find from Table 4 that MGCT trained
without MCT shows a significant reduction in gen-
eration quality compared to its counterpart trained
with MCT, and it even struggles to reach the per-
formance level of MM-Diffusion. This indicates
that MCT is useful for our method as it provides
low-cost prior knowledge, significantly improving
the generation quality. For this phenomenon, we
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Figure 2: Generated video frames and audio spectrograms from MGCT. The specific content includes three types of
street dance as well as three natural landscapes: flames, underwater scenes, and a seaside lighthouse.

teleportation

boundary blur vanish

Figure 3: Samples generated by MM-Diffusion exhibit
issues such as object teleportation, blurred boundaries,
and object disappearance.

believe that if the MGCT model is trained entirely
from scratch, it becomes difficult for the model to
balance the goal of improving the quality of gen-
erated samples while also maintaining consistent
denoising capabilities across adjacent steps. Specif-
ically, in the initial stages of the generation process,
the denoising ability at each step tends to be rela-
tively weak, but the distances between the steps are
small enough to meet the training objectives of con-
sistency models. However, this creates a conflict
with the goal of enhancing sample quality, which
can result in a sharp drop in training efficiency or
even prevent the model from reaching the desired
final state.

4.4 Visualization

Generate sample visualisation (RQ4). As shown
in Figure 2, the video frames and audio spectro-
grams generated by MGCT are presented. For the
dance motion video, the dynamic performances
of the dancer in different poses and movements
are displayed. Each frame captures subtle changes
in the dancer’s movements, showcasing fluidity

and rhythm that aligns with the musical beats. In
addition, the consistency of the clothing is well
maintained throughout the video. For the natural
landscape video, elements such as fire, flowing
water, seaside, and lighthouse are depicted with
rich colors and notable dynamic changes. These
scene changes correspond to natural environmental
sounds. In Figure 3, it can be observed that when
MM-Diffusion uses fast sampling methods such
as DPM-Solver, issues such as object teleportation
between adjacent frames, unclear boundaries, the
appearance of extra limbs, and empty backgrounds
are prone to occur. MGCT, however, overcomes
these problems effectively. Overall, under the fast
sampling method, MGCT successfully achieves
high-quality audio-video generation with consis-
tency in both temporal information and content.

5 Conclusion

In this paper, we propose MGCT, a method of
Multimodal Generation with Consistency Trans-
ferring. Our work utilizes MCT for the initial low-
cost learning of data features and employs LCT
to constrain the outputs of adjacent steps, thereby
enhancing denoising capability and reducing train-
ing time costs. The proposed MGCT can generate
higher-quality and more stable samples while over-
coming the challenges of training with consistency
constraints. Through model comparisons and ab-
lation studies, we achieved good performance on
widely used datasets, validating the effectiveness
and necessity of our proposed innovations.

Limitations

Although MGCT can improves the speed and qual-
ity of audio-video generation, we also found that
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the proposed method has issues such as insufficient
sampling speed and excessive denoising during
sampling. Going forward, we will optimize the
model by addressing aspects such as cross-modal
alignment and sampling method adaptation to make
audio and video generation more lightweight and
stable.
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