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Abstract

In clinical trial design, baseline feature selec-
tion is one of the crucial tasks for characteriz-
ing study cohorts and ensuring accurate study
outcomes. Large Language Models (LLMs)
show promise in automating this process by an-
alyzing trial data and identifying key features.
To assess the capabilities of LLMs in gener-
ating appropriate baseline features for clinical
trials, we create two datasets: CT-Repo, which
contains baseline features from 1,690 clinical
trials sourced from clinicaltrials.gov, and
CT-Pub, a curated subset of 100 clinical trials
with more detailed baseline features extracted
from published studies. In this paper, we con-
sider GPT-4o and LLaMa3-70B-Instruct mod-
els in three configurations: zero-shot, three-
shot with a fixed set of examples, and three-
shot using an adaptive set of examples based
on Retrieval-Augmented Generation (RAG) ap-
proach. We evaluate the model performance
of baseline feature generation using the LLM-
as-a-Judge framework. We further validate
the LLM-as-a-judge evaluation on the CT-Pub
dataset using assessments from human experts
in a clinical trial. The results indicated that the
RAG-based three-shot learning approach sig-
nificantly improved performance by providing
relevant, context-specific examples. This study
marks an important initial advancement in us-
ing LLM for the robust design of clinical trials
and observational studies.

1 Introduction

Clinical trials (CTs) are crucial for medical re-
search, with randomized CTs considered the gold
standard for assessing the effectiveness of drug
interventions. Baseline features, often presented
as "Table 1" in clinical publications, include es-
sential demographic and relevant characteristics
collected from participants before the commence-
ment of the clinical study. These features are es-

*Corresponding Author

sential for demonstrating population representative-
ness, validating study design, and drawing logi-
cal conclusions (Holmberg and Andersen, 2022;
Festic et al., 2016; Zhang et al., 2017). The pre-
selection of baseline features ensures unbiased ran-
domization, allows for pre-specified covariate ad-
justment, and complies with regulatory require-
ments (Burgess et al., 2003; Holmberg and Ander-
sen, 2022; Archives, 2024). These features also
prevent post-hoc bias and reduce confounding ef-
fects, particularly in observational studies where
improper confounder selection could lead to over-
adjustment bias (Vickers and Altman, 2001; van
Zwieten et al., 2024).

LLMs have shown promise in clinical research,
including extracting clinical information (Liu et al.,
2021; Mulyar et al., 2021), summarizing CT de-
scriptions (White et al., 2023), and comparing trial
similarities (Wang and Sun, 2022). Recent ad-
vances in prompting strategies have expanded the
LLM use cases in specific medical domains (Wang
et al., 2023; Lee et al., 2024; Singhal et al., 2023).
Several studies have explored using LLMs to aid
in creating eligibility criteria for CTs (Yuan et al.,
2019; Jin et al., 2023; Datta et al., 2024; Hamer
et al., 2023), demonstrating the potential for reduc-
ing expert screen time and improving trial matching
efficiency.

However, the task of automating the baseline fea-
ture selection for CTs remains largely unexplored.
Baseline features have become increasingly com-
plex in the last decade (Markey et al., 2024), lead-
ing to a need for approaches that can suggest or
generate standardized sets of cohort demograph-
ics and features. Existing datasets are limited by
small CT cohort sizes and/or rely on general clin-
ical notes rather than CT-specific data (Koopman
and Zuccon, 2016; Roberts et al., 2021). Further-
more, while clinicaltrials.gov provides exten-
sive trial information, it often lacks comprehensive
baseline feature data reported in final publications
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Figure 1: Overview of our process of Generating Base-
line Features and Evaluating using LLMs

(Cahan and Anand, 2017).
While prior work has explored various aspects of

clinical trial automation, the critical task of baseline
feature selection remains largely unaddressed due
to several domain-specific challenges. Traditional
approaches struggle with non-standardized medical
terminology and the highly context-dependent na-
ture of relevant features across different trial types.
To address these gaps, we present a comprehensive
framework with four key contributions:

• We introduce two novel evaluation datasets -
CT-Pub and CT-Repo - which include meta-
data and baseline features from 1,690 CTs and
100 manually curated trials respectively, fo-
cusing on five major chronic diseases. These
datasets provide much-needed benchmarks
for evaluating baseline feature selection ap-
proaches.

• We develop specialized prompting strategies
for LLMs to generate appropriate baseline
features while accounting for trial context,
demonstrating robust performance across dif-
ferent trial types.

• We establish automated evaluation methods
for comparing predicted and actual trial base-
line features, providing rigorous metrics that
capture the nuanced relationships between
generated and reference features.

• We present a comprehensive analysis of dif-
ferent LLM approaches, including zero-shot,
few-shot, and retrieval-augmented generation

methods, offering insights into their relative
strengths and limitations in this domain.

We plan to release our data, code, and demo ex-
amples publicly to encourage further research in
baseline feature selection and potentially improve
the efficiency and robustness of clinical study de-
sign.

2 Baseline Feature Selection in Clinical
Trial Design

The task of baseline feature selection is essential in
clinical trial design to ensure balanced groups and
valid outcomes. This process can be complex and
requires expert judgment based on trial objectives
and target populations. Common baseline features
like age, gender, and race/ethnicity are prevalent
across all types of trials, while trial-specific fea-
tures such as ‘ECOG Performance Status’ or ‘Re-
sponse to Immunotherapy’ are more relevant in
cancer trials, and ‘HBA1C levels’ are commonly
used in diabetes trials. To address this challenge,
we propose a method that treats baseline feature
selection as a text-generation task. In this approach,
an LLM is provided with trial metadata and tasked
with generating a list of appropriate baseline fea-
tures. The goal of this task is to automate and
assist trial designers in the initial feature selection
process. See Table 3 in Appendix A for a sam-
ple clinical trail metadata and the corresponding
baseline features.

2.1 Data
We used the public API of clinicaltrials.gov
to collect data on interventional clinical trials for
five common chronic diseases. Our selection cri-
teria include completed trials with reported results
and a minimum of six baseline features. After pro-
cessing, we had a set of 1693 CTs, from which we
created CT-Repo (consisting of 1690 trails). The
remaining 3 trials were used as fixed few-shot ex-
amples in the LLM prompt. We chose a subset of
100 trials from CT-Repo and manually annotated
baseline features from associated publications to
create CT-Pub. The CT-Repo dataset showcases
a wide spectrum of conditions within each disease
category, ranging from those directly related to the
primary disease (e.g., various cancer types) to as-
sociated conditions evaluated in these studies (e.g.,
depression, pain). This diversity broadens the ap-
plicability of our work across numerous clinical
trials, enhancing its generalizability to the entire
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clinicaltrials.gov database. See Table 1 for a
comprehensive breakdown of these health condi-
tions and Table 3 for an overview of the structure
of the data we collected.

The CT-Pub and CT-Repo datasets are designed
as evaluation benchmarks, offering a balanced rep-
resentation of various conditions while maintaining
a manageable size for a thorough assessment. This
allows for a comprehensive evaluation of model
performance across diverse medical contexts with-
out the computational overhead associated with
larger datasets. The dataset includes a variety of
trial metadata in free-text format, including titles,
summaries, conditions, eligibility criteria, inter-
ventions, primary outcomes, and baseline features.
The unstructured nature of this data presents chal-
lenges due to inconsistent terminology and lack of
standardization.

2.2 Generation
In our study, we primarily assess the model per-
formance using the state-of-the-art open-source
LLM, LLaMa3-70B-Instruct (AI@Meta, 2024). To
provide a broader context, we also evaluate the
commercial GPT-4o (OpenAI, 2023) for compar-
ison (see Figure 1). For LLaMa3-70B-Instruct,
we utilized APIs from GROQ (Groq, 2023) and
HuggingFace’s serverless inference service (Hug-
gingFace, 2023), while OpenAI’s API was used for
GPT-4o (OpenAI, 2021). Our investigation focused
on two in-context learning settings for baseline fea-
ture generation: zero-shot and three-shot (Dong
et al., 2022). In the three-shot prompting, we ex-
plored both a fixed set of three random trials and a
Retrieval-Augmented Generation (RAG) approach
based on selecting the most similar trials as three-
shot examples. For the RAG approach, we created
an indexed database of all trials in the CT-Repo
dataset. When using a trial as a query, we retrieve
the three most similar trials from this database to
serve as examples in the few-shot prompt, provid-
ing more contextually relevant comparisons than
random examples. See Appendix B for more de-
tails on RAG setting.

2.3 Evaluation
We evaluate the "candidate features" generated by
each LLM with the "reference baseline features"
sourced from the clinicaltrials.gov API for
the CT-Repo dataset and the corresponding CT
publications for the CT-Pub dataset. The goal is to
assess each pair of features, one from the reference

list and one from the candidate list, to determine if
they are contextually and semantically similar. For
example, "BMI" should match "Body Mass Index".
After identifying all matched pairs, we categorize
the final results into three lists: matched pairs, un-
matched reference features, and unmatched can-
didate features. We employ a ’LLM-as-a-Judge’
approach for this evaluation, utilizing GPT-4o as
our evaluator. For each study, the evaluator re-
ceives both the reference and candidate features as
input, along with trial metadata (excluding actual
baseline features) for context. The evaluator then
identifies matched pairs and generates unmatched
sets, returning the results as a JSON object. Once
matched and unmatched items are identified, we
calculate precision, recall, and F1 scores, reporting
their mean values across all studies. We further
validate the LLM-as-a-judge evaluator on the CT-
Pub dataset using assessments from human experts
in a clinical trial (see Appendix E). All hyperpa-
rameters, prompts, and other details pertaining to
our generation and evaluation tasks are presented
in the Appendix D. To ensure deterministic and
reproducible outputs, we use a fixed seed and a
temperature value of 0.0 across all generation and
evaluation experiments (OpenAI, 2022).

2.4 Metric

We report mean Precision, mean Recall, and mean
F1 scores across all studies for each dataset (see
details in Appendix D)

Precision =
number of correctly matched features

number of candidate features

Recall =
number of correctly matched features

number of reference features

F1 =
2 * Precision * Recall

Precision + Recall

3 Results and Discussion

We prioritize the F1 score in our analysis as it pro-
vides a balanced measure of precision and recall.
This balance is crucial in the context of clinical trial
design, where both accuracy in suggesting relevant
features and completeness in covering all necessary
aspects are important. Additional experiments are
available in Appendix E.

CT-Pub vs CT-Repo Dataset: In the CT-Pub
dataset, we observe F1 scores ranging from 0.40 to
0.49 across different models and settings. GPT-4o
with RAG-based examples demonstrates the best
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Table 1: Description of CT-Pub and CT-Repo datasets

CT-Pub CT-Repo

Trial Groups # Trials # Unique Conditions # Trials # Unique Conditions

Cancer 16 49 484 756
Chronic Kidney Disease 18 23 169 289
Diabetes 34 39 479 196
Hypertension 14 25 266 188
Obesity 18 20 292 205
Total 100 156 1690 1634

Table 2: Performance Comparison for CT-Pub and CT-Repo datasets. Bold fonts indicate the best performance.

CT Pub CT Repo

Model F1 Precision Recall F1 Precision Recall

GPT-4o (Zero Shot) 0.40 0.36 0.50 0.33 0.27 0.51
LLama3 (Zero Shot) 0.46 0.43 0.55 0.40 0.32 0.57
GPT-4o (Three Shot + Fixed Example) 0.43 0.39 0.56 0.46 0.40 0.58
LLama3 (Three Shot + Fixed Example) 0.46 0.42 0.57 0.45 0.41 0.56
GPT-4o (Three Shot + RAG Based Example) 0.49 0.53 0.54 0.49 0.45 0.63
LLama3 (Three Shot + RAG Based Example) 0.48 0.54 0.50 0.51 0.48 0.62

performance with an F1 score of 0.49. This sug-
gests that providing contextually relevant examples
significantly enhances the model’s ability to gen-
erate appropriate baseline features. Interestingly,
Llama3 shows competitive performance, especially
in the zero-shot setting (F1: 0.46), indicating its
strong inherent understanding of clinical trial con-
texts without additional prompting. The CT-Repo
dataset shows a wider range of F1 scores, from
0.33 to 0.51. Llama3 with RAG-based examples
achieves the highest F1 score of 0.51, outperform-
ing GPT-4o in this larger, more diverse dataset.
This indicates Llama3’s strength in generalizing
across a broader range of trial types. GPT-4o shows
substantial improvement as more context is pro-
vided, with its F1 score increasing from 0.33 to
0.49, highlighting the importance of relevant exam-
ples in enhancing performance.

GPT-4o vs Llama3: GPT-4o generally performs
better on the CT-Pub dataset, possibly due to its
extensive pre-training on diverse medical literature.
However, Llama3 shows stronger performance on
the larger CT-Repo dataset, suggesting its robust-
ness in handling a wider variety of trial types. Both
models benefit from additional context, indicating
that their performance in suggesting baseline fea-
tures can be enhanced through strategic prompting
and example selection.

Few-shot Prompting: Zero-shot performance
serves as a baseline, with Llama3 outperforming

GPT-4o in these scenarios. This suggests Llama3’s
strong inherent understanding of clinical trial con-
texts. The three-shot approach with fixed examples
shows modest improvement over zero-shot for both
models, indicating that even random examples can
provide useful context. However, the RAG-based
three-shot approach consistently yields the best
overall performance for both models, with a sig-
nificant boost in precision, especially for GPT-4o.
This clearly shows that there is value in providing
relevant trials as context for designing new trials.

RAG Approach: The RAG-based approach con-
sistently yields the highest F1 scores across models
and datasets by retrieving relevant context from
similar trials in a vectorized database. Unlike fixed
or random examples, this additional context from
RAG closely aligns with the current trial’s charac-
teristics which helps the LLMs understand patterns
of baseline features typically associated with spe-
cific trial types, enhancing their ability to generate
appropriate baseline feature lists. While there’s
room for improvement, the RAG approach shows
significant potential in streamlining the clinical trial
design process. (See details in Appendix B, E)

4 Conclusion

In this study, we tackled the challenge of base-
line feature generation in clinical trial design by
leveraging state-of-the-art large language models
. We evaluated GPT-4o and LLaMa3-70B-Instruct
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on two custom datasets, CT-Repo and CT-Pub,
using zero-shot, three-shot with fixed examples,
and three-shot with RAG-based approaches. Our
"LLM-as-a-Judge" framework, utilizing GPT-4o
as an evaluator, validated through human-in-the-
loop assessments with clinical experts, revealed
that while current state-of-the-art models can mod-
erately identify baseline features, they often strug-
gle without additional context, particularly in com-
plex clinical settings. The RAG-based approach
consistently outperformed other configurations by
providing relevant, context-specific examples that
improve the model’s predictions. This work rep-
resents an important first step in developing AI
tools for clinical trial design. Beyond clinical re-
search, our work contributes to the broader NLP
community by demonstrating how LLMs can be
adapted to highly specialized, high-stakes domains
like healthcare. Future work could focus on fine-
tuning LLMs on clinical trial data, and expanding
their integration to accelerate medical research and
enhance patient outcomes.

5 Limitations

Focused Contribution and Scope of Dataset: Our
study focuses on five major chronic diseases: can-
cer, chronic kidney disease, diabetes, hypertension,
and obesity which are the most common and widely
studied diseases in clinical trials. These broad-
categories include hundreds of different unique
health conditions (see Table 1). While this rep-
resents an important portion of the available trials
on clinicaltrials.gov with high health impact, we
acknowledge that this focus limits the scope of our
findings to these conditions. This work should be
viewed as a small, focused contribution designed to
demonstrate the feasibility and potential of LLMs
in automating baseline feature generation for high-
prevalence diseases. Expanding this work to rare
diseases or other less-studied conditions is part of
our future research direction, and we believe that
our pipeline can seamlessly incorporate more di-
verse clinical trial datasets without modification.

Scale of the Dataset: While evaluating language
models on a dataset of 1,690 randomized clinical
trials from clinicaltrials.gov may seem like a lim-
itation given the availability of over 400,000 tri-
als of many types, it is not truly restrictive in this
context. We selected a diverse and representative
set of trials across five major chronic disease cate-

gories (see Table 1) which covers a broad spectrum
of trial designs and conditions, providing mean-
ingful insights into the models’ ability to predict
baseline features. Importantly, our prompts and
evaluation methods are fully adaptable to any num-
ber of additional trials without altering the existing
pipeline, making the evaluation scalable. While
this subset was chosen to ensure rigorous and repro-
ducible results within current resource constraints,
this work is a work in progress. Future expansions
will seamlessly incorporate more trials, continu-
ing to build on the robust evaluation framework
established here.

Additional Methods for Generation and Eval-
uation: Our study evaluates two state-of-the-art
models, LLaMa3-70B-Instruct and GPT-4o, us-
ing zero-shot and three-shot prompts, with re-
source constraints in mind. By comparing an
open-source model (LLaMa3-70B-Instruct) with
a closed-source model (GPT-4o), we aim to pro-
vide an initial assessment of leading technologies.
While this comparison offers a valuable contrast be-
tween open-source and proprietary models in sup-
porting clinical trial design, there are many other
models worth exploring. For evaluation, we uti-
lize GPT-4o as the judge, though alternatives like
LLaMa3 or Mistral are viable options. In the future,
we plan to expand our experiments to include ad-
ditional models for both generation and evaluation
tasks.

Randomness in experiments: In our experi-
ments, both for text generation and evaluation API
calls, we ensured consistency by using a fixed
seed and setting the temperature parameter to 0.0.
This choice follows OpenAI’s guidelines (OpenAI,
2022), which suggest that a fixed seed and a tem-
perature of 0.0 help produce reproducible and deter-
ministic results. However, alternative approaches
exist. For instance, running each API call multi-
ple times with the same prompt and aggregating
the responses could enhance the results, though
we were unable to pursue this due to resource con-
straints. This is a work in progress, and as part of
our future work, we plan to explore these alterna-
tive approaches to further improve the robustness
of our evaluations.

Impact of Societal Bias: While our work
demonstrates the potential of language models as
tools to determine baseline features for clinical
trials, it is important to consider potential biases,
particularly in the handling of demographic fea-
tures such as race, ethnicity, age, and gender. One
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challenge is that older trials in the benchmarks
may not meet current requirements for definition of
these features. Non-representative trials have been
a problem historically and the National Institute
Health for designing trials has evolved over time.
Problematic trials in the dataset may introduce in-
appropriate examples in context sensitive learning
and introduce bias in the evaluation process. As
part of our future work, we plan to incorporate
bias detection and mitigation strategies for these
sensitive features, alongside human evaluation, to
ensure that the generated baseline features are equi-
table and representative of diverse trial populations
and that they meet current standards for trial de-
sign. Additionally, it is important to recognize that
ethical considerations must be integrated when ap-
plying LLMs in high-stakes domains.
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A CT Metadata and Corresponding
Baseline Features

In Table 3, we present all the metadata for each
clinical trial that we collect. All of them are in non-
standardized free-text form which makes it very
challenging to work with.

A.1 Example of Generation Response

Here are two examples of generated baseline fea-
tures:

• Generated by Llama3 in Three-Shot set-
tings with fixed examples: [‘Age’, ‘Sex’,
‘Race’, ‘Duration of diabetes’, ‘HbA1c’,
‘BMI’, ‘Weight’, ‘Waist circumference’, ‘Sys-
tolic blood pressure’, ‘Diastolic blood pres-
sure’, ‘Fasting plasma glucose’, ‘Total choles-
terol’, ‘LDL cholesterol’, ‘HDL cholesterol’,
‘Triglycerides’, ‘eGFR’, ‘Use of antihyper-
glycemic drugs’, ‘History of diabetic retinopa-
thy’, ‘History of cardiovascular disease’]

• Generated by GPT-4o in Three-Shot set-
tings with fixed examples: [‘Age’, ‘Sex’,
‘Race’, ‘Duration of diabetes’, ‘HbA1c’,
‘BMI’, ‘Fasting plasma glucose’, ‘Systolic
blood pressure’, ‘Diastolic blood pressure’,
‘Total cholesterol’, ‘HDL cholesterol’, ‘LDL
cholesterol’, ‘Triglycerides’, ‘Non-insulin an-
tidiabetic therapy’]

A.2 Example of Evaluation by GPT-4o

Here is an example of identified matches between
Llama3-generated features from Appendix A.1 and
actual reference features:

• Reference Features: [‘Age‘, ‘Gender‘,
‘Racial Group‘, ‘Body Weight‘, ‘BMI‘, ‘Es-
timagted GFR‘, ‘Duration of Diabetes‘, ‘Du-
ration of Basal Insulin‘, ‘Prior Basal Insulin
Dose‘, ‘HbA1c‘, ‘Concomitant antihypergly-
caemic medication use‘]

• Candidate Features: [‘Age’, ‘Sex’, ‘Race’,
‘Duration of diabetes’, ‘HbA1c’, ‘BMI’,
‘Weight’, ‘Waist circumference’, ‘Systolic
blood pressure’, ‘Diastolic blood pressure’,
‘Fasting plasma glucose’, ‘Total choles-
terol’, ‘LDL cholesterol’, ‘HDL cholesterol’,
‘Triglycerides’, ‘eGFR’, ‘Use of antihyper-
glycemic drugs’, ‘History of diabetic retinopa-
thy’, ‘History of cardiovascular disease’]

• Matched Features: [["Age", "Age"], ["Gen-
der", "Sex"], ["Racial Group", "Race"],
["BMI", "BMI"], ["Duration of Diabetes",
"Duration of diabetes"], ["HbA1c", "HbA1c"],
["Estimagted GFR","eGFR"]]

• Unmatched Reference Features: ["Body
Weight", "Estimagted GFR", "Duration of
Basal Insulin", "Prior Basal Insulin Dose",
"Concomitant antihyperglycaemic medication
use"]

• Unmatched Candidate Features: ["Weight",
"Waist circumference", "Fasting plasma glu-
cose", "Systolic blood pressure", "Diastolic
blood pressure", "Total cholesterol", "HDL
cholesterol", "LDL cholesterol", "Triglyc-
erides", "Use of antihyperglycemic drugs",
"History of diabetic retinopathy", "History of
cardiovascular disease"]

B RAG Method

In the context of our study, we implemented a
Retrieval-Augmented Generation (RAG) method
for the 3-shot settings to improve the performance
of language models (LLMs) in predicting base-
line features for clinical trials. Typically, 3-shot
learning involves providing three fixed examples as
context to guide the model’s generation. However,
instead of using random or pre-selected examples,
we enhanced this approach by dynamically retriev-
ing the three most similar trials from an indexed
vector database containing trial metadata.

Here’s how the RAG process works in our
pipeline:

• Prompt Creation: A prompt is generated,
which includes a specific query about the trial
for which baseline features need to be pre-
dicted.

• Query the Vector Database: The query is sent
to a retriever system that interacts with a vec-
tor database containing embeddings of all tri-
als from the CT-Repo dataset.

• Retrieval of Similar Trials: The retriever iden-
tifies the three most similar trials to the query
trial based on their metadata and retrieves
these trials.

• Context Augmentation: The retrieved trials
are then used as additional context for the
prompt. These examples are more relevant
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Table 3: A sample example of clinical trial metadata and corresponding baseline features

Field Data

Trial ID NCT01676220

Trial Title Comparison of a New Formulation of Insulin Glargine With Lantus in Patients With Type 2 Diabetes on Non-insulin Antidiabetic Therapy

Brief Summary Primary Objective: To compare the efficacy of a new formulation of insulin glargine and Lantus in terms of change of HbA1c from baseline to endpoint ...

Eligibility Criteria

Inclusion Criteria:
*Adult participants with type 2 diabetes mellitus inadequately controlled with non-insulin antihyperglycemic drug(s);
* Signed written informed consent. ....
Exclusion Criteria:
...

Conditions Type 2 Diabetes Mellitus, ...

Primary Outcomes Change in HbA1c From Baseline to Month 6 Endpoint, ...

Interventions HOE901-U300 (new formulation of insulin glargine), Lantus (insulin glargine) ...

Baseline Features Age, Gender, Racial Group, Body Weight, BMI, Estimagted GFR, Duration of Diabetes, Duration of Basal Insulin,
Prior Basal Insulin Dose, HbA1c, Concomitant antihyperglycaemic medication use

Figure 2: RAG-based approach to retrieve similar trials for 3-shot examples

than random selections, providing the model
with similar cases to draw from.

• LLM Generation: The LLM (LLaMa3 or
GPT-4o in our study) processes the query
prompt alongside the retrieved similar trials
as context to generate predictions for the base-
line features.

• Response Evaluation: The generated baseline
features are compared to the reference list
from the trial metadata using our LLM based
evaluation method to assess the accuracy.

By using RAG, we effectively provide the model
with more contextually relevant examples, which

improves its ability to predict accurate baseline fea-
tures. This approach leverages the most similar
trials to guide the model’s learning, leading to bet-
ter performance compared to using fixed examples.
Additionally, this method allows for scalability, as
the indexed database can expand to include more
trials, providing ever-better contextual examples
for future predictions.

C Prompts

C.1 Generation Prompt: Zero-shot

Figure 3 illustrates the full prompt used to generate
LLM responses (i.e., baseline features) in a zero-
shot setting. The system message includes detailed
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instructions for the LLM, specifying the format
and structure of the user query. Following this, the
user query provides the trial information as context,
serving as the question for the LLM.

C.2 Generation Prompt: Three-shot

Figure 4 shows the complete prompt used to gen-
erate LLM responses (i.e., baseline features) in a
three-shot setting (both with fixed example and
RAG based adaptive examples). The system mes-
sage contains detailed instructions for the LLM,
including the format and structure of the user query
and instructions to expect three examples with their
corresponding answers. Next, the user query pro-
vides example trial information and their answers
as additional context, followed by the actual trial
information serving as the question for the LLM.

C.3 Evaluation Prompt

Figure 5 displays the complete prompt used to
evaluate LLM responses (i.e., candidate features)
against a set of reference baseline features. The
system message provides detailed instructions for
the LLM on how to perform the matching and how
to return the response in JSON format. Following
this, the user query includes corresponding trial in-
formation, along with the list of reference features
and candidate features, which serve as the question
for the LLM to evaluate.

D Experimental Design

D.1 Hyperparameters

We present all our experimental hyperparameters
for both generation and evaluation task in Table 4
in Appendix. We use a fixed seed and a temperature
value of 0.0 across all experiments to ensure the
outputs are deterministic and reproducible.

D.2 Computational Resources used

We spent around $400 throughout all of our experi-
ments (both generation and evaluation in zero-shot
and three-shot settings) using GPT-4o models. Be-
sides that, we used around 250 compute units from
Google Colab for GPU computations and around
$100 in monthly subscription fees for HuggingFace
Pro account for working with Llama3 models.

D.3 Metric Adjustment

Let’s look at a hypothetical example -

• Reference Features = [‘Age’, ‘Blood pres-
sure’, ‘Height’, ‘Gender’,‘Previous Medica-
tion’]

• Candidate Features = [‘Age’, ‘Systolic Blood
pressure’, ‘Diastolic Blood Pressure’, ‘Body
Mass Index’, ‘Race’]

Let’s assume, GPT-4o is asked to evaluate these
two lists and find out matched features (a list of
pairs, in each pair, the first element is from refer-
ence features and the second element is from can-
didate features) and features that are not matched.
This is what it returns -

• Matched Features = [[‘Age’, ‘Age’], [‘body
mass index’, ‘Body Mass Index’], [‘Blood
Pressure’, ‘Systolic Blood Pressure’], [‘Blood
Pressure’, ‘Diastolic Blood Pressure’],
[‘Height’, ‘patient height’]]

• Remaining Reference Features = [‘Previous
Medication’]

• Remaining Candidate Features = [‘Race’]

So based on these outputs, we consider 3 types
of possible errors -

• Error type 1: ‘body mass index’ and ‘patient
height’ are not valid reference and candidates
features respectively, but however are present
during matching

• Error type 2: “Gender’ was a valid refer-
ence features that was either supposed to be
matched with some feature from candidate
features list, or remain unmatched. But after
the matching process, we find that ‘Gender’
does not appear anywhere.

• Error type 3: “Blood Pressure’ is used in
matching twice (once matched with ‘Systolic
Blood Pressure’, and then again matched with
‘Diastolic Blood Pressure’) while we specif-
ically instructed the evaluator to allow each
feature to match only once.

So to adjust for these errors, in our Precision
and Recall formulae, we only consider a number
of matches that are correct. We define number
of correctly matched features = number of total
matches - number of type 1 errors - (number of type
3 errors - 1). This allows us to correctly penalize
for this possible errors and gives us a conservative
estimate of models’ performance.
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Figure 3: Full Prompt for Generation Task in Zero-Shot setting

Figure 4: Full Prompt for Generation Task in Three-Shot setting

Table 4: Hyperparameters for experiment

Models Seed Temperature Max Token Message Format Response Format

LLaMa-3-70B-Instruct (as generator) 42 0.0 1000
{"role": "system", "content": system_message}
{"role": "user", "content": user_query}

Default

GPT-4o (as generator) 42 0.0 1000
{"role": "system", "content": system_message}
{"role": "user", "content": user_query}

Default

GPT-4o (as evaluator) 42 0.0 1000
{"role": "system", "content": system_message}
{"role": "user", "content": user_query}

JSON
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Figure 5: Full Prompt for Evaluation Task

E Additional Experiments

E.1 Analysis by Trial Group in CT-Pub

Table 5 compares the mean F1 scores of two mod-
els, GPT-4o and LLaMa3, across five trial groups
(Cancer, Chronic Kidney Disease, Diabetes, Hy-
pertension, and Obesity) within the CT-Pub dataset.
Three different settings are evaluated for each
model: Zero Shot, Three Shot with Fixed Exam-
ples, and Three Shot with RAG-based Examples.

Key observations include:

• Overall Best Performance: GPT-4o with the
Three Shot + RAG-based Example setting con-
sistently shows the best performance in most
trial groups, achieving the highest F1 scores
for Cancer (0.45), Chronic Kidney Disease
(0.52), Diabetes (0.56), and Obesity (0.46).

• Impact of RAG: Both models perform better
in the Three Shot + RAG-based Example set-
ting compared to the Three Shot + Fixed Ex-
ample and Zero Shot settings. This highlights
the effectiveness of the RAG approach, where
retrieving the most similar trials improves the
prediction accuracy for baseline features.

• Model Comparison: While GPT-4o gener-
ally outperforms LLaMa3 in most categories,
LLaMa3 performs closely in certain groups,
especially in the Diabetes trial group, where

its F1 score of 0.55 is nearly on par with GPT-
4o (0.56). In the Obesity trial group, LLaMa3
also improves significantly with RAG, though
GPT-4o still slightly outperforms it.

• Trial Group Variations: Performance varies
across the trial groups. Chronic Kidney Dis-
ease and Diabetes have the highest F1 scores,
suggesting that models are more successful at
predicting baseline features in these groups.
In contrast, the Cancer and Obesity groups
have lower scores, indicating more difficulty
in predicting features accurately in these trial
types.

Overall, the results demonstrate the benefit of us-
ing RAG-based retrieval in the Three Shot setting
for improving model performance across different
clinical trial groups, with GPT-4o showing gener-
ally stronger results.

E.2 Analysis by Trial Group in CT-Repo
In this table, we see the comparison of mean F1
scores for GPT-4o and LLaMa3 across five trial
groups in the CT-Repo dataset, under similar set-
tings: Zero Shot, Three Shot with Fixed Examples,
and Three Shot with RAG-based Examples.

Key observations:

• Overall Best Performance: LLaMa3 with
Three Shot + RAG-based Examples achieves

5583



Table 5: Comparison of mean F1 scores by Trial Groups in CT-Pub Dataset. Bold fonts indicate best performance.

Trial Group (CT-Pub)

Model Cancer Chronic Kidney Disease Diabetes Hypertension Obesity

GPT-4o (Zero Shot) 0.31 0.44 0.45 0.39 0.36
LLama3 (Zero Shot) 0.42 0.49 0.50 0.48 0.36
GPT-4o (Three Shot + Fixed Example) 0.36 0.47 0.46 0.44 0.40
LLama3 (Three Shot + Fixed Example) 0.42 0.52 0.49 0.45 0.38
GPT-4o (Three Shot + RAG Based Example) 0.45 0.52 0.56 0.42 0.46
LLama3 (Three Shot + RAG Based Example) 0.40 0.51 0.55 0.43 0.43

Table 6: Comparison of mean F1 scores by Trial Groups in CT-Repo Dataset. Bold fonts indicate best performance.

Trial Group (CT-Repo)

Model Cancer Chronic Kidney Disease Diabetes Hypertension Obesity

GPT-4o (Zero Shot) 0.29 0.34 0.36 0.36 0.34
LLama3 (Zero Shot) 0.35 0.42 0.42 0.44 0.37
GPT-4o (Three Shot + Fixed Example) 0.41 0.46 0.48 0.48 0.46
LLama3 (Three Shot + Fixed Example) 0.40 0.46 0.48 0.48 0.45
GPT-4o (Three Shot + RAG Based Example) 0.44 0.48 0.53 0.53 0.50
LLama3 (Three Shot + RAG Based Example) 0.46 0.49 0.56 0.54 0.51

the highest F1 scores in all trial groups, out-
performing GPT-4o in Cancer (0.46), Chronic
Kidney Disease (0.49), Diabetes (0.56), Hy-
pertension (0.54), and Obesity (0.51). This
highlights LLaMa3’s advantage in this dataset
when using the RAG-based example setting.

• Impact of RAG: As with CT-Pub, both models
show improved performance in the Three Shot
+ RAG-based Example setting compared to
Zero Shot and Three Shot + Fixed Example
settings. The RAG approach, which retrieves
the most similar trials, consistently enhances
model performance across trial groups.

• Model Comparison: While GPT-4o generally
performs well, particularly in the Diabetes
group (0.53), LLaMa3 surpasses it in all trial
groups under the RAG-based example setting,
which differs from the results seen in the CT-
Pub dataset. This suggests that LLaMa3 may
have a performance advantage in the CT-Repo
dataset with dynamic retrieval.

• Trial Group Variations: The Diabetes and Hy-
pertension groups see the highest F1 scores,
with Diabetes reaching 0.56 for LLaMa3 and
0.53 for GPT-4o, indicating that these trial
types may have more consistent or predictable
baseline features. In contrast, the Cancer
group shows lower scores, particularly in the
Zero Shot setting, where GPT-4o scores just

0.29.

Overall, the results in the CT-Repo dataset em-
phasize the effectiveness of the RAG-based exam-
ple setting in boosting model performance, with
LLaMa3 outperforming GPT-4o across all trial
groups, particularly in the Three Shot + RAG set-
ting.

E.3 Human-in-the-loop Evaluation of GPT-4o
as a Judge

To assess GPT-4o’s accuracy as an evaluator, we en-
gaged clinical domain experts to identify matched
pairs for 100 CT studies in the CT-Pub dataset.
Focusing on GPT-4o’s three-shot (fixed example)
candidate responses, the experts used the same in-
formation and criteria as GPT-4o.

Table 7: Mean of Cohen’s Kappa Score for each evalua-
tor pair across all 100 CT-Pub studies

Evaluator Pair Mean Kappa Score

Human 1 and Human 2 0.870561
Human 1 and Human 3 0.832767
Human 2 and Human 3 0.831810
Human 1 and GPT-4o 0.847636
Human 2 and GPT-4o 0.816234
Human 3 and GPT-4o 0.783869

We developed a web tool to collect and store
their responses. We then compared the responses
for the matched pairs from the human evaluators
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and GPT-4o, creating an inter-rater agreement table
and calculating pairwise Cohen’s Kappa statistics.
Cohen’s Kappa measures the agreement level be-
tween two raters classifying items into categories.
Our findings, presented in Table 7, show high agree-
ment between the human evaluators and GPT-4o,
underscoring GPT-4o’s reliability in identifying nu-
anced feature similarities. The relevant code is
available in the GitHub.

F Artifact Licenses

• ClinicalTrials.gov Data - Public and free
to use https://clinicaltrials.gov/
about-site/terms-conditions

• Meta Llama 3 - Meta Lllama 3 community
license: https://www.llama.com/llama3/
license/ (use of existing artifact(s) was con-
sistent is their intended use)

• OpenAI GPT-4o - https://openai.com/
policies/row-terms-of-use/

• CT-Pub and CT-Repo dataset - CC0 1.0 Uni-
versal
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