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Abstract

In recent years, large language models (LLMs)
have made significant progress in knowledge-
intensive applications. However, when adapt-
ing them to specific domains, we may en-
counter a multi-stage continuous learning sce-
nario, especially in cases where domain knowl-
edge evolves rapidly. This issue severely limits
traditional fine-tuning approaches for LLMs.
To overcome this limitation, we propose a new
learning paradigm designed specifically for
multi-stage continuous learning. This paradigm
includes a preference-based learning bias to
identify potential knowledge conflicts, as well
as a self-distillation-based data augmentation
strategy to expand and enrich the training
corpus, thereby improving the integration of
knowledge-compatible information. In the ex-
periments, we show that our proposed method
achieves a significant improvement in accuracy
after 7 stages of fine-tuning compared to previ-
ous methods, while also demonstrating excel-
lent performance in preserving general knowl-
edge. We have released our code and dataset at
Multi-Stage-Learning.

1 Introduction

Large language models (LLMs) are recognized as
comprehensive knowledge repositories due to their
ability to comprehend and represent diverse general
information (Brown, 2020; Ouyang et al., 2022;
Touvron et al., 2023; Dubey et al., 2024). However,
when applying them to specific domains, it is nec-
essary to fine-tune them on customized datasets to
equip the model with domain-specific knowledge
(Xu et al., 2021; Xie et al., 2023a; Diao et al., 2023).
Nevertheless, in this scene, we may encounter a
continual learning requirement, particularly when
the domain experiences rapid changes (McCann
et al., 2018; Gururangan et al., 2020; Xie et al.,
2023b). For example, as shown in Figure 1, if we

*Corresponding author.

Figure 1: An illustration of fine-tuning LLMs within a
multi-stage continual learning paradigm. At any given
time, the model is expected to provide responses based
on the most up-to-date knowledge acquired so far.

want the LLMs to incorporate up-to-date knowl-
edge but it was initially trained using data from
2020, then we need to fine-tune it sequentially with
data from 2023 and 2024. In our pilot experiments
for this multi-stage continual learning paradigm,
we have found that employing the standard fine-
tuning methods for LLMs significantly degrades
their performance (§ 5.1). However, this problem
has received insufficient research attention.

In this work, we focus on addressing this multi-
stage continual learning problem. Through our
analysis, we identify two primary obstacles that hin-
der effective learning: 1) Potential knowledge con-
flict (Longpre et al., 2021; Liu et al., 2024). When
a domain undergoes rapid changes, potential con-
flicts between new and old knowledge may arise,
potentially leading to “hallucinations” in LLMs
(Ghosh et al., 2024; Zhang et al., 2024b,c). 2) In-
comparable amount of fine-tuning data compared
to pre-training data. Compared to the extensive
data leveraged during pre-training, the domain-
specific data available for fine-tuning is typically
scarce (Jiang et al., 2023b; Dong et al., 2023), mak-
ing it challenging to adapt the model’s parameters
to fit for fine-tuning. The severity of these two chal-
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lenges is further exacerbated in multi-stage contin-
ual learning scenarios due to the accumulation of
errors (Hu et al., 2024; Zhao et al., 2024).

With this guidance, we propose a new approach
for fine-tuning LLMs in the multi-stage continual
learning settings. Particularly, to address the po-
tential knowledge conflict problem, we first detect
the existing knowledge in the model that conflicts
with new knowledge to be learned. Then, by intro-
ducing a preference-based "forgetting" strategy,
we enable the model to prioritize forgetting old
knowledge that conflicts with the new knowledge,
mitigating the negative impact of knowledge con-
flicts. As for the second issue, we propose a model-
based self-distillation data augmentation technique
that enriches training samples from multiple per-
spectives, including background information, logic-
driven augmentation, and expression paraphrasing.
In addition, to filter training samples that are ben-
eficial for model training, we propose a selection
strategy grounded in self-reasoning, which adap-
tively evaluates the contribution of various data
types, facilitating more effective model optimiza-
tion.

In our experiments, we consider two settings for
evaluation: Domain-independent Continual Learn-
ing and Cross-domain Learning. The experimental
results show that our method effectively mitigates
the degradation in learning new knowledge within
continual learning scenarios. For example, in the
setting with five iterations of Llama3-8B, our pro-
posed method achieves a 46.9% improvement in
accuracy, whereas the traditional continual instruc-
tion fine-tuning (CIT) method results in a decrease
to 27.70% in accuracy. Additionally, our experi-
ments demonstrate that our method effectively pre-
serves the original knowledge in the model that has
not been affected by new data. In summary, our
contributions are as follows:

• We identify the problem of multi-stage LLMs
fine-tuning in continual learning paradigm and
propose a new approach for learning with con-
flict knowledge.

• We propose a novel data augmentation ap-
proach that simultaneously considers the
alignment of training samples and the model’s
own knowledge, along with a reasoning-based
high-quality data selection method.

• Our method demonstrates outstanding perfor-
mance in both domain-independent and cross-

domain scenarios. Additionally, after multiple
rounds of learning, the model retains a high ca-
pacity for preserving the original knowledge
that does not conflict with the new training
information.

2 Related Work

2.1 Fine-Tuning Methods for LLMs

Fine-tuning (Howard and Ruder, 2018; Devlin,
2018; Liu, 2019) is a widely adopted approach
to adapt LLMs to new domains and tasks using
domain-specific data (Ding et al., 2022; Zheng
et al., 2024a). For example, research has utilized
fine-tuning to align LLMs with complex instruc-
tions (Chung et al., 2024) and explored efficient
fine-tuning techniques using minimal annotated
data (Zhang et al., 2024a; Kang et al., 2023). In spe-
cialized fields such as law and medicine, domain-
specific fine-tuning strategies have demonstrated
significant performance improvements (Wu et al.,
2023; Christophe et al., 2024). However, solely
relying on fine-tuning often struggles to effectively
acquire new knowledge when facing significant
domain shifts (Emelin et al., 2022; Ovadia et al.,
2023). To address this issue, recent studies have
proposed a two-stage approach, where continual
pre-training is followed by fine-tuning to first ac-
quire domain knowledge and then enhance task-
specific capabilities (Han et al., 2020; Jiang et al.,
2023b). Compared to traditional single-stage fine-
tuning methods, we focus on a multi-stage contin-
ual learning setting that requires the progressive
addition of new data and experiences significant
domain changes.

2.2 Continual Learning with LLMs

Continual learning (CL) aims to empower mod-
els to continuously acquire and update knowledge
throughout their lifecycle (Biesialska et al., 2020;
Zhang et al., 2023a) , enhancing their adaptabil-
ity and generalization in dynamic environments
(Xie et al., 2023b). Traditional CL methods in-
clude regularization-based (Kirkpatrick et al., 2017;
De Lange et al., 2019), replay-based (Rebuffi et al.,
2017; Scialom et al., 2022), and architecture-based
strategies (Madotto et al., 2020; Zhu et al., 2022),
aimed at mitigating knowledge forgetting. In re-
cent research, scholars have proposed a continuous
instruction fine-tuning strategy (Xin et al., 2024),
which leverages dynamic data streams with instruc-
tional signals to enhance the model’s ability to
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Figure 2: An overview of our approach, which basically comprises three main learning stages: (1) Preference-based
learning bias, which identifies probable conflicts and then employs a preference strategy to improve learning
by distinguishing knowledge-compatible and knowledge-incompatible data. (2) Data augmentation using self-
distillation, which boosts the training data by augmenting background knowledge, logic-compatible expansion, and
paraphrase augmentation, thereby increasing the volume of training data. (3) Dynamic data selection strategy, which
dynamically reviews augmented data, removes potential noise, and retains high-quality data that enhances training.

adapt to new tasks and domain shifts. Additionally,
the modular continual learning (Wang et al., 2024b)
method employs modular and compositional strate-
gies to facilitate knowledge sharing across tasks,
while the forget-before-learn (Ni et al., 2023) strat-
egy leverages parametric arithmetic to optimize
knowledge updates and resolve conflicts during
training. However, existing methods focus on ei-
ther data or model designation. By contrast, our
approach emphasizes the alignment between data
and model knowledge, considering both aspects
simultaneously.

3 Approach

3.1 The Overview
Figure 2 illustrates the overview of our approach,
which consists of three main modules. Particularly,
our method first employs a preference based learn-
ing bias to resolve potential knowledge conflicts
between the training data and the knowledge store
in the current model. Then, it uses self distillation
strategies to augment training data, with a dynamic
sample selection mechanism to filter noise and im-
prove learning. Here are the technical specifics.

3.2 Preference Based Learning Bias

To address potential knowledge conflicts, we de-
vised a strategy that employs preference-based
learning bias. Let (x, y) be a training example
in the next step, with x as the input and y as the
desired output. We utilize x as input and apply
the current LLM model πθ(·|x) K times to get
a prediction set Y = {y′i}Ki=1. Then we mea-
sure the compatibility1 between each prediction
y′i and the desired y, and subsequently divide Y
into a knowledge-compatible subset Yalign and a
knowledge-conflict subset Yconf. Our main motiva-
tion is to bias the model to generate responses sim-
ilar to those in Yalign and avoid those in Yconf. We
define a preference based learning bias to achieve
this goal, with two loss functions:

(1) Positive Preference Loss. This loss aims
to encourage the model to generate responses like
those in the knowledge-compatible subset Yalign,

1Compatibility is measured using cosine similarity be-
tween sentence embeddings of the prediction and the desired
output, with a threshold of 0.7 (decided by a grid search).
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Aug. Type Prompting Template

BG Knowledge [Prefix] Please add more background
knowledge to the original question.

Logic Enhance [Prefix] Please generate a new ques-
tion, and the new questions should
delve deeper into the same topic and
add logical reasoning processes. En-
sure that the new questions are logi-
cally related to the original content.
The new answers should accurately
answer the new questions and remain
consistent with the original answers.

Paraphrase [Prefix] Please paraphrase the input
question

Table 1: The prompting template for different augmen-
tation strategies. We set the [Prefix] as “You will receive
an original question and its corresponding answer”.

which is defined as:

LPP = −
∑

y′∈Yalign

log

(
πθ(y

′ | x)
πref(y′ | x)

)
(1)

where πθ(y
′ | x) represents the probability that

generating y given x under a trainable LLMs, and
πref(y

′ | x) denotes the probability that generating
under a reference, fixed model.

(2) Negative Preference Loss. Unlike the pre-
vious loss, this loss seeks to prevent generating
replies like those in the knowledge-conflict subset
Yconf. Particularly, the loss function is defined as:

LNP =
∑

y′∈Yconf

log

(
πθ(y

′ | x)
πref(y′ | x)

)
(2)

where πθ(y
′ | x) and πref(y

′ | x) share the same
definitions as those in the previous loss.

Finally, we combine the two losses for learning:

Ltotal = α · LPP + β · LNP (3)

where α and β control the contributions of each
part. We apply this loss to each training in-
stance. This allows the model to learn to gener-
ate knowledge-compatible outputs while avoiding
incompatible ones, dramatically reducing the oc-
currence of potential knowledge conflicts.

3.3 Data Augmentation with Self-Distillation
Regarding the limited amount of the fine-tuning
data to the pre-training data, we propose data aug-
mentation strategies based on self-distillation. Ta-
ble 1 shows three prompting-based strategies we
apply, and to avoid introducing external resources,
we use the LLMs themselves for augmentation.

Algorithm 1 Dynamic Data Selection
Input: Dbase = {(xi, yi)}
Output: Filtered dataset Dfiltered ← ∅
foreach (xi, yi) ∈ Dbase do

Generate an augmented example (x̂i, yi);
Measure the mutual information between the original

input xi and x̂i, and set it as θx(E.q. 4);
Obtain an output ŷi using x̂i, and measure the mutual

information between yi and x̂i, and set it as θy;
if θx × θy > a threshold θ then

Append (x̂i, yi) to Dfiltered
end

end
return Dfiltered

Background Knowledge Integration. In this
method, we ask the LLMs to provide more back-
ground knowledge in order for the input to contain
more context-related information.

Logic-Compatible Expansion. In this strategy,
we ask the LLMs to incorporate logic-related in-
formation to expand the semantic complexity of
the input, which therefore improving the logical
thought process of context.

Paraphrase Augmentation. This method in-
volves rewriting and reformatting the original ex-
ample to generate more similar examples with vari-
ous structures and expressions.

Using the above strategies, for any training ex-
ample (x, y), we can generate a new (x̂, y) pair.

3.4 Dynamic Data Selection Strategy

To evaluate the effectiveness and validity of aug-
mented data for model training, we propose a dy-
namic data selection strategy based on two heuristic
criteria, as follows.

Mutual Information. This criterion evaluates if
x̂ is consistent with x. Given that x and x̂ have dif-
ferent lengths, we use an abstract model to transfer
them as x′ and x̂′, respectively, and then quantify
the mutual information between them:

MI(x′; x̂′) =
∑

w,ŵ′
N(w, ŵ′) log

(
N(w, ŵ′)

N(w)N(ŵ′)

)

(4)
where N(w, ŵ′) is the frequency that words w
and ŵ′ co-occur, and N(w) and N(ŵ′) are the
frequency of each word.

Indication from LLMs. In this criterion, we
measure if the created x̂ can produce the same
result. We create a prompt using x̂ as an input and
output ŷ. We next calculate the mutual information
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between ŷ and the original y as the indirectness of
the effectiveness of x̂.

The overall procedure is summarized in Algo-
rithm 1. Finally, the filtered set of high-quality
samples will be used as input for subsequent aug-
mentation and fine-tuning processes.

4 Experimental Setups

4.1 Datasets

Given the lack of publicly available datasets for
evaluation in this multi-stage continual learning
setting, we created our own dataset. Specifically,
we consider seven rapidly evolving domains: nat-
ural sciences, medicine, technology, transporta-
tion, tourism, finance, and social sciences, and col-
lect 3,000 question-answer pairs for each, which
yields a dataset of 21,000 samples. To evaluate
the model’s performance in cross-domain learning
situations (§ 4.2), we require that at least 1,000 ex-
amples shared by two related domains. In addition,
we collected 6,000 samples as a general-purpose
dataset to investigate the model’s performance in
a domain-agnostic setting.For further details on
our data processing procedure, please refer to Ap-
pendix A.

4.2 Evaluation Settings

To perform a comprehensive evaluations, we con-
sider two continual learning scenarios, with Table 2
showing the detailed data configurations.

Setting I: Domain-independent Continual
Learning. In this setting, we use the domain-
independent dataset (6000 samples), with the fol-
lowing configuration: 1) In the initial stage, we use
the original dataset for fine-tuning. 2) While in the
following steps, we manually edit the answers to
differ from the prior one, and then use the revised
dataset to fine-tune. This simulates a continual
learning environment in which knowledge evolves
dynamically over time. For testing, we generate
a same number of examples compatible with the
fine-tuning data as the evaluation set.

Setting II: Cross-domain Scenarios. In this set-
ting, we conduct continual learning using cross-
domain data by gradually adding domains one by
one. We ensure that a minimum of 1,000 sam-
ples are shared between any two domains, with
manual verification conducted to confirm this. Be-
fore fine-tuning a domain, we edit the answers
to be different from the prior domain to mimic

# of Stage # of Train # of Conflict

Setting I 5 6,000 6,000
Setting II 7 3,000 >1,000

Table 2: Detailed configurations of the two evaluation
settings, showing the number of training examples and
conflicted ones per stage.

a domain dispute. In this case, each training stage
contains 2,000 domain-independent examples and
1,000 cross-domain conflict samples.

4.3 Evaluation Metrics

We propose two metrics for evaluation: Knowledge
Gain Ratio (KGR), which assesses the model’s
improvement in learning the dynamic involving
knowledge, and post-injection accuracy (ACC)
(Fisher, 1936), which measures overall accuracy
improvement on the given test set (The detailed
definitions are given in Appendix B). In Setting I,
both measurements are used. In Setting II, only
KGR is used, with an emphasis on the model’s ca-
pacity to acquire new information in cross-domain
scenarios.

4.4 Baselines

We consider the following baselines:

• Continual instruction fine-tuning (CIF)
(Zhang et al., 2023b), which uses previous
knowledge as a basis for continual learning,
integrating task instructions as part of the
fine-tuning process.

• Modular continual learning (MoCL) (Wang
et al., 2024a), which addresses continual learn-
ing by activating only the relevant modules
for a given task, reducing interference and al-
lowing for more efficient multi-task learning
without losing prior knowledge.

• Forgetting before learning (F-Learning) (Ni
et al., 2023), which proposes an approach to
mitigate catastrophic forgetting by selectively
“forgetting” irrelevant or outdated knowledge
before learning new tasks.

For the backbone LLMs, we consider Llama2
(Touvron et al., 2023), Llama3 (Dubey et al., 2024),
and Mistral-7B (Jiang et al., 2023a) respectively.
For the detailed hyper-parameter settings, please
refer to Appendix C.
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Eval Stage1 (Initial) Stage2 Stage3 Stage4 Stage5

KGR ACC KGR ACC KGR ACC KGR ACC KGR ACC

Llama2-7B

CIT (2023b) 50.50 66.55 44.30 ↓6.20 46.10 ↓20.45 12.50 ↓38.00 25.39 ↓41.16 12.20 ↓38.30 24.23 ↓42.32 11.70 ↓38.80 17.60 ↓48.95

MoCL (2024a) – – 48.20 ↑3.90 49.60 ↑3.50 45.50 ↑33.00 47.70 ↑22.31 46.80 ↑34.60 47.10 ↑22.87 26.20 ↑14.50 27.35 ↑9.75

F-Learning (2023) – – 54.40 ↑10.10 57.50 ↑11.40 49.40 ↑36.90 52.25 ↑26.86 49.20 ↑37.00 49.75 ↑25.52 21.80 ↑10.10 20.90 ↑3.30

Ours – – 60.20 ↑15.90 62.55 ↑16.45 69.40 ↑56.90 69.65 ↑44.26 68.60 ↑56.40 67.53 ↑43.30 75.80 ↑64.10 75.49 ↑57.89

Llama2-13B

CIT (2023b) 68.90 81.95 32.20 ↓36.70 34.20 ↓47.75 26.80 ↓42.10 33.55 ↓48.40 24.60 ↓44.30 32.85 ↓49.10 11.20 ↓57.70 17.85 ↓64.10

MoCL (2024a) – – 41.60 ↑9.40 41.95 ↑7.75 50.40 ↑23.60 51.25 ↑17.70 48.70 ↑24.10 50.00 ↑17.15 25.80 ↑14.60 26.50 ↑8.65

F-Learning (2023) – – 43.30 ↑11.10 43.80 ↑9.60 59.30 ↑32.50 60.70 ↑27.15 53.90 ↑29.30 54.90 ↑22.05 33.60 ↑22.40 33.90 ↑16.05

Ours – – 66.30 ↑34.10 67.25 ↑33.05 76.50 ↑49.70 77.40 ↑43.85 66.20 ↑41.60 65.45 ↑32.60 76.50 ↑65.30 77.65 ↑59.80

Llama3-8B

CIT (2023b) 65.90 81.55 48.80 ↓17.10 49.90 ↓31.65 31.90 ↓34.00 34.05 ↓47.50 30.30 ↓35.60 35.30 ↓46.25 23.40 ↓42.50 27.70 ↓53.85

MoCL (2024a) – – 70.40 ↑21.6 70.65 ↑20.75 52.50 ↑20.60 52.65 ↑18.60 63.30 ↑33.00 63.65 ↑28.35 31.30 ↑7.90 30.95 ↑3.25

F-Learning (2023) – – 67.00 ↑18.20 67.45 ↑17.55 58.40 ↑26.50 57.95 ↑23.90 61.40 ↑31.10 61.20 ↑25.90 57.70 ↑34.30 57.90 ↑30.20

Ours – – 83.60 ↑34.80 83.90 ↑34.00 69.40 ↑37.50 69.55 ↑35.50 69.20 ↑33.90 69.20 ↑39.03 74.80 ↑51.40 74.60 ↑46.90

Mistral-7B

CIT (2023b)) 61.00 74.20 41.20 ↓19.80 44.65 ↓29.55 38.50 ↓22.50 38.90 ↓35.30 32.80 ↓28.20 36.40 ↓37.80 21.60 ↓39.40 23.50 ↓50.70

MoCL (2024a) – – 54.40 ↑13.20 51.25 ↑6.60 62.50 ↑24.00 59.10 ↑20.20 58.79 ↑25.99 57.25 ↑20.85 47.10 ↑25.50 46.00 ↑22.50

F-Learning (2023) – – 48.30 ↑7.10 51.50 ↑6.85 58.10 ↑19.60 57.65 ↑18.75 54.20 ↑21.40 55.30 ↑18.90 33.80 ↑12.20 34.90 ↑11.40

Ours – – 64.60 ↑23.40 65.72 ↑21.07 72.60 ↑34.10 72.80 ↑33.90 71.20 ↑38.40 71.58 ↑35.18 77.50 ↑55.90 77.34 ↑53.84

Table 3: This table presents the performance metrics of four methods throughout five consecutive rounds of
continuous learning. With our proposed method, the learning efficiency improves significantly across different
scenarios. In the horizontal results, arrows indicate the degree of learning degradation compared to fine-tuning with
real data, while in the vertical comparison, arrows represent the performance improvement of the models in the
same round compared to the traditional CIF method.

5 Main Results

5.1 Results for Domain-independent
Continual Learning Setting

Table 3 compares the performance of different mod-
els under the domain-independent setting. In par-
ticular, our method consistently outperforms all
baselines for all backbone LLMs and demonstrates
higher stability in learning in this multi-stage envi-
ronment. For example, in the fifth stage, our model
(Llama3-8B) attained KGR and ACC of 74.80%
and 74.60%, respectively, compared to 68.90% and
81.95% in the first stage. In contrast, other meth-
ods like CIT, as well as enhanced approaches like
MoCL and F-learning, perform poorly when deal-
ing with the involving data. For example, regarding
the CIT method (Llama3-8B), the KGR and ACC
decrease significantly to 23.40% and 27.70% by
the fifth stage.

Regarding the underlying reason, although
MoCL and F-learning show some improvements
over traditional methods in the early rounds, their
performance deteriorates significantly as the num-
ber of training iterations increases. This is pri-

marily due to their inability to maintain stability
during prolonged training, leading to issues such
as overfitting or model degradation. In contrast,
it is noteworthy that our method fully leverages
the model’s inherent capabilities to enhance the
learning of new knowledge without requiring any
external resources. This makes our approach more
concise and efficient, offering stronger scalability
and stability in practical applications.

5.2 Results for Cross-Domain Setting

Figure 3 shows the experimental results of the
model’s cross-domain training under Setting II. Par-
ticularly, our method demonstrates exceptional and
stable performance even in the later stages of train-
ing (e.g., the seventh round), consistently outper-
forming the second-round performance of the CIT
method across all model evaluations. In contrast,
the other three methods exhibit a gradual decline
in their ability to acquire new knowledge as train-
ing progresses, with their final performance sig-
nificantly lower than that of the first round. The
experimental results across four different baseline
models of varying sizes further confirm the effec-
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Figure 3: KGR Performance of Models in Cross-Domain Scenarios

Method ACC(%) KGR(%)

CIT 48.80 49.90
PBL (Ours) 59.00 59.30

Table 4: Comparison of KGR and ACC between using
only CIT and the forgetting-based learning method.

Method ACC (%) KGR (%)

No Argument 49.90 48.80

+ BKI 58.85 58.60
+ LCE 52.80 52.50
+ PA 56.40 64.10

CA (Ours) 69.90 69.30

Table 5: Comparison of Model Performance under Dif-
ferent Data Augmentation Strategies in Stage II.

tiveness and adaptability of our method for contin-
uous learning in cross-domain scenarios.

6 Discussion

6.1 Ablation Study

In this section, we conduct ablation experiments to
evaluate the impact of each module. Our experi-
ments are carried out on the LLaMA3-8B model
with the LoRA (Hu et al., 2021) Rank set to 16.

Impact of Preference Based Learning Bias. We
compare models fine-tuned with only CIT to those
using our Stage I learning strategy(PBL). As shown
in Table 4, the forgetting-based learning method
significantly enhances performance, boosting KGR
by 9.40% and ACC by 10.20%.

Impact of Data Augmentation with Self-
Distillation. To evaluate the impact of different
data augmentation methods in Stage II, we com-
pare the following strategies: (1) CIT, (2) Back-
ground Knowledge Integration(BKI), (3) Logic-
Compatible Expansion(LCE), (4) Paraphrase Aug-

Method ACC (%) KGR (%)

No Argument 49.90 48.80

Data Argument 69.90 69.30
+ RS (50%) 79.85 79.60
+ RS (25%) 69.85 63.50
+ RS (12.5%) 70.40 66.70

DS (Ours) 81.20 82.50

Table 6: Comparison of Model Performance under Dif-
ferent Data Augmentation Strategies.

mentation (PA), and (5) Comprehensive augmen-
tation(CA ours) that combines all methods. The
experimental results are presented in Table 5 show-
ing the respective gains in model knowledge acqui-
sition.Each data augmentation method contributes
to improvements in model performance, indicating
that the model is able to learn additional knowledge
from the augmented data. Notably, our comprehen-
sive approach demonstrates superior performance.

Impact of Dynamic Data Selection Strategy.
To investigate the improvements in Stage III, we
compare the following methods: (1) continual in-
struction fine-tuning (CIT), (2) random data selec-
tion (RS), and (3) dynamic data selection (DS ours).
The experimental results are shown in Table 6. The
results demonstrate that using the full augmented
dataset is not always the optimal choice. A cer-
tain degree of data filtering further improves model
performance, and the minimal difference in perfor-
mance between using 1/8 and 1/4 of the randomly
selected data suggests that fine-tuning relies more
on data quality and its relevance to the model’s
knowledge rather than data quantity. Using our
dynamic filtering method leads to significant im-
provements, further proving that we can effectively
identify high-quality data that truly benefits model
training.
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Step Metric CIT (%) Ours (%)

1
KRR – –
ACC 65.45 * –

2
KRR 35.40 * 67.20↑31.80

ACC 30.25↓35.20 61.45↑31.20

3
KRR 21.20↓14.20 59.60↑38.40

ACC 21.70↓43.75 56.50↑34.80

4
KRR 18.80-16.60 61.70↑42.90

ACC 18.65↓46.80 56.70↑38.05

5
KRR 9.50-25.90 66.30↑56.80

ACC 9.85↓55.60 59.70↑49.85

Table 7: Comparison of KRR and ACC under different
fine-tuning methods. Subscript values indicate the ab-
solute increase (in red) and absolute decrease (in green)
compared to Step 1 for ACC and Step 2 for KRR.

6.2 Analysis of Knowledge Retention

In this section, we focus on evaluating the model’s
ability to retain knowledge in continuous learn-
ing scenarios. Based on Experiment 5.1, we add
3,000 observation data points in the first round and
continuously monitor the model’s knowledge re-
tention and forgetting of the original domain data
in subsequent training rounds. Here, we introduce
Knowledge Retention Rate (KRR) as an additional
evaluation metric (refer to Appendix C). As shown
in Table 7, the traditional CIT method results in
a significant decline in both ACC and KRR after
multiple training rounds, indicating a severe catas-
trophic forgetting phenomenon and a sharp dete-
rioration in the model’s ability to recall original
information. In comparison, our method enhances
the model’s knowledge retention to a certain degree,
and in some cases, can even restore its performance
to near-original levels.

6.3 Case Study

We conducted a case study comparing the impact of
the original model, three staged methods, and our
approach on knowledge acquisition. Experiments
were performed on LLaMA3-8B, focusing on the
second round of inference. Table 8 summarizes the
results across different knowledge update stages.
Specifically, examples 1 and 4 indicate that after
applying the preference learning method in the first
stage, the model was able to correctly answer the
queries. Example 2 shows that in cases where the
forgetting mechanism failed, data augmentation
successfully corrected the outputs. In example 3,
despite using the methods from stage 1 and the data

# Input Original / Target

1 What is the chemical sym-
bol for sodium?

Cl
Sn

=> Stage1: Sn Stage2: Cl
Stage3: Cl Ours: Sn

2 How much did the global
unemployment rate drop in
2021?

3%
2%

=> Stage1: 3% Stage2: 2%
Stage3: 2% Ours: 2%

3 How much does the Sigma
105mm F1.4 DG HSM Art
lens weigh?

1100g
800g

=> Stage1: 1100g Stage2: 400g
Stage3: 800g Ours: 800g

4 Who is the main villain of
Final Fantasy X?

Arklay
Zannar

=> Stage1: Zannar Stage2: Giga
Stage3: Arklay Ours: Zannar

5 What was the score of the
2002 World Cup final?

2-0
1-1

=> Stage1: 2-0 Stage2: 1-1
Stage3: 2-0 | 1-1 Ours: 1-1 | 2-0

Table 8: Generated outputs comparison across different
methods.

augmentation strategy from stage 2, the model still
produced suboptimal results, which were corrected
using our proposed filtering strategy. However, the
method still has certain limitations. For instance, in
example 5, the model failed to acquire new knowl-
edge, resulting in incorrect answers, highlighting
the need for further refinement in specific scenar-
ios.

7 Conclusion

In this work, we tackled the challenge of fine-
tuning LLMs within a multi-stage continual learn-
ing framework. We introduced a novel approach
that incorporates conflict-based learning to address
knowledge conflicts and self-distillation-based data
augmentation to enhance training data. Through
extensive experiments across two scenarios, our
method demonstrated significant improvements in
both knowledge acquisition efficiency and long-
term retention of previously learned information.
Looking ahead, we plan to extend our approach
to more complex tasks, such as handling domain
shifts and adversarial examples, to further advance
the effectiveness of continual learning in LLMs.
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Limitations

To facilitate evaluating the model’s understanding
of knowledge, our current training and test sets
focus on fill-in-the-blank and true/false types of
data. In the future, we plan to extend the frame-
work to more complex tasks. Additionally, due to
hardware limitations, most experiments are con-
ducted on models with around 10 billion parame-
ters, while larger models are explored only in a few
experiments. Repeating our study in more complex
scenarios will contribute to a deeper understanding
of multi-stage continual learning in large models.
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A Dataset Processing

This section provides a detailed description of how
we constructed our dataset, where each original
question is associated with five possible answers
(one factual and four counterfactual), and for each
of these answers, four test questions are generated.
By incorporating both real and fictional content in
multiple rounds, we aim to evaluate the model’s
ability to handle dynamic conflicts and updates,
reflecting a more realistic scenario of continual
learning and error correction.

A.1 Domain-Data Selection

Our dataset primarily relies on authoritative sources
such as Wikipedia, spanning multiple domains in-
cluding natural sciences, medicine, technology,
transportation, tourism, finance, and the social sci-
ences. At the initial stage, we select entries that bal-
ance timeliness with broad coverage, ensuring the
inclusion of up-to-date knowledge such as recent
events or venue information. This design simulates
practical scenarios where a model must continually
adapt to new information over time. After filtering
out noisy and redundant samples, we arrive at a
set of well-structured, temporally relevant source
questions.

A.2 Training Data Construction

To simulate scenarios in which factual and coun-
terfactual information coexist, we make use of
GPT-4o to generate question–answer pairs based on
previously extracted questions. In the first round
(Step 1), we ensure that the model is presented
with answers reflecting real-world facts, establish-
ing an initial baseline of correct knowledge. From
Steps 2 through 5, we iteratively introduce answers
that conflict with those presented in the previous
round. To minimize data leakage or contamination
during training, we apply several filtering strate-
gies. First, we employ automated scripts to identify
and remove duplicate counterfactual samples, as
well as to detect any form of prior exposure the
model might have to certain fabricated facts. Sec-
ond, we conduct trial inference runs: if the model
can correctly respond to a counterfactual query be-
fore it has been explicitly trained on that query, then
the corresponding sample is replaced or discarded.
This ensures that the model does not retain “prior
memory” of newly introduced material, enabling a
clearer assessment of how well it learns, forgets, or
corrects knowledge over multiple rounds.

Type Construction and Format

Q1 Method: Rewrite original Q in MC format with
five options (A–E) separated by “|.”
Format: “Please select the correct option...”
Answer: Use the content of the current correct
answer (e.g., Answer C).

Q2 Method: Form a true statement from the orig-
inal Q and current answer. Avoid real-world
claims.
Format: “True/False: (Current Answer) is (De-
scription)...”
Answer: “True.”

Q3 Method: Use a conflicting answer to create a
false statement.
Format: “True/False: (Another Answer) is (De-
scription)...”
Answer: “False.”

Q4 Method: Rewrite the original Q, replacing the
answer part with “____.”
Format: “Question: XXX (Replace answer with
____).”
Answer: A single word or short phrase (current
correct answer).

Table 9: An overview of four question types (MC,
True/False-True,True/False-False and Fill-in-the-Blank)
with their construction methods and formats.

A.3 Test Data Construction

During the test phase, each original question and
its five associated answers (one factual plus four
counterfactuals) are transformed into four distinct
test items to examine the model’s comprehension
and retention of the respective answer. We adopt
four types of questions including multiple choice,
True/False (True), True/False (False), and fill-in-
the-blank tasks to systematically evaluate perfor-
mance from various angles. In the multiple-choice
questions, we rewrite the original query into a
clearly stated prompt and provide the five potential
answers (Answers A through E) as options. The
model is instructed to select only the correct choice
for the current round. In the True/False (True)
questions, a statement is constructed to be consis-
tent with the current answer, and the model should
indicate “True” if it accurately comprehends the
answer. Conversely, the True/False (False) ques-
tions involve pairing the statement with a conflict-
ing answer to verify whether the model can iden-
tify logical discrepancies. Finally, the fill-in-the-
blank questions mask the correct answer slot in the
rephrased prompt using a placeholder such as “__”
which the model must populate accurately with the
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Step Metric CIT MoCL F-
Learning

Ours

Step1
KGR 61.00 – – –
ACC 74.20 – – –

Step2
KGR 41.20 44.80 62.40 77.90
ACC 44.65 51.95 64.76 76.32

Step3
KGR 38.50 55.60 44.70 81.10
ACC 38.90 58.85 51.80 81.46

Step4
KGR 32.80 42.60 62.20 74.10
ACC 36.40 49.40 62.45 74.68

Step5
KGR 21.60 26.30 53.20 82.60
ACC 23.50 23.50 53.26 82.30

Table 10: Performance of Llama3-70B under Setting I
using LoRA for efficient fine-tuning.

current correct answer.
By employing these four question types for each

of the five possible answers, we offer a multifaceted
assessment of the model’s ability to distinguish
among factual knowledge, conflicting claims, and
self-contradictory content. This approach allows
us to analyze how well the model updates its rep-
resentations in the presence of misinformation and
whether it can preserve previously learned correct
knowledge without succumbing to catastrophic for-
getting. The resulting dataset effectively balances
clarity for human interpretation and high utility
for automated evaluation in a continuous learning
framework.

B Evaluation

Post-Injection Accuracy (ACC) is used to evalu-
ate the overall improvement in the model’s answer-
ing accuracy after knowledge injection. This metric
focuses on the model’s precision in absorbing and
correctly applying new knowledge, reflecting its
reliability in practical application scenarios. The
calculation formula for ACC is:

ACC =

{ |Ccorrect_post|
|Ctotal_post|

∣∣∣∣ Ctotal_post ̸= ∅
}

(5)

where Ccorrect_post represents the set of questions
the model answered correctly after additional train-
ing, and Ctotal_post represents the total set of ques-
tions evaluated after further training. The resulting
value is interpreted as a percentage, indicating that
a higher ACC value signifies the model’s enhanced
ability to answer questions accurately, demonstrat-

ing the positive impact of incorporating new infor-
mation on the model’s overall performance.

Knowledge Gain Ratio (KGR) is a key metric
used to measure the degree of improvement in the
model’s answering capabilities before and after the
learning process. Specifically, KGR quantifies the
proportion of questions that were answered incor-
rectly before training but were corrected afterward.
This metric reflects the effectiveness of the learn-
ing process in addressing the model’s knowledge
gaps and improving its adaptability to new informa-
tion.The calculation formula for KGR is as follows:

KGR =

{ |Cinc_pre ∩ Ccor_post|
|Cinc_pre|

∣∣∣∣ Cinc_pre ̸= ∅
}

(6)
where Cincorrect_pre represents the set of questions
the model answered incorrectly prior to additional
training, and Ccorrect_post represents the set of ques-
tions the model answered correctly after further
training. By calculating the intersection of these
two sets, KGR intuitively measures the model’s
ability to effectively incorporate new information
to improve performance. The resulting value is
then interpreted as a percentage.

Knowledge Retention Rate (KRR) is a crucial
metric for evaluating the model’s capability to pre-
serve its original knowledge while incorporating
newly injected information. Specifically, KRR
quantifies the proportion of questions that were
answered correctly both before and after knowl-
edge injection, reflecting the model’s resistance to
negative interference from new data. The formal
definition of KRR is as follows:

KRR =

{ |Ccor_pre ∩ Ccor_post|
|Ccor_pre|

∣∣∣∣ Ccor_pre ̸= ∅
}

(7)
where Ccor_pre represents the set of questions an-
swered correctly prior to injection, and Ccor_post
denotes the set of questions still answered cor-
rectly post-injection. By computing the intersec-
tion of these two sets, KRR intuitively captures the
model’s ability to retain its prior knowledge base.
A higher KRR suggests a more stable retention of
the original knowledge, demonstrating the model’s
robustness against forgetting.
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Topic Questions Correct Answer Candidates

Medicine
Which technology is the most com-
monly used to remotely monitor pa-
tients with chronic conditions?

Telemedicine A. Artificial Intelligence
B. Virtual Reality
C. Augmented Reality
D. Bioprinting

Which healthcare data analysis tool
is mostly widely used for patient
cohort identification and analysis?

SAS A. SPSS
B. R
C. Tableau
D. Microsoft Excel

Finance
Which of the following govern-
ment programs is primarily de-
signed to help seniors with their
healthcare costs?

Medicare A. Medicaid
B. Social Security
C. TANF
D. SNAP

Which of these following compa-
nies is NOT a major player in the
travel finance industry?

Amazon A. Skyscanner
B. Booking Holdings
C. Expedia
D. TripAdvisor

Travel
Which of these factors is consid-
ered the most significant driver of
tourism economic forecasting?

Economic growth A. Weather patterns
B. Technology advancements
C. Currency exchange rates
D. Political stability

Which country’s national airline
was the first in the world to offer
a luxury space tourism package?

United Arab Emirates A. Japan
B. United Kingdom
C. United States
D. China

Science
What is the earliest black hole that
was discovered by humans?

Cygnus X-1 A. Leo X-1
B. Aquila X-1
C. Eridanus X-1
D. Orion X-1

What constant is used to express
the speed of the expansion of the
universe?

Hubble A. Newton
B. Maxwell
C. Planck
D. Einstein

. . . . . . . . . . . .

Table 11: Several examples from our meticulously crafted dataset. As demonstrated above, all the questions come
from diverse active fields, covering up-to-date information with exceptional quality.

C Training Setup

For our experiments, we employed the Llama-
Factory (Zheng et al., 2024b) framework to facili-
tate the training process. Notably, for the LLaMA3-
70B model, we utilized DeepSpeed ZeRO (Rasley
et al., 2020) to enhance memory efficiency and
accelerate training. During the model evaluation
phase, we leveraged the vLLM (Kwon et al., 2023)
framework to streamline inference and ensure effi-
cient evaluation. All experiments were conducted
on NVIDIA A100 GPUs with 80GB of memory
to meet the computational demands of large-scale
models.

D Supplementary Experiments for
Large-Scale Models

In this subsection, we conduct supplementary ex-
periments on Llama3-70B under Setting I. Due

to resource constraints, LoRA is employed for
parameter-efficient fine-tuning, with the rank set to
16. Appendix F shows that during multi-stage con-
tinual learning, both full fine-tuning and parameter-
efficient fine-tuning exhibit similar trends. As
shown in Table 10, our experimental results demon-
strate that our approach remains effective even on
larger-scale models.

E Impact of Different Quantization
Methods

Table 12 presents the performance variations of
the two metrics under different quantization levels,
with our LoRA rank set to 16. The experimental
results indicate that model performance improves
as the quantization level increases, suggesting that
higher precision quantization yields better perfor-
mance, highlighting the advantages of using higher
bit-width quantization for knowledge retention and
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QL CIT (%) Ours (%)

KGR ACC KGR ACC

Int2 14.90 19.20 66.90↑52.00 67.85↑48.65

Int4 55.80 56.75 86.10↑30.30 85.95↑29.20

Int8 49.00 50.35 84.10↑35.10 84.10↑33.75

FP16 53.80 55.25 83.60↑29.80 83.90↑28.65

Table 12: Impact of Quantization Methods on KGR and
ACC. Subscript values indicate the absolute increase (in
red) compared to CIT.

Rank CIT (%) Ours (%)

KGR ACC KGR ACC

4 39.60 41.50 78.10↑38.50 78.35↑36.85

8 48.80 49.90 71.30↑22.50 71.45↑21.55

16 53.80 55.25 83.60↑29.80 83.90↑28.65

Full 62.80 63.40 90.40↑27.60 90.30↑26.90

Table 13: Impact of LoRA Rank Settings on KGR and
ACC.

task accuracy.

F Setting Impact on Performance

Table 13 presents the performance variations of
the two metrics under different rank settings, with
our quantization level set to FP16. Increasing the
LoRA rank from 4 to 16 resulted in significant
improvements in both KGR and ACC. The results
indicate that higher LoRA ranks can enhance the
model’s ability to retain and generate knowledge,
and using full fine-tuning may yield even better
learning outcomes.
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